2015【几何4】图形的相似

2015【几何4】图形的相似
2015【几何4】图形的相似

图形的相似
【相似形】 1. 若
x y z x? y?z ? ? ,则 =_________________; 10 8 9 y?z
2. (2014?包 头 )如图,在△ABC 中,点 D,E,F 分别在边 AB,AC,BC 上,且 DE∥BC, EF∥AB.若 AD=2BD,则
CF 的值为( BF
C.

A.
1 2
B.
1 3
1 4
A
D.
2 3
F
G D
E
第2题
B 第3题
C
第4题
3.如图,已知点 D 是 AB 边的中点,AF∥BC,CG∶GA=3∶1,BC=8,则 AF=( A. 3 B. 4 C. 5 D. 6

4、如图,在□ABCD 中,AB=6,AD=9,∠BAD 的平分线交 BC 于点 E,交 DC 的延长线于 点 F,BG⊥AE,垂足为 G,BG= 4 2 ,则 EF 的长为___________ 5. (2014?莱芜)如图,在△ABC 中,D、E 分别是 AB、BC 上的点,且 DE∥AC,若 S△BDE: S△CDE=1:4,则 S△BDE:S△ACD=( A.1:16 B.1:18 ) C.1:20 A O D.1:24
D
B 第5题 第6题
C
6、如图,梯形 ABCD 中,AD//BC,且 AD:BC=1:3,对角线 AC、BD 交于点 O,那么 S△AOD:S△BOC:S△AOB 等于( A. 1:3:1 B.1:9:1 ) 。 D.1:3:2
C.1:9:3

7. (2014?武汉)如图,线段 AB 两个端点的坐标分别为 A(6,6) ,B(8,2) ,以原点 O 为位似中心,在第一象 限内将线段 AB 缩小为原来的 C 的坐标为( )
1 后得到线段 CD, 则端点 2
A. (3,3) B. (4,3) C. (3,1) D. (4,1) 8. (2014?枣庄)如图,将矩形 ABCD 沿 CE 向上折叠,使点 B 落在 AD 边上的点 F 处.若 AE=
2 BE,则长 AD 与宽 AB 的比值是____________. 3
第8题
第9题
9.如图,在 Rt△ABC 中,∠C=90° ,∠A 的平分线交 BC 于 D.过 C 点作 CG⊥AB 于 G, 交 AD 于 E.过 D 点作 DF⊥AB 于 F.下列结论中正确的是( )
①∠CED=∠CDE;②S△AEC:S△AEG=AC:AG;③∠ADF=2∠FDB; ④CE=DF. A.①②④ B.②③④ C.只有①③ D.①②③④
10. (2014 年山东泰安)如图,△ABC 中,∠ACB=90° ,∠A=30° ,AB=16.点 P 是斜边 AB 上一点.过点 P 作 PQ⊥AB,垂足为 P,交边 AC(或边 CB)于点 Q,设 AP=x,△APQ 的 面积为 y,则 y 与 x 之间的函数图象大致为( )
A
B
C.
D
11.一张等腰三角形纸片,底边长 15cm,底边上的高长 22.5cm.现沿底 边依次从下往上裁剪宽度均为 3cm 的矩形纸条,如图所示.已知剪 得的纸条中有一张是正方形,则这张正方形纸条是( A.第 4 张 B.第 5 张 C.第 6 张 D.第 7 张 )

12. 如图, △ABC 是一张锐角三角形的硬纸片. AD 是边 BC 上的高, BC=40cm, AD=30cm. 从 这张硬纸片剪下一个长 HG 是宽 HE 的 2 倍的矩形 EFGH.使它的一边 EF 在 BC 上,顶点 G,H 分别在 AC,AB 上.AD 与 HG 的交点为 M. (1)求证:
AM HG ? ; AD BC
(2)求这个矩形 EFGH 的周长.
13.如图 3—1,在△ABC 中,∠C=90° ,AC=4,BC=3,四边形 DEFG 为△ABC 的内接正方 形,若设正方形的边长为 x,容易算出 x 的长为
60 . 37
探究与计算: (1)如图 3—2,若三角形内有并排的两个全等的正方形,它们组成的矩形内接于 △ABC,则正方形的边长为 ; (2)如图 3—3,若三角形内有并排的三个全等的正方形,它们组成的矩形内接于 △ABC,则正方形的边长为 . 猜想与证明: 如图 3—4,若三角形内有并排的 n 个全等的正方形,它们组成的矩形内接于△ABC, 请你猜想正方形的边长是多少?并对你的猜想进行证明.
C G F G B A E C F B
A
E D 图 3—1 C G F E B
D
图 3—2
C
G A D 图 11 — 4
F E B
A
D
图 3—3

【三角函数】 1. (2012?遂宁)在△ABC 中,∠C=90° ,BC=4,AB=5,则 cosB 的值是( A.

4 5
B.
3 5
C.
3 4
D.
4 3

【变式 1】 (2012?乐山)如图,在 Rt△ABC 中,∠C=90° ,AB=2BC,则 sinB 的值为( A.
1 2
B.
2 2
C.
3 2
D.1
【变式 2】 (2013?铜仁地区)如图,在直角三角形 ABC 中,∠C=90° ,AC=12,AB=13,则 sinB 的值等于__________. 2.在平面直角坐标系中,已知点 A(2,1)和点 B(3,0) ,则 sin∠AOB 的值等于( )
A.
5 5
B.
5 2
C.
3 2
D.
1 2
3. (2013?乐山)如图,在直角坐标系中, P 是第一象限内的点,其坐标是(3,m) ,且 OP 与 x 轴正半轴的夹角 α 的正切值是
4 ,则 sinα 的值为( 3 3 5 5 3

A.
4 5
B.
5 4
C.
D.
4. (2013?杭州)在 Rt△ABC 中,∠C=90° ,若 AB=4,sinA=
3 ,则斜边上的高等于( 5 12 5

A.
64 25
B.
48 25
C.
16 5
D.
5. (2012?福州)如图,从热气球 C 处测得地面 A、B 两点的俯 角分别是 30° 、 45° , 如果此时热气球 C 处的高度 CD 为 100 米, 点 A、D、B 在同一直线上,则 AB 两点的距离是( A.200 米 B.200 3 米 ) D.100( 3 +1)米
C.220 3 米

6. (2013?河池)如图,在△ABC 中,AC=6,BC=5,sinA=
2 ,则 tanB=__________ 3
第6题 【变式】 (2013?荆门)如图,在 Rt△ABC 中,∠ACB=90° ,D 是 AB 的中点,过 D 点作 AB 的垂线交 AC 于点 E,BC=6,sinA=
3 ,则 DE=__________. 5
7.(2011?丹东)数学兴趣小组想利用所学的知识了解某广告牌的高度,已知 CD=2m,经 测量,得到其它数据如图所示.其中∠CAH=30° ,∠DBH=60° ,AB=10m.请你根据以上数 据计算 GH 的长.(
3 ≈1.73,要求结果精确到 0.1m)
8、在一次数学活动课上,老师带领同学们去测一条两岸平行的河流的宽度,如图所示,在 河岸的一边有两颗相距 60 米的树 C、D,某同学在河岸另一边点 A 处 9 观测树 C,测得∠ ACD=21.3° ,他又沿河岸前行 15 米到达 B 处,在 B 处观测树 D,测得∠BDC=63.5° ,请你 根据以上数据,帮助该同学计算出这条河的宽度 (参考数据: sin 21 .3? ?
9 2 9 , tan 21.3? ? , sin 63 .5? ? , tan 63.5? ? 2 ) 25 5 10

9、如图(9)所示(左图为实景侧视图,右图为安装示意图) ,在屋顶的斜坡面上安装太阳 能热水器:先安装支架 AB 和 CD(均与水平面垂直) ,再将集热板安装在 AD 上.为使集热 板吸热率更高,公司规定:AD 与水平线夹角为 1,且在水平线上的的射影 AF 为 1.4m.现已 测量出屋顶斜面与水平面夹角为 2,并已知 tan 1=1.1,tan 2=0.4.如果安装工人已确定支 架 AB 高为 25cm,求支架 CD 的高(结果精确到 0.1m)?
10、如图,某校教学楼 AB 的后面有一建筑物 CD,当光线与地面的夹角是 22o时,教学楼 在建筑物的墙上留下高 2m 的 影子 CE;而当光线与地面的夹角是 45o 时,教学楼顶 A 在地 面上的影子 F 与墙角 C 有 13m 的距离(B、F、C 在一条直线上). (1)求教学楼 AB 的高度; (2)学校要在 A、E 之间挂一些彩旗,请你求出 A、E 之间的距离(结果保留整数). (参考数据:sin22o≈ 3 15 2 ,cos22o≈ ,tan22o≈ ) 8 16 5

【巩固练习】 1.如图,铁道口栏杆的短臂长为 1m,长臂长为 16m,当短臂端 点下降 0.5m 时,长臂端点升高_________m. 2. 如图, 把菱形 ABCD 沿对角线 AC 的方向移动到菱形 A’B’C’D’ 的位置,它们的重叠部分的面积是菱形 ABCD 面积的 AC=3,则菱形移动的距离 AA′是_____________ 3. (2014?威海)如图,在下列网格中,小正方形的边长均为 1, 点 A、B、O 都在格点上,则∠AOB 的正弦值是( ) A . B . C . D .
1 ,若 3
4、如图,在 RT△ABC 中, ? C=90° ,AC=4,AB=5,则 sinB 的值是( A、 ) B、
2 3
3 5
C、
3 4
D、
4 5
5. (2014?莱芜)如图在坐标系中放置一菱形 OABC,已知 ∠ABC=60° ,OA=1.先将菱形 OABC 沿 x 轴的正方向无 滑动翻转,每次翻转 60° ,连续翻转 54 次,点 B 的落点依 次为 B1,B2,B3,…,则 B54 的坐标为_________. 6.如图,港口 B 在港口 A 的西北方向,上午 8 时,一艘轮船从港口 A 出发,以 15 海里∕ 时的速度向正北方向航行,同时一艘快艇从港口 B 出发也向正北方向航行,上午 10 时轮船 到达 D 处,同时快艇到达 C 处,测得 C 处在 D 处得北偏西 30° 的方向上,且 C、D 两地相 距 100 海里,求快艇每小时航行多少海里?(结果精确到 0.1 海里∕时,参考数据
2 ≈1.41,
3 ≈1.73)

7.小刘同学在课外活动中观察吊车的工作过程,绘制了如图所示的平面图形.已知吊车吊 臂的支点 O 距离地面的高 OO′=2 米.当吊臂顶端由 A 点抬升至 A′点(吊臂长度不变)时, 地面 B 处的重物(大小忽略不计)被吊至 B′处,紧绷着的吊缆 A′B′=AB.AB 垂直地面 O′B 于点 B,A′B′垂直地面 O′B 于点 C,吊臂长度 OA′=OA=10 米,且 cosA= 0.6,sinA′= 0.5. (1)求此重物在水平方向移动的距离 BC; (2)求此重物在竖直方向移动的距离 B′C.(结果保留根号)
8. 已知:如图,在 Rt ?ABC 中, ?C ? 90 , BC ? 8cm , AC ? 6cm 。过点 A 平行于 CB 的直线以 1 cm / s 的速度从点 A 出发,沿 AC 向 CB 运动,分别交 AC 、 AB 于点 D 、 E , 与 此 同 时 , 点 F 以 2 cm / s 的 速 度 从 点 C 出 发 沿 CB 向 B 运 动 , 设 运 动 时 间 为
?
t ( s ) (0 ? t ? 4)
⑴ 当 t 为何值时, ?CDF 是等腰三角形? ⑵ 设四边形 DEBF 的面积为 y (cm ) ,求 y 与 t 之间的函数关系式; ⑶ 是否存在某一时刻 t , 使四边形 DEBF 的面积是 ?ABC 面积的 的值;若不存在,请说明理由。 ⑷ 连接 CE ,当 CE ? DF 时,求 t 的值。 解:⑴
A E
2
3 ?若存在, 请求出 t 8
D
C
F
B

解析几何经典例题

解析几何经典例题 圆锥曲线的定义是“圆锥曲线方程”这一章的基础,对这些定义我们有必要深刻地理解与把握。这里就探讨一下圆锥曲线定义的深层及其综合运用。 一、椭圆定义的深层运用 例1. 如图1,P为椭圆上一动点,为其两焦点,从 的外角的平分线作垂线,垂足为M,将F2P的延长线于N,求M的轨迹方程。 图1 解析:易知故 在中, 则点M的轨迹方程为。 二、双曲线定义的深层运用 例2. 如图2,为双曲线的两焦点,P为其上一动点,从的平分线作垂线,垂足为M,求M的轨迹方程。 图2 解析:不妨设P点在双曲线的右支上, 延长F1M交PF2的延长线于N, 则, 即 在 故点M的轨迹方程为 三、抛物线定义的深层运用 例3. 如图3,AB为抛物线的一条弦,|AB|=4,F为其焦点,求AB的中点M到直线y=-1的最短距离。

图3 解析:易知抛物线的准线l:, 作AA”⊥l,BB”⊥l,MM”⊥l,垂足分别为A”、B”、M” 则 即M到直线的最短距离为2 故M到直线y=-1的最短距离为。 评注:上述解法中,当且仅当A、B、F共线,即AB为抛物线的一条焦点弦时,距离才取到最小值。一般地, 求抛物线的弦AB的中点到准线的最短距离,只有当(即通径长)时,才能用上述解法。 四、圆与椭圆、圆与双曲线定义的综合运用 例4. ①已知圆,M为圆上任一点,MP的垂直平分线交OM于Q,则Q的轨迹为() 图4 ②已知圆,M为圆上任一点,MP的垂直平分线交OM于Q,则Q的轨迹为() A. 圆 B. 椭圆 C. 双曲线 D. 抛物线 解析:①如图4,由垂直平分线的性质,知|QM|=|QP|, 而|QM|=|OM|-|OQ|=2-|OQ| 即|OQ|+|QP|=2>|OP|= 故Q的轨迹是以O(0,0)、P为焦点 长轴长为2的椭圆。应选B。 ②同理,利用垂直平分线的性质及双曲线的定义,可知点Q的轨迹为双曲线的一支,应选C。 五、椭圆与双曲线定义的综合运用 例5. 如图5,已知三点A(-7,0),B(7,0),C(2,-12)。①若椭圆过A、B两点,且C为其一焦点,求另一焦点P的轨迹方程;②若双曲线的两支分别过A、B两点,且C为其一焦点,求另一焦点Q的轨迹方程。

空间向量在立体几何中的应用——夹角的计算习题-详细答案

【巩固练习】 一、选择题 1. 设平面内两个向量的坐标分别为(1,2,1),(-1,1,2),则下列向量中是平面的法向量的是( ) A. (-1,-2,5) B. (-1,1,-1) C. (1, 1,1) D. (1,-1,-1) 2. 如图,1111—ABCD A B C D 是正方体,11 11114 A B B E =D F =,则1BE 与1DF 所成角的余弦值是( ) A . 1715 B . 2 1 C .17 8 D . 2 3 3. 如图,111—A B C ABC 是直三棱柱,90BCA ∠=?,点11D F 、分别是1111A B AC 、的中点,若 1BC CA CC ==,则1BD 与1AF 所成角的余弦值是( ) A . 1030 B . 2 1 C .15 30 D . 10 15 4. 若向量(12)λ=a ,,与(212)=-b ,,的夹角的余弦值为8 9 ,则λ=( ) A .2 B .2- C .2-或 255 D .2或255 - 5. 在三棱锥P ABC -中,AB BC ⊥,1 2 AB=BC=PA ,点O D 、分别是AC PC 、的中点,OP ⊥ 底面ABC ,则直线OD 与平面PBC 所成角的正弦值( ) A . 621 B . 33 8 C .60 210 D . 30210 6.(2015秋 湛江校级期末)在正四棱锥S —ABCD 中,O 为顶点在底面内的投影,P 为侧棱SD 的中点,且SO=OD ,则直线BC 与平面PAC 的夹角是( ) A .30° B .45° C .60° D .75° 7. 在三棱锥P ABC -中,AB BC ⊥,1 ==2 AB BC PA ,点O D 、分别是AC PC 、的中点,OP ⊥ 底面ABC ,则直线OD 与平面PBC 所成角的正弦值是( )

平面解析几何经典题(含答案)

平面解析几何 一、直线的倾斜角与斜率 1、直线的倾斜角与斜率 (1)倾斜角的范围 0 180 (2)经过两点的直线的斜率公式是 (3)每条直线都有倾斜角,但并不是每条直线都有斜率 2.两条直线平行与垂直的判定 (1)两条直线平行 对于两条不重合的直线l1,l2 ,其斜率分别为k1, k2 ,则有 l1 / /l2 k1 k2 。特别地, 当直线 l1,l2 的斜率都不存在时,l1与l2 的关系为平行。 (2)两条直线垂直 如果两条直线l1,l2 斜率存在,设为k1, k2 ,则l1 l2 k1 k2 1 注:两条直线l1 ,l2 垂直的充要条件是斜率之积为-1,这句话不正确;由两直线的斜率 之积为 -1,可以得出两直线垂直,反过来,两直线垂直,斜率之积不一定为-1。如果 l1,l2 中 有一条直线的斜率不存在,另一条直线的斜率为0 时, l1与l2 互相垂直。 二、直线的方程 1、直线方程的几种形式 名称方程的形式已知条件局限性 点斜式 不包括垂直于x 轴的直 线为直线上一定点,k 为斜率 斜截式k 为斜率, b 是直线在y 轴上的截距不包括垂直于x 轴的直线两点式 不包括垂直于x 轴和 y 轴的是直线上两定点 直线 截距式 a 是直线在x 轴上的非零截距, b 是直不包括垂直于x 轴和 y 轴或

线在 y 轴上的非零截距过原点的直线 一般式 A ,B,C 为系数无限制,可表示任何位置的 直线 三、直线的交点坐标与距离公式 三、直线的交点坐标与距离公式 1.两条直线的交点 设两条直线的方程是,两条 直线的交点坐标就是方程组的解,若方程组有唯一解,则这两条 直线相交,此解就是交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平 行;反之,亦成立。 2.几种距离 (1 )两点间的距离平面上的两点间的距离公式 (2)点到直线的距离 点到直线的距离; (3)两条平行线间的距离 两条平行线间的距离 注:(1)求点到直线的距离时,直线方程要化为一般式; (2)求两条平行线间的距离时,必须将两直线方程化为系数相同的一般形式后,才能套用 公式计算 (二)直线的斜率及应用 利用斜率证明三点共线的方法: 已知A(x , y ), B(x , y ), C (x , y ), 若 x 1 x 2 x3或k AB k AC ,则有 A 、B、 C 三点共 1 1 2 2 3 3 线。

利用空间向量解立体几何(完整版)

向量法解立体几何 引言 立体几何的计算和证明常常涉及到二大问题:一是位置关系,它主要包括线线垂直,线面垂直,线线平行,线面平行;二是度量问题,它主要包括点到线、点到面的距离,线线、线面所成角,面面所成角等。教材上讲的比较多的主要是用向量证明线线、线面垂直及计算线线角,而如何用向量证明线面平行,计算点到平面的距离、线面角及面面角的例题不多,给老师对这部分内容的教学及学生解有关这部分内容的题目造成一定的困难,下面主要就这几方面问题谈一下自己的想法,起到一个抛砖引玉的作用。 一、基本工具 1.数量积: cos a b a b θ?= 2.射影公式:向量a 在b 上的射影为 a b b ? 3.直线0Ax By C ++=的法向量为 (),A B ,方向向量为 (),B A - 4.平面的法向量(略) 二、用向量法解空间位置关系 1.平行关系 线线平行?两线的方向向量平行 线面平行?线的方向向量与面的法向量垂直 面面平行?两面的法向量平行 2.垂直关系

线线垂直(共面与异面)?两线的方向向量垂直 线面垂直?线与面的法向量平行 面面垂直?两面的法向量垂直 三、用向量法解空间距离 1.点点距离 点()111,,P x y z 与()222,,Q x y z 的 距离为(PQ x =2.点线距离 求点()00,P x y 到直线:l 0Ax By C ++=的距离: 方法:在直线上取一点(),Q x y , 则向量PQ 在法向量 (),n A B =上的射影PQ n n ?= 即为点P 到l 的距离. 3.点面距离 求点()00,P x y 到平面α的距离: 方法:在平面α上去一点(),Q x y ,得向量PQ , 计算平面α的法向量n , 计算PQ 在α上的射影,即为点P 到面α的距离. 四、用向量法解空间角 1.线线夹角(共面与异面) 线线夹角?两线的方向向量的夹角或夹角的补角 2.线面夹角 求线面夹角的步骤:

圆周运动典型例题学生版(含答案)

圆周运动专题总结 知识点一、匀速圆周运动 1、定义:质点沿圆周运动,如果在相等的时间里通过的 相等,这种运动就叫做匀速周圆运 动。 2、运动性质:匀速圆周运动是 运动,而不是匀加速运动。因为线速度方向时刻在变化,向 心加速度方向,时刻沿半径指向圆心,时刻变化 3、特征:匀速圆周运动中,角速度ω、周期T 、转速n 、速率、动能都是恒定不变的;而线速度 v 、加速度a 、合外力、动量是不断变化的。 4、受力提特点: 。 随堂练习题 1.关于匀速圆周运动,下列说法正确的是( ) A .匀速圆周运动是匀速运动 B .匀速圆周运动是匀变速曲线运动 C .物体做匀速圆周运动是变加速曲线运动 D .做匀速圆周运动的物体必处于平衡状态 2.关于向心力的说法正确的是( ) A .物体由于作圆周运动而产生一个向心力 B .向心力不改变做匀速圆周运动物体的速度大小 C .做匀速圆周运动的物体的向心力即为其所受合外力 D .做匀速圆周运动的物体的向心力是个恒力 3.在光滑的水平桌面上一根细绳拉着一个小球在作匀速圆周运动,关于该运动下列物理量中 不变的是(A )速度 (B )动能 (C )加速度 (D )向心力 知识点二、描述圆周运动的物理量 ⒈线速度 ⑴物理意义:线速度用来描述物体在圆弧上运动的快慢程度。 ⑵定义:圆周运动的物体通过的弧长l ?与所用时间t ?的比值,描述圆周运动的“线速度”, 其本质就是“瞬时速度”。 ⑶方向:沿圆周上该点的 方向 ⑷大小:=v = ⒉角速度 ⑴物理意义:角速度反映了物体绕圆心转动的快慢。 ⑵定义:做圆周运动的物体,围绕圆心转过的角度θ?与所用时间t ?的比值 ⑶大小:=ω = ,单位: (s rad ) ⒊线速度与角速度关系: ⒋周期和转速: ⑴物理意义:都是用来描述圆周运动转动快慢的。 ⑵周期T :表示的是物体沿圆周运动一周所需要的时间,单位是秒;转速n (也叫频率f ): 表示的是物体在单位时间内转过的圈数。n 的单位是 (s r )或 (m in r )f 的单位:

圆周运动知识点与例题

匀速圆周运动知识点及例题 二、匀速圆周运动的描述 1.线速度、角速度、周期和频率的概念 (1)线速度v 是描述质点沿圆周运动快慢的物理量,是矢量,其大小为T r t s v π2= =; 其方向沿轨迹切线,国际单位制中单位符号是m/s ; (2)角速度ω是描述质点绕圆心转动快慢的物理量,是矢量,其大小为T t πφ ω2= =; 在国际单位制中单位符号是rad /s ; (3)周期T 是质点沿圆周运动一周所用时间,在国际单位制中单位符号是s ; (4)频率f 是质点在单位时间内完成一个完整圆运动的次数,在国际单位制中单位符号是 Hz ; (5)转速n 是质点在单位时间内转过的圈数,单位符号为r /s ,以及r /min . 2、速度、角速度、周期和频率之间的关系 线速度、角速度、周期和频率各量从不同角度描述质点运动的快慢,它们之间有关系v =r ω.f T 1=,T v π2=,f πω2=。 由上可知,在角速度一定时,线速度大小与半径成正比;在线速度一定时,角速度大小与半径成反比. 三、向心力和向心加速度 1.向心力 (1)向心力是改变物体运动方向,产生向心加速度的原因. (2)向心力的方向指向圆心,总与物体运动方向垂直,所以向心力只改变速度的方向. 2.向心加速度 (1)向心加速度由向心力产生,描述线速度方向变化的快慢,是矢量. (2)向心加速度方向与向心力方向恒一致,总沿半径指向圆心;向心加速度的大小为

2222 4T r r r v a n πω=== 公式: 1.线速度V =s/t =2πr/T 2.角速度ω=Φ/t=2π/T=2πf 3.向心加速度a =V 2/r =ω2r =(2π/T)2r 4.向心力F 心=mV 2/r =mω2r =mr(2π/T)2=mωv=F 合 5.周期与频率:T =1/f 6.角速度与线速度的关系:V =ωr 7.角速度与转速的关系ω=2πn (此处频率与转速意义相同) 8.主要物理量及单位:弧长s:米(m);角度Φ:弧度(rad );频率f :赫(Hz );周期T :秒(s );转速n :r/s ;半径r :米(m );线速度V :(m/s );角速度ω:(rad/s );向心加速度:(m/s 2)。 二、向心力和加速度 1、大小F =m ω2 r r v m F 2 = 向心加速度a :(1)大小:a =ππω44222 2===r T r r v 2 f 2r (2)方向:总指向圆心,时刻变化 (3)物理意义:描述线速度方向改变的快慢。 三、应用举例 (临界或动态分析问题) 提供的向心力 需要的向心力 r v m 2

高中数学立体几何空间距离问题

立体几何空间距离问题 空间中距离的求法是历年高考考查的重点,其中以点与点、点到线、点到面的距离为基础,求其他几种距离一般化归为这三种距离. ●难点磁场 (★★★★)如图,已知ABCD是矩形,AB=a,AD=b,P A⊥平面ABCD,P A=2c,Q 是P A的中点. 求:(1)Q到BD的距离; (2)P到平面BQD的距离. P为RT△ABC所在平面α外一点,∠ACB=90°(如图) (1)若PC=a,∠PCA=∠PCB=60°,求P到面α的距离及PC和α所成的角 (2)若PC=24,P到AC,BC的距离都是6√10,求P到α的距离及PC和α所成角(3)若PC=PB=PA,AC=18,P到α的距离为40,求P到BC的距离

●案例探究 [例1]把正方形ABCD 沿对角线AC 折起成直二面角,点E 、F 分别是AD 、BC 的中点,点O 是原正方形的中心,求: (1)EF 的长; (2)折起后∠EOF 的大小. 命题意图:考查利用空间向量的坐标运算来解决立体几何问题,属★★★★级题目. 知识依托:空间向量的坐标运算及数量积公式. 错解分析:建立正确的空间直角坐标系.其中必须保证x 轴、y 轴、z 轴两两互相垂直. 技巧与方法:建系方式有多种,其中以O 点为 原点,以OB 、OC 、OD 的方向分别为x 轴、y 轴、z 轴的正方向最为简单. 解:如图,以O 点为原点建立空间直角坐标系O —xyz ,设正方形ABCD 边长为a ,则A (0,-22a ,0),B (22a ,0,0),C (0, 22a ,0),D (0,0, 22a ),E (0,-4 2 a , a ),F ( 42a , 4 2 a ,0) 21| |||,cos ,2||,2||8042)42)(42(420) 0,4 2 ,42(),42,42,0()2(23 ,43)420()4242()042(||)1(2 2222-=?>=<== - =?+-+?=?=-==∴=-+++-=OF OE OF OE OF OE a OF a OE a a a a a OF OE a a OF a a OE a EF a a a a a EF ∴∠EOF =120° [例2]正方体ABCD —A 1B 1C 1D 1的棱长为1,求异面直线A 1C 1与AB 1间的距离. 命题意图:本题主要考查异面直线间距离的求法,属★★★★级题目. 知识依托:求异面直线的距离,可求两异面直线的公垂线,或转化为求线面距离,或面面距离,亦可由最值法求得.

高中物理圆周运动典型例题解析1

圆周运动的实例分析典型例题解析 【例1】用细绳拴着质量为m 的小球,使小球在竖直平面内作圆周运动,则下列说法中,正确的是[ ] A .小球过最高点时,绳子中张力可以为零 B .小球过最高点时的最小速度为零 C .小球刚好能过最高点时的速度是Rg D .小球过最高点时,绳子对小球的作用力可以与球所受的重力方向相 反 解析:像该题中的小球、沿竖直圆环内侧作圆周运动的物体等没有支承物的物体作圆周运动,通过最高点时有下列几种情况: (1)m g m v /R v 2当=,即=时,物体的重力恰好提供向心力,向心Rg 加速度恰好等于重力加速度,物体恰能过最高点继续沿圆周运动.这是能通过最高点的临界条件; (2)m g m v /R v 2当>,即<时,物体不能通过最高点而偏离圆周Rg 轨道,作抛体运动; (3)m g m v /R v m g 2当<,即>时,物体能通过最高点,这时有Rg +F =mv 2/R ,其中F 为绳子的拉力或环对物体的压力.而值得一提的是:细绳对由它拴住的、作匀速圆周运动的物体只可能产生拉力,而不可能产生支撑力,因而小球过最高点时,细绳对小球的作用力不会与重力方向相反. 所以,正确选项为A 、C . 点拨:这是一道竖直平面内的变速率圆周运动问题.当小球经越圆周最高点或最低点时,其重力和绳子拉力的合力提供向心力;当小球经越圆周的其它位置时,其重力和绳子拉力的沿半径方向的分力(法向分力)提供向心力. 【问题讨论】该题中,把拴小球的绳子换成细杆,则问题讨论的结果就大相径庭了.有支承物的小球在竖直平面内作圆周运动,过最高点时:

(1)v (2)v (3)v 当=时,支承物对小球既没有拉力,也没有支撑力; 当>时,支承物对小球有指向圆心的拉力作用; 当<时,支撑物对小球有背离圆心的支撑力作用; Rg Rg Rg (4)当v =0时,支承物对小球的支撑力等于小球的重力mg ,这是有支承物的物体在竖直平面内作圆周运动,能经越最高点的临界条件. 【例2】如图38-1所示的水平转盘可绕竖直轴OO ′旋转,盘上的水平杆上穿着两个质量相等的小球A 和B .现将A 和B 分别置于距轴r 和2r 处,并用不可伸长的轻绳相连.已知两球与杆之间的最大静摩擦力都是f m .试分析角速度ω从零逐渐增大,两球对轴保持相对静止过程中,A 、B 两球的受力情况如何变化? 解析:由于ω从零开始逐渐增大,当ω较小时,A 和B 均只靠自身静摩擦力提供向心力. A 球:m ω2r =f A ; B 球:m ω22r =f B . 随ω增大,静摩擦力不断增大,直至ω=ω1时将有f B =f m ,即m ω=,ω=.即从ω开始ω继续增加,绳上张力将出现.12m 112r f T f m r m /2 A 球:m ω2r =f A +T ;B 球:m ω22r =f m +T . 由B 球可知:当角速度ω增至ω′时,绳上张力将增加△T ,△T =m ·2r(ω′2-ω2).对于A 球应有m ·r(ω′2-ω2)=△f A +△T =△f A +m ·2r(ω′2-ω2). 可见△f A <0,即随ω的增大,A 球所受摩擦力将不断减小,直至f A =0

解析几何经典例题

解析几何经典例题 圆锥曲线的定义就是“圆锥曲线方程”这一章的基础,对这些定义我们有必要深刻地理解与把握。这里就探讨一下圆锥曲线定义的深层及其综合运用。 一、椭圆定义的深层运用 例1、如图1,P为椭圆上一动点,为其两焦点,从的外角的平分线作垂线,垂足为M,将F2P的延长线于N,求M的轨迹方程。 图1 解析:易知故 在中, 则点M的轨迹方程为。 二、双曲线定义的深层运用 例2、如图2,为双曲线的两焦点,P为其上一动点,从 的平分线作垂线,垂足为M,求M的轨迹方程。 图2 解析:不妨设P点在双曲线的右支上, 延长F1M交PF2的延长线于N, 则, 即 在 故点M的轨迹方程为 三、抛物线定义的深层运用 例3、如图3,AB为抛物线的一条弦,|AB|=4,F为其焦点,求AB的中点M到直线y=-1的最短距离。

图3 解析:易知抛物线的准线l:, 作AA”⊥l,BB”⊥l,MM”⊥l,垂足分别为A”、B”、M” 则 即M到直线的最短距离为2 故M到直线y=-1的最短距离为。 评注:上述解法中,当且仅当A、B、F共线,即AB为抛物线的一条焦点弦时,距离才取到最小值。一般地,求 抛物线的弦AB的中点到准线的最短距离,只有当(即通径长)时,才能用上述解法。 四、圆与椭圆、圆与双曲线定义的综合运用 例4、①已知圆,M为圆上任一点,MP的垂直平分线交OM于Q,则Q的轨迹为( ) 图4 ②已知圆,M为圆上任一点,MP的垂直平分线交OM于Q,则Q的轨迹为( ) A、圆 B、椭圆 C、双曲线 D、抛物线 解析:①如图4,由垂直平分线的性质,知|QM|=|QP|, 而|QM|=|OM|-|OQ|=2-|OQ| 即|OQ|+|QP|=2>|OP|= 故Q的轨迹就是以O(0,0)、P为焦点 长轴长为2的椭圆。应选B。 ②同理,利用垂直平分线的性质及双曲线的定义,可知点Q的轨迹为双曲线的一支,应选C。 五、椭圆与双曲线定义的综合运用 例5、如图5,已知三点A(-7,0),B(7,0),C(2,-12)。①若椭圆过A、B两点,且C为其一焦点,求另一焦点P的轨迹方程;②若双曲线的两支分别过A、B两点,且C为其一焦点,求另一焦点Q的轨迹方程。

高中数学立体几何专:空间距离的各种计算(含答案)

高中数学立体几何 空间距离 1.两条异面直线间的距离 和两条异面直线分别垂直相交的直线,叫做这两条异面直线的公垂线;两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离. 2.点到平面的距离 从平面外一点引一个平面的垂线,这点和垂足之间的距离叫做这个点到这个平面的距离. 3.直线与平面的距离 如果一条直线和一个平面平行,那么直线上各点到这平面的距离相等,且这条直线上任意一点到平面的距离叫做这条直线和平面的距离. 4.两平行平面间的距离 和两个平行平面同时垂直的直线,叫做这两平行平面的公垂线,它夹在两个平行平面间的公垂线段的长叫做这两个平行平面的距离. 题型一:两条异面直线间的距离 【例1】 如图,在空间四边形ABCD 中,AB =BC =CD =DA =AC =BD =a ,E 、F 分别是AB 、CD 的中点. (1)求证:EF 是AB 和CD 的公垂线; (2)求AB 和CD 间的距离; 【规范解答】 (1)证明:连结AF ,BF ,由已知可得AF =BF . 又因为AE =BE ,所以FE ⊥AB 交AB 于E . 同理EF ⊥DC 交DC 于点F . 所以EF 是AB 和CD 的公垂线. (2)在Rt △BEF 中,BF = a 23 ,BE =a 21, 所以EF 2=BF 2-BE 2=a 2 12,即EF =a 22 . 由(1)知EF 是AB 、CD 的公垂线段,所以AB 和CD 间的距离为 a 2 2 . 【例2】 如图,正四面体ABCD 的棱长为1,求异面直线AB 、CD 之间的距离. 设AB 中点为E ,连CE 、ED . ∵AC =BC ,AE =EB .∴CD ⊥AB .同理DE ⊥AB . ∴AB ⊥平面CED .设CD 的中点为F ,连EF ,则AB ⊥EF . 同理可证CD ⊥EF .∴EF 是异面直线AB 、CD 的距离. ∵CE =23,∴CF =FD =21,∠EFC =90°,EF =2221232 2 =??? ??-??? ? ??. ∴AB 、CD 的距离是 2 2 . 【解后归纳】 求两条异面直线之间的距离的基本方法: (1)利用图形性质找出两条异面直线的公垂线,求出公垂线段的长度. (2)如果两条异面直线中的一条直线与过另一条直线的平面平行,可以转化为求直线与平面的距离. (3)如果两条异面直线分别在两个互相平行的平面内,可以转化为求两平行平面的距离. 题型二:两条异面直线间的距离 【例3】 如图(1),正四面体ABCD 的棱长为1,求:A 到平面BCD 的距离; 过A 作AO ⊥平面BCD 于O ,连BO 并延长与CD 相交于E ,连AE . ∵AB =AC =AD ,∴OB =OC =OD .∴O 是△BCD 的外心.又BD =BC =CD , ∴O 是△BCD 的中心,∴BO =3 2BE =33 2332= ?. 又AB =1,且∠AOB =90°,∴AO =363312 22=??? ? ??- =-BO AB .∴A 到平面BCD 的距离是36. 例1题图 例2题图 例3题图

最新圆周运动典型例题及答案详解

“匀速圆周运动”的典型例题 【例1】如图所示的传动装置中,A、B两轮同轴转动.A、B、C三轮的半径大小的关系是R A=R C=2R B.当皮带不打滑时,三轮的角速度之比、三轮边缘的线速度大小之比、三轮边缘的向心加速度大小之比分别为多少? 【例2】一圆盘可绕一通过圆盘中心O且垂直于盘面的竖直轴转动.在圆盘上放置一木块,当圆盘匀速转动时,木块随圆盘一起运动(见图),那么 [ ] A.木块受到圆盘对它的摩擦力,方向背离圆盘中心 B.木块受到圆盘对它的摩擦力,方向指向圆盘中心

C.因为木块随圆盘一起运动,所以木块受到圆盘对它的摩擦力,方向与木块的运动方向相同 D.因为摩擦力总是阻碍物体运动,所以木块所受圆盘对它的摩擦力的方向与木块的运动方向相反 E.因为二者是相对静止的,圆盘与木块之间无摩擦力 【例3】在一个水平转台上放有A、B、C三个物体,它们跟台面间的摩擦因数相同.A的质量为2m,B、C各为m.A、B离转轴均为r,C为2r.则 [ ] A.若A、B、C三物体随转台一起转动未发生滑动,A、C的向心加速度比B大 B.若A、B、C三物体随转台一起转动未发生滑动,B所受的静摩擦力最小 C.当转台转速增加时,C最先发生滑动 D.当转台转速继续增加时,A比B先滑动 【例4】如图,光滑的水平桌面上钉有两枚铁钉A、B,相距L0=0.1m.长L=1m 的柔软细线一端拴在A上,另一端拴住一个质量为500g的小球.小球的初始位置在AB连线上A的一侧.把细线拉直,给小球以2m/s的垂直细线方向的水平速度,使它做圆周运动.由于钉子B的存在,使细线逐步缠在A、B上. 若细线能承受的最大张力T m=7N,则从开始运动到细线断裂历时多长? 【说明】圆周运动的显著特点是它的周期性.通过对运动规律的研究,用递推法则写出解答结果的通式(一般表达式)有很重要的意义.对本题,还应该熟练掌握数列求和方法.

31知识讲解 空间向量在立体几何中的应用三——距离的计算

空间向量在立体几何中的应用三——距离的计算 【学习目标】 1. 了解空间各种距离的概念,掌握求空间距离的一般方法; 2. 能熟练地将直线与平面之间的距离、两平行平面之间的距离转化为点到平面的距离. 【要点梳理】 要点一:两点之间的距离 1. 定义 连接两点的线段的长度叫作两点之间的距离. 如图,已知空间中有任意两点M N ,,那么这两点间的距离d MN =. 2. 向量求法 设()()111222M x y z N x y z ,,,,,,则 () ()()2 22 121212d MN x x y y z z == ++ . 要点二:点到直线的距离 1. 定义 从直线外一点向直线引垂线,点到垂足之间线段的长度就是该点到直线的距离. 如图,设l 是过点P 平行于向量s 的直线,A 是直线l 外一定点. 过点A 作做垂直于l 的直线,垂足为A ',则AA'即为点A 到直线l 的距离. 要点诠释:因为直线和直线外一点确定一个平面,所以空间点到直线的距离问题就是空间中某一个平面内的点到直线的距离距离. 2. 向量求法 2 2 d=PA PA s 要点诠释: (1)本公式利用勾股定理推得:点A 到直线l 的距离2 2 AA'=PA PA' ,其中PA'是PA 在s 上的射影,即为0PA s . (2)0cos PA PA =PA APA'=?∠s s s ,0s 为s 的单位向量,其计算公式为0=s s s . 3.计算步骤 ① 在直线l 上取一点P ,计算点P 与已知点A 对应的向量PA ; ② 确定直线l 的方向向量s ,并求其单位向量0= s s s ; ③ 计算PA 在向量s 上的投影0PA s ; ④ 计算点A 到直线l 的距离2 2 0d=PA PA s . 要点诠释:在直线上选取点时,应遵循“便于计算”的原则,可视情况灵活选择. 4. 算法框图

圆周运动知识点及例题

圆周运动知识点及例题

匀速圆周运动知识点及例题 、匀速圆周运动的描述 1.线速度、角速度、周期和频率的概念 (1)线速度v 是描述质点沿圆周运动快慢的物理量,是矢量,其大小为T t s v π2== 方向沿轨迹切线,国际单位制中单位符号是m/s ; (2)角速度ω是描述质点绕圆心转动快慢的物理量,是矢量,其大小为T t π φ ω2= = ; 国际单位制中单位符号是rad /s ; (3)周期T 是质点沿圆周运动一周所用时间,在国际单位制中单位符号是s ; (4)频率f 是质点在单位时间内完成一个完整圆运动的次数,在国际单位制中单位符号是 Hz ; (5)转速n 是质点在单位时间内转过的圈数,单位符号为r /s ,以及r /min . 速度、角速度、周期和频率之间的关系 线速度、角速度、周期和频率各量从不同角度描述质点运动的快慢,它们之间有关系v =r ω.f T 1=,v π 2=f π2=。 由上可知,在角速度一定时,线速度大小与半径成正比;在线速度一定时,角速度大小与半径成反比. 、向心力和向心加速度 向心力 )向心力是改变物体运动方向,产生向心加速度的原因. )向心力的方向指向圆心,总与物体运动方向垂直,所以向心力只改变速度的方向. 向心加速度 )向心加速度由向心力产生,描述线速度方向变化的快慢,是矢量. )向心加速度方向与向心力方向恒一致,总沿半径指向圆心;向心加速度的大小为 2222 4T r r r v πω=== 式: 线速度V =s/t =2πr/T 角速度ω=Φ/t =2π/T =2πf 向心加速度a =V 2/r =ω2r =(2π/T)2r 向心力F 心=mV 2/r =m ω2r =mr(2π/T)2=m ωv=F 合 周期与频率:T =1/f 角速度与线速度的关系:V =ωr 角速度与转速的关系ω=2πn(此处频率与转速意义相同) 主要物理量及单位:弧长s:米(m);角度Φ:弧度(rad );频率f :赫(Hz );周期T :秒(s );转速n :r/s ;半径(m );线速度V :(m/s );角速度ω:(rad/s );向心加速度:(m/s 2)。 、向心力和加速度

立体几何空间几何体的表面积与体积

第2讲空间几何体的表面积与体积 考点 考查柱、锥、台、球的体积和表面积,由原来的简单公式套用渐渐变为与三视图及柱、锥与球的接切问题相结合,难度有所增大. 【复习指导】 本讲复习时,熟记棱柱、棱锥、圆柱、圆锥的表面积和体积公式,运用这些公式解决一些简单的问题. 基础梳理 1.柱、锥、台和球的侧面积和体积

球S球面=4πR2V=4 3 πR3 (1)棱柱、棱锥、棱台的表面积就是各面面积之和. (2)圆柱、圆锥、圆台的侧面展开图分别是矩形、扇形、扇环形;它们的表面积等于侧面积与底面面积之和. 两种方法 (1)解与球有关的组合体问题的方法,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.球与旋转体的组合,通常作它们的轴截面进行解题,球与多面体的组合,通过多面体的一条侧棱和球心或“切点”、“接点”作出截面图. (2)等积法:等积法包括等面积法和等体积法.等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高,特别是在求三角形的高和三棱锥的高.这一方法回避了具体通过作图得到三角形(或三棱锥)的高,而通过直接计算得到高的数值. 双基自测 1.(人教A版教材习题改编)圆柱的一个底面积为S,侧面展开图是一个正方形,那么这个圆柱的侧面积是( ). A.4πS B.2πS

C.πS D.23 3 πS 解析设圆柱底面圆的半径为r,高为h,则r=S π, 又h=2πr=2πS,∴S圆柱侧=(2πS)2=4πS. 答案 A 2.(2012·东北三校联考)设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为( ). A.3πa2B.6πa2C.12πa2D.24πa2 解析由于长方体的长、宽、高分别为2a、a、a,则长方体的体对角线长为2a2+a2+a2=6a.又长方体外接球的直径2R等于长方体的体对角线,∴2R=6a.∴S球=4πR2=6πa2. 答案 B 3.(2011·北京)某四面体的三视图如图所示,该四面体四个面的面积中最大的是 ( ).A.8 B.6 2 C.10 D.8 2 解析由三视图可知,该几何体的四个面都是直角三角形,面积分别为6,62,8,10,所以面积最大的是10,故选择C. 答案 C 4.(2011·湖南)设

(完整版)高一物理必修2圆周运动复习知识点总结及经典例题详细剖析

匀速圆周运动专题 从现行高中知识体系来看,匀速圆周运动上承牛顿运动定律,下接万有引力,因此在高一物理中占据极其重要的地位,同时学好这一章还将为高二的带电粒子在磁场中的运动及高三复习中解决圆周运动的综合问题打下良好的基础。 (一)基础知识 1. 匀速圆周运动的基本概念和公式 (1)线速度大小,方向沿圆周的切线方向,时刻变化; (2)角速度,恒定不变量; (3)周期与频率; (4)向心力,总指向圆心,时刻变化,向心加速度,方向与向心力相同; (5)线速度与角速度的关系为,、、、的关系为 。所以在、、中若一个量确定,其余两个量也就确定了,而还和有关。 2. 质点做匀速圆周运动的条件 (1)具有一定的速度; (2)受到的合力(向心力)大小不变且方向始终与速度方向垂直。合力(向心力)与速度始终在一个确定不变的平面内且一定指向圆心。 3. 向心力有关说明 向心力是一种效果力。任何一个力或者几个力的合力,或者某一个力的某个分力,只要其效果是使物体做圆周运动的,都可以认为是向心力。做匀速圆周运动的物体,向心力就是

物体所受的合力,总是指向圆心;做变速圆周运动的物体,向心力只是物体所受合外力在沿着半径方向上的一个分力,合外力的另一个分力沿着圆周的切线,使速度大小改变,所以向心力不一定是物体所受的合外力。 (二)解决圆周运动问题的步骤 1. 确定研究对象; 2. 确定圆心、半径、向心加速度方向; 3. 进行受力分析,将各力分解到沿半径方向和垂直于半径方向; 4. 根据向心力公式,列牛顿第二定律方程求解。 基本规律:径向合外力提供向心力 (三)常见问题及处理要点 1. 皮带传动问题 例1:如图1所示,为一皮带传动装置,右轮的半径为r,a是它边缘上的一点,左侧是一轮轴,大轮的半径为4r,小轮的半径为2r,b点在小轮上,到小轮中心的距离为r,c点和d点分别位于小轮和大轮的边缘上,若在传动过程中,皮带不打滑,则() A. a点与b点的线速度大小相等 B. a点与b点的角速度大小相等 C. a点与c点的线速度大小相等 D. a点与d点的向心加速度大小相等 图1 解析:皮带不打滑,故a、c两点线速度相等,选C;c点、b点在同一轮轴上角速度相等,半径不同,由,b点与c点线速度不相等,故a与b线速度不等,A错;同样可判定a与c角速度不同,即a与b角速度不同,B错;设a点的线速度为,则a点向

空间立体几何的证明与计算

1 / 17 空间立体几何的证明与运算 1.如图,在直三棱柱111C B A ABC -中,3=AC ,5A B =,4=B C ,点 D 是AB 的中点。 (1)求证:11//CDB AC 平面; (2)求证:1BC AC ⊥; 2.如图,在四棱锥ABCD P -中,底面为直角梯形,BC AD //,ο 90=∠BAD ,⊥PA 底面ABCD ,且AB PA =,M 、N 分别为PC 、PB 的中点. (1)求证://MN 平面PAD ; (2)求证:DM PB ⊥. 3.三棱柱111ABC A B C -,1A A ⊥底面ABC ,ABC ?为正三角形,且D 为AC 中点. N M D A C B P

(1)求证:平面1BC D ⊥平面11AA CC (2)若AA 1=AB=2,求点A 到面BC 1D 的距离. 4.斜三棱柱ABC C B A -111中,侧面C C AA 11⊥底面ABC ,侧面C C AA 11是菱形, 160A AC ∠=o ,3=AC ,2==BC AB ,E 、F 分别是11A C ,AB 的中点. C 1 B 1 A 1 F E C B A (1)求证:EF ∥平面11BB C C ; (2)求证:CE ⊥面ABC . (3)求四棱锥11B BCC E -的体积. 5.如图,在正方体1111D C B A ABCD -中,E ,F 分别为棱AD ,AB 的中点. A B C A 1 B 1 C 1 D

3 / 17 (1)求证:平面1A EF ∥平面11D CB ; (2)求CB 1与平面11C CAA 所成角的正弦值. 6.(本小题满分14分)如图,ABC ?是边长为4的等边三角形,ABD ?是等腰直角三角形, AD BD ⊥,平面ABC ⊥平面ABD ,且EC ⊥平面ABC ,2EC =. (1)证明://DE 平面ABC ; (2)证明:AD ⊥BE . 7.如图,四棱锥ABCD P -的底面ABCD 为菱形,⊥PD 平面ABCD ,2==AD PD , ?=∠60BAD ,E 、F 分别为BC 、PA 的中点. (1)求证:⊥ED 平面PAD ; E P A C D B F

高中数学解析几何大题专项练习

解析几何解答题 1、椭圆G :)0(122 22>>=+b a b y a x 的两个焦点为F 1、F 2,短轴两端点B 1、B 2,已知 F 1、F 2、B 1、B 2四点共圆,且点N (0,3)到椭圆上的点最远距离为.25 (1)求此时椭圆G 的方程; (2)设斜率为k (k ≠0)的直线m 与椭圆G 相交于不同的两点E 、F ,Q 为EF 的中点,问E 、F 两点能否关于 过点P (0, 3 3)、Q 的直线对称若能,求出k 的取值范围;若不能,请说明理由. ; 2、已知双曲线221x y -=的左、右顶点分别为12A A 、,动直线:l y kx m =+与圆22 1x y +=相切,且与双曲线左、右两支的交点分别为111222(,),(,)P x y P x y . (Ⅰ)求k 的取值范围,并求21x x -的最小值; (Ⅱ)记直线11P A 的斜率为1k ,直线22P A 的斜率为2k ,那么,12k k ?是定值吗证明你的结论. @ [

3、已知抛物线2 :C y ax =的焦点为F ,点(1,0)K -为直线l 与抛物线C 准线的交点,直线l 与抛物线C 相交于A 、 B 两点,点A 关于x 轴的对称点为D . (1)求抛物线 C 的方程。 ~ (2)证明:点F 在直线BD 上; (3)设8 9 FA FB ?=,求BDK ?的面积。. { — 4、已知椭圆的中心在坐标原点O ,焦点在x 轴上,离心率为1 2 ,点P (2,3)、A B 、在该椭圆上,线段AB 的中点T 在直线OP 上,且A O B 、、三点不共线. (I)求椭圆的方程及直线AB 的斜率; (Ⅱ)求PAB ?面积的最大值. - 、

空间向量在立体几何中的应用——夹角的计算习题详细答案

【巩固练习】 一、选择题 1. 设平面两个向量的坐标分别为(1,2,1),(-1,1,2),则下列向量中是平面的法向量的是( ) A. (-1,-2,5) B. (-1,1,-1) C. (1, 1,1) D. (1,-1,-1) 2. 如图,1111—ABCD A B C D 是正方体,11 11114 A B B E =D F =,则1BE 与1DF 所成角的余弦值是( ) A . 1715 B . 2 1 C .17 8 D . 2 3 3. 如图,111—A B C ABC 是直三棱柱,90BCA ∠=?,点11D F 、分别是1111A B AC 、的中点,若 1BC CA CC ==,则1BD 与1AF 所成角的余弦值是( ) A . 1030 B . 2 1 C .15 30 D . 10 15 4. 若向量(12)λ=a ,,与(212)=-b ,,的夹角的余弦值为8 9 ,则λ=( ) A .2 B .2- C .2-或 255 D .2或255 - 5. 在三棱锥P ABC -中,AB BC ⊥,1 2 AB=BC=PA , 点O D 、分别是AC PC 、的中点,OP ⊥底面ABC ,则直线OD 与平面PBC 所成角的正弦值( ) A . 621 B . 33 8 C .60 210 D . 30210 6.(2015秋 校级期末)在正四棱锥S —ABCD 中,O 为顶点在底面的投影,P 为侧棱SD 的中点,且SO=OD ,则直线BC 与平面PAC 的夹角是( ) A .30° B .45° C .60° D .75° 7. 在三棱锥P ABC -中,AB BC ⊥,1 ==2 AB BC PA ,点O D 、分别是AC PC 、的中点,OP ⊥ 底面ABC ,则直线OD 与平面PBC 所成角的正弦值是( )

解析几何大题带规范标准答案

三、解答题 26.(江苏18)如图,在平面直角坐标系xOy 中,M 、N 分别是椭圆1 242 2=+y x 的顶点, 过坐标原点的直线交椭圆于P 、A 两点,其中P 在第一象限,过P 作x 轴的垂线,垂足为C ,连接AC ,并延长交椭圆于点B ,设直线PA 的斜率为k (1)当直线PA 平分线段MN ,求k 的值; (2)当k=2时,求点P 到直线AB 的距离d ; (3)对任意k>0,求证:PA ⊥PB 本小题主要考查椭圆的标准方程及几何性质、直线方程、直线的垂直关系、点到直线的距离等基础知识,考查运算求解能力和推理论证能力,满分16分. 解:(1)由题设知,),2,0(),0,2(,2,2--= =N M b a 故所以线段MN 中点的坐标为 ) 22 ,1(- -,由于直线PA 平分线段MN ,故直线PA 过线段MN 的中点,又直线PA 过 坐标 原点,所以 .22122 =-- = k (2)直线PA 的方程2221, 42x y y x =+=代入椭圆方程得 解得 ). 34 ,32(),34,32(,32--±=A P x 因此 于是), 0,32(C 直线AC 的斜率为.032,1323234 0=--=++ y x AB 的方程为故直线

. 32 21 1| 323432|,21=+--=d 因此 (3)解法一: 将直线PA 的方程kx y = 代入 221,42x y x μ+==解得记 则)0,(),,(),,(μμμμμC k A k P 于是-- 故直线AB 的斜率为 ,20k k =++μμμ 其方程为 ,0)23(2)2(),(222222=+--+-= k x k x k x k y μμμ代入椭圆方程得 解得 223 2 2 2 (32) (32)( , ) 222k k k x x B k k k μμμμ++= =-+++或因此. 于是直线PB 的斜率 .1 ) 2(23) 2(2)23(22 2232 22 3 1k k k k k k k k k k k k -=+-++-= ++-+= μμμ 因此.,11PB PA k k ⊥-=所以 解法二: 设)0,(),,(,,0,0),,(),,(11121212211x C y x A x x x x y x B y x P --≠>>则. 设直线PB ,AB 的斜率分别为21,k k 因为C 在直线AB 上,所以 . 2 2)()(0111112k x y x x y k ==---= 从而 1 ) () (212112*********+----?--? =+=+x x y y x x y y k k k k .044)2(1222 1 222122222221222122=--=-+=+--=x x x x y x x x y y

相关文档
最新文档