热门-振动的测量傅里叶变换duhamel积分反应谱傅里叶变换积分怎么算

热门-振动的测量傅里叶变换duhamel积分反应谱傅里叶变换积分怎么算
热门-振动的测量傅里叶变换duhamel积分反应谱傅里叶变换积分怎么算

【振动的测量傅里叶变换duhamel积分反应谱】

傅里叶变换积分怎么算

8 振动的测量 8.1 前言有的时候,一些微小的、不显著的

振动,会与结构,或者结构的某一部分产生共振,从而将振动

放大。共振也会发生在人的身上,人体的自振频率大概为

7.5Hz,因此次声(<20Hz)会对人体造成伤害。

所以说,对于结构来说,利用合适的装置或者设计来减小这

样的共振是非常有必要的。那么,想要研究如何减小共振,我

们首先要知道将要发生的振动的参数。想要知道这些参数,我

们就需要一些仪器来测量,这些仪器就是我们这章要了解的。

首先来看一下一些概念。在结构工程中常常进行运动量(位移、速度或加速度)的测量,例如地震动时程的测量;振动台

试验中结构模型的动力反应的测量;脉动作用下结构物的振动

的测量;大桥、超高层结构风振的测量等。

用于测量振动量的仪器(拾振仪)主要有三种:加速度位

移计:测量加速度的时程(强震仪)。

位移计:测量位移时程(地震仪)。

速度计:测量速度。

8.2 理论 8.2.1 运动方程的建立D’Alembert原理:在

质点系的运动的任意瞬间,如果除了实际作用于每一质点的主

动力和约束反力外,再加上假想的惯性力,则在该瞬间质点系

将处于假想的平衡状态,称之为动力平衡状态。记Fi、fIi、

Si分别为质点mi所受的主动力、惯性力和约束反力,则

D’Alembert原理可表示为 Fi+fIi+Si=0 通常主动力Fi包括

外荷载、阻尼力和弹性恢复力。

上图质量块m所受的主动力为 F(t)=P(t)-cut-kut 惯性力为 fI=-mut 由于该体系是约束反力不做功的理想约束体系,

故列运动方程时仅考虑运动方向上的受力,此时的约束反力是没有的。

将上面两式代入D’Alembert原理表达式,有

mut+cut+kut=P(t) 当然,建立运动方程的方法有多种,除了

上面介绍的D’Alembert原理之外,还有虚位移原理、Hamilton原理和Lagrange方程,这四种方法对建立运动方程

是完全等同的,可以推得完全相同的运动方程。

8.2.2 Fourier变化法(频域分析法)最简单的测量仪器

模型是一单自由度弹簧-质点-阻尼体系,被封闭在一个刚性盒子里面,如图所示单自由度体系运动方程为:

mut+cut+kut=-mugt ??????(1) 其中:c=2mωnζ

km=ωn 则(1)式可以写为:ut+2ωnζut+ωn2ut=-ugt ??????(2) 使用傅里叶变换法(之后补上介绍),正变换,把问题从时间域(自变量为t)转变到频域(自...

傅里叶(Fourier)级数的指数形式与傅里叶变换

傅里叶(Fourier )级数的指数形式与傅里叶变换 专题摘要:根据欧拉(Euler )公式,将傅里叶级数三角表示转化为指数表示,进而得到傅里叶积分定理,在此基础上给出傅里叶变换的定义和数学表达式。 在通信与信息系统、交通信息与控制工程、信号与信息处理等学科中,都需要对各种信号与系统进行分析。通过对描述实际对象数学模型的数学分析、求解,对所得结果给以物理解释、赋予其物理意义,是解决实际问题的关键。这种数学分析方法主要针对确定性信号的时域和频域分析,线性时不变系统的描述以及信号通过线性时不变系统的时域分析与变换域分析。所有这些分析方法都离不开傅里叶变换、拉普拉斯变换和离散时间系统的z 变换。而傅里叶变换的理论基础是傅里叶积分定理。傅里叶积分定理的数学表达式就是傅里叶级数的指数形式。 不但傅里叶变换依赖于傅里叶级数,就是纯数学分支的调和分析也来源于函数的傅里叶级数。因此,傅里叶级数无论在理论研究还是在实际应用中都占有非常重要的地位。我们承认满足狄里克莱(Dirichlet )条件下傅里叶级数的收敛性结果,不去讨论和深究傅里叶展式的唯一性问题。 傅里叶级数的指数形式 一个以T 为周期的函数)(t f ,在]2 ,2[T T 上满足狄里克莱条件:1o

)(t f 连续或只有有限个第一类间断点;2o 只有有限个极值点。那么)(t f 在]2 ,2[T T - 上就可以展成傅里叶级数。在连续点处 ∑∞ =++=1 )sin cos (2)(n n n t n b t n a a t f ωω, (1) 其中 T πω2= , ),2,1,0(,cos )(2 22Λ==?-n dt t n t f T a T T n ω, (2) ),3,2,1(,sin )(2 22 Λ==?-n dt t n t f T b T T n ω, (3) 根据欧拉(Euler )公式:θθθsin cos j e j +=,(1)式化为 ∑∞=--?? ????-+++=10222)(n t jn t jn n t jn t jn n j e e b e e a a t f ωωωω ∑∞=-?? ? ???++-+=10222n t jn n n t jn n n e jb a e jb a a ωω, (4) 若令 dt t f T c T T ?-=22 0)(1 Λ,3,2,1,)(1 ]sin )[cos (1 sin )(1cos )(1222 2222 22==-=-=-=????-----n dt e t f T dt t n j t n t f T dt t n t f T j dt t n t f T jb a c T T t jn T T T T T T n n n ωωωωω Λ,3,2,1,)(1 22 ==?--n dt e t f T c T T t jn n ω 综合n n c c c -,,0,可合并成一个式子 Λ,2,1,0,)(1 22 ±±==?--n dt e t f T c T T t jn n ω, (5)

希尔伯特变换与傅立叶变换

在数学与信号处理的领域中,一个实数值函数的希尔伯特转换(Hilbert transform)——在此标示为——是将信号与做卷积,以得到。因此,希尔伯特转换结果可以被解读为输入是的线性非时变系统(linear time invariant system)的输出,而此一系统的脉冲响应为。这是一项有用的数学, 用在描述一个以实数值载波做调制的信号之复数包络(complex envelope),出现在通讯理论(应用方面的详述请见下文。) 希尔伯特转换是以著名数学家大卫·希尔伯特(David Hilbert)来命名。 希尔伯特转换定义如下: 其中 并考虑此积分为柯西主值(Cauchy principal value),其避免掉在以及 等处的奇点。 另外要指出的是: 若,则可被定义,且属于;其中。频率响应 希尔伯特转换之频率响应由傅立叶变换给出: , 其中 ?是傅立叶变换, ?i (有时写作j )是虚数单位, ?是角频率,以及

? 即为符号函数。 既然: , 希尔伯特转换会将负频率成分偏移+90°,而正频率成分偏移?90°。 反(逆)希尔伯特转换 我们也注意到:。因此将上面方程式乘上,可得到: 从中,可以看出反(逆)希尔伯特转换 傅里叶变换(Fourier变换)是一种线性的积分变换。因其基本思想首先由法国学者约瑟夫·傅里叶系统地提出,所以以其名字来命名以示纪念。 傅里叶变换在物理学、声学、光学、结构动力学、量子力学、数论、组合数学、概率论、统计学、信号处理、密码学、海洋学、通讯、金融等领域都有着广泛的应用。例如在信号处理中,傅里叶变换的典型用途是将信号分解成振幅分量和频率分量。 ?傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。最初傅里叶分析是作为热过程的解析分析的工具被提出的[1]。 ?傅里叶变换属于谐波分析。 ?傅里叶变换的逆变换容易求出,而且形式与正变换非常类似。 ?正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解。在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取。

傅里叶变换在信号与系统系统中的应用

河北联合大学 本科毕业设计(论文) 题目傅里叶变换在信号与系统中的应用 院系理学院 专业班级07数学一班 学生姓名刘帅 学生学号200710050113 指导教师佟玉霞 2011年5月24日

题目傅里叶变换在信号与系统中的应用 专业数学与应用数学姓名刘帅学号200710050113 主要内容、基本要求、主要参考资料等 主要内容 傅里叶变换是一种重要的变换,且在与通信相关的信号与系统中有着广泛的应用。本文主要研究傅里叶变换的基本原理;其次,掌握其在滤波,调制、解调,抽样等方面中的应用。分析了信号在通信系统中的处理方法,通过傅里叶变换推导出信号调制解调的原理,由此引出对频分复用通信系统的组成原理的介绍。 基本要求 通过傅里叶变换实现一个高通滤波,低通滤波,带通滤波。用傅里叶变换推导出信号调制解调的原理。通过抽样实现连续信号离散化,简化计算。另外利用调制的原理推导出通信系统中的时分复用和频分复用。 参考资料 [1]《信号与系统理论、方法和应用》徐守时著中国科技大学出版社 2006年3月修订二版 [2]《信号与系统》第二版上、下册郑君里、应启珩、杨为理著高等教育出版社 [3]《通信系统》第四版 Simon Haykin 著宋铁成、徐平平、徐智勇等译沈 连丰审校电子工业出版社 [4]《信号与系统—连续与离散》第四版 Rodger E.Ziemer 等著肖志涛等译 腾建辅审校电子工业出版社 [5]《现代通信原理》陶亚雄主编电子工业出版社 [6]《信号与系统》乐正友著清华大学出版社 [7]《信号与线性系统》阎鸿森、王新风、田惠生编西安交通大学出版社 [8]《信号与线性系统》张卫钢主编郑晶、徐琨、徐建民副主编西安电 子科技大学出版社 [9] https://www.360docs.net/doc/dd503007.html,/view/191871.htm//百度百科傅里叶变换 [10]《通信原理》第六版樊昌信曹丽娜编著国防工业出版社 [11]A.V.Oppenheim,A.S.Willsky with S.H.Nawab.Siganals and systems(Second edition).Prentice-Hall,1997.中译:刘树棠。信号与系统。西安交通工业大学出版社 完成期限 指导教师 专业负责人

离散时间傅里叶变换.

第3章 离散时间傅里叶变换 在信号与系统中,分析连续时间信号可以采用时域分析方法和频域分析方法,它们之间是通过连续时间的傅里叶变换来完成从时域到频域的变换,它们之间是完成了一种域的变换,从而拓宽了分析连续时间信号的途径。与连续时间系统的分析类似,在离散时间系统中,也可以采用离散傅里叶变换,将时间域信号转换到频率域进行分析,这样,不但可以得到离散时间信号的频谱,而且也可以使离散时间信号的分析方法更具有多元化。本章将介绍离散时间系统的频域分析方法。 3.1 非周期序列的傅里叶变换及性质 3.1.1 非周期序列傅里叶变换 1.定义 一个离散时间非周期信号与其频谱之间的关系,可用序列的傅里叶变换来表示。若设离散时间非周期信号为序列)(n x ,则序列)(n x 的傅里叶变换(DTFT)为: 正变换: ∑∞ -∞ =ω-ω = =n n j j e n x e X n x DTFT )()()]([ (3-1-1) 反变换: ? π π -ωωω-ωπ = =d e e X n x e X DTFT n j j j )(21)()]([1 (3-1-2) 记为: )()(ω?→←j F e X n x 当然式(3-1-2)等式右端的积分区间可以是)2,0(π或其它任何一个周期。 [例3-1] 设序列)(n x 的波形如图3-1所示,求)(n x 的傅里叶变换)(ωj e X 解:由定义式(3-1-1)可得 ωω=--=--== = ω-ω-ωω-ω-ωω-ω -ω-ω-=ω-∞ -∞ =ω ∑∑ 2 1sin 3sin )() (11)()(2 521 212133365 6j j j j j j j j j n j n n j n j e e e e e e e e e e e n R e X 2.离散时间序列傅里叶变换存在的条件: 图3-1

傅里叶变换与傅里叶级数

重温傅里叶—笔记篇 本文记录的大多是基础的公式,还有一些我认为比较重要的有参考价值的说明。(如果对这些公式已经很熟悉,可以直接看第三部分:总结性说明) 重温傅里叶—笔记篇 一、傅里叶级数 $关于三角函数系的正交性: 三角函数系包括: 1,cos x,sinx,cos2x,sin 2x,……cos nx,sinnx,…… “正交性”是说,三角函数系中的任何一项与另一项的乘积,在(-π, π) 区间内的积分为0。(任何两相的积总可以展成两个频率为整数倍基频的正余弦函数之和或差,而这两个展开后的正余弦在(-π, π)上积分都为0)。 不同频率(但都是整数倍基频)的两个正弦函数之积,在(-π, π)上积分恒为0。 同频率的两个正弦函数之积,只有在这两个正弦的相位正交时,其在(-π, π)上积分才是0。 三角函数系中除“1”以外的任何一项的平方,在(-π, π)上的积分恒为π,“1”在这个区间上的积分为2π。

$ 上公式! ①当周期为2π时: 式(1): 上式成立的条件是f(x)满足狄立克雷充分条件: 1.在任意有限区间内连续,或只有有限多个第一类间断点; 2.任意的有限区间,都可被分成有限多个单调区间(另一种说法是:任意有限区间内只有有限多个极值点,其实是一样的)

式(1)第一行中的a0/2 就是f(x)的周期平均值,而且第一行的式子只对f(x)是连续函数的情况成立;如果f(x)不连续,则应表示成“(1/2) ×[f(x-0)+f(x+0)]”,即f(x)左右极限的算术平均。下面的类似情况都是这样,之后就不再专门说明,这些大家应该都懂。 第三、四行中,n的取值都是:1,2,3,4,……n,……(都为正,且不包含0)。 ②当周期为2L时(这也是最一般的情形): 式(2): 第一行中的a0/2 就是f(x)的周期平均值; 第三、四行中,n的取值都是:1,2,3,4,……n,……(都为正,且不包含0)。

傅里叶级数及变换的本质解释和形象阐述

傅里叶级数及变换的本质解释和形象阐述 ——老师不会这么讲,书上也不会讲很多人学信号与系统、数字信号处理学了几年,关于傅里叶级数和傅里叶变换可能还是一知半解,只能套用公式,根本不理解为什么要这么算,也就是有什么实际含义——可以说,几乎所有信号与系统里面的数学公式都是有实实在在的物理含义的!那么,什么是傅里叶变换,它是怎样一种变换,具体有怎么变换,有没有确切一点或者形象一点的物理解释呢?下面笔者将尝试将自己的理解比较本质和形象地讲出来,形式是思考探讨渐进的模式,也就是我自己的思考过程,希望对大家有所帮助。 首先,要知道傅里叶变换是一种变换,准确点说是投影。傅里叶变换的投影问题,一直想不明白那一系列的正交函数集,到底是什么样一个函数集合,或者说是怎么样的一个空间。所谓三角傅里叶级数当成谐波分析的时候很好理解——同一个时间轴,也就是说同一个维度的分解和叠加,肯定没错,也很实用。但是要是从投影(或者说变换)的角度来说,怎么解释呢?这一系列正弦余弦的函数,在一个区间内,是一个完备的正交函数集,每一个函数所带的系数(或者叫权重),就是原函数在这个函数的方向上的一个投影(说方向不准确,但找不到其他的词)。那么,原函数到底是一个什么样的函数,和各正交基函数又是怎样的一种关系呢?这个投影又是怎么投的呢?三维或者二维空间,一个矢量在各正交基的投影很好理解,那么,傅里

叶变换的正交基函数,也是这样一种相互垂直的关系么???投影也是取余弦值么? 这可以很容易地想清,我们只用余弦或者只用正弦就可以,如cos(2pi*nf0)系列,显然每两个函数图像之间不可能是垂直关系,相反可以看出这是在同一个维度里面的!所以上面两个答案是否定的。 那么,到底是怎么正交、怎么投影的呢。出现这个问题,是因为开始看书的时候我看得太粗心太浅显,没有认真透彻地理解函数正交的含义,没想到那才是最重要最根本的,从那里面再深刻理解一下,问题就迎刃而解。 函数正交和矢量正交完全不一样,是两个概念。函数正交是两个函数,一个不变另一个取共轭值然后逐点相乘再求积分的结果,积分就涉及到一个区间,这也很重要。如果满足:当这两个函数不同时,积分值为0;当两函数相同,积分值不为0。那么这两个函数在这个区间上正交。现在再回过头去看正弦或者余弦函数序列,在各个周期内,都满足上述条件,在正弦和余弦函数之间同样满足,所以这些函数是正交的。至于完备,很明显看出,不去证明了。 第一个问题解决了,现在看怎么去投影了。为更易于理解,我们取指数傅里叶变换为例。众所周知exp(jwt)表示的是一个圆周,我们用来作傅里叶变换的因子,正是这个形式(exp(-jwt)),这里我们还要理解一下傅里叶变换和傅里叶级数的区别,前者求的是复指数傅里叶级数的系数,即每个正交函数的系数(权重),复指数傅里叶级数的正交函数集正是exp(jwt),所以求系数刚好乘以一个共轭

离散傅里叶变换应用举例

x=[1,1,1,1];w=[0:1:500]*2*pi/500; [H]=freqz(x,1,w); magH=abs(H);phaH=angle(H); subplot(2,1,1);plot(w/pi,magH);grid;xlabel('');ylabel('|X|'); title('DTFT的幅度') subplot(2,1,2);plot(w/pi,phaH/pi*180);grid; xlabel('以pi为单位的频率');label('度'); title('DTFT的相角')

N=4;w1=2*pi/N;k=0:N-1; X=fft(x,N); magX=abs(X);phaX=angle(X)*180/pi; subplot(2,1,1);plot(w*N/(2*pi),magH,'--');axis([-0.1,4.1,0,5]);hold on; stem(k,magX);ylabel('|X(k)|');title('DFT的幅度:N=4');text(4.3,-1,'k'); hold off; subplot(2,1,2);plot(w*N/(2*pi),phaH*180/pi,'--');axis([-0.1,4.1,-200,200]); hold on; stem(k,phaX);ylabel('度');title('DFT的相角:N=4');text(4.3,-200,'k')

n=(0:1:9);x=cos(0.48*pi*n)+cos(0.52*pi*n); w=[0:1:500]*2*pi/500; X=x*exp(-1i*n'*w); magx=abs(X); x1=fft(x);magx1=abs(x1(1:1:10)); k1=0:1:9;w1=2*pi/10*k1; subplot(3,1,1);stem(n,x);title('signalx(n),0<=n<=9'); axis([0,10,-2.5,2.5]);line([0,10],[0,0]); subplot(3,1,2);plot(w/pi,magx);title('DTFT幅度');xlabel('w');axis([0,1,0,10]); subplot(3,1,3);stem(w1/pi,magx1);title('DFT幅度'); xlabel('频率(单位:pi)');axis([0,1,0,10]) 实验总结:补零运算提供了一个较密的频谱和较好的图示形式,但因为在信号中只是附加了零,而没有增加任何新的信息,因此不能提供高分辨率的频谱。

常用傅里叶变换表

时域信号 弧频率表示的 傅里叶变换 注释 1 | 线性 2时域平移 3频域平移, 变换2的频域对应 \ 4 如果值较大,则会收缩 到原点附近,而会扩 散并变得扁平. 当| a | 趋向无 穷时,成为Delta函数。 5 傅里叶变换的二元性性质。通过 交换时域变量和频域变量 得到. 6 / 傅里叶变换的微分性质 7变换6的频域对应

8 表示和的卷积—这 就是卷积定理 - 9 矩形脉冲和归一化的sinc函数 10变换10的频域对应。矩形函数是理想的低通滤波器,sinc函数是这类滤波器对反因果冲击的响应。 11- tri是三角形函数 12变换12的频域对应 13高斯函数exp( ? αt2) 的傅里叶变换是他本身. 只有当Re(α) > 0时,这是可积的。 ¥14 15 16》 a>0

18δ(ω) 代表狄拉克δ函数分布. 这个变换展示了狄拉克δ函数的重要性:该函数是常函数的傅立叶变换 【 19 变换23的频域对应20由变换3和24得到. 21` 由变换1和25得到,应用了欧拉公 式: cos(at) = (e iat + e?iat) / 2. 22由变换1和25得到 23这里, n是一个自然数. δ(n)(ω) 是狄拉克δ函数分布的n阶微分。这个变换是根据变换7和24得到的。将此变换与1结合使用,我们可以变换所有多项式。 / 24此处sgn(ω)为符号函数;注意此变换与变换7和24是一致的. 25变换29的推广. 17变换本身就是一个公式

26【 变换29的频域对应. 27此处u(t)是单位阶跃函数; 此变换根据变换1和31得到. 28u(t)是单位阶跃函数,且a > 0. 34狄拉克梳状函数——有助于解释或理解从连续到离散时间的转变.

离散傅里叶变换

第三章离散傅里叶变换 离散傅里叶变换不仅具有明确的物理意义,相对于DTFT他更便于用计算机处理。但是,直至上个世纪六十年代,由于数字计算机的处理速度较低以及离散傅里叶变换的计算量较大,离散傅里叶变换长期得不到真正的应用,快速离散傅里叶变换算法的提出,才得以显现出离散傅里叶变换的强大功能,并被广泛地应用于各种数字信号处理系统中。近年来,计算机的处理速率有了惊人的发展,同时在数字信号处理领域出现了许多新的方法,但在许多应用中始终无法替代离散傅里叶变换及其快速算法。 § 3-1 引言 一.DFT是重要的变换 1.分析有限长序列的有用工具。 2.在信号处理的理论上有重要意义。 3.在运算方法上起核心作用,谱分析、卷积、相关都可以通DFT在计算机上实现。 二.DFT是现代信号处理桥梁 DFT要解决两个问题: 一是离散与量化, 二是快速运算。 傅氏变换 § 3-2 傅氏变换的几种可能形式 一.连续时间、连续频率的傅氏变换-傅氏变换

对称性: 时域连续,则频域非周期。 反之亦然。 二.连续时间、离散频率傅里叶变换-傅氏级数 时域信号 频域信号 连续的 非周期的 非周期的 连续的 t ? ∞ ∞ -Ω-= Ωdt e t x j X t j )()(:? ∞ ∞ -ΩΩ Ω= d e j X t x t j )(21 )(:π 反

*时域周期为Tp, 频域谱线间隔为2π/Tp 三.离散时间、连续频率的傅氏变换 --序列的傅氏变换 p T 0= Ω时域信号 频域信号 连续的 周期的 非周期的 离散的 ? -Ω-= Ω2 /2 /00)(1 )(:p p T T t jk p dt e t x T jk X 正∑ ∞ -∞ =ΩΩ= k t jk e jk X t x 0)()(:0反

傅里叶变换和傅里叶级数的收敛问题

1、傅里叶变换和傅里叶级数的收敛问题 由于傅里叶级数是一个无穷级数,因而存在收敛问题。这包含两方面的意思:是否任何周期信号都可以表示为傅里叶级数;如果一个信号能够表示为傅里叶级数,是否对任何t 值级数都收敛于原来的信号。关于傅里叶级数的收敛,有两组稍有不同的条件。 第一组条件:如果周期信号()t x 在一个周期内平方可积,即 ()∞

吉布斯现象: 当简单地把信号频谱截断时,相当于给信号频谱加上了一个矩形窗口函数,正是由于矩形窗口函数的时域特性导致了在间断点处的吉布斯现象的产生。 2、周期序列的傅里叶级数展开和傅里叶变换之间的问题 假定()t x 是一个长度为N 的有限长序列,将()t x 以N 为周期延拓而成的周期序列为()n x ~,则有 ()()∑∞-∞=-= r rN n x n x ~ 或表示为()()()N n x n x =~。于是()n x ~ 与()n x 的关系表示为: ()()()N n x n x =~ ()()()n R n x n x N ~= 将()n x ~表示为离散时间傅里叶级数有: ()()kn N N n W k X N n x --=?=∑10~~ 1 ()()kn N N n W n x k X ?=∑-=10~ ~ 其中()k X ~是傅里叶级数的系数,这样做的目的是使其表达形式与离散时间傅里叶变换的形式相类似。如果将()k X ~的主值周期记为()k X ,10-≤≤N k ,由于以上两式中的求和范围均取为区间0~N-1,在次区间内()n x ~ =()n x ,因此可以得到: ()()kn N N n W n x k X ∑-==10~, 10-≤≤N k ()()kn N N n W k X N n x --=∑=10~1, 10-≤≤N n 表明时域N 点有限长序列()n x 可以变换成频域N 点有限长序列()k X 。显然,DFT 与DFS 之间存在以下关系: ()()()N k X k X =~

傅里叶变换及应用

傅里叶变换在MATLZB里的应用 摘要:在现代数学中,傅里叶变换是一种非常重要的变换,且在数字信号处理中有着广泛的应用。本文首先介绍了傅里叶变换的基本概念、性质及发展情况;其次,详细介绍了分离变数法及积分变换法在解数学物理方程中的应用。傅立叶变换将原来难以处理的时域信号转换成了易于分析的频域信号,再利用傅立叶反变换将这些频域信号转换成时域信号。应用MATLAB实现信号的谱分析和对信号消噪。 关键词:傅里叶变换;MA TLAB软件;信号消噪 Abstract: In modern mathematics,Fourier transform is a transform is very important ,And has been widely used in digital signal processing.This paper first introduces the basic concepts, properties and development situation of Fourier transform ;Secondly, introduces in detail the method of separation of variables and integral transform method in solving equations in Mathematical Physics.Fourier transformation makes the original time domain signal whose analysis is difficult easy, by transforming it into frequency domain signal that can be transformed into time domain signal by inverse transformation of Fourier. Using Mat lab realizes signal spectral analysis and signal denoising. Key word: Fourier transformation, software of mat lab ,signal denoising 1、傅里叶变换的提出及发展 在自然科学和工程技术中为了把较复杂的运算转化为较简单的运算,人们常常采用所谓变换的方法来达到目的"例如在初等数学中,数量的乘积和商可以通过对数变换化为较简单的加法和减法运算。在工程数学里积分变换能够将分析运算(如微分,积分)转化为代数运算,正是积分变换这一特性,使得它在微分方程和其它方程的求解中成为重要方法之一。 1804年,法国科学家J-.B.-J.傅里叶由于当时工业上处理金属的需要,开始从事热流动的研究"他在题为<<热的解析理论>>一文中,发展了热流动方程,并且指出如何求解"在求解过程中,他提出了任意周期函数都可以用三角级数来表示的想法。他的这种

傅里叶级数及变换的本质解释和形象阐述

傅里叶级数及变换的本质解释和形象阐述(更正版) ——老师不会这么讲,书上也不会讲 注:原来上传到百度文库的文档有较多问题,或者阐述不清楚,因原文档无法删除,只能重新上传一次了。此为更正版。 很多人学信号与系统、数字信号处理学了几年,关于傅里叶级数和傅里叶变换可能还是一知半解,只能套用公式,根本不理解为什么要这么算,也就是有什么实际含义——可以说,几乎所有信号与系统里面的数学公式都是有实实在在的物理含义的!那么,傅里叶变换到底是怎样一种变换?具体又怎么变换?有没有确切一点,或者形象一点的物理解释呢?下面笔者将尝试从以一种可理解的、物理的方式来解释,并尽量形象地讲出来,形式是探究、渐进的模式,也就是我自己的思考过程,希望对大家有所帮助。 首先,要知道傅里叶变换是一种变换,准确点说是投影。傅里叶变换的投影问题,一直想不明白那一系列的正交函数集,到底是什么样一个函数集合,或者说是怎么样的一个空间。所谓三角傅里叶级数当成谐波分析的时候很好理解——同一个时间轴,也就是说同一个维度的分解和叠加,肯定没错,也很实用。但是要是从投影(或者说变换)的角度来说,怎么解释呢?书上说:这一系列正弦余弦的函数,在一个区间内,是一个完备的正交函数集,每一个函数所带的系数(或者叫权重),就是原函数在这个函数的方向上的一个投影(说方向不准确,但找不到其他的词)。那么,原函数到底是一个什么样的函数,和各正交基函数又是怎样的一种关系呢?这个投影又是怎么投的呢?三维或者二维空间,一个矢量在各正交基上的投影很好理解,因为各矢量正交基在空间是垂直关系,原矢量在各正交基上的投影就是其模值乘以与各正交基夹角余弦值。那么,傅里叶变换的正交基函数,也是这样一种相互垂直的关系么?投影也是取余弦值么?

傅里叶变换的应用.

傅立叶变换在图像处理中有非常非常的作用。因为不仅傅立叶分析涉及图像处理的很多方面,傅立叶的改进算法, 比如离散余弦变换,gabor与小波在图像处理中也有重要的分量。 印象中,傅立叶变换在图像处理以下几个话题都有重要作用: 1.图像增强与图像去噪 绝大部分噪音都是图像的高频分量,通过低通滤波器来滤除高频——噪声; 边缘也是图像的高频分量,可以通过添加高频分量来增强原始图像的边缘; 2.图像分割之边缘检测 提取图像高频分量 3.图像特征提取: 形状特征:傅里叶描述子 纹理特征:直接通过傅里叶系数来计算纹理特征 其他特征:将提取的特征值进行傅里叶变换来使特征具有平移、伸缩、旋转不变性 4.图像压缩 可以直接通过傅里叶系数来压缩数据;常用的离散余弦变换是傅立叶变换的实变换; 傅立叶变换 傅里叶变换是将时域信号分解为不同频率的正弦信号或余弦函数叠加之和。连续情况下要求原始信号在一个周期内满足绝对可积条件。离散情况下,傅里叶变换一定存在。冈萨雷斯版<图像处理>里面的解释非常形象:一个恰当的比喻是将傅里叶变换比作一个玻璃棱镜。棱镜是可以将光分解为不同颜色的物理仪器,每个成分的颜色由波长(或频率)来决定。傅里叶变换可以看作是数学上的棱镜,将函数基于频率分解为不同的成分。当我们考虑光时,讨论它的光谱或频率谱。同样,傅立叶变换使我们能通过频率成分来分析一个函数。 傅立叶变换有很多优良的性质。比如线性,对称性(可以用在计算信号的傅里叶变换里面); 时移性:函数在时域中的时移,对应于其在频率域中附加产生的相移,而幅度频谱则保持不变; 频移性:函数在时域中乘以e^jwt,可以使整个频谱搬移w。这个也叫调制定理,通讯里面信号的频分复用需要用到这个特性(将不同的信号调制到不同的频段上同时传输); 卷积定理:时域卷积等于频域乘积;时域乘积等于频域卷积(附加一个系数)。(图像处理里面这个是个重点) 信号在频率域的表现 在频域中,频率越大说明原始信号变化速度越快;频率越小说明原始信号越平缓。当频率为0时,表示直流信号,没有变化。因此,频率的大小反应了信号的变化

离散傅里叶变换(DFT)试题

第一章 离散傅里叶变换(DFT ) 填空题 (1) 某序列的DFT 表达式为 ∑-==1 )()(N n kn M W n x k X ,由此可以看出,该序列时域 的长 度为 ,变换后数字频域上相邻两个频率样点之间的间隔是 。 解:N ; M π 2 (2)某序列DFT 的表达式是 ∑-==1 0)()(N k kl M W k x l X ,由此可看出,该序列的时域长度 是 ,变换后数字频域上相邻两个频率样点之间隔是 。 解: N M π 2 (3)如果希望某信号序列的离散谱是实偶的,那么该时域序列应满足条件 。 解:纯实数、偶对称 (4)线性时不变系统离散时间因果系统的系统函数为2 52) 1(8)(22++--=z z z z z H ,则系统 的极点为 ;系统的稳定性为 。系统单位冲激响应)(n h 的初值为 ;终值 )(∞h 。 解: 2,2 1 21-=- =z z ;不稳定 ;4)0(=h ;不存在 (5) 采样频率为Hz F s 的数字系统中,系统函数表达式中1 -z 代表的物理意义是 ,其中时域 数字序列)(n x 的序号 n 代表的样值实际位置是 ;)(n x 的N 点DFT )k X (中,序号k 代表的样值 实际位置又是 。 解:延时一个采样周期F T 1=,F n nT =,k N k πω2= (6)已知 }{}{4,3,2,1,0;0,1,1,0,1][,4,3,2,1,0;1,2,3,2,1][=-===k n h k n x ,则][n x 和 ][n h 的5点循环卷积为 。 解:{}]3[]2[][][][][---+?=?k k k k x k h k x δδδ {}4,3,2,1,0;2,3,3,1,0])3[(])2[(][55==---+=k k x k x k x (7)已知}{}{3,2,1,0;1,1,2,4][,3,2,1,0;2,0,2,3][=--=== k n h k n x 则][][n h n x 和的 4点循环卷积为 。

离散时间信号的傅里叶变换和离散傅里叶变换

离散时间信号的傅里叶变换和离散傅里叶变换 摘要 本文主要介绍了离散时间信号的离散时间傅里叶变换及离散傅里叶变换,说明其在频域的具体表示和分析,并通过定义的方法和矩阵形式的表示来给出其具体的计算方法。同时还介绍了与离散时间傅里叶变换(DTFT )和离散傅里叶变换(DFT )相关的线性卷积与圆周卷积,并讲述它们之间的联系,从而给出了用圆周卷积计算线性卷积的方法,即用离散傅里叶变换实现线性卷积。 1. 离散时间傅里叶变换 1.1离散时间傅里叶变换及其逆变换 离散时间傅里叶变换为离散时间序列x[n]的傅里叶变换,是以复指数序列{n j e ω-}的序列来表示的(可对应于三角函数序列),相当于傅里叶级数的展开,为离散时间信号和线性时不变系统提供了一种频域表示,其中ω是实频率变量。时间序列x[n]的离散时间傅里叶变换)(ωj e X 定义如下: ∑∞ -∞ =-= n n j j e n x e X ωω ][)( (1.1) 通常)(ωj e X 是实变量ω的复数函数同时也是周期为π2的周期函数,并且)(ωj e X 的幅度函数和实部是ω的偶函数,而其相位函数和虚部是ω的奇函数。这是由于: ) ()()(tan ) ()()() (sin )()()(cos )()(2 22 ωωωωωωωωωωθωθωθj re j im j im j re j j j im j j re e X e X e X e X e X e X e X e X e X = +=== (1.2) 由于式(1.1)中的傅里叶系数x[n]可以用下面给出的傅里叶积分从)(ωj e X 中算出: ωπ ωπ πω d e e X n x n j j )(21 ][?- = (1.3)

傅里叶级数与傅里叶变换关系与应用

论文题目傅里叶级数与傅里叶变换的关系与应用 目录 摘要: 0 关键词 0 Abstract 0 1绪论 (1) 2傅里叶级数的概念 (1) 2.1周期函数 (2) 2.2傅里叶级数的定义 (2) 3 傅里叶变换的概念及性质 (10) 3.1傅里叶变换的概念 (10) 3.2傅立叶变换的性质 (11) 4傅里叶变换与傅里叶级数之间的区别与联系 (12) 5傅里叶级数和傅里叶变换的应用 (12) 5.1傅里叶级数的应用 (12) 5.2傅里叶变换的应用 (13) 参考文献 (15)

傅里叶级数与傅里叶变换的关系与应用 摘要:傅里叶级数是对周期性现象做数学上的分析,而傅里叶变换则可以看作傅里叶级数的极限形式,它也可以看作是对周期现象进行数学上的分析。除此之外,傅里叶变换还是处理信号领域的一种很重要的算法。 傅里叶变换是一种分析信号的方法,它可分析信号的成分,也可用这些成分合成信号。很多波形可以作为信号的成分,例如余弦波,方波,锯齿波等等,傅里叶变换作为信号的成分。在电子类学科,物理学科,信号处理学科等众多领域都有着广泛的应用。 傅里叶级数针对的是周期性函数,傅里叶变换针对的是非周期性函数,它们在本质上都是一种把信号表示成复正选信号的叠加,存在相似的特性。 关键词:傅里叶级数;傅里叶变换;周期性 Fourier series And Fourier Transforms Abstract: Fourier series is made mathematical analysis to cyclical phenomenon, and Fourier transform can be seen as the limit form of Fourier series, it also can be regarded as a mathematical analysis of cycle phenomenon. In addition, the Fourier transform is a kind of very important in the field of signal processing algorithms. Fourier transform is a method of signal analysis, it can analyze signal component, also can use these ingredients synthetic signal. Many waveform can be used as a signal of ingredients, such as cosine wave, square wave, sawtooth wave, etc., the Fourier transform as a signal of composition. In electronics disciplines, physics, signal processing disciplines etc many fields have a wide range of applications. Fourier series is for periodic function, Fourier transform for is a periodic function, they are in essence a kind of papers said the signal into a complex signal superposition, similar features. Key words: Fourier series; Fourier Transform; Periodic

傅里叶Fourier级数的指数形式与傅里叶变换

(4) 2 T 2 T f (t)dt 傅里叶(Fourier )级数的指数形式与傅里叶变换 专题摘要:根据欧拉(Euler )公式,将傅里叶级数三角表示转化为指数表示,进而得到傅 里叶积分定理,在此基础上给出傅里叶变换的定义和数学表达式。 在通信与信息系统、交通信息与控制工程、信号与信息处理等学科中,都需要对各种 信号与系统进行分析。 通过对描述实际对象数学模型的数学分析、 求解,对所得结果给以物 理解释、赋予其物理意义,是解决实际问题的关键。这种数学分析方法主要针对确定性信号 的时域和频域分析,线性时不变系统的描述以及信号通过线性时不变系统的时域分析与变换 域分析。所有这些分析方法都离不开傅里叶变换、拉普拉斯变换和离散时间系统的 z 变换。 而傅里叶变换的理论基础是傅里叶积分定理。 傅里叶积分定理的数学表达式就是傅里叶级数 的指数形式。 不但傅里叶变换依赖于傅里叶级数,就是纯数学分支的调和分析也来源于函数的傅里 叶级数。因此,傅里叶级数无论在理论研究还是在实际应用中都占有非常重要的地位。 我们 承认满足狄里克莱(Dirichlet )条件下傅里叶级数的收敛性结果,不去讨论和深究傅里叶展 式的唯一性问题。 傅里叶级数的指数形式 一个以T 为周期的函数f (t ),在[-T ,T ]上满足狄里克莱条件:1o f (t )连续或只有 2 2 数。在连续点处 有限个第一类间断点; 2。 只有有限个极值点。 那么f (t )在nT,T ]上就可以展成傅里叶级 f(t) a 0 ,. (a n cosn ?t b n sin n ?t) (1) 其中 a n T 2 f (t) cosn tdt, (n 二 0,1,2,), _2 根据欧拉(Euler )公式: b n ;认)州艸(n=1,2,3,), (3) e" - cos : j si , (1)式化为 f(t)二色二 a 2 J e jn e" n jn ? £ j jn ? t +b e —e M n 2j 若令 a n - j b n 一 2 jn ;.-:t . a n jb n ?弓曲 2 」,

傅里叶变换及其在图像处理中的应用

傅里叶变换及其在数字图像处理中的应用 王家硕 学号:1252015 一、 Fourier 变换 1. 一维连续傅里叶变换 设 f (x)为x 的实变函数,如果f (x)满足下面的狄里赫莱条件: (1)具有有限个间隔点。 (2)具有有限个极点。 (3)绝对可积。 则 f (x )的傅里叶变换(Fourier Transformation ,FT )定义为: Fourier 正变换:dt e t f t f f F t j ? +∞ ∞ --==ωω)()]([)(; Fourier 逆变换:ωωπ ωd e f t F f t f t j ? ∞ +∞ ---= =)(21)]([)(1 , 式中:1-= j ,ω 为频域变量。 f (x )与F (w )构成傅里叶变换对,可以证明傅里叶变换对总是存在的。由于f (x )为实函数,则它的傅里叶变换F (w )通常是复函数,于是F (w )可写成 F (w ) = R (w ) + j I (w ) (1) 式中:R (w )和I (w )分别是F (w )的实部和虚部。公式1可表示为指数形式: 式中: F (w ) 为f (x )的傅里叶幅度谱,f (w )为f (x )的相位谱。 2. 二维连续傅里叶变换 如果二维函数f (x , y )是连续可积的,即∞

MATLAB离散傅里叶变换及应用资料

MATLAB 离散傅里叶变换及应用 一、DFT 与IDFT 、DFS 、DTFT 的联系 1、 序列的傅里叶变换(DFT)和逆变换(IDFT) 在实际中常常使用有限长序列。如果有限长序列信号为x(n),则该序列的离散傅里叶变换对可以表示为 1N ,0,1,k , W x(n)DFT [x(n)]X(k)1 N 0n nk N -===∑-= (12-1) 1N ,0,1,n , W X(k)N 1IDFT[X(k)]x(n)1N 0 k nk N -===∑-=- (12-2) 已知x(n)=[0,1,2,3,4,5,6,7],求x(n)的DFT 和IDFT 。要求: (1)画出序列傅里叶变换对应的|X(k)|和arg [X(k)]图形。 (2)画出原信号与傅里叶逆变换IDFT [X(k)]图形进行比较。 程序源代码: xn=[0,1,2,3,4,5,6,7]; N=length(xn); n=0:(N-1);k=0:(N-1); Xk=xn*exp(-j*2*pi/N).^(n'*k); x=(Xk*exp(j*2*pi/N).^(n'*k))/N; subplot(2,2,1),stem(n,xn); title('x(n)');

subplot(2,2,2),stem(n,abs(x)); title('IDFT|X(k)|'); subplot(2,2,3),stem(k,abs(Xk)); title('|X(k)|'); subplot(2,2,4),stem(k,angle(Xk)); title('arg|X(k)|'); 运行图如下: x(n) IDFT|X (k)| 2 4 6 8 |X (k)| 2 4 6 8 arg|X (k)| 从得到的结果可见,与周期序列不同的是,有限长序列本身是仅有N 点的离散序列,相当于周期序列的主值部分。因此,其频谱也对应序列的主值部分,是含N 点的离散序列。 2、 序列DFT 与周期序列DFS 已知周期序列的主值x(n)=[0,1,2,3,4,5,6,7],

相关文档
最新文档