单端反激式变换器开关稳压电源原理图

单端反激式变换器开关稳压电源原理图
单端反激式变换器开关稳压电源原理图

单端反激式开关稳压电源与推挽、全桥、半桥双端变换的开关稳压电源的根本区别在于高频变压器的磁心仅工作在磁滞回线的一侧(第一象限)。

典型的单端反激变换式开关稳压电源的原理图如图所示。所谓单端,即指转换电路的磁心仅工作在其磁滞回线的一侧。所谓反激,系指当晶体管导通时,在初级电感线圈中储存能量,当晶体管截止时,初级线圈中储存的能量再通过次级线圈释放给负载。

当开关管VT1被控制脉冲激励而导通时,输入电压Ui便施加到高频变压器T1的原边绕组N1上。由于变压器T1副边的整流二极管VD反接,因此副边绕组N2没有电流流过;当VT1截止时,绕组N2上的电压极性颠倒,VD被正偏,VTl导通期间储存在T1中的能量便通过VD负载释放。

由于这种电路在开关管导通期间储存能量,因此在开关管截止期间才向负载传递能量。高频变压器在工作中除了起变压作用外,还相当于一个储能用的电感,因此也有人称之为“电感储能式变换器”或“电感变换器”。单端反激式开关电源电路是成本最低的一种。它可以达到输入与输出部分隔离,还可以同时输出几路不同的电压,有较好的电压调整率。但其输出纹波电压较大,负载调整率较差,适用于相对固定的负载。在单端反激式开关电源电路中,开关三极管承受的最大反峰值电压是线路工作电压峰值的2倍以上。为了降低开关管的耐压,需要对集射电压进行限幅,因此常用的单端反激式开关电源有三种形式。

其实看正激还是反激很简单

在电路上的区别主要有两点:

1.看次级何时导通--次级一般接有二极管之类的单向导通器件, 在初级通时,次级可以导通,

是正激的表现;在初级导通时,次级不导通,则时反激的表现

2.看次级有没有为反激准备的回路--反激变换器在晶体管关闭时发生能量转换,由磁能变为

电能,所以,一定要有电流流动的回路,没有回路则不可能是反激.

反激式开关电源是指使用反激高频变压器隔离输入输出回路的开关电源,与之对应的有正激式开关电源。

反激式开关电源中,输出变压器同时充当储能电感,整个电源体积小、结构简单,所以得到广泛应用。应用最多的是单端反激式开关电源。

优点:元器件少,电路简单,成本低,体积小,可同时输出多路互相隔离的电压

缺点:开关管承受电压高,输出变压器利用率低,不适合作大功率电源

一般而言,100W以内的开关电源通常采用单端返激式,超过100W-300W的开关电源通常采用正激式或半桥式,300W以上电源通常采用全桥式。

2019年反激式开关电源设计大全

2019年反激式开关电源设计大全

前言 对一般变压器而言,原边绕组的电流由两部分组成,一部分是负载电流分量,它 的大小与副边负载有关;当副边电流加大时,原边负载电流分量也增加,以抵消 副边电流的作用。另一部分是励磁电流分量,主要产生主磁通,在空载运行和负 载运行时,该励磁分量均不变化。 励磁电流分量就如同抽水泵中必须保持有适量的水一样,若抽水泵中无水,它就无法产生真空效应,大气压就无法将水压上来,水泵就无法正常工作;只有给水泵中加适量的水,让水泵排空,才可正常抽水。在整个抽水过程中,水 泵中保持的水量又是不变的。这就是,励磁电流在变压器中必须存在,并且在整 个工作过程中保持恒定。 正激式变压器和上述基本一样,初级绕组的电流也由励磁电流和负载电 流两部分组成;在初级绕组有电流的同时,次级绕组也有电流,初级负载电流分 量去平衡次级电流,激励电流分量会使磁芯沿磁滞回线移动。而初次级负载安匝 数相互抵消,它们不会使磁芯沿磁滞回线来回移动,而励磁电流占初级总电流很 小一部分,一般不大于总电流10%,因此不会造成磁芯饱和。 反激式变换器和以上所述大不相同,反激式变换器工作过程分两步:第一:开关管导通,母线通过初级绕组将电能转换为磁能存储起来; 第二:开关管关断,存储的磁能通过次级绕组给电容充电,同时给负载供电。

可见,反激式变换器开关管导通时,次级绕组均没构成回路,整个变压 器如同仅有一个初级绕组的带磁芯的电感器一样,此时仅有初级电流,转换器没 有次级安匝数去抵消它。初级的全部电流用于磁芯沿磁滞回线移动,实现电能向 磁能的转换;这种情况极易使磁芯饱和。 磁芯饱和时,很短的时间内极易使开关管损坏。因为当磁芯饱和时,磁 感应强度基本不变,dB/dt近似为零,根据电磁感应定律,将不会产生自感电动 势去抵消母线电压,初级绕组线圈的电阻很小,这样母线电压将几乎全部加在开 关管上,开关管会瞬时损坏。 由上边分析可知,反激式开关电源的设计,在保证输出功率的前提下, 首要解决的是磁芯饱和问题。 如何解决磁芯饱和问题?磁场能量存于何处?将在下一篇文章:反激式开关电源 变压器设计的思考二中讨论。 反激式开关电源设计的思考二---气隙的作用 “反激式开关电源设计的思考一”文中,分析了反激式变换器的特殊性防止磁 芯和的重要性,那么如何防止磁芯的饱和呢?大家知道增加气隙可在相同ΔB的情况下,ΔIW的变化范围扩大许多,为什么气隙有此作用呢? 由全电流定律可知:

UCC38C43隔离单端反激式开关电源电路图

UC3842/UC3843隔离单端反激式开关电源电路 图 开关电源以其高效率、小体积等优点获得了广泛应用。传统的开关电源普遍采用电压型脉宽调制(PWM)技术,而近年电流型PWM技术得到了飞速发展。相比电压型PWM,电流型PWM具有更好的电压调整率和负载调整率,系统的稳定性和动态特性也得以明显改善,特别是其内在的限流能力和并联均流能力使控制电路变得简单可靠。 电流型PWM集成控制器已经产品化,极大推动了小功率开关电源的发展和应用,电流型PWM控制小功率电源已经取代电压型PWM控制小功率电源。Unitrode公司推出的UC3842系列控制芯片是电流型PWM控制器的典型代表。 DC/DC转换器 转换器是开关电源中最重要的组成部分之一,其有5种基本类型:单端正激式、单端反激式、推挽式、半桥式和全桥式转换器。下面重点分析隔离式单端反激转换电路,电路结构图如图1所示。

图1 电路结构图 电路工作过程如下:当M1导通时,它在变压器初级电感线圈中存储能量,与变压器 次级相连的二极管VD处于反偏压状态,所以二极管VD截止,在变压器次级无电流流过,即没有能量传递给负载;当M1截止时,变压器次级电感线圈中的电压极性反转,使VD 导通,给输出电容C充电,同时负载R上也有电流I流过。M1导通与截止的等效拓扑如 图2所示。 图2 M1导通与截止的等效拓扑 电流型PWM 与电压型PWM比较,电流型PWM控制在保留了输出电压反馈控制外,又增加了一 个电感电流反馈环节,并以此电流反馈作为PWM所必须的斜坡函数。 下面分析理想空载下电流型PWM电路的工作情况(不考虑互感)。电路如图3所示。 设V导通,则有 L·diL/dt = ui (1) iL以斜率ui/L线性增长,L为T1原边电感。经无感电阻R1采样 Ud=R1·iL送到脉宽比较器A2与Ue比较,当Ud>Ue,A2输出高电平,送到RS锁存器 的复位端,此时或非门的两个输入中必有一个高电平,经过或非门输出低电平关断功率开

单端反激开关电源方案

反激式开关电源变压器的设计 反激式变压器是反激开关电源的核心,它决定了反激变换器一系列的重要参数,如占空比D ,最大峰值电流,设计反激式变压器,就是要让反激式开关电源工作在一个合理的工作点上。这样可以让其的发热尽量小,对器件的磨损也尽量小。同样的芯片,同样的磁芯,若是变压器设计不合理,则整个开关电源的性能会有很大下降,如损耗会加大,最大输出功率也会有下降,下面我系统的说一下我设计变压器的方法。 设计变压器,就是要先选定一个工作点,在这个工作点上算,这个是最苛刻的一个点,这个点就是最低的交流输入电压,对应于最大的输出功率。下面我就来算了一个输入85V 到265V ,输出5V ,2A 的电源,开关频率是100KHZ 。 第一步,选定原边感应电压V OR 这个值是由自己来设定的,这个值就决定了电源的占空比。可能朋友们不理解什么是原边感应电压,为了便于理解,我们从下面图一所示的例子谈起,慢慢的来。 这是一个典型的单端反激式开关电源,大家再熟悉不过了,下面分析一下一个工作周期的工作情况,当开关管开通的时候,原边相当于一个电感,电感两端加上电压,其电流值不会突变,而线性的上升,有公式上升了的电流: I 升=V S *Ton/L 这三项分别是原边输入电压、开关开通时间和原边电感量.在开关管关断的时候,原边电感放电,电感电流又会下降,同样要尊守上面的公式定律,此时有下降了的电流: I降=V OR *T OFF /L 这三项分别是原边感应电压(即放电电压)、开关管关断时间和电感量.在经过一个周期后,原边电感电流会回到原来的值,不可能会变,所以,有: V S *T ON /L=V OR *T OFF /L 即上升了的等于下降了的,懂吗?好懂吧!上式中可以用D来代替T ON ,用(1-D)来代替T OFF 。移项可得: 图一

单管反激式直流变换器研究开题报告

华侨大学厦门工学院毕业设计(论文)开题报告 系:电气系专业班级:11级电气1班姓名 曾俊杰 学号 1102101042 指导 教师 王国玲 职称 学历 副教授 课题名称 单管反激式直流变换器研究 毕业设计(论文)类型(划√) 工程设计 应用研究 开发研究 基础研究 其他

√ 本课题的研究目的和意义: 目的:高效反激式开关电源以其电路抗干扰、高效、稳定性好、成本低廉等许多优点,特别适合小功率的电源以及各种电源适配器,具有较高的实用性。随着电力电子技术的发展,工作在高频的开关电源己经广泛应用于电气和电子设备的各个领域。开关电源设计的目的是通过能量处理将输入能量变化为所需要的能量输出,通常的形式是产生一个符合要求的输出电压,这个输出电压的值不能受输入电压或者负载电流的影响。 意义:在开关电源设计初期,采用的都是分立元件,集成度很低,大部分电路只能在PCB 版上实现,极大的限制了小型化实现的可能。而且大量器件暴露在外,也影响了系统的稳定性。近年来,为了实现更高的效率和更小的体积,开关电源的工作频率有了很大的提高。高工作频率能够减小外围电感和电容的大小,从而减少系统的体积。 文献综述(国内外研究情况及其发展): 随着电力电子技术的发展,开关电源的应用越来越广泛。开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。开关稳压电源有多种类型,其中单端反激式开关电源由于具有线路简单,所需要的元器件少,能够提供多路隔离输出等优点。开关电源是通过开关管关断和导通实现电压和电流变换的装置,亦称无工频变压器的电源,利用体积很小的高频变压器来实现电压变化及电网隔离。开关电源具有体积小、重量轻、效率高、发热量低、性能稳定等优点,代表着当今稳压电源的发展方向,已成为稳压电源的主导产品。 随着集成电路的发展,开关电源逐渐向集成化方向发展,趋于小型化和模块化。反激变压器的设计是一个难点,其往往导致电源设计周期延长。随着PI公司生产的以TOPSwitch为代表的新一代单片开关电源的问世,以上诸多问题都得到了很好的解决。应用TOPSwitch-HX 设计开关电源,不仅器件更少,结构更简单,发热量更少,工作更可靠,采用该系列芯片已成为一种高效的反激式开关电源设计方案。1977年国外首先研制成脉宽调制(PWM)控制器集成电路,美国Motorola公司、Silicon General公司、Unitrode公司等相继推出一系列PWM芯片。近些年来,国外研制出开关频率达1MHz的高速PWM、PFM芯片。第二个方向是实现中、小功率开关电源单片集成化。1994年,美国电源集成公司(Power Integrations)在世界上率先研制成功三端隔离式PWM型单片开关电源,其属于AC/DC电源变换器。之后相继推出TOPSwitch、TOPSwitch-II、TOPSwitch-Fx、TOPSwitch-GX、PeakSwitch、LinkSwitch等系列产品。意-法半导体公司最近也开发出VIPer100、VIPer100A、VIPer100B等中、小功率单片电源系列产品,并得到广泛应用。 本课题的主要研究内容(提纲)和成果形式: 1.复习、自学模拟电子技术、电力电子技术、自动控制理论、电路的仿真等方面有关书籍,理解掌握电路仿真软件的使用,如Pspice、Saber等。 2.重点学习Buck-Boost型功率变换器与反激式功率变换器的基本原理、功率电路与控制电路的设计方法与实现,控制电路的稳定性设计等。

单端反激式开关电源-主电路设计

摘要开关电源是利用现代电力电子技术,控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制、IC 和MOSFET构成。 本设计在大量前人设计开关电源的的基础上,以反激式电路的框架,用TOP244Y 构成12V、2.5A开关电源模块,通过整流桥输出到高频变压器一次侧,在二次侧经次级整流滤波输出。输出电压经采样与TL431稳压管内部基准电压进行比较,经过线性光偶合器PC817改变TOP244Y的占空比,从而使电路能直流稳压输出。 关键词开关电源;脉冲宽度调制控制;高频变压器;TOP244Y ABSTRACT Switching power supply is the use of modern electronic technology, control switching transistor turn-on and turn-off time ratio of the output voltage to maintain a stable power supply, switching power supply generally by the pulse width modulation (PWM) control,IC and MOSFET form. The design of a large number of predecessors in the switching power supply design based on the flyback circuit to the framework, using TOP244Y constitute a 12V, 2.5A switching power supply module, through the rectifier bridge output to high-frequency transformer primary side, the secondary side by the time level rectifier output. TL431 by sampling the output voltage regulator with an internal reference voltage comparison, after a linear optical coupler PC817 change TOP244Y duty cycle, so the circuit can be DC regulated output. Keyword Switching Power Supply;PWM Control;high frequency transformer;TOP244Y 目录 前言 (3) 1.反激式PWM高频开关电源的工作原理 (4)

反激式开关电源原理

反激式开关电源原理 反激式开关电源是指使用反激高频变压器隔离输入输出回路的开关电源. "反激"(FL Y BACK)的具体所指是当输入为高电平(开关管接通)时输出线路中串联的电感为放电状态,相反当输入为高电平(开关管断开)时输出线路中的串联的电感为充电状态. 与之相对的是"正激"(FORWARD)式开关电源,当输入为高电平(开关管接通)时输出线路中串联的电感为充电状态,相反当输入为高电平(开关管断开)时输出线路中的串联的电感为放电状态,以此驱动负载. 电机配导线(电机一个千瓦大约2A) "1.5加二,2.5加三" "4后加四,6后加六" "25后加五,50后递增减五" "百二导线,配百数" 该口诀是按三相380V交流电动机容量直接选配导线的。"1.5加二"表示1.5mm2的铜芯塑料线,能配3.5kW的及以下的电动机。由于4kW 电动机接近3.5kW的选取用范围,而且该口诀又有一定的余量,所以在速查表中4kW以下的电动机所选导线皆取1.5mm2。"2.5加三"、"4后加四",表示2.5mm2及4mm2的铜芯塑料线分别能配5.5kW、8kW电动机。"6后加六",是说从6mm2的开始,能配"加大六"kW的电动机。即6mm2的可配12kW,选相近规格即配1lkW电动机。10mm2可配16kW,选相近规格即配15kW电动机。16mm2可配22kW电动机。这中间还有18.5kW电动机,亦选16mm2的铜芯塑料线。"25后加五",是说从25mm2开始,加数由六改为五了。即25mm2可配30kW的电动机。35mm2可配40kW,选相近规格即配37kW电动机。"50后递增减五",是说从50mm2开始,由加大变成减少了,而且是逐级递增减五的。即50mm2可配制45kW电动机(50-5)。70mm2可配60kW(70-10),选相近规格即配备55kW 电动机。95mm2可配80kW(95-15),选相近规格即配75kW电动机。"百二导线,配百数",是说120mm2的铜芯塑料线可配1OOkW电动机,选相规格即90kW 电动机。2.电动机配用导线的对表速查例如一台Y180L-4、22kW电动机,从速查表查得应配BV型16mm2的铜芯塑料线。七、有关使用速查表的几项说明1.表中所列电动机为Y系列380V/50Hz三相异步电动机,对于其它系列电动机,只要额定电压和频率相符,额定电流相接近,也可参考使用。2.选用的BV型铜芯塑料线截面,是以水泥厂供用电距离在200m及以下,年运行时问7000~8000h,以降低线路损耗节电效益显著等条件考虑的。如果供电距离大于200m,则需要按常规的导线选用设计条件(如发热条件、电压损耗条件、经济电流密度、机械强度),另行设计计算。如果采用BLV型塑料铝芯线,其规格要降一级选用。即2.5mm2铝芯线可代替1.5mm2铜芯线,4mm2铝芯线可代替2.5mm2铜芯线……,其它依此类推。 热继电器配置 一般情况下,可选用两相结构热继电器,但当三相电压的均衡性较差,工作环境恶劣或无人看管的电动机,宜选用三相结构的热继电器。对于三角形接线的电动机,应该选用带断相保护装置的热继电器。 2、热继电器额定电流选择。

反激式开关电源设计的思考(一到五)

反激式开关电源设计的思考一 对一般变压器而言,原边绕组的电流由两部分组成,一部分是负载电流分量,它的大小与副边负载有关;当副边电流加大时,原边负载电流分量也增加,以抵消副边电流的作用。另一部分是励磁电流分量,主要产生主磁通,在空载运行和负载运行时,该励磁分量均不变化。 励磁电流分量就如同抽水泵中必须保持有适量的水一样,若抽水泵中无水,它就无法产生真空效应,大气压就无法将水压上来,水泵就无法正常工作;只有给水泵中加适量的水,让水泵排空,才可正常抽水。在整个抽水过程中,水泵中保持的水量又是不变的。这就是,励磁电流在变压器中必须存在,并且在整个工作过程中保持恒定。 正激式变压器和上述基本一样,初级绕组的电流也由励磁电流和负载电流两部分组成;在初级绕组有电流的同时,次级绕组也有电流,初级负载电流分量去平衡次级电流,激励电流分量会使磁芯沿磁滞回线移动。而初次级负载安匝数相互抵消,它们不会使磁芯沿磁滞回线来回移动,而励磁电流占初级总电流很小一部分,一般不大于总电流10%,因此不会造成磁芯饱和。 反激式变换器和以上所述大不相同,反激式变换器工作过程分两步: 第一:开关管导通,母线通过初级绕组将电能转换为磁能存储起来; 第二:开关管关断,存储的磁能通过次级绕组给电容充电,同时给负载供电。 可见,反激式变换器开关管导通时,次级绕组均没构成回路,整个变压器如同仅有一个初级绕组的带磁芯的电感器一样,此时仅有初级电流,转换器没有次级安匝数去抵消它。初级的全部电流用于磁芯沿磁滞回线移动,实现电能向磁能的转换;这种情况极易使磁芯饱和。 磁芯饱和时,很短的时间内极易使开关管损坏。因为当磁芯饱和时,磁感应强度基本不变,dB/dt近似为零,根据电磁感应定律,将不会产生自感电动势去抵消母线电压,初级绕组线圈的电阻很小,这样母线电压将几乎全部加在开关管上,开关管会瞬时损坏。 由上边分析可知,反激式开关电源的设计,在保证输出功率的前提下,首要解决的是磁芯饱和问题。 如何解决磁芯饱和问题?磁场能量存于何处?将在下一篇文章:反激式开关电源变压器设计的思考二中讨论。 关键词:开关电源反激式磁芯饱和 反激式开关电源设计的思考二 “反激式开关电源设计的思考一”文中,分析了反激式变换器的特殊性防止磁芯和的重要性,那么如何防止磁芯的饱和呢?大家知道增加气隙可在相同ΔB的情况下,ΔIW的变化范围扩大许多,为什么气隙有此作用呢?由全电流定律可知:

(完整版)单端反激式开关电源的设计..

《电力电子技术》 课程设计报告 题目:单端反激式开关电源的设计学院:信息与控制工程学院

一、课程设计目的 (1)熟悉Power MosFET的使用; (2)熟悉磁性材料、磁性元件及其在电力电子电路中的使用; (3)增强设计、制作和调试电力电子电路的能力; 二、课程设计的要求与内容 本课程设计要求根据所提供的元器件设计并制作一个小功率 的反激式开关电源。我设计的是一个输入190V,输出9V/1.1A的反激式开关电源,要求画出必要的设计电路图,进行必要的电路参数计算,完成电路的焊接任务。有条件的可以用protel99 SE进行PCB电路板的印制。 三、设计原理 1、开关型稳压电源的电路结构 (1)按驱动方式分,有自激式和他激式。 (2)按DC/DC变换器的工作方式分:①单端正激式和反激式、推挽式、半桥式、全桥式等;②降压型、升压型和升降压型等。 (3)按电路组成分,有谐振型和非谐振型。 (4)按控制方式分:①脉冲宽度调制(PWM)式;②脉冲频率调制(PFM)式; ③PWM与PFM混合式。 DC/DC变换器用于开关电源时,很多情况下要求输入与输出间进行电隔离。这时必须采用变压器进行隔离,称为隔离变换器。这类变换器把直流电压或电流变换为高频方波电压或电流,经变压器升压或降压后,再经整流平滑滤波变为直流电压或电流。因此,这类变换器又称为逆变整流型变换器。 DC/DC变换器有5种基本类型:单端正激式、单端反激式、推挽式、半桥式和全桥式转换器。下面重点分析隔离式单端反激转换电路,电路结构图如图1所示。

图1 电路结构图 电路工作过程如下:当M1导通时,它在变压器初级电感线圈中存储能量,与变压器次级相连的二极管VD处于反偏压状态,所以二极管VD截止,在变压器次级无电流流过,即没有能量传递给负载;当M1截止时,变压器次级电感线圈中的电压极性反转,使VD导通,给输出电容C充电,同时负载R上也有电流I 流过。M1导通与截止的等效拓扑如图2所示。 图2 M1导通与截止的等效拓扑 2、反激变换器工作原理 基本反激变换器如图3所示。假设变压器和其他元器件均为理想元器件,稳态工作如下: (1)当有源开关Q导通时,变压器原边电流增加,会产生上正下负的感应电动势,从而在副边产生下正上负的感应电动势,如图 3(a)所示,无源开关VD1因反偏而截止,输出由电容C向负 载提供能量,而原边则从电源吸收能量,储存于磁路中。 (2)当有源开关Q截止时,由于变压器磁路中的磁通不能突变,所以在原边会感应出上负下正的感应电动势,故VD1正偏而导通,

单管反激式直流变换器研究开题报告

华侨大学厦门工学院毕业设计(论文)开题报告系:电气系专业班级:11级电气1班 姓名 曾俊杰 学号 1102101042 指导 教师 王国玲 职称 学历 副教授 课题名称 单管反激式直流变换器研究 毕业设计(论文)类型(划√) 工程设计 应用研究 开发研究 基础研究 其他

√ 本课题的研究目的和意义: 目的:高效反激式开关电源以其电路抗干扰、高效、稳定性好、成本低廉等许多优点,特别适合小功率的电源以及各种电源适配器,具有较高的实用性。随着电力电子技术的发展,工作在高频的开关电源己经广泛应用于电气和电子设备的各个领域。开关电源设计的目的是通过能量处理将输入能量变化为所需要的能量输出,通常的形式是产生一个符合要求的输出电压,这个输出电压的值不能受输入电压或者负载电流的影响。 意义:在开关电源设计初期,采用的都是分立元件,集成度很低,大部分电路只能在PCB 版上实现,极大的限制了小型化实现的可能。而且大量器件暴露在外,也影响了系统的稳定性。近年来,为了实现更高的效率和更小的体积,开关电源的工作频率有了很大的提高。高工作频率能够减小外围电感和电容的大小,从而减少系统的体积。 文献综述(国内外研究情况及其发展): 随着电力电子技术的发展,开关电源的应用越来越广泛。开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。开关稳压电源有多种类型,其中单端反激式开关电源由于具有线路简单,所需要的元器件少,能够提供多路隔离输出等优点。开关电源是通过开关管关断和导通实现电压和电流变换的装置,亦称无工频变压器的电源,利用体积很小的高频变压器来实现电压变化及电网隔离。开关电源具有体积小、重量轻、效率高、发热量低、性能稳定等优点,代表着当今稳压电源的发展方向,已成为稳压电源的主导产品。 随着集成电路的发展,开关电源逐渐向集成化方向发展,趋于小型化和模块化。反激变压器的设计是一个难点,其往往导致电源设计周期延长。随着PI公司生产的以TOPSwitch为代表的新一代单片开关电源的问世,以上诸多问题都得到了很好的解决。应用TOPSwitch-HX 设计开关电源,不仅器件更少,结构更简单,发热量更少,工作更可靠,采用该系列芯片已成为一种高效的反激式开关电源设计方案。1977年国外首先研制成脉宽调制(PWM)控制器集成电路,美国Motorola 公司、Silicon General 公司、Unitrode 公司等相继推出一系列PWM 芯片。近些年来,国外研制出开关频率达1MHz 的高速PWM、PFM 芯片。第二个方向是实现中、小功率开关电源单片集成化。1994 年,美国电源集成公司(Power Integrations)在世界上率先研制成功三端隔离式PWM型单片开关电源,其属于AC/DC电源变换器。之后相继推出TOPSwitch、TOPSwitch-II、TOPSwitch-Fx、TOPSwitch-GX、PeakSwitch、LinkSwitch 等系列产品。意-法半导体公司最近也开发出VIPer100、VIPer100A、VIPer100B 等中、小功率单片电源系列产品,并得到广泛应用。 本课题的主要研究内容(提纲)和成果形式: 1.复习、自学模拟电子技术、电力电子技术、自动控制理论、电路的仿真等方面有关书籍,理解掌握电路仿真软件的使用,如Pspice、Saber等。 2.重点学习Buck-Boost型功率变换器与反激式功率变换器的基本原理、功率电路与控制电路的设计方法与实现,控制电路的稳定性设计等。

反激开关电源原理

星期一, 05/11/2009 - 09:42 —陶显芳 1-7.反激式变压器开关电源 反激式变压器开关电源工作原理比较简单,输出电压控制范围比较大,因此,在一般电器设备中应用最广泛。 1-7-1.反激式变压器开关电源工作原理 所谓反激式变压器开关电源,是指当变压器的初级线圈正好被直流电压激励时,变压器的次级线圈没有向负载提供功率输出,而仅在变压器初级线圈的激励电压被关断后才向负载提供功率输出,这种变压器开关电源称为反激式开关电源。 图1-19-a是反激式变压器开关电源的简单工作原理图,图1-19-a中,Ui是开关电源的输入电压,T是开关变压器,K是控制开关,C是储能滤波电容,R是负载电阻。图1-19-b是反激式变压器开关电源的电压输出波形。 把图1-19-a与图1-16-a进行比较,如果我们把图1-16-a中开关变压器次级线圈的同名端对调一下,原来变压器输出电压的正、负极性就会完全颠倒过来,图1-19-b所示的电压输出波形基本上就是从图1-16-b的波形颠倒过来的。不过,因为图1-16-b的波形对应的是纯电阻负载,而图1-19-b的负载是一个储能滤波电容和一个电阻并联。由于储能滤波电容的容量很大,其两端电压基本不变,变压器次级线圈输出电压uo相当于被整流二极管和输出电压Uo进行限幅,因此,图1-16-b中输出电压uo的脉冲尖峰完全被削除,被限幅后的剩余电压幅值正好等于输出电压Uo的最大值Up,同时也等于变压器次级线圈输出电压uo的半波平均值Upa。

下面我们来详细分析反激式变压器开关电源的工作过程(参考图1-20)。 图1-19-a中,在控制开关K接通的Ton期间,输入电源Ui对变压器初级线圈N1绕组加电,初级线圈N1绕组有电流i1流过,在N1两端产生自感电动势的同时,在变压器次级线圈N2绕组的两端也同时产生感应电动势,但由于整流二极管的作用,没有产生回路电流。相当于变压器次级线圈开路,变压器次级线圈相当于一个电感。因此,流过变压器初级线圈N1绕组的电流就是变压器的励磁电流,变压器初级线圈N1绕组两端产生自感电动势可由下式表示: e1 = L1di/dt = Ui —— K接通期间(1-98) 或 e1 = N1dф/dt = Ui —— K接通期间(1-99) 上式中,e1为变压器初级线圈N1绕组产生的自感电动势,L1是变压器初级线圈N1绕组的电感,N1为变压器初级线圈N1绕组线圈绕组的匝数,ф为变压器铁心中的磁通。对(1-98)和(1-99)式进行积分,由此可求得: i1 =Ui*t/L1 +i(0) —— K接通期间(1-100) ф=Ui*t/N1 +ф (0) —— K关断瞬间(1-101) 上式中,i1是流过变压器初级线圈N1绕组的电流,ф为变压器铁心中的磁通;i1(0)为变压器初级线圈中的初始电流,即:控制开关刚接通瞬间流过变压器初级线圈N1绕组的电流;ф(0)为初始磁通,即:控制开关刚接通瞬间变压器铁心中的磁通。当开关电源工作于输出临界连续电流状态时,这里的i1(0)正好0,而ф(0)正好等于剩磁通S?Br。当控制开关K将要关断,且开关电源工作于输出电流临界连续状态时,i1和均达到最大值: i1m =Ui*Ton/L1 —— K关断瞬间(1-102)

单端反激变换器的建模及应用仿真

单端反激变换器的建模及应用仿真 摘要:本课程设计的目的是对直—直变换电路中常用的带隔离的Flyback电路(反激电路)进行电路分析、建模并利用Matlab/Simulink软件进行仿真。首先是理解分析电路原理,以元件初值为起点,用simulink软件画出电路的模型、并且对电路进行仿真,得出仿真波形。在仿真过程中逐步修正参数值,使得仿真波形合乎要求,并进行电流连续、断续模式与电路带载特性的分析。 关键词:单端反激变换器 Matlab/Simulink 建模与仿真 二、反激变换器的基本工作原理 1.基本工作原理 (1)当开关管导通时,变压器原边电感电流开始上升,此时由于次级同名端的关系,输出二极管VD截止,变压器储存能量,负载由输出电容C提供能量,拓扑电路如下图。 图2-1开关管导通时原理图 为防止负载电流较大时磁心饱和,反激变换器的变压器磁心要加气隙,降低了磁心的导磁率,这种变压器的设计是比较复杂的。 (2)当开关管截止时,变压器原边电感感应电压反向,此时输出二极管导通,变压器中的能量经由输出二极管向负载供电,同时对电容充电,补充刚刚损失的能量,原理图如下图。

图2-2开关管截止时原理图 在开关管关断时,反激变换器的变压器储能向负载释放,磁心自然复位,因此反激变换器无需另加磁复位措施。磁心自然复位的条件是:开关导通和关断时间期间,变压器一次绕组所承受电压的伏秒乘积相等。 2、DCM(discontinuous current mode)&CCM(continuous current mode) 根据次级电流是否有降到零,反激可以分为DCM(副边电流断续模式)和CCM(副边电力连续模式)两种工作模式。两种模式有其各自的特点。下面两种工作模式时的波形。 图2-3反激变换器工作在CCM下的各个波形

超详细的反激式开关电源电路图讲解

反激式开关电源电路图讲解 一,先分类 开关电源的拓扑结构按照功率大小的分类如下: 10W以内常用RCC(自激振荡)拓扑方式 10W-100W以内常用反激式拓扑(75W以上电源有PF值要求) 100W-300W 正激、双管反激、准谐振 300W-500W 准谐振、双管正激、半桥等 500W-2000W 双管正激、半桥、全桥 2000W以上全桥 二,重点 在开关电源市场中,400W以下的电源大约占了市场的70-80%,而其中反激式电源又占大部分,几乎常见的消费类产品全是反激式电源。 优点:成本低,外围元件少,低耗能,适用于宽电压范围输入,可多组输出. 缺点:输出纹波比较大。(输出加低内阻滤波电容或加LC噪声滤波器可以改善) 今天以最常用的反激开关电源的设计流程及元器件的选择方法为例。给大家讲解如何读懂反激开关电源电路图! 三,画框图 一般来说,总的来分按变压器初测部分和次侧部分来说明。开关电源的电路包括以下几个主要组成部分,如图1

图1,反激开关电源框图 四,原理图 图2是反激式开关电源的原理图,就是在图1框图的基础上,对各个部分进行详细的设计,当然,这些设计都是按照一定步骤进行的。下面会根据这个原理图进行各个部分的设计说明。 图2 典型反激开关电源原理图

五,保险管 图3 保险管 先认识一下电源的安规元件—保险管如图3。 作用:安全防护。在电源出现异常时,为了保护核心器件不受到损坏。 技术参数:额定电压 ,额定电流 ,熔断时间。 分类:快断、慢断、常规 计算公式:其中:Po:输出功率 η效率:(设计的评估值) Vinmin :最小的输入电压 2:为经验值,在实际应用中,保险管的取值范围是理论值的1.5~3倍。 0.98: PF值 六,NTC和MOV NTC 热敏电阻的位置如图4。 图4 NTC热敏电阻 图4中的RT为NTC,电阻值随温度升高而降低,抑制开机时产生的浪涌电压形成的浪涌电流。

单端反激式开关电源(毕业设计)

目录 摘要 (2) 第一章开关电源概述 (1) 1.1 开关电源的定义与分类 (1) 1.2 开关电源的基本工作原理与应用 (1) 1.2.1 开关电源的基本工作原理 (1) 1.2.2 开关电源的应用 (2) 1.3 开关电源待解决的问题及发展趋势 (5) 1.3.1 开关电源待解决的问题 (5) 1.3.2 开关电源的发展趋势 (5) 第二章设计方案比较与选择 (7) 2.1 本课题选题意义 (7) 2.2 方案的设计要求 (7) 2.3 选取的设计方案 (8) 第三章反激式高频开关电源系统的设计 (9) 3.1 高频开关电源系统参数及主电路原理图 (9) 3.2 单端反激式高频变压器的设计 (10) 3.2.1 高频变压器设计考虑的问题 (10) 3.2.2 单端反激式变压器设计 (11) 3.3 高频开关电源控制电路的设计 (15) 3.3.1 PWM 集成控制器的工作原理与比较 (15) 3.3.2 UC3842工作原理 (17) 3.3.3 UC3842的使用特点 (18) 3.4 反馈电路及保护电路的设计 (19) 3.4.1 过压、欠压保护电路及反馈 (19) 3.4.2 过流保护电路及反馈 (19) 3.5变压器设计中注意事项 (20) 第四章总结 (21) 参考文献 (23) 致谢 ............................................................................................................................ 错误!未定义书签。

DCDC直流变换器

第一章绪论 本章介绍了双向DC/DC变换器(Bi-directionalDC/DCConverter,BDC)的基本原理概述、研究背景和应用前景,并指出了目前双向直流变换器在应用中遇到的主要问题。 双向DC/DC变换器概述 所谓双向DC/DC变换器就是在保持输入、输出电压极性不变的情况下,根据具体需要改变电流的方向,实现双象限运行的双向直流/直流变换器。相比于我们所熟悉的单向DC/DC变换器实现了能量的双向传输。实际上,要实现能量的双向传输,也可以通过将两台单向DC/DC变换器反并联连接,由于单向变换器主功率传输通路上一般都需要二极管,因此单个变换器能量的流通方向仍是单向的,且这样的连接方式会使系统体积和重量庞大,效率低下,且成本高。所以,最好的方式就是通过一台变换器来实现能量的双向流动,BDC就是通过将单向开关和二极管改为双向开关,再加上合理的控制来实现能量的双向流动。 双向直流变换器的研究背景 在20世纪80年代初期,由于人造卫星太阳能电源系统的体积和重量很大,美国学者提出了用双向Buck/Boost直流变换器来代替原有的充、放电器,从而实现汇流条电压的稳定。之后,发表了大量文章对人造卫星应用蓄电池调节器进行了系统的研究,并应用到了实体中。 1994年,香港大学陈清泉教授将双向直流变换器应用到了电动车上,同年,等教授研制成功了用20kW水冷式双向直流变换器应用到电动车驱动,由于双向直流变换器的输入输出电压极性相反,不适合于电动车,所以他提出了一种Buck-Boost级联型双向直流变换器,其输入输出的负端共用。1998年,美国弗吉尼亚大学李泽元教授开始研究双向直流变换器在燃料电池上的配套应用。可见,航天电源和电动车辆的技术更新对双向直流变换器的发展应用具有很大的推动力,而开关直流变换器技术为双向DC/DC变换器的发展奠定了基础。 1994年,澳大利亚发表论文,总结出了不隔离双向直流变换器的拓扑结构。他是在单管直流变换器的开关管上反并联二极管,在二极管上反并联开关管,从而构成四种不隔离的双向直流变换器:Buck-Boost、Buck/Boost、Cuk和Sepi-Zeta双向直流变换器。 隔离式双向直流变换器有正激、反激、推挽和桥式等拓扑结构。 反激式变换器是基于Buck/Boost直流变换器设计的,电路结构对称,相比之下更易于构成双向直流变换器。但普通的反激式变换器容易产生电压尖峰和振荡,2001年陈刚博士提出了有源嵌位双向反激式直流变换器,有效的消除了电压尖峰和振荡,并且实现了开关管的零电流开关,减少了开关器件的电压应力。 推挽式变换器也具有对称的电路结构,且结构简单,但存在变压器的偏磁和漏感,从而限制了变换器的应用。所以有学者提出,在输入输出电压相差较大的场合,可以应用由推挽变换器和半桥变换器组成的混合式变换器。

反激式开关电源设计资料.doc

反激式开关电源设计资料 前言 反激式开关电源的控制芯片种类非常丰富,芯片厂商都有自己的专用芯片,例如UC3842、UC3845、OB2262、OB2269、TOPSWITCH 等等。虽然控制芯片略有不同,但是反激式开关电源的拓扑结构和电路原理基本上是一样的,本资料以UC3842为控制芯片设计了一款反激式开关电源。 单端反激式开关稳压电源的基本工作原理如下: D1 T R L 图1 反激式开关电源原理图 当加到原边主功率开关管Q1的激励脉冲为高电平使Q1导通时,直流输入电压V IN加载原边绕组N P两端,此时因副边绕组相位是上负下正,使整流管D1反向偏置而截止;当驱动脉冲为低电平使Q1截止时,原边绕组N P两端电压极性反向,使副边绕组相位变为上正下负,则整流管被正向偏置而导通,此后存储在变压器中的磁能向负载传递释放。因单端反激式电源只是在原边开关管到同期间存储能

量,当它截止时才向负载释放能量,故高频变压器在开关工作过程中,既起变压隔离作用,又是电感储能元件。因此又称单端反激式变换器是一种“电感储能式变换器”。 学习了反激式开关电源的工作原理之后,我们可以自行设计一款电源进行调试。开关电源是一门实验科学,理论知识的学习是必不可少的,但是光掌握了理论知识是远远不够的,还要多做实验,测试不同环境不同参数下的电源工作情况,这样才能对电源有更深的认识。除此之外,掌握大量的实验数据可以对以后设计电源和电源的优化提供很大帮助,可以更快速更合理的设计出一款新电源或者排除一些电源故障。通过阅读下面的章节,可以使你对电源从原理理解到设计能力有一个快速的提升。

第一章 电源参数的计算 第一步,确定系统的参数。我们设计一个电源首先要确定电源工作在一个什么样的环境,比如说输入电压的范围、频率、网侧电压是否纯净,接下来是电源的输出能力包括输出电压、电流和纹波大小等等。先要确定这些相关因素,才能更好的设计出符合标准的电源。我们在第二章会详细介绍如何利用这些参数设计电源。 输入电压范围(V line min 和V line max ); 输入电压频率(f L ); 输出电压(V O ); 输出电流(I O ); 最大输出功率 (P 0)。 效率估计(E ff ):需要估计功率转换效率以计算最大输入功率。如果没有参考数据可供使用,则对于低电压输出应用和高电压输出应用,应分别将E ff 设定为0.8~0.85。 利用估计效率,可由式(1-1)求出最大输入功率。 O IN ff P P E = (1-1) 第二步:确定输入整流滤波电容(C DC )和DC 电压范围。 最大DC 电压纹波计算: max DC V ?= (1-2) 式(1-2)中,D ch 为规定的输入整流滤波电容的充电占空比。其 典型值为0.2。对于通用型输入(85~265Vrms ),一般将max V DC ?设定为

单端反激式开关电源

交流异步电动机变频调速原理: 变频器是利用电力半导体器件的通断作用把电压、频率固定不变的交流电变成电压、频率都可调的交流电源。 现在使用的变频器主要采用交—直—交方式(VVVF变频或矢量控制变频),先把工频交流电源通过整流器转换成直流电源,然后再把直流电源转换成频率、电压均可控制的交流电源以供给电动机。 变频器主要由整流(交流变直流)、滤波、逆变(直流变交流)、制动单元、驱动单元、检测单元微处理单元等组成的。 交-直部分 整流电路:由VD1-VD6六个整流二极管组成不可控全波整流桥。对于380V的额定电源,一般二极管反向耐压值应选1200V,二极管的正向电流为电机额定电流的1.414-2倍。 (二)变频器元件作用 电容C1: 是吸收电容,整流电路输出是脉动的直流电压,必须加以滤波, 变压器是一种常见的电气设备,可用来把某种数值的交变电压变换为同频率的另一数值的交变电压,也可以改变交流电的数值及变换阻抗或改变相位。 压敏电阻: 有三个作用,一过电压保护,二耐雷击要求,三安规测试需要. 热敏电阻:过热保护

霍尔: 安装在UVW的其中二相,用于检测输出电流值。选用时额定电流约为电机额定电流的2倍左右。 充电电阻: 作用是防止开机上电瞬间电容对地短路,烧坏储能电容开机前电容二端的电压为0V;所以在上电(开机)的瞬间电容对地为短路状态。如果不加充电电阻在整流桥与电解电容之间,则相当于380V电源直接对地短路,瞬间整流桥通过无穷大的电流导致整流桥炸掉。一般而言变频器的功率越大,充电电阻越小。充电电阻的选择范围一般为:10-300Ω。 储能电容: 又叫电解电容,在充电电路中主要作用为储能和滤波。PN端的电压电压工作范围一般在430VDC~700VDC 之间,而一般的高压电容都在400VDC左右,为了满足耐压需要就必须是二个400VDC的电容串起来作800VDC。容量选择≥60uf/A 均压电阻:防止由于储能电容电压的不均烧坏储能电容;因为二个电解电容不可能做成完全一致,这样每个电容上所承受的电压就可能不同,承受电压高的发热严重(电容里面有等效串联电阻)或超过耐压值而损坏。 C2电容; 吸收电容,主要作用为吸收IGBT的过流与过压能量。 (2)直-交部分 VT1-VT6逆变管(IGBT绝缘栅双极型功率管):构成逆变电路的主要器件,也是变频器的核心元件。把直流电逆变频率,幅值都可调的交流电。 VT1-VT6是续流二极:作用是把在电动机在制动过程中将再生电流返回直流电提供通道并为逆变管VT1-VT6在交替导通和截止的换相过程中,提供通道。(3)控制部分:电源板、驱动板、控制板(CPU板) 电源板:开关电源电路向操作面板、主控板、驱动电路、检测电路及风扇等提供低压电源,开关电源提供的低压电源有:±5V、±15V 、±24V向CPU其附属电路、控制电路、显示面板等提供电源。 驱动板:主要是将CPU生成的PWM脉冲经驱动电路产生符合要求的驱动信号激励IGBT输出电压。 控制板(CPU板):也叫CPU板相当人的大脑,处理各种信号以及控制程序等部分 [注:再次整流(直流变交流)--->更贴切的叫法是逆变!在这里感谢蔡工给我们编辑们提的意见!也欢迎大家多给我们编辑组提出更多宝贵的意见和建议!mym(2005.08.23) ]

单端反激开关电源

因该电源是公司产品的一个配套使用,且各项指标都不是要求太高,故选用最常用的反激拓扑,这样既可以减小体积(给的体积不算大),还能降低成本,一举双的! 反激拓扑的前身是Buck-Boost变换器,只不过就是在Buck-Boost变换器的开关管和续流二极管之间放入一个变压器,从而实现输入与输出电气隔离的一种方式,因此,反激变换器也就是带隔离的Buck-Boost变换器。 先学习下Buck-Boost变换器 工作原理简单介绍下 1.在管子打开的时候,二极管D1反向偏置关断,电流Is流过电感L,电感电流IL线性上升,储存能量! 2.当管子关断时,电感电流不能突变,电感两端电压反向为上负下正,二极管D1正向偏置开通!给电容C充电及负载提供能量! 3.接着开始下个周期! 从上面工作可以看出,Buck-Boost变换器是先储能再释放能量,VS不直接向输出提供能量,而是管子打开时,把能量储存在电感,管子关断时,电感向输出提供能量! 根据电流的流向,可以看出上边输出电压为负输出! 根据伏秒法则 Vin*Ton=Vout*Toff Ton=T*D Toff=T*(1-D)

代入上式得 Vin*D=Vout*(1-D) 得到输出电压和占空比的关系Vout=Vin*D/(1-D) 看下主要工作波形 从波形图上可以看出,晶体管和二极管D1承受的电压应力都为Vs+Vo(也就是Vin+Vout); 再看最后一个图,电感电流始终没有降到0,所以这种工作模式为电流连续模式(Ccm模式)。 如果再此状态下把电感的电感量减小,减到一定条件下,会出现这个波形!

从上图可以看出,电感电流始终降到0后再到最大,所以这种模式叫不连续模式(DCM模式)。 把上边的Buck-Boost变换器的开关管和续流管之间加上一个变压器就会变成反激变换器! 还是和上边一样,先把原理大概讲下:

相关文档
最新文档