平面向量小题练习

平面向量小题练习

1.已知向量),2,4(),3,1,2(x b a -=-= ,若a ⊥ b

,则=x _____

2.已知(2,1,2),(2,2,1),a b =-= 则以,a b

为邻边的平行四边形的面积为( )

A B .2 C .4 D .8

3.已知向量→m =(sin θ,2cos θ),→n =(3,-12).若→m ∥→n ,则sin2θ的值为________.

4.如图所示,已知1,0OA OB OA OB ==?=

,点C 在线段AB 上,且30AOC ∠=?,设(),OC mOA nOB m n R =+∈

,则m n -等于( )

A .13

B .12

C .12-

D .13- 5.设向量a 与b 的夹角为θ,(2,1)a = ,2(4,5)a b +=

,则θcos 等于

(A (B (C (D 6.若向量(2,1),(4,1),//x ==+a b a b ,则x 的值为( )

A .1

B .7

C .-10

D .-9

7.如图,在4,30,ABC AB BC ABC AD ?==∠=o 中,是边BC 上的高,则AD AC ?

的值等于 ( )

A .0

B .4

C .8

D .4-

8.已知向量与的夹角为120°,||=3,|+,则||=( )

A .5

B .4

C .3

D .1 9.在△ABC 中,若点D 满足2BD DC = ,则AD = ( )

A .1233AC A

B + B .5233

AB AC - C .2133AC AB - D .2133

AC AB +

A .1 B

.2 D .4

11.已知0AB BC ?= ,1AB = ,2BC = ,0AD DC ?= ,则BD

的最大值为( )

12.已知向量???? ??=23,21, ???

? ??=21,23,则ABC

∠=( ) A.

30 B. 60 C. 120 D. 150 13.如图,设点O 是边长为1的正ABC ?的中心,则()()OA OB OA OC +?+

=( )

A. 19

B. 19-

C. 16-

D. 16

14.已知(,)P x y 是不等式组10300x y x y x +-≥??-+≥??≤?

表示的平面区域内的一点,(1,2)A ,O 为坐标原点,

则OA OP ?

的最大值( )

A .2

B .3

C .5

D .6

15.在ABC ?

中,

2, 2AB BC A π==∠=,且||||BA t BC AC -? …,则实数t 的取值范围是( )

A .[1, )+∞

B .1[

, 1]2 C .1(, ][1, )2

-∞+∞ D .(, 0][1, )-∞+∞ 16.已知()3,2=,()7,4-= ,则 a 在b 上的投影为

A .13

B .

513 C .5

65 D .65 17..已知a

是单位向量,||b =

(2)()4a b b a +-= a 与b 的夹角为( ) A .045 B .060 C .0120 D .0

135 18.已知0AB AC ?=uu u r uu u r

, ||3,||2AB AC ==u u u r u u u r ,则||BC uu u r =( )

A

B C

O

19.已知向量a ,b 的夹角为45°,且||1a =

,|2|a b -=

,则||b =( )

A

.20.等腰直角三角形ABC 中,90C

∠= ,1AC BC ==,点,M N 分别是,AB BC 中点,点P 是ABC ?(含边界)内任意一点,则AN MP ? 的取值范围是( )

A .33[,]44-

B .13[,]44-

C .31[,]44

- D .13[,]44 21.已知平面向量α,β满足||||1α

β==,且α与βα-的夹角为120?,则()t R ∈的取值范围

是 ; 22.已知向量,3,2==b a 且,3=?b a

则a 与b 的夹角为 。

23.设21e e 是两个单位向量,其夹角是 60,则=+-?-)23()2(2121e e e e

24.若a (,1)λ=与b (2,1)=-的夹角为钝角,则实数λ的取值范围是_____________

25.若向量OA =(1,-3),

OA OB = ,0OA OB ?= ,则|AB |=________. 26.已知向量a=(1

,向量a ,c 的夹角是3

π,a ?c=2,则|c|等于 。 27.在边长为2的菱形ABCD 中,60BAD ∠= ,E 为CD 的中点,则AE BD ?= .

28.如图所示,在△ABC 中,D 为BC 边上的一点, 且2BD DC =.若(,)AC mAB nAD m n =+∈R ,则____m n -=.

29.已知图形F 上的点A 按向量→a 平移前后的坐标分别是)(n m ,-和)(n m -,

,若B (b a ,)是图形F 上的又一点,则在F 按向量→

a 平移后得到的图形F ,上B ,的坐标是( )

A .)22(n b m a +-,

B .)22(n b m a ++,

C .)22(n b m a --,

D .)22(n b m a -+,

30.已知O 为坐标原点,点)1,1(-A .若点),(y x M 为平面区域?????≤≤≥+,2,

1,2y x y x 上的动点,则

OM OA ?的取值范围是 .

参考答案

1.

103

【解析】因为a b ⊥ ,所以2(4)(1)233100a b x x ?=?-+-?+=-= ,解得103

x = 2.A 【解析】依题意可得a 在b 上的投影为43||a b b ?= ,则以,a b 为邻边的平行四边形边b 上的高为

3

=||3S b === A 3.-8349

【解析】由→m ∥→n ,得-12sin θ=23cos θ,∴tan θ=-43,∴sin2θ=2sin θcos θsin 2θ+cos 2θ=2tan θtan 2θ+1=-8349.

4.B

【解析】

试题分析:因为0OA OB ?= ,所以OA OB ⊥ ,即2AOB π∠=,又1,OA OB == ,所以60,30,2OAB OBA AB ∠=?∠=?=,又因为30AOC ∠=?,所以

11,22OC AB AC AO ⊥=

=,1131()4444

OC OA AC OA AB OA OB OA OA OB =+=+=+-=+ , 所以311,,442m n m n ==-=,故选B. 考点:1.向量加减法的几何运算;2.向量数量积的几何意义;3.平面向量基本定理.

5.A

【解析】设(,),2(22,12)(4,5),b x y a b x y =+=++= 则224,125,

x y ∴+=+=

1,2;(1,2);||||x y b a b ∴===∴== 44;cos .5

||||a b a b a b θ??=== 故选A 6.A

【解析】

7.B

【解析】

试题分析:221()||4,4

AD AC AD AD DC AD AB ?=?+=== 选B . 考点:向量数量积

8.B

【解析】

试题分析:|+

22213a a b b +?+= ,结合与的夹角为120°,||=3,整理可得2340b b --=

,解得4b = ,故选B .

考点:平面向量的数量积.

9.A

【解析】

试题分析:由于BC AC AB b c =-=- ,因此()

22213333AD AB BD c BC c b c b c =+=+=+-=+ . 考点:向量的加法法则.

10.C

【解析】

试题分析:因为b a -2与b 垂直,所以0)2(=?-b b a 即022=-?b b a ,所以012222=--+-n n 即32=n ,所以21||2=+=n a

,答案选C.

考点:向量的位置关系与坐标运算

11.C

【解析】 试题分析:0AB BC ?= ,0AD DC ?=

,AB BC AD CD ∴⊥⊥,,,A B C D ∴是圆上的四点,

其中圆的直径为AC ,1AB = ,2BC =

AC ∴=BD

考点:向量运算

点评:本题将题目中的向量关系用有向线段表示出来,结合图形得到

,,,A B C D 四点共圆是求解本题的关

12.D

【解析】

试题分析:由题意得

11(()1(),cos 2BA BC BC ABC BA BC ?-?=-∴∠== 23

-=,0

150=∠∴ABC ,故选D. 考点:向量的数量积. 【易错点睛】本题主要考查了向量的夹角的求法,向量的数量积.利用向量数量积求夹角问题:当b a ,是

非坐标形式时,求b a ,的夹角,需求出?

或直接得出它们之间的关系.若b a ,是坐标形式,则可直接利用公式221222121121cos y x y x x

x x x +?++=θ.本题知识点考查明确,题型简单,放在前面,是

得分的题型.

13.C

【解析】解:因为点O 是边长为1的正ABC ?的中心在,

200()()()1||||120()=6++=∴+?+=-?+=-?-==∴-?+- 两两夹角为OA OB OC OA OB OA OC OC OA OC OC OA OC OC OA OC OA OC 选C

14.D

【解析】

试题分析:可行域为一个三角形BCD 及其内部,其中(0,1)(0,3)(1B C D -,,,而2OA OP x y =+ ,因此直线2x y z +=过点C 时取最大值6.

考点:线性规划

【易错点睛】线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.

15.C

【解析】解:因

为 2, 2AB BC A π

==∠=,所以

222222222||||||||()()(2)()

13234112-??-??-?≥?-?+?≥?-?+≥?≥≤

或BA t BC AC BA t BC AC BA t BC AC BA BAt BC t BC AC t t t t 厖 选C

16.C

【解析】 试题分析:在

上的投影为cos a b a b

θ=== 考点:向量的投影

17.D

【解析】

试题分析:由题可得222222a a b b a a b b -+?+=-+?+=

1,a b ==

得a b ?=

cos ,a b a b a b

?=== ,所以夹角为0

135. 考点:单位向量,向量积,特殊角的三角函数值.

18.D 【解析】: 0AB AC ?=uu u r uu u r ,∴AB AC ⊥uu u r uu u r

。||BC ==uu u r D

19.C .

【解析】

试题分析:

∵|2|a b - ,∴2222|2|(2)4410a b a b a a b b -=-=-?+= ,

即2||2||60

b b --= ,

解得||b =

考点:平面向量数量积.

20.A

【解析】

试题分析:以C 为坐标原点,CA 边所在直线为x 轴,建立直角坐标系,则()0,1A ,()10,B ,设()y x P ,,

则?????≤-+≥≥0100y x y x 且??? ??-=21,1,??? ??--=21,21y x ,4121++-=?y x ,令

4121++-=y x t ,结合线性规划知识,则2122-+=t x y ,当直线4

121++-=y x t 经过点()0,1A 时,MP AN ?有最小值,将()0,1A 代入得43

-=t ,当直线4

121++-=y x t 经过点()10,B 时,?有最大值,将()10,B 代入得4

3=T ,故答案为A . 考点:(1)平面向量数量积的运算;(2)简单线性规划的应用.

【方法点睛】本题考查的知识点是平面向量的数量积运算及线性规划,处理的关键是建立恰当的坐标系,求出各点、向量的坐标,利用平面向量的数量积公式,将其转化为线性规划问题,再利用“角点法”解决问题.选择合适的原点建立坐标系,分别给出动点(含参数)和定点的坐标,结合向量内积计算公式进行求解.

21.[1,)+∞

【解析】解:

|(1)2|1

t t αβ-+====

22.

【解析】[)cos 06a b a b πθθπθ?===∈∴= 又,,

23. 【解析】略

24.1-22

λλ<≠且 【解析】解:a,b →→

的夹角为钝角,因此数量积为小于零,同时不能共线且反向,则满足

01a b 2102a b 1802+=0=-2

→→→→=λ-<∴λ<

>=λ∴λ 且当<,时,则有 因此最终的范围即为12λ<

且=-2λ 25

.【解析】

试题分析:由0

O A O B ?= 知OA OB ⊥,

又OB OA === ,所

以5AB ==

考点:向量数量积的性质,向量的垂直.

26.2

【解析】 试题分析:由题意,得||2a = ,向量a c ? 的夹角是3

π,且||||cos 23a c a c π?=?= ,解得||2c = .

考点:1平面向量的数量积运算;2. 模长公式.

27.1

【解析】

,2

A E =- 试题分析:方法一:由于2BD DC =,则3B

C C

D =- ,其中BC AC AB =- ,CD AD AC =- ,那么3BC CD =- 可转化为()

3AC AB AD AC -=-- ,可以得到23AC AD AB -=-+ ,即1322AC AB AD =-+ ,则13,22m n =-=,那么13222m n -=--=-,故填2-. 方法二:直接利用共线定理,3BC CD =- ,则3λ=-,则1322

AC AB AD =-+

,则13,22m n =-=,那么13222

m n -=--=-,故填2-. 方法三:利用几何方法,如图所示构造辅助线,做AB 的三等分点E ,根据平行线等分定理则

23DE AC =,在新构造的AED ?中,ED AE AD += ,又23ED AC = ,13AE AB = ,那么2133AC AB AD += ,可以得到1322AC AB AD =-+ ,则13,22

m n =-=,那么13222

m n -=--=-,故填2-.

考点:向量的线性表示.

29.选D

【解析】设向量)(k h a ,=→

,则平移公式为?????+=+=;,k y y h x x ''依题意有???+=-+-=;,k n n h m m ∴???-==;,n k m h 22平移公式为?????-=+=;

,n y y m x x 22''将B 点坐标代入可得B ,点的坐标为)22(n b m a -+,.所以选D .

30.[]0,2

【解析】

试题分析:因为OA OM x y ?=-+

,令z x y =-+,则y x z =+,画出可行域可知,当y x z =+过B 点时min 0z =,当y x z =+过C 点时max 2z =,所以[0,2]OA OM z ?=∈ .

考点:向量数量积的坐标运算、线性规划.

(完整版)平面向量经典测试题

平面向量测试题 新泰一中 闫辉 一.选择题(5分×10=50分) 1.下列命题中正确的是( ) A.单位向量都相等 B.长度相等且方向相反的两个向量不一定是共线向量 C.若a ,b 满足|a |>|b |且a 与b 同向,则a >b D.对于任意向量a 、b ,必有|a +b |≤|a |+|b | 2.下列向量给中,能作为表示它们所在平面内所有向量的基底的是 ( ) A .e 1=(0,0), e 2 =(1,-2) ; B .e 1=(-1,2),e 2 =(5,7); C .e 1=(3,5),e 2 =(6,10); D .e 1=(2,-3) ,e 2 =)4 3,21 ( 3.如果e 1、 e 2是平面α内两个不共线的向量,那么在下列各说法中错误的有 ( ) ①λe 1+μe 2(λ, μ∈R)可以表示平面α内的所有向量; ②对于平面α中的任一向量a ,使a =λe 1+μe 2的λ, μ有无数多对; ③若向量λ1e 1+μ1e 2与λ2e 1+μ2e 2共线,则有且只有一个实数k ,使λ2e 1+μ2e 2=k (λ1e 1+μ1e 2); ④若实数λ, μ使λe 1+μe 2=0,则λ=μ=0. A .①② B .②③ C .③④ D .仅②

4.平面直角坐标系中,O 为坐标原点,已知两点A (3,1),B (-1,3) 若点C (x , y )满足OC u u u r =αOA u u u r +βOB u u u r ,其中α,β∈R 且α+β=1, 则x , y 所满足的关系式为 ( ) A .3x +2y -11=0 B .(x -1)2+(y -2)2=5 C .2x -y =0 D .x +2y -5=0 5.已知O 是ABC △所在平面内一点,D 为BC 边中点,且 2OA OB OC ++=0u u u r u u u r u u u r ,那么( ) A.AO OD =u u u r u u u r B.2AO OD =u u u r u u u r C.3AO OD =u u u r u u u r D.2AO OD =u u u r u u u r 6.若三点P (1,1),A (2,-4),B (x,-9)共线,则( ) A.x=-1 B.x=3 C.x=2 9 D.x=51 7.设四边形ABCD 中,有=21 ,且||=||,则这个 四边形是( ) A.平行四边形 B.矩形 C.等腰梯形 D.菱形 8.已知平行四边形的3个顶点为A(a,b),B(-b,a),C(0,0), 则它的第4个顶点D 的坐标是( ) A .(2a,b) B.(a-b,a+b) C.(a+b,b-a) D.(a-b,b-a) 9.三角形ABC ,已知AB →=a ,AC →=b ,BD →=3DC →,用a ,b 表示AD →,则AD →等于( )

向量易错题带规范标准答案

1.在ABC ?中,M 是BC 的中点,AM=1,点P 在AM 上且满足学2AP PM =u u u r u u u u r ,则 ()PA PB PC ?+u u u r u u u r u u u r 等于 A 、49- B 、43- C 、43 D 、49 2.已知向量(1,2)=a ,(2,3)=-b .若向量c 满足()//+c a b ,()⊥+c a b ,则c = ( ) A 、77 (,)93 B 、77(,)39-- C 、77(,)39 D 、77(,)93 -- 3.已知||8AB =u u u u r ,||5AC =u u u r ,则||BC uuu r 的取值范围是( ) A 、]8,3[ B 、(3,8) C 、]13,3[ D 、(3,13) 4.设向量),(),,(2211y x b y x a ==,则 2 121y y x x =是b a //的( )条件。 A 、充要 B 、必要不充分 C 、充分不必要 D 、既不充分也不必要 5.下列命题: ①4 2 2 ||)()(=? ②??=??)()( ③ |a ·b |=|a |·|b | ④若a ∥,∥,则∥ ⑤∥,则存在唯一实数λ,使λ= ⑥若 ?=?,且≠,则= ⑦设21,e e 是平面内两向量,则对于平面内任何 一向量,都存在唯一一组实数x 、y ,使21e y e x a +=成立。 ⑧若|+|=|- |则·=0。 ⑨·=0,则=或= 真命题个数为( ) A 、1 B 、2 C 、3 D 、3个以上 6.和a r = (3,-4)平行的单位向量是_________; 7.已知向量|||| a b p a b =+r r u r r r ,其中a r 、b r 均为非零向量,则||p u r 的取值范围是 . 8.若向量a =)(x x 2,,b =)(2,3x -,且a ,b 的夹角为钝角,则x 的取值范围是______. 9.在四边形ABCD 中,AB u u u r =DC u u u r =(1,1), BA BC BA BC BD +=u u u r u u u r u u r u u u r u u u r u u u r ,则四边形ABCD

(完整版)平面向量练习题集答案

平面向量练习题集答案 典例精析 题型一向量的有关概念 【例1】下列命题: ①向量AB的长度与BA的长度相等; ②向量a与向量b平行,则a与b的方向相同或相反; ③两个有共同起点的单位向量,其终点必相同; ④向量AB与向量CD是共线向量,则A、B、C、D必在同一直线上. 其中真命题的序号是. 【解析】①对;零向量与任一向量是平行向量,但零向量的方向任意,故②错;③显然错;AB与CD 是共线向量,则A、B、C、D可在同一直线上,也可共面但不在同一直线上,故④错.故是真命题的只有①. 【点拨】正确理解向量的有关概念是解决本题的关键,注意到特殊情况,否定某个命题只要举出一个反例即可. 【变式训练1】下列各式: a?; ①|a|=a ②(a?b) ?c=a?(b?c); ③OA-OB=BA; ④在任意四边形ABCD中,M为AD的中点,N为BC的中点,则AB+DC=2MN; ⑤a=(cos α,sin α),b=(cos β,sin β),且a与b不共线,则(a+b)⊥(a-b). 其中正确的个数为() A.1 B.2 C.3 D.4 a?正确;(a?b) ?c≠a?(b?c);OA-OB=BA正确;如下图所示,【解析】选D.| a|=a MN=MD+DC+CN且MN=MA+AB+BN, 两式相加可得2MN=AB+DC,即命题④正确; 因为a,b不共线,且|a|=|b|=1,所以a+b,a-b为菱形的两条对角线, 即得(a+b)⊥(a-b). 所以命题①③④⑤正确.

题型二 与向量线性运算有关的问题 【例2】如图,ABCD 是平行四边形,AC 、BD 交于点O ,点M 在线段DO 上,且DM = DO 31,点N 在线段OC 上,且ON =OC 3 1 ,设AB =a , AD =b ,试用a 、b 表示AM ,AN ,MN . 【解析】在?ABCD 中,AC ,BD 交于点O , 所以DO =12DB =12(AB -AD )=1 2 (a -b ), AO =OC =12AC =12(AB +AD )=1 2(a +b ). 又DM =13DO , ON =1 3OC , 所以AM =AD +DM =b +1 3DO =b +13×12(a -b )=16a +56 b , AN =AO +ON =OC +1 3OC =43OC =43×12(a +b )=2 3(a +b ). 所以MN =AN -AM =23(a +b )-(16a +56b )=12a -16 b . 【点拨】向量的线性运算的一个重要作用就是可以将平面内任一向量由平面内两个不共线的向量表示,即平面向量基本定理的应用,在运用向量解决问题时,经常需要进行这样的变形. 【变式训练2】O 是平面α上一点,A 、B 、C 是平面α上不共线的三点,平面α内的动点P 满足OP =OA +λ(AB +AC ),若λ=1 2 时,则PA ?(PB +PC )的值为 . 【解析】由已知得OP -OA =λ(AB +AC ), 即AP =λ(AB +AC ),当λ=12时,得AP =1 2(AB +AC ), 所以2AP =AB +AC ,即AP -AB =AC -AP , 所以BP =PC , 所以PB +PC =PB +BP =0, 所以PA ? (PB +PC )=PA ?0=0,故填0.

平面向量简单练习题

一、选择题 1.已知三点)143()152()314(--,,、,,、,,λC B A 满足⊥, 则λ的值 ( ) 2.已知)2 , 1(-=,52||=,且//,则=( ) 5.已知1,2,()0a b a b a ==+=r r r r r g ,则向量b r 与a r 的夹角为( ) 6.设向量(0,2),==r r a b ,则,r r a b 的夹角等于( ) 7.若向量()x x a 2,3+=和向量()1,1-=→b 平行,则 =+→ →b a ( ) 8.已知()()0,1,2,3-=-=,向量b a +λ与b a 2-垂直,则实数λ的值为( ). 9.设平面向量(1,2)a =r ,(2,)b y =-r ,若向量,a b r r 共线,则3a b +r r =( ) 10.平面向量a r 与b r 的夹角为60o ,(2,0)a =r ,1b =r ,则2a b +r r = 11.已知向量()1,2=,()1,4+=x ,若//,则实数x 的值为 12.设向量)2,1(=→a ,)1,(x b =→,当向量→→+b a 2与→→-b a 2平行时,则→ →?b a 等于 13.若1,2,,a b c a b c a ===+⊥r r r r r r r 且,则向量a b r u r 与的夹角为( ) 142= ,2||= 且(b a -)⊥a ,则a 与b 的夹角是 ( ) 15.已知向量AB u u u r =(cos120°,sin120°),AC u u u r =(cos30°,sin30°),则△ABC 的 形状为 A .直角三角形 B .钝角三角形 C .锐角三角形 D .等边三角形 17.下列向量中,与(3,2)垂直的向量是( ). A .(3,2)- B .(2,3) C .(4,6)- D .(3,2)- 18.设平面向量(3,5),(2,1),2a b b ==--=r r r r 则a ( ) 19.已知向量)1,1(=a ,),2(n =b ,若b a ⊥,则n 等于 20. 已知向量,a b r r 满足0,1,2,a b a b ?===r r r r 则2a b -=r r ( ) 21.设向量a r =(1.cos θ)与b r =(-1, 2cos θ)垂直,则cos2θ等于 ( ) 23.化简 AC -u u u r BD +u u u r CD -u u u r AB u u u r = 25.如图,正方形ABCD 中,点E ,F 分别是DC ,BC 的中点,那么=EF u u u r ( )

平面向量简单练习题

绝密★启用前 2013-2014学年度???学校5月月考卷 试卷副标题 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 第I卷(选择题) 请点击修改第I 卷的文字说明 一、选择题(题型注释) 1.已知三点)143()152()314(--,,、,,、,,λC B A 满足AC AB ⊥,则λ的值 ( ) A、14 B 、-14 C 、7 D 、-7 2.已知)2 , 1(-=,52||=,且//,则=( ) A.)4 , 2(- B .)4 , 2(- C.)4 , 2(-或)4 , 2(- D.)8 , 4(- 3.已知向量a,b 是夹角为60°的两个单位向量,向量a+λb (λ∈R )与向量a -2b 垂直,则实数λ的值为( ) A .1 B.-1 C.2 D.0 4.已知点(6,2)A ,(1,14)B ,则与AB 共线的单位向量为( ) A.512(,)1313- 或512(,)1313- B .512(,)1313- C .125(,)1313-或125(,)1313- D .512(,)1313 - 5.已知1,2,()0a b a b a ==+=,则向量b 与a 的夹角为( ) A .30° B .60° C.120°?D.150° 6.设向量(0,2),(3,1)a b ,则,a b 的夹角等于( ) A. 3π B. 6π C.32π D. 6 5π 7.若向量()x x 2,3+=和向量()1,1-=→ b 平行,则 =+→ → b a ( )

A、10 B 、 2 10 C 、2 D 、22 8.已知()()0,1,2,3-=-=,向量b a +λ与b a 2-垂直,则实数λ的值为( ). A.17- B.17 C .16 - D.1 6 9.设平面向量(1,2)a =,(2,)b y =-,若向量,a b 共线,则3a b +=( ) (A ) ( (C ( 10.平面向量a 与b 的夹角为60,(2,0)a =,1b =,则2a b += B. ?C.4 ?D .12 11.已知向量()1,2=a ,()1,4+=x b ,若b a //,则实数x 的值为 (A )1 (B)7?? (C)10- ??(D)9- 12.设向量)2,1(=→ a ,)1,(x b =→ ,当向量→ → +b a 2与→ → -b a 2平行时,则→ →?b a 等于 A.2 B.1 C. 25 D.2 7 13.若1,2,,a b c a b c a ===+⊥且,则向量a b 与的夹角为( ) A. 30 B. 60 C. 120 D. 150 142= ,2||= 且(b a -)⊥a ,则a 与b 的夹角是 ( ) A. 6π B.4π C.3π D.π12 5 15.已知向量AB =(cos120°,s in120°),AC =(c os30°,s in30°),则△ABC 的形状为 A.直角三角形 B .钝角三角形 C.锐角三角形 D.等边三角形 16.已知向量(,1)a m =,(1,)b n =,若a ∥b ,则22m n +的最小值为 A .0 B. 1 C.2 D. 3 17.下列向量中,与(3,2)垂直的向量是( ). A .(3,2)- B .(2,3) ? C .(4,6)- ? D .(3,2)- 18.设平面向量(3,5),(2,1),2a b b ==--=则a ( ) A.(7,3) B.(7,7) C .(1,7) D.(1,3) 19.已知向量)1,1(=a ,),2(n =b ,若b a ⊥,则n 等于 A.3- B .2- C .1 D .2 20. 已知向量,a b 满足0,1,2,a b a b ?===则2a b -= ( )

平面向量易错题解析汇报

平面向量易错题解析 1.你熟悉平面向量的运算(和、差、实数与向量的积、数量积)、运算性质和运算的几何意义吗? 2.你通常是如何处理有关向量的模(长度)的问题?(利用2 2 ||→→ =a a ;22||y x a +=) 3.你知道解决向量问题有哪两种途径? (①向量运算;②向量的坐标运算) 4.你弄清“02121=+?⊥→ → y y x x b a ”与“0//1221=-?→ → y x y x b a ”了吗? [问题]:两个向量的数量积与两个实数的乘积有什么区别? (1) 在实数中:若0≠a ,且ab=0,则b=0,但在向量的数量积中,若→→≠0a ,且0=?→ →b a ,不能推 出→ →=0b . (2) 已知实数)(,,,o b c b a ≠,且bc ab =,则a=c,但在向量的数量积中没有→ →→→→→=??=?c a c b b a . (3) 在实数中有)()(c b a c b a ??=??,但是在向量的数量积中)()(→ → → → → → ??≠??c b a c b a ,这是因为 左边是与→ c 共线的向量,而右边是与→ a 共线的向量. 5.正弦定理、余弦定理及三角形面积公式你掌握了吗?三角形内的求值、化简和证明恒等式有什么特点? 1.向量有关概念: (1)向量的概念:既有大小又有方向的量,注意向量和数量的区别。向量常用有向线段来表示,注意不能说向量就是有向线段,为什么?(向量可以平移)。如已知A (1,2),B (4,2),则把向量AB 按向量a =(-1,3)平移后得到的向量是_____(答:(3,0)) (2)零向量:长度为0的向量叫零向量,记作:,注意零向量的方向是任意的; (3)单位向量:长度为一个单位长度的向量叫做单位向量(与AB 共线的单位向量是|| AB AB ±); (4)相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性; (5)平行向量(也叫共线向量):方向相同或相反的非零向量、叫做平行向量,记作:∥,规定零向量和任何向量平行。提醒:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直 线重合;③平行向量无传递性!(因为有0);④三点A B C 、、共线? AB AC 、 共线; (6)相反向量:长度相等方向相反的向量叫做相反向量。的相反向量是-。 如下列命题:(1)若a b =,则a b =。(2)两个向量相等的充要条件是它们的起点相同,终点相同。(3)若A B D C =,则ABCD 是平行四边形。(4)若ABCD 是平行四边形,则AB DC =。(5)若,a bb c ==,则a c =。(6)若//,//a b b c ,则//a c 。其中正确的是_______(答:(4)(5)) 2.向量的表示方法:(1)几何表示法:用带箭头的有向线段表示,如AB ,注意起点在前,终点在后;(2)符号表示法:用一个小写的英文字母来表示,如a ,b ,c 等;(3)坐标表示法:在平面内建立直角坐标系,以与x 轴、y 轴方向相同的两个单位向量i ,为基底,则平面内的任一向量a 可表示为 (),a xi y j x y =+=,称(),x y 为向量a 的坐标,a =(),x y 叫做向量a 的坐标表示。如果向量的起点在 原点,那么向量的坐标与向量的终点坐标相同。 3.平面向量的基本定理:如果e 1和e 2是同一平面内的两个不共线向量,那么对该平面内的任一向量a ,有且只有一对实数1λ、2λ,使a =1λe 1+2λe 2。

平面向量简单练习题

试卷第1页,总5页 一、选择题 1.已知三点)143()152()314(--,,、,,、,,λC B A 满足⊥,则λ的值 ( ) 2.已知)2 , 1(-=,52||=,且//,则=( ) 5.已知1,2,()0a b a b a ==+= ,则向量b 与a 的夹角为( ) 6.设向量(0,2),==r r a b ,则, a b 的夹角等于( ) 7.若向量()x x a 2,3+=和向量()1,1-=→b 平行,则 =+→→b a ( ) 8.已知()()0,1,2,3-=-=b a ,向量b a +λ与b a 2-垂直,则实数λ的值为( ). 9.设平面向量(1,2)a = ,(2,)b y =- ,若向量,a b 共线,则3a b + =( ) 10.平面向量a 与b 的夹角为60 ,(2,0)a = ,1b = ,则2a b + = 11.已知向量()1,2=,()1,4+=x ,若//,则实数x 的值为 12.设向量)2,1(=→a ,)1,(x b =→,当向量→→+b a 2与→→-b a 2平行时,则→→?b a 等于 13.若1,2,,a b c a b c a ===+⊥ 且,则向量a b 与的夹角为( ) 142= ,2||= 且(b a -)⊥a ,则a 与b 的夹角是 ( ) 15.已知向量AB =(cos120°,sin120°),AC =(cos30°,sin30°),则△ABC 的形状为 A .直角三角形 B .钝角三角形 C .锐角三角形 D .等边三角形 17.下列向量中,与(3,2)垂直的向量是( ). A .(3,2)- B .(2,3) C .(4,6)- D .(3,2)- 18.设平面向量(3,5),(2,1),2a b b ==--= 则a ( ) 19.已知向量)1,1(=a ,),2(n =b ,若b a ⊥,则n 等于 20. 已知向量,a b 满足0,1,2,a b a b ?=== 则2a b -= ( ) 21.设向量a =(1.cos θ)与b =(-1, 2cos θ)垂直,则cos 2θ等于 ( ) 23.化简AC - BD + CD - AB = 25.如图,正方形ABCD 中,点E ,F 分别是DC ,BC 的中点,那么=EF ( )

高一数学平面向量知识点及典型例题解析

高一数学 第八章 平面向量 第一讲 向量的概念与线性运算 一.【要点精讲】 1.向量的概念 ①向量:既有大小又有方向的量。几何表示法AB u u u r ,a ;坐标表示法),(y x j y i x a 。 向量的模(长度),记作|AB u u u r |.即向量的大小,记作|a |。向量不能比较大小,但向量的模可以比较大小. ②零向量:长度为0的向量,记为0 ,其方向是任意的,规定0r 平行于任何向量。(与0的区别) ③单位向量| a |=1。④平行向量(共线向量)方向相同或相反的非零向量,记作a ∥b ⑤相等向量记为b a 。大小相等,方向相同 ),(),(2211y x y x 2121y y x x 2.向量的运算(1)向量加法:求两个向量和的运算叫做向量的加法.如图,已知向量a ,b ,在平面内任 取一点A ,作AB u u u r a ,BC u u u r b ,则向量AC 叫做a 与b 的和,记作a+b ,即 a+b AB BC AC u u u r u u u r u u u r 特殊情况: a b a b a+b b a a+b (1) 平行四边形法则三角形法则C B D C B A A 向量加法的三角形法则可推广至多个向量相加: AB BC CD PQ QR AR u u u r u u u r u u u r u u u r u u u r u u u r L ,但这时必须“首尾相连”。②向量减法: 同一个图中画出 a b a b r r r r 、 要点:向量加法的“三角形法则”与“平行四边形法则”(1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量。(2) 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点.(3)实数与向量的积 3.两个向量共线定理:向量b 与非零向量a 共线 有且只有一个实数 ,使得b =a 。 二.【典例解 析】 题型一: 向量及与向量相关的基本概念概念 例1判断下列各命题是否正确 (1)零向量没有方向 (2)b a 则, (3)单位向量都相等 (4) 向量就是有向线段

平面向量简单练习题

平面向量简单练习题

一、选择题 1.已知三点)143()152()314(--,,、,,、,,λC B A 满足⊥,则λ的值 ( ) 2.已知)2 , 1(-=,52||=,且b a //,则=b ( ) 5.已知1,2,()0a b a b a ==+=,则向量b 与a 的夹角为( ) 6.设向量(0,2),(3,1)a b ,则,a b 的夹角等于( ) 7.若向量()x x a 2,3+=和向量()1,1-=→b 平行,则 =+→→b a ( ) 8.已知()()0,1,2,3-=-=b a ,向量b a +λ与b a 2-垂直,则实数λ的值为( ). 9.设平面向量(1,2)a =,(2,)b y =-,若向量,a b 共线,则3a b +=( ) 10.平面向量a 与b 的夹角为60,(2,0)a =,1b =,则2a b += 11.已知向量()1,2=a ,()1,4+=x ,若a //,则实数x 的值为 12.设向量)2,1(=→a ,)1,(x b =→,当向量→→+b a 2与→→-b a 2平行时,则→→?b a 等于 13.若1,2,,a b c a b c a ===+⊥且,则向量a b 与的夹角为( )

…○…………外…………○…………装…………○…………订…………○…………学校:___________姓名:___________班级:___________考号:___________ …○…………内…………○…………装…………○…………订…………○…………夹角是 ( ) 15.已知向量AB =(cos120°,sin120°),AC =(cos30°,sin30°),则△ABC 的形状为 A .直角三角形 B .钝角三角形 C .锐角三角形 D .等边三角形 17.下列向量中,与(3,2)垂直的向量是( ). A .(3,2)- B .(2,3) C .(4,6)- D .(3,2)- 18.设平面向量(3,5),(2,1),2a b b ==--=则a ( ) 19.已知向量)1,1(=a ,),2(n =b ,若b a ⊥,则n 等于 20. 已知向量,a b 满足0,1,2,a b a b ?===则2a b -= ( ) 21.设向量a =(1.cos θ)与b =(-1, 2cos θ)垂直,则cos2θ等于 ( ) 23.化简AC -BD +CD -AB = 25.如图,正方形ABCD 中,点E ,F 分别是DC ,BC 的中点,那么=EF ( ) A.1122AB AD + B.1122AB AD - C.1122AB AD + 26.已知平面向量a =(1,2),b =(-2,m )且a ∥b ,则2a +3b =

平面向量经典练习题-非常好

平面向量练习 一、选择题: 1.已知平行四边形ABCD ,O 是平行四边形ABCD 所在平面内任意一点,a OA =,b OB =,c OC =,则向量OD 等于 ( ) A .a +b +c B .a +b -c C .a -b +c D .a -b -c 2.已知向量a r 与b r 的夹角为120o ,3,13,a a b =+=r r r 则b r 等于( ) (A )5 (B )4 (C )3 (D )1 3.设a ,b 是两个非零向量.下列正确的是( ) A .若|a +b |=|a |-|b |,则a ⊥b B .若a ⊥b ,则|a +b |=|a |-|b | C .若|a +b |=|a |-|b |,则存在实数λ,使得b =λa D .若存在实数λ,使得b =λa ,则|a +b |=|a |-|b | 4.已知→a =(sin θ,1+cos θ),→b =(1,1-cos θ),其中θ∈(π,3π2 ),则一定有 ( ) A .→a ∥→b B .→a ⊥→b C .→a 与→b 夹角为45° D .|→a |=|→b | 5.已知向量a →=(6,-4),b →=(0,2),c →=a →+λb →,若C 点在函数y =sin π12x 的图象上,实数λ=( ) A .52 B .32 C .-52 D .-3 2 6. 已知∈Z k ,(,1),(2,4)==u u u r u u u r AB k AC ,若≤u u u u r 10AB ,则△ABC 是直角三角形的概率为( ) A . 17 B .27 C .37 D .4 7 7.将π2cos 36x y ??=+ ???的图象按向量π24?? =-- ??? , a 平移,则平移后所得图象的解析式为( ) A.π2cos 234x y ??=+- ??? B.π2cos 234x y ?? =-+ ??? C.π2cos 2312x y ?? =-- ??? D.π2cos 2312x y ?? =++ ??? 8.在ABC ?中,M 是BC 的中点,AM=1,点P 在AM 上且满足?→?=?→?PM AP 2,则()PA PB PC ?+u u u r u u u r u u u r 等于( ) (A ) 49 (B )43 (C )43- (D) 4 9 - 9.已知O 是ABC △所在平面内一点,D 为BC 边中点,且2OA OB OC ++=0u u u r u u u r u u u r ,那么( ) A.AO OD =u u u r u u u r B.2AO OD =u u u r u u u r C.3AO OD =u u u r u u u r D.2AO OD =u u u r u u u r

高考数学压轴专题(易错题)备战高考《平面向量》全集汇编附解析

新数学《平面向量》试卷含答案 一、选择题 1.如图,圆O 是等边三角形ABC 的外接圆,点D 为劣弧AC 的中点,则OD =u u u r ( ) A .2133BA AC +u u u r u u u r B .2133BA A C -u u u r u u u r C .1233BA AC +u u u r u u u r D .4233BA AC +u u u r u u u r 【答案】A 【解析】 【分析】 连接BO ,易知B ,O ,D 三点共线,设OD 与AC 的交点为E ,列出相应式子得出结论. 【详解】 解:连接BO ,易知B ,O ,D 三点共线,设OD 与AC 的交点为E , 则()() 221121332333 OD BO BE BA BC BA BA AC BA AC ===?+= ++=+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r . 故选:A. 【点睛】 本题考查向量的表示方法,结合几何特点,考查分析能力,属于中档题. 2.已知正ABC ?的边长为4,点D 为边BC 的中点,点E 满足AE ED u u u r u u u r =,那么EB EC ?u u u r u u u r 的值为( ) A .8 3 - B .1- C .1 D .3 【答案】B 【解析】 【分析】 由二倍角公式得求得tan ∠BED ,即可求得cos ∠BEC ,由平面向量数量积的性质及其运算得直接求得结果即可. 【详解】

由已知可得:7 , 又23 tan BED 3 BD ED ∠= == 所以22 1tan 1 cos 1tan 7 BED BEC BED -∠∠==-+∠ 所以1||cos 7717EB EC EB EC BEC ?? ?=∠=-=- ??? u u u r u u u r u u u r u u u r ‖ 故选B . 【点睛】 本题考查了平面向量数量积的性质及其运算及二倍角公式,属中档题. 3.若向量a b r r ,的夹角为3 π ,|2|||a b a b -=+r r r r ,若()a ta b ⊥+r r r ,则实数t =( ) A .1 2 - B . 12 C 3 D .3 【答案】A 【解析】 【分析】 由|2|||a b a b -=+r r r r 两边平方得22b a b =?r r r ,结合条件可得b a =r r ,又由()a ta b ⊥+r r r ,可得20t a a b ?+?=r r r ,即可得出答案. 【详解】 由|2|||a b a b -=+r r r r 两边平方得2222442a a b b a a b b -?+=+?+r r r r r r r r . 即22b a b =?r r r ,也即22cos 3 b a b π =r r r ,所以b a =r r . 又由()a ta b ⊥+r r r ,得()0a ta b ?+=r r r ,即20t a a b ?+?=r r r . 所以222 1122b a b t a b ?=-=-=-r r r r r 故选:A

平面向量测试题,高考经典试题,附详细答案

平面向量高考经典试题 一、选择题 1.(全国1文理)已知向量(5,6)a =-,(6,5)b =,则a 与 b A .垂直 B .不垂直也不平行 C .平行且同向 D .平行且反向 2、(山东文5)已知向量(1)(1)n n ==-,,,a b ,若2-a b 与 b 垂直,则=a ( ) A .1 B C .2 D .4 3、(广东文4理10)若向量,a b 满足||||1a b ==,,a b 的夹角为60°,则a a a b ?+?=______; 答案:3 2 ; 4、(天津理10) 设两个向量22(2,cos )a λλα=+-和(, sin ),2 m b m α=+其中,,m λα为实数.若2,a b =则m λ 的取值范围是 ( A.[6,1]- B.[4,8] C.(,1]-∞ D.[1,6]- 5、(山东理11)在直角ABC ?中,CD 是斜边AB 上的高,则下列等式不成立的是 (A )2 AC AC AB =? (B ) 2 BC BA BC =? (C )2AB AC CD =? (D ) 2 2 ()() AC AB BA BC CD AB ???=

6、(全国2 理5)在?ABC 中,已知D 是AB 边上一点,若AD =2DB , CD =CB CA λ+3 1 ,则λ= (A) 3 2 (B) 3 1 (C) - 3 1 (D) - 3 2 7、(全国2理12)设F 为抛物线y 2=4x 的焦点,A 、B 、C 为该抛物线上三点,若 FC FB FA ++=0,则|FA|+|FB|+|FC|= (A)9 (B) 6 (C) 4 (D) 3 8、(全国2文6)在ABC △中,已知D 是AB 边上一点,若 1 23 AD DB CD CA CB λ==+,,则λ=( ) A .23 B .13 C .1 3 - D .2 3 - 9(全国2文9)把函数e x y =的图像按向量(2)=,0a 平移,得到()y f x =的图像,则()f x =( ) A .e 2x + B .e 2x - C .2 e x - D .2 e x + 10、(北京理4)已知O 是ABC △所在平面内一点,D 为BC 边中点,且 2OA OB OC ++=0,那么( ) A.AO OD = B.2AO OD = C.3AO OD = D.2AO OD = 11、(上海理14)在直角坐标系xOy 中,,i j 分别是与x 轴,y 轴平行的单位向量,若直角三角形ABC 中,2AB i j =+,3AC i k j =+,则k 的可能值有 A 、1个 B 、2个 C 、3个 D 、4个 12、(福建理4文8)对于向量,a 、b 、c 和实数,下列命题中真命题是 A 若 ,则a =0或b =0 B 若 ,则λ=0或a =0 C 若=,则a =b 或a =-b D 若 ,则b =c 13、(湖南理4)设,a b 是非零向量,若函数()()()f x x x =+-a b a b 的图象是一条

历年高考数学复习易错题选--平面向量部分

历年高考数学复习易错题选 平面向量 一、选择题: 1.在ABC ?中,?===60,8,5C b a ,则CA BC ?的值为 ( ) A 20 B 20- C 320 D 320- 错误分析: 错误认为?==60C ,从而出错. 答案: B 略解: 由题意可知?=120, 故CA BC ? =202185cos -=?? ? ? ?-??=. 2.关于非零向量a 和b ,有下列四个命题: (1)“b a b a +=+”的充要条件是“a 和b 的方向相同”; (2)“b a b a -=+” 的充要条件是“a 和b 的方向相反”; (3)“b a b a -=+” 的充要条件是“a 和b 有相等的模”; (4)“b a b a -=-” 的充要条件是“a 和b 的方向相同”; 其中真命题的个数是 ( ) A 1 B 2 C 3 D 4 错误分析:对不等式b a b a b a +≤±≤-的认识不清. 答案: B. 3.已知O 、A 、B 三点的坐标分别为O(0,0),A(3,0),B(0,3),是P 线段AB 上且 AP =t AB (0≤t ≤1)则OA 2OP 的最大值为 ( ) A .3 B .6 C .9 D .12 正确答案:C 错因:学生不能借助数形结合直观得到当|OP |cos α最大时,OA 2OP 即为最大。 4.若向量 a =(cos α,sin α) , b =()ββsin ,cos , a 与b 不共线,则a 与b 一定满足

( ) A . a 与b 的夹角等于α-β B .a ∥b C .(a +b )⊥(a -b ) D . a ⊥b 正确答案:C 错因:学生不能把a 、b 的终点看成是上单位圆上的点,用四边形法则来处理问题。 5.已知向量 a =(2cos ?,2sin ?),?∈(π π ,2 ), b =(0,-1),则 a 与 b 的夹角为( ) A .π32 -? B . 2 π +? C .?-2 π D .? 正确答案:A 错因:学生忽略考虑a 与b 夹角的取值范围在[0,π]。 6.O 为平面上的定点,A 、B 、C 是平面上不共线的三点,若( OB -OC )2(OB +OC -2OA )=0, 则?ABC 是( ) A .以A B 为底边的等腰三角形 B .以B C 为底边的等腰三角形 C .以AB 为斜边的直角三角形 D .以BC 为斜边的直角三角形 正确答案:B 错因:学生对题中给出向量关系式不能转化:2OA 不能拆成(OA +OA )。 7.已知向量M={ a | a =(1,2)+λ(3,4) λ∈R}, N={a |a =(-2,2)+ λ(4,5) λ∈R },则M ?N= ( ) A {(1,2)} B {})2,2(),2,1(-- C {})2,2(-- D φ 正确答案:C 错因:学生看不懂题意,对题意理解错误。 8.已知k Z ∈,(,1),(2,4)== AB k AC ,若AB ≤ ,则△ABC 是直角三角形的概率是( C ) A . 17 B .27 C . 37 D . 47 分析: 由AB ≤ k Z ∈知{}3,2,1,0,1,2,3k ∈---,若 (,1)(2,4)== 与AB k AC 垂直,则2302+=?=-k k ;若(2,3) =-= -- B C A B A C k 与 (,1)AB k = 垂直,则2 230--=k k 13?=-或k ,所以△ABC 是直角三角形的概率是37 . 9.设a 0为单位向量,(1)若a 为平面内的某个向量,则a=|a|2a 0;(2)若a 与a 0平行,则a =|a |2a 0;(3)若a 与a 0平行且|a |=1,则a =a 0。上述命题中,假命题个数是( ) A.0 B.1 C.2 D.3 正确答案:D 。

平面向量常用的方法技巧

备考方略 <3 平面向量常用的方法技文K灼 * > \i^i 北京市陈经纶中学周明芝 -- 特别提示:【解】对于①於+3 = 0 平面向量具有代數几何双重身份,从近几年对于②ASXS+S?5(XJ+ c5)a5a5o == 的高考试题看对向量的考查力度在逐年加大并且 对于③ 强调了向量的知识性与工具性,重点考查向量的四 对于④+(g 种运算 、 两个充要条件等核心知识,考查向量的几M =NP+前=〇 P 何形式与代教形式的相互转化技能有些问题的处理,综上知应填①②③④ 对变形技巧要求高,具有定的难度因此,要想在【小结】向量的加减法法则是解题的基础在运用时平面向量试题的求解中取得高分,必须在理解向量 要注意交换律和结合律的使用 熟练四种运算和两个充要条件应用的基础上 概念、 例2(2011湖南)在边长为1的正三角形ABC中 认 真梳理 常 用 的 方法 和技巧 逐 步提高解 题 能 力 设则X5? 【分析】 利用边长为1和正三角形内角度数 ? 并注意 4把和进行拆分 方法一、分解合成法 由题意沒rs技瓦&茂 【解】=j =分解是指把个向量拆成几个向量有利于处理向 量前面的系数合成是指利用向量加减运算多项合成c¥=yC^cS 项减少项数从而达到化简的目的在解题时要灵活运 用向量加法法则和首尾相连的向量和为零等技巧 例1化简下列各式①万2十否f+亡芳②疋§1=+= +節成③孩前+滅④胡+前威cJc% 2364 结果为零向量的序号是【小结】根据加、减法法则灵活地进行合理拆分是解[分析】 对于化简题,应灵活运用加法交换律,尽可题的关键 能使之变为首尾相连的向量然后再运用向量加法结合律 练习1在AABC中=cf=cf若点D满足 訪=2万P则力5=() 求和 2017 1 7cceev

平面向量经典练习题(含答案)

高中平面向量经典练习题 【编著】黄勇权 一、填空题 1、向量a=(2,4),b=(-1,-3),则向量3a-2b的坐标是。 2、已知向量a与b的夹角为60°,a=(3,4),|b | =1,则|a+5b | = 。 3、已知点A(1,2),B(2,1),若→ AP=(3,4),则 → BP= 。 4、已知A(-1,2),B(1,3),C(2,0),D(x,1),若AB与CD共线,则|BD|的值等于________。 5、向量a、b满足|a|=1,|b|= 2 ,(a+b)⊥(2a-b),则向量a与b的夹角为________。 6、设向量a,b满足|a+b|= 10,|a-b|= 6 ,则a·b=。 7、已知a、b是非零向量且满足(a-2b)⊥a,(b-2a)⊥b,则a与b的夹角是。 8、在△ABC中,D为AB边上一点,→ AD = 1 2 → DB, → CD = 2 3 → CA + m → CB,则 m= 。 9、已知非零向量a,b满足|b|=4|a|,a⊥(2a+b),则a与b的夹角是。 10、在三角形ABC中,已知A(-3,1),B(4,-2),点P(1,-1)在中线AD 上,且→ AP= 2 → PD,则点C的坐标是()。 二、选择题 1、设向量→ OA=(6,2),→ OB=(-2,4),向量→ OC垂直于向量→ OB,向量 → BC平行于 →OA,若→ OD + → OA= → OC,则 → OD坐标=()。 A、(11,6) B、(22,12) C、(28,14) D、(14,7) 2、把A(3,4)按向量a(1,-2)平移到A',则点A'的坐标() A、(4 , 2) B、(3,1) C、(2,1) D、(1,0) 3、已知向量a,b,若a为单位向量, 且 | a| = | 2b| ,则(2a+ b)⊥(a-2b),则向量a与b的夹角是()。 A、90° B、60° C、30° D、0° 4、已知向量ab的夹角60°,| a|= 2,b=(-1,0),则| 2a-3b|=()

相关文档
最新文档