CRC(查表法)-表的由来

CRC(查表法)-表的由来
CRC(查表法)-表的由来

CRC(查表)-表的由来

by lenglx (lenglx@https://www.360docs.net/doc/d86869966.html,,lianxi.leng@https://www.360docs.net/doc/d86869966.html,)

2006/07/25

1)硬件电路组成

a) x^16 + x^12 + x^5 + 1

┌───────────┬─────────────────┬─────────────┐

↑┌─┬─┬─┬─┐↓┌─┬─┬─┬─┬─┬─┬─┐↓┌─┬─┬─┬─┬─┐│

◎←│15│14│13│12│←◎←│11│10│09│08│07│06│05│←◎←│04│03│02│01│00│←┘

↑└─┴─┴─┴─┘└─┴─┴─┴─┴─┴─┴─┘└─┴─┴─┴─┴─┘

in

b) x^8 + x^2 + x + 1

┌───────────────┬─────┬─────┐

↑┌─┬─┬─┬─┬─┬─┐↓┌─┐↓┌─┐│

◎←│07│06│05│04│03│02│←◎←│01│←◎←│00│←┘

↑└─┴─┴─┴─┴─┴─┘└─┘└─┘

in

2) 简单算法模型(按bit计算)

照以上的硬件电路来看,其工作原理就是:

如果原来CRC的最高位异或输入是1的话,那么絇OSThttps://www.360docs.net/doc/d86869966.html,/club/bbs/SaveOwnerEd?并且异或生成多项式(图a为0x1021,图b为0x7).

如果原来CRC的最高位异或输入是高位异或输入是0的话,那么结果就是CRC左移一位.

那么可以得到以下的程序(以图a例)

U16 crc_cal(bit * in, U32 cnt)

{

U16 crc = 0;

while(cnt--)

{

bool tmp = (crc >> 15) ^ *in;

crc <<= 1;

if(tmp)

crc ^= 0x1021;

in ++;

}

return crc;

}

3) 查表(按字节计算)

很显然,按比特计算的方法,其效率是低下的.

下面介绍查表方法(按字节计算).

要知道为什么可以用查表的方法,需要一些预备知识.

以图b为例,假设当前的CRC值是1011 1001,现在要输入4比特数据1101,其生成多项式是:0000 0111

CRC = 1011 1001, in=1101 , G(X)= 0000 0111

<计算方法1> <计算方法2>

step: 1011 1001 0110 1001

1: 011 1001 0 110 1001 0

2: 11 1001 00 10 1001 00

^ 00 0001 11 ^00 0001 11 <1>

-------------- --------------

11 1000 11 10 1000 11

3: 1 1000 110 0 1000 110

^ 0 0000 111 ^0 0000 111 <2>

---------------- -------------

1 1000 001 0 1000 001

4: 1000 0010 1000 0010

<计算方法1>是硬件电路的完全模拟算法

step 1: 将crc左移一位,因为crc的最高位是1,输入也是1,所以不做处理.

step 2: 将crc左移一位,因为crc的最高位是0,输入是1,所以还需要异或G(X).

....

step 4: 将crc左移一位,因为crc的最高位是0,输入也是0,所以不做处理.

得到最终的结果 crc = 1000 0010

实际上,在crc左移以后,是否还要异或生成多项式的条件是: crc的最高位和输入位异或后的值.

那么是否可以预先将CRC(h)的值与要输入的4比特数据异或,作为是否判断条件呢.

答案是肯定的. CRC = 1011 1001, in=1101, CRC(h)^in = 0110

其计算过程见<计算方法2>

step 1: 将CRC左移一位,因为CRC的最高位是0,所以不做处理.

step 2: 将CRC左移一位,因为CRC的最高位是1,所以还需要异或G(X).

....

step 4: 将CRC左移一位,因为CRC的最高位是0,所以不做处理.

得到最终的结果 CRC = 1000 0010

虽然,上面的结果是一样的,可有证据证明无论什么情况下,结果都是对的?

静下来想想,你就是知道这2个方法确实能得出相同的结果.

当4比特的输入完成之后,整个CRC值左移了4位,原来的CRC(h)只是作为判断异或生成多项式的条件存在过.

最终的CRC值完全是G(X)和CRC(l)不停地(异或/移位)的结果.

虽然,在CRC计算的过程中,CRC不停的在变化着,但:

1. 如果在<方法1>中,由于CRC的最高位和输入异或后的结果等于0,那么CRC只是左移一位.

显然2个方法是一样的.

2. 如果在<方法1>中,由于CRC的最高位和输入异或后的结果等于1,那么CRC左移一位后,还需要异或G(X).

异或G(X)的过程中,可能使CRC的后续某位产生变化(也可能不变化,视生成多项式的值而定).

a.如果没发生变化,那当这位最后移到最高位,作为判断条件的时候,仍然是以前的这个值和输入位的异或.

显然2个计算方法是一样的.

b.如果变化过, 那当这位最后移到最高位,作为判断条件的时候,是变化过后的值和输入位的异或.

但如果<方法1>能引起后续某位的变化,<方法2>同样也会引起同一位的变化.

这样当这位最后移到最高位,作为判断条件的时候,2种方法的判断条件仍然是一致的.

* 关于这部分,我描述得不怎么清楚,那是因为我小时候地语文基础没打好,:).

如果你有更好地描述,请告诉我.

好了,预备知识完毕,现在开始探讨那个查找表是怎么来的.

请看<方法2>,最终的CRC的结果是: (CRC(l) << 4) ^ <1> ^ <2>

<计算方法2>

CRC = 1011 1001, in=1101 , G(X)= 0000 0111

|-----------------------> CRC(h)^in = 1011 ^ 1101 = 0110

|

| |------------------> CRC(l)

---- ----

0110 1001

110 1001 0

10 1001 00

^00 0001 11 <1>

--------------

10 1000 11

0 1000 110

^0 0000 111 <2>

-------------

0 1000 001

1000 0010

由于异或的可结合律,其结果等同于: (CRC(l) << 4) ^ ( <1> ^ <2> )

这说明, ( <1) ^ <2> )可以预先制作成表格,采用查表的方法计算CRC, 表的索引是 CRC(h) ^ in .

其结果是: ( CRC(l) << 4) ^ table[ CRC(h) ^ in ].

因为是4比特,表的大小是16.

表的内容可以根据G(X),预先计算.

这里举例用的4比特,基于字节的方法可以用同样的方法.

那么现在开始编程了.

U16 crc_tab[256]= {...};

U16 crc_cal(U8 * ptr, U32 cnt)

{

U16 crc = 0;

U8 da;

while (cnt--)

{

da = crc >> 8; // CRC(h)

crc <<= 8;

crc ^= crc_tab[da ^ *ptr++];

}

return crc;

}

既然你已经知道了查表的原理,那么编一个计算表值的程序不成问题了.

#define GX 0x1021

void CCrcDlg::OnButton1()

{

WORD table[256];

for(int i =0; i<256; i++)

{

WORD crc = i << 8;

for(int n=0; n<8; n++)

{

bool tmp = crc & (1<<15) ? true : false;

crc <<= 1;

if(tmp)

crc ^= GX;

}

table = crc;

}

}

那么你得到了这么个表:

U16 table[256]=

{

0X0000, 0X1021, 0X2042, 0X3063, 0X4084, 0X50A5, 0X60C6, 0X70E7,

0X8108, 0X9129, 0XA14A, 0XB16B, 0XC18C, 0XD1AD, 0XE1CE, 0XF1EF,

0X1231, 0X0210, 0X3273, 0X2252, 0X52B5, 0X4294, 0X72F7, 0X62D6,

0X9339, 0X8318, 0XB37B, 0XA35A, 0XD3BD, 0XC39C, 0XF3FF, 0XE3DE,

0X2462, 0X3443, 0X0420, 0X1401, 0X64E6, 0X74C7, 0X44A4, 0X5485,

0XA56A, 0XB54B, 0X8528, 0X9509, 0XE5EE, 0XF5CF, 0XC5AC, 0XD58D,

0X3653, 0X2672, 0X1611, 0X0630, 0X76D7, 0X66F6, 0X5695, 0X46B4,

0XB75B, 0XA77A, 0X9719, 0X8738, 0XF7DF, 0XE7FE, 0XD79D, 0XC7BC,

0X48C4, 0X58E5, 0X6886, 0X78A7, 0X0840, 0X1861, 0X2802, 0X3823,

0XC9CC, 0XD9ED, 0XE98E, 0XF9AF, 0X8948, 0X9969, 0XA90A, 0XB92B,

0X5AF5, 0X4AD4, 0X7AB7, 0X6A96, 0X1A71, 0X0A50, 0X3A33, 0X2A12,

0XDBFD, 0XCBDC, 0XFBBF, 0XEB9E, 0X9B79, 0X8B58, 0XBB3B, 0XAB1A, 0X6CA6, 0X7C87, 0X4CE4, 0X5CC5, 0X2C22, 0X3C03, 0X0C60, 0X1C41,

0XEDAE, 0XFD8F, 0XCDEC, 0XDDCD, 0XAD2A, 0XBD0B, 0X8D68, 0X9D49, 0X7E97, 0X6EB6, 0X5ED5, 0X4EF4, 0X3E13, 0X2E32, 0X1E51, 0X0E70,

0XFF9F, 0XEFBE, 0XDFDD, 0XCFFC, 0XBF1B, 0XAF3A, 0X9F59, 0X8F78, 0X9188, 0X81A9, 0XB1CA, 0XA1EB, 0XD10C, 0XC12D, 0XF14E, 0XE16F,

0X1080, 0X00A1, 0X30C2, 0X20E3, 0X5004, 0X4025, 0X7046, 0X6067,

0X83B9, 0X9398, 0XA3FB, 0XB3DA, 0XC33D, 0XD31C, 0XE37F, 0XF35E,

0X02B1, 0X1290, 0X22F3, 0X32D2, 0X4235, 0X5214, 0X6277, 0X7256,

0XB5EA, 0XA5CB, 0X95A8, 0X8589, 0XF56E, 0XE54F, 0XD52C, 0XC50D,

0X34E2, 0X24C3, 0X14A0, 0X0481, 0X7466, 0X6447, 0X5424, 0X4405,

0XA7DB, 0XB7F A, 0X8799, 0X97B8, 0XE75F, 0XF77E, 0XC71D, 0XD73C,

0X26D3, 0X36F2, 0X0691, 0X16B0, 0X6657, 0X7676, 0X4615, 0X5634,

0XD94C, 0XC96D, 0XF90E, 0XE92F, 0X99C8, 0X89E9, 0XB98A, 0XA9AB,

0X5844, 0X4865, 0X7806, 0X6827, 0X18C0, 0X08E1, 0X3882, 0X28A3,

0XCB7D, 0XDB5C, 0XEB3F, 0XFB1E, 0X8BF9, 0X9BD8, 0XABBB, 0XBB9A, 0X4A75, 0X5A54, 0X6A37, 0X7A16, 0X0AF1, 0X1AD0, 0X2AB3, 0X3A92,

0XFD2E, 0XED0F, 0XDD6C, 0XCD4D, 0XBDAA, 0XAD8B, 0X9DE8, 0X8DC9, 0X7C26, 0X6C07, 0X5C64, 0X4C45, 0X3CA2, 0X2C83, 0X1CE0, 0X0CC1,

0XEF1F, 0XFF3E, 0XCF5D, 0XDF7C, 0XAF9B, 0XBFBA, 0X8FD9, 0X9FF8, 0X6E17, 0X7E36, 0X4E55, 0X5E74, 0X2E93, 0X3EB2, 0X0ED1, 0X1EF0

};

---------------------------------- END ------------------------------------

CRC16校验程序

CRC16校验程序 -------------------------------------------------------------------------------- 作者:转载 //CRC16校验在通讯中应用广泛,这里不对其理论进行讨论,只对常见的3种 //实现方法进行测试。方法1选用了一种常见的查表方法,类似的还有512字 //节、256字等查找表的,至于查找表的生成,这里也略过。 // ---------------- POPULAR POLYNOMIALS ---------------- // CCITT:x^16 + x^12 + x^5 + x^0 (0x1021) // CRC-16: x^16 + x^15 + x^2 + x^0 (0x8005) #define CRC_16_POLYNOMIALS 0x8005 // -------------------------------------------------------------- // CRC16计算方法1:使用2个256长度的校验表 // -------------------------------------------------------------- const BYTE chCRCHTalbe[] = // CRC 高位字节值表{ 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40 }; const BYTE chCRCLTalbe[] = // CRC 低位字节值表{ 0x00, 0xC0, 0xC1, 0x01, 0xC3, 0x03, 0x02, 0xC2, 0xC6, 0x06, 0x07, 0xC7,

CRC校验实验报告

实验三CRC校验 一、CRC校验码的基本原理 编码过程: CRC校验码的编码方法是用待发送的二进制数据t(x)除以生成 多项式g(x),将最后的余数作为CRC校验码。 其实现步骤如下: 1 设待发送的数据块是m位的二进制多项式t(x),生成多项式 为r阶的g(x)。在数据块的末尾添加r个0,数据块的长度增 加到m+r位。 2 用生成多项式g(x)去除,求得余数为阶数为r-1

的二进制 多项式y(x)。此二进制多项式y(x)就是t(x)经过生成多项式 g(x)编码的CRC校验码。 3 将y(x)的尾部加上校验码,得到二进制多项式。就是包含 了CRC校验码的待发送字符串。 解码过程: 从CRC的编码规则可以看出,CRC编码实际上是将代发送的m位 二进制多项式t(x)转换成了可以被g(x)除尽的m+r位二进制多项式 所以解码时可以用接收到的数据去除g(x),如果余数位零,则

表示传输过程没有错误;如果余数不为零,则在传输过程中肯定 存在错误。许多CRC的硬件解码电路就是按这种方式进行检错的。 同时,可以看做是由t(x)和CRC校验码的组合,所以解码时将接 收到的二进制数据去掉尾部的r位数据,得到的就是原始数据。 解码过程示例:

运行结果: 附录(实现代码):using System; using ; namespace CRC

{ public abstract class Change { oString("x2").ToUpper(); } } return returnStr; } um; } (databuff);eight < max1) && (data[j].Parent == -1)) { max2 = max1; tmp2 = tmp1; tmp1 = j; max1 =

CRC16校验C语言程序源码 (附完整的可执行的C语言代码)

CRC16校验C语言程序源码(附完整的可执行的C语言代码) //CRC16校验在通讯中应用广泛,这里不对其理论进行讨论,只对常见的2种 //实现方法进行测试。 方法一:查表法(256长度的校验表) 速度快,准确,但是对于单片机设备存储占用大,且校验表长度大,输入时容易出现错误。 // ---------------- POPULAR POLYNOMIALS ---------------- // CCITT: x^16 + x^12 + x^5 + x^0 (0x1021) // CRC-16: x^16 + x^15 + x^2 + x^0 (0x8005) #define CRC_16_POLYNOMIALS 0x8005 const BYTE chCRCHTalbe[] = // CRC 高位字节值表 { 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40 }; const BYTE chCRCLTalbe[] = // CRC 低位字节值表 { 0x00, 0xC0, 0xC1, 0x01, 0xC3, 0x03, 0x02, 0xC2, 0xC6, 0x06, 0x07, 0xC7, 0x05, 0xC5, 0xC4, 0x04, 0xCC, 0x0C, 0x0D, 0xCD, 0x0F, 0xCF, 0xCE, 0x0E, 0x0A, 0xCA, 0xCB, 0x0B, 0xC9, 0x09, 0x08, 0xC8, 0xD8, 0x18, 0x19, 0xD9, 0x1B, 0xDB, 0xDA, 0x1A, 0x1E, 0xDE, 0xDF, 0x1F, 0xDD, 0x1D, 0x1C, 0xDC, 0x14, 0xD4, 0xD5, 0x15, 0xD7, 0x17, 0x16, 0xD6, 0xD2, 0x12, 0x13, 0xD3,

crc校验码详细介绍看懂了就会了

循环冗余校验码( CRC)的基本原理是:在K 位信息码后再拼接R位的校验码,整个编码长度为N 位,因此,这种编码又叫( N,K)码。对于一个给定的(N,K)码,可以证明存在一个最高次幂为N-K=R的多项式G(x) 。根据G(x) 可以生成K位信息的校验码,而G(x)叫做这个CRC码的生成多项式。校验码的具体生成过程为:假设发送信息用信息多项式C(X)表示,将C(x) 左移R位,则可表示成C(x)*2 的R次方,这样C(x) 的右边就会空出R位,这就是校验码的位置。通过C(x)*2 的R次方除以生成多项式G(x) 得到的余数就是校验码。编辑本段几个基本概念 1、多项式与二进制数码 多项式和二进制数有直接对应关系:x 的最高幂次对应二进制数的最高位,以下各位对应多项式的各幂次,有此幂次项对应1,无此幂次项对应0。可以看出:x 的最高幂次为R,转换成对应的二进制数有R+1位。 多项式包括生成多项式G(x)和信息多项式C(x) 。如生成多项式为 G(x)=x^4+x^3+x+1 ,可转换为二进制数码11011。而发送信息位1111 ,可转换为数据多项式为C(x)=x^3+x^2+x+1 。 2、生成多项式是接受方和发送方的一个约定,也就是一个二进制数,在整个传输过程中,这个数始终保持不变。 在发送方,利用生成多项式对信息多项式做模2 除生成校验码。在接受方利用生成多项式对收到的编码多项式做模2 除检测和确定错误位置。 应满足以下条件: a、生成多项式的最高位和最低位必须为1。 b、当被传送信息( CRC码)任何一位发生错误时,被生成多项式做除后应该使余数不为0。 c、不同位发生错误时,应该使余数不同。 d、对余数继续做除,应使余数循环。 3 CRC码的生成步骤 1、将x 的最高次幂为R的生成多项式G(x) 转换成对应的R+1位二进制数。 2、将信息码左移R位,相当与对应的信息多项式C(x)*2 的R次方。 3、用生成多项式(二进制数)对信息码做除,得到R 位的余数。 4、将余数拼到信息码左移后空出的位置,得到完整的CRC码。 例】假设使用的生成多项式是G(x)=x^3+x+1 。4 位的原始报文为1010, 求编码后的报文。 解:

crc校验码 详细介绍看懂了就会了

循环冗余校验码(CRC)的基本原理是:在K位信息码后再拼接R位的校验码,整个编码长度为N位,因此,这种编码又叫(N,K)码。对于一个给定的(N,K)码,可以证明存在一个最高次幂为N-K=R的多项式G(x)。根据G(x)可以生成K位信息的校验码,而G(x)叫做这个CRC码的生成多项式。校验码的具体生成过程为:假设发送信息用信息多项式C(X)表示,将C(x)左移R位,则可表示成C(x)*2的R次方,这样C(x)的右边就会空出R位,这就是校验码的位置。通过C(x)*2的R次方除以生成多项式G(x)得到的余数就是校验码。 编辑本段 几个基本概念 1、多项式与二进制数码 多项式和二进制数有直接对应关系:x的最高幂次对应二进制数的最高位,以下各位对应多项式的各幂次,有此幂次项对应1,无此幂次项对应0。可以看出:x的最高幂次为R,转换成对应的二进制数有R+1位。 多项式包括生成多项式G(x)和信息多项式C(x)。 如生成多项式为G(x)=x^4+x^3+x+1,可转换为二进制数码11011。 而发送信息位1111,可转换为数据多项式为C(x)=x^3+x^2+x+1。 2、生成多项式 是接受方和发送方的一个约定,也就是一个二进制数,在整个传输过程中,这个数始终保持不变。 在发送方,利用生成多项式对信息多项式做模2除生成校验码。在接受方利用生成多项式对收到的编码多项式做模2除检测和确定错误位置。 应满足以下条件: a、生成多项式的最高位和最低位必须为1。 b、当被传送信息(CRC码)任何一位发生错误时,被生成多项式做除后应该使余数不为0。 c、不同位发生错误时,应该使余数不同。 d、对余数继续做除,应使余数循环。 3 CRC码的生成步骤 1、将x的最高次幂为R的生成多项式G(x)转换成对应的R+1位二进制数。 2、将信息码左移R位,相当与对应的信息多项式C(x)*2的R次方。 3、用生成多项式(二进制数)对信息码做除,得到R位的余数。 4、将余数拼到信息码左移后空出的位置,得到完整的CRC码。 【例】假设使用的生成多项式是G(x)=x^3+x+1。4位的原始报文为1010,求编码后的报文。 解: 1、将生成多项式G(x)=x^3+x+1转换成对应的二进制除数1011。 2、此题生成多项式有4位(R+1),要把原始报文C(x)左移3(R)位变成1010000 3、用生成多项式对应的二进制数对左移3位后的原始报文进行模2除,相当于按位异或: 1010000

CRC16校验-C语言代码

//CRC16校验在通讯中应用广泛,这里不对其理论进行讨论,只对常见的3种 //实现方法进行测试。方法1选用了一种常见的查表方法,类似的还有512字 //节、256字等查找表的,至于查找表的生成,这里也略过。 // ---------------- POPULAR POLYNOMIALS ---------------- // CCITT: x^16 + x^12 + x^5 + x^0 (0x1021) // CRC-16: x^16 + x^15 + x^2 + x^0 (0x8005) #define CRC_16_POLYNOMIALS 0x8005 // -------------------------------------------------------------- // CRC16计算方法1:使用2个256长度的校验表 // -------------------------------------------------------------- const BYTE chCRCHTalbe[] = // CRC 高位字节值表 { 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40 }; const BYTE chCRCLTalbe[] = // CRC 低位字节值表{ 0x00, 0xC0, 0xC1, 0x01, 0xC3, 0x03, 0x02, 0xC2, 0xC6, 0x06, 0x07, 0xC7, 0x05, 0xC5, 0xC4, 0x04, 0xCC, 0x0C, 0x0D, 0xCD, 0x0F, 0xCF, 0xCE, 0x0E, 0x0A, 0xCA, 0xCB, 0x0B, 0xC9, 0x09, 0x08, 0xC8, 0xD8, 0x18, 0x19, 0xD9,

CRC校验码原理

CRC校验码 CRC即循环冗余校验码(Cyclic Redundancy Check):是数据通信领域中最常用的一种差错校验码,其特征是信息字段和校验字段的长度可以任意选定。 目录 详细介绍 代数学的一般性运算 详细介绍 循环冗余校验码(CRC)的基本原理是:在K位信息码后再拼接R位的校验码,整个编码长度为N位,因此,这种编码又叫(N,K)码。对于一个给定的(N,K)码,可以证明存在一个最高次幂为N-K=R的多项式G(x)。根据G(x)可以生成K位信息的校验码,而G(x)叫做这个CRC码的生成多项式。校验码的具体生成过程为:假设发送信息用信息多项式C(X)表示,将C(x)左移R位,则可表示成C(x)*2的R次方,这样C(x)的右边就会空出R位,这就是校验码的位置。通过C(x)*2的R次方除以生成多项式G(x)得到的余数就是校验码。 几个基本概念 1、多项式与二进制数码 多项式和二进制数有直接对应关系:x的最高幂次对应二进制数的最高位,以下各位对应多项式的各幂次,有此幂次项对应1,无此幂次项对应0。可以看出:x的最高幂次为R,转换成对应的二进制数有R+1位。 多项式包括生成多项式G(x)和信息多项式C(x)。 如生成多项式为G(x)=x4+x3+x+1,可转换为二进制数码11011。 而发送信息位1111,可转换为数据多项式为C(x)=x3+x2+x+1。 2、生成多项式 是接受方和发送方的一个约定,也就是一个二进制数,在整个传输过程中,这个数始终保持不变。 在发送方,利用生成多项式对信息多项式做模2除生成校验码。在接受方利用生成多项式对收到的编码多项式做模2除检测和确定错误位置。 应满足以下条件: a、生成多项式的最高位和最低位必须为1。 b、当被传送信息(CRC码)任何一位发生错误时,被生成多项式做除后应该使余数不为0。 c、不同位发生错误时,应该使余数不同。 d、对余数继续做除,应使余数循环。

CRC校验原理及步骤

C R C校验原理及步骤 This model paper was revised by the Standardization Office on December 10, 2020

CRC校验原理及步骤 什么是CRC校验 CRC即循环冗余校验码:是数据通信领域中最常用的一种查错校验码,其特征是信息字段和校验字段的长度可以任意选定。循环冗余检查(CRC)是一种数据传输检错功能,对数据进行多项式计算,并将得到的结果附在帧的后面,接收设备也执行类似的算法,以保证数据传输的正确性和完整性。 CRC校验原理: 其根本思想就是先在要发送的帧后面附加一个数(这个就是用来校验的校验码,但要注意,这里的数也是二进制序列的,下同),生成一个新帧发送给接收端。当然,这个附加的数不是随意的,它要使所生成的新帧能与发送端和接收端共同选定的某个特定数整除(注意,这里不是直接采用二进制除法,而是采用一种称之为“模2除法”)。到达接收端后,再把接收到的新帧除以(同样采用“模2除法”)这个选定的除数。因为在发送端发送数据帧之前就已通过附加一个数,做了“去余”处理(也就已经能整除了),所以结果应该是没有余数。如果有余数,则表明该帧在传输过程中出现了差错。 模2除法: 模2除法与算术除法类似,但每一位除的结果不影响其它位,即不向上一位借位,所以实际上就是异或。在循环冗余校验码(CRC)的计算中有应用到模2除法。 例: CRC校验步骤:

CRC校验中有两个关键点,一是预先确定一个发送送端和接收端都用来作为除数的二进制比特串(或多项式),可以随机选择,也可以使用国际标准,但是最高位和最低位必须为1;二是把原始帧与上面计算出的除数进行模2除法运算,计算出CRC码。 具体步骤: 1. 选择合适的除数 2. 看选定除数的二进制位数,然后再要发送的数据帧上面加上这个位数-1位的0,然后用新生成的帧以模2除法的方式除上面的除数,得到的余数就是该帧的CRC校验码。注意,余数的位数一定只比除数位数少一位,也就是CRC校验码位数比除数位数少一位,如果前面位是0也不能省略。 3. 将计算出来的CRC校验码附加在原数据帧后面,构建成一个新的数据帧进行发送;最后接收端在以模2除法方式除以前面选择的除数,如果没有余数,则说明数据帧在传输的过程中没有出错。 CRC校验码计算示例: 现假设选择的CRC生成多项式为G(X)= X4+ X3+ 1,要求出二进制序列的CRC校验码。下面是具体的计算过程: ①将多项式转化为二进制序列,由G(X)= X4+ X3+ 1可知二进制一种有五位,第4位、第三位和第零位分别为1,则序列为11001 ②多项式的位数位5,则在数据帧的后面加上5-1位0,数据帧变为,然后使用模2除法除以除数11001,得到余数。【补几位0与x的最高次幂相同,模除就是进行异或】

CRC16校验C语言程序源码-(附完整的可执行的C语言代码)

CRC16校验C语言程序源码-(附完整的可执行的C语言代码)

CRC16校验C语言程序源码(附完整的可执行的C语言代码) //CRC16校验在通讯中应用广泛,这里不对其理论进行讨论,只对常见的2种 //实现方法进行测试。 方法一:查表法(256长度的校验表) 速度快,准确,但是对于单片机设备存储占用大,且校验表长度大,输入时容易出现错误。 // ---------------- POPULAR POLYNOMIALS ---------------- // CCITT: x^16 + x^12 + x^5 + x^0 (0x1021) // CRC-16: x^16 + x^15 + x^2 + x^0 (0x8005) #define CRC_16_POLYNOMIALS 0x8005 const BYTE chCRCHTalbe[] = // CRC 高位字节值表 { 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40 }; const BYTE chCRCLTalbe[] = // CRC 低位字节值表 { 0x00, 0xC0, 0xC1, 0x01, 0xC3, 0x03, 0x02, 0xC2, 0xC6, 0x06, 0x07, 0xC7, 0x05, 0xC5, 0xC4, 0x04, 0xCC, 0x0C, 0x0D, 0xCD, 0x0F, 0xCF, 0xCE, 0x0E,

循环冗余校验码原理

1、循环冗余校验码原理 CRC 校验采用多项式编码方法,如一个8 位二进制数(B7B6B5B4B3B2B1B0)可以用7 阶二进制码多项式B7X7+B6X6+B5X5+B4X4+B3X3+B2X2+B1X1+B0X0表示。 例如11000001 可表示为 1X7+1X6+0X5+0X4+0X3+0X2+0X1+0X0 一般说,n 位二进制数可用(n-1)阶多项式表示。它把要发送的数据位串看成是系数只能为“1”或“0”的多项式。一个n 位的数据块可以看成是从Xn-1到X0的n 项多项式的系数 序列,位于数据块左边的最高位是X n-1项的系数,次高位是X n-2项的系数,依此类推,位 于数据块右边的最低位是X0项的系数,这个多项式的阶数为n-1。 多项式乘除法运算过程与普通代数多项式的乘除法相同。多项式的加减法运算以2 为模,加减时不进、错位,如同逻辑异或运算。 采用CRC 校验时,发送方和接收方事先约定一个生成多项式G(X),并且G(X)的最高项和最低项的系数必须为1。设m 位数据块的多项式为M(X),生成多项式G(X)的阶数必需 比M(X)的阶数低。CRC 校验码的检错原理是:发送方先为数据块生成CRC 校验码,使这 个CRC 校验码的多项式能被G(X)除尽,实际发送此CRC 校验码;接收方用收到的CRC 校 验码除以G(X),如果能除尽,表明传输正确,否则,表示有传输错误,请求重发。 生成数据块的CRC 校验码的方法是: (1) 设G(X)为r 阶,在数据块末尾添加r 个0,使数据块为m+r 位,则相应的多项式 为XrM(X); (2) 以2 为模,用对应于G(X)的位串去除对应于XrM(X)的位串,求得余数位串; (3) 以2 为模,从对应于XrM(X)的位串中减去余数位串,结果就是为数据块生成的带足够校验信息的CRC 校验码位串。 例如,设要发送的数据为1101011011,G(X)=X4+X+1,则首先在发送数据块的末尾加4 个0,得到11010110110000,然后用G(X)的位串10011 去除,再用11010110110000 减去余 数位串1110,得到的即为CRC 位串11010110111110,将对应多项式称为T(X),显然,T(X) 能被G(X)除尽。这样,一旦接收到的CRC 位串不能被同样的G(X)的位串除尽,那么一定 有传输错误。 当使用CRC校验码进行差错控制时,除了为G(X)的整数倍的差错多项式不能被检测外,其它差错均能被查出。CRC 校验码的差错控制效果取决于G(X)的阶数,阶数越高,效果越 好。目前,常用的有两种生成多项式G(X)的方法,分别是: CRC-16 X16+X15+X2+1 CCITT X16+X12+X5+1

CRC校验码的原理

CRC 校验码的原理 在通信与数字信号处理等领域中循环冗余校验码(Cyclic Redundancy Check,CRC )是一种很常用的设计。一般来说数据通信中的编码可以分为信源编码和信道编码两大类,其中,为了提高数据通信的可靠性而采取的编码称为信道编码,即抗干扰编码。在通信系统中,要求数据传输过程中的误码率足够低,而为了降低数据传输过程中的误码率,经常采用的一种方法是差错检测控制。 在实际的通信系统中,差错检测控制的主要方法又3种:前向纠错(FEC ),自动重发(ARQ )和反馈检验法。FEC 指接收端不仅能够在收到的信码中发现错码,而且还能够纠正错码。一般来说,这种方法不需要反向信道,实时性很好,不过设备较复杂。ARQ 是指接收端在收到的信码中检测出错码时,即设法通知发送端重新发送信号,直到能够正确接收为止。通常,这种方法只用来检测误码,而且只能在双向信道中使用。反馈检验法是指接收端将收到的信码一字不差地转发回发送端,同时与原发送信码进行比较,如果有错,则发端重发。这种方法的原理和设备都比较简单,但需要双向信道的支持,而且传输效率低下; 通过实践检验,在这三中方法中,如果传输过程中的误码率较低,那么采用前向纠错法比较理想,但如果误码率较高时,这种方法又会出现“乱纠”的现象;在网络通信中,广泛的采用差错检测方法时自动请求重发,这种方法只要检错功能即可;反馈检验法时前向纠错法和自动请求重发的结合。 在实现差错检测控制的众多方法中,循环冗余校验就是一类重要的线性分组码。它时一种高效的差错控制方法,它广泛应用于测控及数据通信领域,同时具有编码和解码方法简单,检错能力强,误判概率很低和具有纠错能力等优点。 循环冗余校验码实现的方法 CRC 的基本原理就是在一个P 位二进制数据序列之后附加一个R 位二进制检验码序列,从而构成一个总长位N=P+R 位的二进制序列。例如,P 位二进制数据序列D=[d 1-p d 2-p …d 1d 0],R 位二进制检验码R = [r 1-r r 2-r …r 1r 0],那么所得到的这个N 位二进制序列就是M=[d 1-p d 2-p …d 1d 0 r 1-r r 2-r …r 1r 0],这里附加在数据序列之后的CRC 码与数据序列的内容之间存在着某种特定的关系。如果在数据传输过程中,由于噪声或传输特性不理想而使数据序列中的某一位或某些位发生错误,这种特定关系就会被破坏。可见在数据的接收端通过检查这种特定关系,可以很容易地实现对数据传输正确性的检验。 在CRC 中,检验码R 使通过对数据序列D 进行二进制除法取余式运算得到的,他被一个称为生成多项式的(r+1)位二进制序列G=[g r g 1-r …g 1g 0]来除,具体的多项式除法形式如下: ) ()(x G x D x r =Q(x)+ ) ()(x G x R 其中,)(x D x r 表示将数据序列D 左移r 位,即在D 的末尾再增加r 个0位;Q (x )代表这一除法所得的商,R (x )就是所需的余式。此外,这一运算关系还可以表示为 ?? ? ???=)()(Re )(x G x D x x R r ?? ? ? ??=)()(Re )(x G x M x R 通过上面CRC 基本原理的介绍,可以发现生成多项式使一个非常重要的概念,它决定了CRC 的具体算法。目前,生成多项式具有一下一些通用标准,其中CRC -12,CRC -16,

crc校验原理

校验原理 1、循环校验码(CRC码):是数据通信领域中最常用的一种差错校验码,其特征是信息字段和校验字段的长度可以任意选定。 2、生成CRC码的基本原理:任意一个由二进制位串组成的代码都可以和一个系数仅为‘0’和‘1’取值的多项式一一对应。例如:代码1010111对应的多项式为x6+x4+x2+x+1,而多项式为x5+x3+x2+x+1对应的代码101111。 3、CRC码集选择的原则:若设码字长度为N,信息字段为K位,校验字段为R 位(N=K+R),则对于CRC码集中的任一码字,存在且仅存在一个R次多项式g(x),使得 V(x)=A(x)g(x)=x R m(x)+r(x); 其中: m(x)为K次信息多项式, r(x)为R-1次校验多项式, g(x)称为生成多项式: g(x)=g0+g1x+g2x2+...+g(R-1)x(R-1)+g R x R 发送方通过指定的g(x)产生CRC码字,接收方则通过该g(x)来验证收到的CRC 码字。 4、CRC校验码软件生成方法: 借助于多项式除法,其余数为校验字段。 例如:信息字段代码为: 1011001;对应m(x)=x6+x4+x3+1 假设生成多项式为:g(x)=x4+x3+1;则对应g(x)的代码为: 11001 x4m(x)=x10+x8+x7+x4对应的代码记为:10110010000; 采用多项式除法: 得余数为: 1010 (即校验字段为:1010) 发送方:发出的传输字段为: 1 0 1 1 0 0 1 1 0 10

信息字段校验字段 接收方:使用相同的生成码进行校验:接收到的字段/生成码(二进制除法)如果能够除尽,则正确,

CRC校验解读

三种常用的CRC16校验算法的C51程序的优化2009-10-10 09:34:17| 分类:技术知识| 标签:|字号大 CRC校验又称为循环冗余校验,是数据通讯中常用的一种校验算法。它可以有效的判别出数据在传输过程中是否发生了错误,从而保障了传输的数据可靠性。 CRC校验有多种方式,如:CRC8、CRC16、CRC32等等。在实际使用中,我们经常使用CRC16校验。CRC16校验也有多种,如:1005多项式、1021多项式(CRC-ITU)等。在这里我们不讨论CRC算法是怎样产生的,而是重点落在几种算法的C51程序的优化上。 计算CRC校验时,最常用的计算方式有三种:查表、计算、查表+计算。一般来说,查表法最快,但是需要较大的空间存放表格;计算法最慢,但是代码最简洁、占用空间最小;而在既要求速度,空间又比较紧张时常用查表+计算法。 下面我们分别就这三种方法进行讨论和比较。这里以使用广泛的51单片机为例,分别用查表、计算、查表+计算三种方法计算1021多项式(CRC-ITU)校验。原始程序都是在网上或杂志上经常能见到的,相信大家也比较熟悉了,甚至就是正在使用或已经使用过的程序。 编译平台采用Keil C51 7.0,使用小内存模式,编译器默认的优化方式。 常用的查表法程序如下,这是网上经常能够看到的程序范例。因为篇幅关系,省略了大部分表格的内容。 code unsigned int Crc1021Table[256] = { 0x0000, 0x1021, 0x2042, 0x3063,... 0x1ef0 }; unsigned int crc0(unsigned char *pData, unsigned char nLength) { unsigned int CRC16 = 0;

CRC校验原理分析

CRC校验 校验原理: 1、循环校验码(CRC码):是数据通信领域中最常用的一种差错校验码,其特征是信息字段和校验字段的长度可以任意选定。 2、生成CRC码的基本原理:任意一个由二进制位串组成的代码都可以和一个系数仅为‘0’和‘1’取值的多项式一一对应。例如:代码1010111对应的多项式为x6+x4+x2+x+1,而多项式为x5+x3+x2+x+1对应的代码101111。 3、CRC码集选择的原则:若设码字长度为N,信息字段为K位,校验字段为R 位(N=K+R),则对于CRC码集中的任一码字,存在且仅存在一个R次多项式g(x),使得 V(x)=A(x)g(x)=x R m(x)+r(x); 其中: m(x)为K次信息多项式, r(x)为R-1次校验多项式, g(x)称为生成多项式: g(x)=g 0+g 1 x+g 2 x2+...+g (R-1) x(R-1)+g R x R 发送方通过指定的g(x)产生CRC码字,接收方则通过该g(x)来验证收到的CRC 码字。 4、CRC校验码软件生成方法: 借助于多项式除法,其余数为校验字段。 例如:信息字段代码为: 1011001;对应m(x)=x6+x4+x3+1 假设生成多项式为:g(x)=x4+x3+1;则对应g(x)的代码为: 11001 x4m(x)=x10+x8+x7+x4对应的代码记为:10110010000; 采用多项式除法: 得余数为: 1010 (即校验字段为:1010)

发送方:发出的传输字段为: 1 0 1 1 0 0 1 1 0 10 信息字段校验字段 接收方:使用相同的生成码进行校验:接收到的字段/生成码(二进制除法)如果能够除尽,则正确,

相关文档
最新文档