基于自耦变压器的多电平注入式电流源型变换器_宋玉美

基于自耦变压器的多电平注入式电流源型变换器_宋玉美
基于自耦变压器的多电平注入式电流源型变换器_宋玉美

同步发电机突然三相短路的物理过程及短路电流分析

6.3 同步发电机突然三相短路的物理过程及短路电流分析 6.3.1 同步发电机在空载情况下突然三相短路的物理过程 上一节讨论了无限大电源供电电路发生三相对称短路的情况。实际上电力系统发生短路故障时,大多数情况下作为电源的同步发电机不能看成无限大容量,其内部也存在暂态过程,因而不能保持其端电压和频率不变。所以一般在分析和计算电力系统短路时,必须计及同步发电机的暂态过程。由于发电机转子的惯量较大,在分析短路电流时可以近似地认为发电机转子保持同步转速,只考虑发电机的电磁暂态过程。 同步发电机稳态对称运行时,电枢磁势的大小不随时间而变化,在空间以同步速度旋转,由于它与转子没有相对运动,因而不会在转子绕组中感应出电流。但是在发电机端突然三相短路时,定子电流在数值上将急剧变化。由于电感回路的电流不能突变,定子绕组中必然有其它自由电流分量产生,从而引起电枢反应磁通变化。这个变化又影响到转子,在转子绕组中感生出电流,而这个电流又进一步影响定子电流的变化。定子和转子绕组电流的互相影响是同步电机突然短路暂态过程区别于稳态短路的显著特点,同时这种定、转子间的互相影响也使暂态过程变得相当复杂。 图6-6 凸极式同步发电机示意图 图6-6为凸极同步发电机的示意图。定子三相绕组分别用绕组,,表示,绕组的中心轴,,轴线彼此相差120o。转子极中心线用轴表示,称为纵轴或直轴;极间轴线用轴表示,称为横轴或交轴。转子逆时针旋转为正方向,轴超前轴90o。励磁绕组的轴线与轴重合。阻尼绕组用两个互相正交的短接绕组等效,轴线与轴重合的称为阻尼绕组,轴线与轴重合的称为阻尼绕组。 定子各相绕组轴线的正方向作为各绕组磁链的正方向,各相绕组中正方向电流产生的磁链的方向与绕组轴线的正方向相反,即定子绕组中正电流产生负磁通。励磁绕组及轴阻尼绕组磁链的正方向与轴正方向一致,轴阻尼绕组磁链的正方向与轴正方向一致,转子绕组中正向电流产生的磁链与轴线的正方向相同,即在转子方面,正电流产生正磁通。下面分析发电机空载突然短路的暂态过程。 1.定子回路短路电流 设短路前发电机处于空载状态,气隙中只有励磁电流产生的磁链,忽略漏磁链后,穿过主磁路为主磁链匝链定子三相绕组,又设为转子轴与A相绕组轴线的初始夹角。由于转子以同步转速旋转,主磁链匝链定子三相绕组的磁链随着的变化而变化,因此

三相变压器的有关计算

三相变压器的有关计算 一变压器变压比的计算 1. 基本概念 三相变压器变比:三相变压器原、副绕组产生的感应电动势之比,近似等于原、副绕组上的电压之比,也等于原、副绕组的匝数N、N2 之比。即 U/U2?E I/E2= N1/N2二K U 式中,K U为变压器的变压比,简称变比 当K U> 1时,变压器降低电源电压。称为降压变压器。 当K U v 1时,变压器升高电源电压。称为升压变压器。 注意:求变比时,变压器的一次侧和二次侧的联接组别要一致。若不一致,一个是丫接法,一个是△接法,则应把丫接法的相电压与△接法的线电压。 2. 应用举例 已知一台三相变压器的额定容量S N=100KVA U/U2=10/0.4KV ,求变压 器的变比。 解K U二U I/U2=10/0.4=25 已知一台三相变压器的额定容量S N=100KVA U/U2=10/0.4KV,采用 Y/ △接法,求变压器的变比 解K U =U I/U2=10/ (」X 0.4 )=14.43 二变压器一、二次侧电压、电流的计算

1. 基本概念 变流:三相变压器的变流公式与单相变压器的变流公式一样,即 l i/l 2= U2/ U 1=1/ K U = K I 式中,K为三相变压器的变流比,与变压比成反比。 2. 应用举例 已知一台三相变压器的额定容量S N=100KVAU N/U2N=10/0.4KV ,11N=1OA, 求变压器的比及二次侧的电流。 解K U =U I/U2=10/0.4=25 I IN = K U X I IN =25 X 10=250A 三变压器功率的计算 1. 基本概念 (1) 额定容量:表示在额定工作条件下变压器的最大输出功率,也称 视在功率S V,单位是KVA (2) 额定功率:满负荷时的实际输出功率,也称有功功率P N,单位是KW 2. 计算公式 (1)额定容量 S= U2N I 2N = ' ■ U1N I 1N (2)额定功率 P N = S V cos ①二;;U2N I 2N cos ① 式中,cos①为负载的功率因数

计算变压器的功率

计算变压器的功率 变压器功率= 输出电压X 输出电流 根据电路要求需要输出电压36V、电流2A的变压器, 36V X 2A = 72W(变压器功率) 2 计算变压器的铁芯截面积 变压器功率X 1.44 = Y ,Y开根X 1.06 = 铁芯截面积 变压器功率72W X 1.44 = 103.68,103.68开根X 1.06 = 10.79平方厘米(铁芯截面积)10.79平方厘米= 1079平方毫米(铁芯截面积) 3 计算变压器铁芯叠厚 铁芯截面积(平方毫米)/ 矽钢片舌宽(毫米)= 铁芯叠厚 1079平方毫米/ 40毫米=26毫米(叠厚),铁芯规格采用舌宽40的矽钢片,叠厚为26毫米。 4 骨架的选用 铁芯截面积为E40 X 26,那么骨架就用E40 X 26的,对照变压器骨架规格表刚好有这种规格的骨架,如果实在没有,选叠厚大一规格的也行。5 计算线圈输入初级匝数 45 / 铁芯截面积(平方厘米)X 220V = 输入初级匝数, (45/10.79平方厘米)X 220 = 匝(输入初级匝数) 6 计算线圈输出次级匝数 (输入初级匝数/220)X 输出电压= 输出次级匝数 ( /220)X 36V = (取整数匝) 7 计算绕制的漆包线线径 电流(开根)X 0.7 = 线径 输出电流10A(开根)X 0.7 = 2.21(输出30V线径), 输入电流=(300W变压器功率/220V输入电压)开根X 0.7=0.81(输入220V线径) 8 计算结果 矽钢片规格E40mm、叠厚26mm;变压器骨架规格E40 X 26;输入线圈匝数匝、线径0.81铜漆包线;输出线圈匝数匝、线径2.21铜漆包线。

短路电流的十个问题的总结

短路电流的十个问题的总结 一)为什么计算最大短路电流?为什么计算最小短路电流? 目的:测试对于短路计算意义的理解 答案:计算最大短路计算用以校验配电元件(如断路器)分段能力;计算最小短路计算用于校验配电设备(如断路器)灵敏度和继电保护计算整定。 0.38kV系统一般不需要进行设备动、热稳定的校验,因为元件制造时已经考虑好了。10KV 以上电力设备需要根据最大短路电流校验设备动、热稳定。 常见设计误区: 1、根本不考虑短路校验。不一定都算,但心里一定要有这根弦。 2、只注意计算最大短路校验开关分断能力,忽视考虑最小短路校验保护灵敏度。 拓展: 1、什么是三相短路?什么是两项短路?什么是单相短路? 2、回路上为什么有时装3个互感器?有时装2个互感器?装1个互感器?各用在什么场合? 二)对于一般10/0.4KV变电系统,最大短路电流通常发生在那里? 目的:测试对于系统短路点的认识。 答案:系统中最大短路电流的发生位置(短路点)在变压器出口侧,可以等效近似认为低压母线侧。所以一般最大短路点取低压母线侧。 常见设计误区: 1 不知道各个短路点意义,不知道应该计算几个或哪个短路点的短路电流。 拓展:什么是最大运行方式?什么是最小运行方式?运行方式对于最大、最小短路电流的选取与配电元件校验有什么影响? 三)在一条母线上应该校验哪条回路的断路器的分断能力? 目的:测试关于配电元件分断校验的问题 答案:低压母线上最小的断路器(假定断路器为同一系列)。同一条低压母线上的短路电流被认为是近似相等的,连接在上面的最小的断路器一般来讲分断能力最低。只要它满足了系统短路状态分断能力的要求,其他断路器就大致没有问题。 常见设计误区: 1、不校验断路器在短路状态的分断能力。 2、每个断路器都校验一遍。 拓展:当断路器分断能力不够时,举出3种解决方法。

设备功率计算变压器容量

根据设备功率计算变压器容量(一) 一)根据你提供的设备清单如下: 电焊机25 台,功率分别为: 3.0KVA*8 ;8KVA*6 ;16KVA*5 ;30KVA*2 ;180KVA*2 ; 200KVA*2 ; & =50% 电焊机,Kx=0.35, 二)你厂所需500KVA 的变压器理由计算如下: KVA 即千伏安,表示电焊机的容量, & =50%表示电焊机的额定暂载率是50%,在进行负荷计算的时候,电焊机应该统一换算到 1 00 %来计算。 Kx=0.35, 表示电焊机的需用系数是0.35。需用系数是综合了同时系数、负荷系数、设备效率、线路效率之后得到的一个系数。各种设备不尽相同。 P js表示计算负荷的有功功率。是综合了各类因素后,得到的设备计算功率。 Q js 表示计算负荷的无功功率。有功功率乘以功率因数角度的正切值,等于无功 功率。也就是你上面的Q js=P js*tg① cos①表示功率因数。功率因数越高,系统的无功功率越低。不同的设备,功率因数也不尽相同。在你的计算式中,取了电焊机的功率因数为0.7。如果是我计算的话,我就取0.4?0.45,呵呵!因为我觉得电焊机的功率因数是没有0.7的。 另外,在你的计算中,没有对焊接设备进行容量转换。我上面说了,电焊机应该统一将暂载率换算到100 %来计算。换算公式为:P e=P N* ((额定暂载率除以100%暂载率)开根号) P e是换算后的功率,P N是额定功率 额定功率二额定容量*功率因数 因此,你的共计25 台焊机的额定容量应该是S二 3.0KVA*8+8KVA*6+16KVA*5+30KVA*2+180KVA*2+200KVA*2 = 972KVA 则额定功率为972KVA*0.4 = 388.8KW (我这里计算是取的功率因数为0.4,没有按你的0.7 计算) 那么换算功率为388.8KW* (50% /100 %)开根号= 388.8KW*根号0.5 = 388.8*0.707 = 274.9KW 然后将需用系数Kx=0.35代入,则计算负荷P js=K x*P e = 274.9KW*0.35 = 96.2KW 到这里,又出现了一个问题。因为大家都知道,电焊机属于单相负载(不论接一零一火220V或者接两根火线380V,都成为单相负载),因此计算负荷有个单相到三相转换的过程。转换方法就是,如果接的是220V,也就是接入相电压时,等效功率要乘以3,如果接的是380V,也就是接入线电压时,等效功率要乘以根号3。因为

继续修正-注册电气师公式计算总结

标准一 110kV-750kV架空输电线路设计规范公式一导、地线在弧垂最低点的最大张力: max ,p p c c T T T K K ≤:导、地线的拉断力;:导、地线的设计安全系数。 1)导、地线在弧垂最低点的设计安全系数不应小于2.5,悬挂点的设计安全系数不应小于2.25.地线的设计安全系数不应小于导线的设计安全系数。 2)导、地线在稀有风速或稀有覆冰气象条件时,弧垂最低点的最大张力不应超过其导、地线拉断力的70%。悬挂点的最大张力不应超过导、地线拉断力的77%。(按上述公式,取2.5或2.25时只有40%或44%,在这种稀有条件下,相当于条件放宽了) 公式二绝缘子机械强度的安全系数: 1 T R R T K T T =,:绝缘子的额定机械破坏负荷(kN); :分别取绝缘子承受的最大使用荷载、断线荷载、断联荷载、验算荷载或常年荷载(kN)。 1)常年荷载指年平均气温条件下绝缘子所受的荷载。验算荷载是验算条件下 绝缘子所受荷载。断线的气象条件是无风、有冰、—5℃,断联络的气象条件是 无风、无冰、—5℃。设计悬垂串时导、地线张力可按本规范第10.1节的规定取 值。 2)安全系数应符合表6.0.1规定(P15)。双联及多联绝缘子串应验算断一联后 的机械强度,其荷载应按断联情况考虑(K=1.5)。 3)金具强度的安全系数:最大使用荷载不应小于2.5。断线、断联、验算情况 不应小于1.5。 公式三绝缘子串片数选择: 操作及雷电过电压要求的悬垂绝缘子最小片数 1)耐张绝缘子串的片数,在上表基础上,110-330kV加1片,500kV加2片,

750kV 不增加。 2) 全高超过40m 有地线的杆塔,高度每增加10m ,应比本规范表增加1片相 当于高度146mm 的绝缘子,全高超过100m 的杆塔,片数应根据运行经验结合计算确定。750kV 超过40m ,应根据实际情况验算。 3) 采用爬电比距法时,绝缘子片数计算: 01 1000/145220kV 1.39I 11e U n n m K L λλ≥ ,:海拔时每联绝缘子所需片数; :爬电比距(cm kV ),330kV 以上为 .,及以下为 ; 变电所爬电比距,对级污秽区取同级线路的.倍。 U :系统标称电压(kV );L01:单片绝缘子的几何爬电距离(cm ); Ke :绝缘子爬电距离的有效系数。XP-70、XP-160型绝缘子为1。 注:轻、中污秽区复合绝缘子爬电距离不宜小于盘型绝缘子;在重污秽区,其爬电距离不应小于盘型绝缘子最小值的3/4且不应小于2.8cm/kV ;用于220kV 以上输电线路复合绝缘子两段都应加均压环,其有效绝缘长度需满足雷电过电压的要求。 4) 高海拔地区悬垂绝缘子串的片数,宜按下式计算: 10.1215(-1000)/1000=m H H n ne m 1:特征指数,取值见附录C 。 耐张绝缘子片数: =[1+0.1(-1)]H N N H ,H :海拔高度,km 。(导体选择) 公式四 空气放电电压海拔修正系数: /8150=mH a K e m :海拔修正因子,工频、雷电电压m=1;操作过电压见P20图7.0.12。 公式五 杆塔上两根地线间的距离:不应超过地线与导线间垂直距离的5倍。 在一般档距中央,导线与地线间的距离: 0.012+1S L ≥ S :导线与地线间距离(m);L :档距(m )。注:气象条件:15℃,无风、无冰。 注:对于大档距导线,在档距>'t l v τ(v ’:波的传播相速,取225m/us ;t τ:波头长度)时,20.1S I ≈。

变压器计算公式

变压器计算公式已知容量,求其各电压等级侧额定电流 口诀a : 容量除以电压值,其商乘六除以十。 说明:适用于任何电压等级。 在日常工作中,有些只涉及一两种电压等级的变压器额定电流的计算。将以上口诀简化,则可推导出计算各电压等级侧额定电流的口诀: 容量系数相乘求。 已知变压器容量,速算其一、二次保护熔断体(俗称保险丝)的电流值。 口诀b : 配变高压熔断体,容量电压相比求。 配变低压熔断体,容量乘9除以5。 说明: 正确选用熔断体对变压器的安全运行关系极大。当仅用熔断器作变压器高、低压侧保护时,熔体的正确选用更为重要。 这是电工经常碰到和要解决的问题。 已知三相电动机容量,求其额定电流 口诀(c):容量除以千伏数,商乘系数点七六。 说明: (1)口诀适用于任何电压等级的三相电动机额定电流计算。由公式及口诀均可说明容量相同的电压等级不同的电动机的额定电流是不相同的,即电压千伏数不一样,去除以相同的容量,所得“商数”显然不相同,不相同的商数去乘相同的系数,所得的电流值也不相同。若把以上口诀叫做通用口诀,则可推导出计算220、380、660、电压等级电动机的额定电流专用计算口诀,用专用计算口诀计算某台三相电动机额定电流时,容量千瓦与电流安培关系直接倍数化, 省去了容量除以千伏数,商数再乘系数。 三相二百二电机,千瓦三点五安培。 常用三百八电机,一个千瓦两安培。 低压六百六电机,千瓦一点二安培。

高压三千伏电机,四个千瓦一安培。 高压六千伏电机,八个千瓦一安培。 (2)口诀c 使用时,容量单位为kW,电压单位为kV,电流单位为A,此点一定要注意。 (3)口诀c 中系数是考虑电动机功率因数和效率等计算而得的综合值。功率因数为,效率不,此两个数值比较适用于几十千瓦以上的电动机,对常用的10kW以下电动机则显得大些。这就得使用口诀c计算出的电动机额定电流与电动机铭牌上标注的数值有误差,此误差对10kW以下电动机按额定电流先开关、接触器、导线等影响很小。 (4)运用口诀计算技巧。用口诀计算常用380V电动机额定电流时,先用电动机配接电压数去除、商数2去乘容量(kW)数。若遇容量较大的6kV电动机,容量kW 数又恰是6kV数的倍数,则容量除以千伏数,商数乘以系数。 (5)误差。由口诀c 中系数是取电动机功率因数为、效率为而算得,这样计算不同功率因数、效率的电动机额定电流就存在误差。由口诀c 推导出的5个专用口诀,容量(kW)与电流(A)的倍数,则是各电压等级(kV)数除去系数的商。专用口诀简便易心算,但应注意其误差会增大。一般千瓦数较大的,算得的电流比铭牌上的略大些;而千瓦数较小的,算得的电流则比铭牌上的略小些。对此,在计算电流时,当电流达十多安或几十安时,则不必算到小数点以后。可以四舍而五不入,只取整数,这样既简单又不影响实用。对于较小的电流也只要算到一位小数即可。 *测知电流求容量 测知无铭牌电动机的空载电流,估算其额定容量 口诀: 无牌电机的容量,测得空载电流值, 乘十除以八求算,近靠等级千瓦数。 说明:口诀是对无铭牌的三相异步电动机,不知其容量千瓦数是多少,可按通过测量电动机空载电流值,估算电动机容量千瓦数的方法。 测知电力变压器二次侧电流,求算其所载负荷容量 口诀: 已知配变二次压,测得电流求千瓦。 电压等级四百伏,一安零点六千瓦。

自耦变压器容量算

自耦变压器容量算

————————————————————————————————作者:————————————————————————————————日期:

自耦变压器容量计算 一、二次绕组有共同耦合部分的变压器称为自耦变压器。和普通变压器不同,自耦变压器的绕组之间不仅有磁的联系,还有电的联系。通常,把同时属于一次和二次的那部分绕组称为公共绕组,其余部分称为串联绕组。公共绕组和串联绕组共同组成自耦变压器的高压绕组。 公共绕组和串联绕组是通过电磁感应和电的直接连接两种关系耦合起来的,以改变一、二次电压和在一、二次之间传输电能。自耦变压器的串联绕组和公共绕组一般按同心式放置,因串联绕组与高压系统连接,它常布置在铁芯最外层。自耦变压器常用于高、低电压比较接近的场合,例如连接高电压、大容量且电压等级相差不大的电力系统,在工厂和实验室用作调压器和起动补偿器等。电力系统中,常见的有单相自耦变压器和三相自耦变压器,对超高压特大容量的自耦变压器,因受运输条件的限制一般都做成单相的。 由于普通双绕组变压器的一、二次绕组之间只有磁的联系而没有电的联系,功率的传递全靠电磁感应,因此其铭牌上所标称的额定容量就是绕组的额定容量,它取决于绕组的额定电压和额定电流。绕组容量是通过电磁感应从一次传递给二次的,它的大小决定了变压器的主要尺寸和材料消耗,是变压器设计的依据。

自耦变压器的容量是指它的输入容量或输出容量,与一般双绕组变压器的容量表达式相同,额定运行时为 SN=U1NI1N =U2NI2N (1) 根据串联绕组或公共绕组的电压、电流值,计算可得自耦变压器绕组的容量。 串联绕组的额定容量 (2) 公共绕组的额定容量 (3) 可见,虽然自耦变压器容量的表达式与普通双绕组变压器相同,但自耦变压器的容量却不等于它的绕组容量。公共绕组和串联绕组额定容量相等,但都比自耦变压器的额定容量小,这多出的部分1/kSN称为自耦变压器的传导容量,它是由一次侧通过电路直接传递给负载的,不需增加绕组容量。 综上所述,用自耦变压器联系两种电压网络时,因为一、二次绕组间除了磁的联系外,还存在着电的直接联系,从一次侧到二次侧的功率传递,一部分通过绕组间的电磁感应,一部分直接传导,其容量包括传导容量和电磁容量两部分。 传导容量:通过电路关系直接传递的视在功率,它占总容量的1/k,普通变压器没有这一部分。

工厂供电短路电流及其计算

短路电流及其计算总结 第一节短路的原因、后果及其形式 一、短路的原因 1、电气设备载流部分绝缘损坏 2、运行人员误操作 3、鸟兽为害事故 二、短路的后果 电流剧烈增加,系统中的电压大幅度下降产生严重后果: 1、短路电流的热效应会使设备发热急剧增加,可能导致设 备过热而损坏甚至烧毁; 2、短路电流产生很大的电动力,可引起设备机械变形、扭 曲甚至损坏; 3、短路时系统电压大幅度下降,严重影响电气设备的正常 工作; 4、严重的短路可导致并列运行的发电厂失去同步而解列, 破坏系统的稳定性; 5、不对称短路产生的不平衡磁场,会对附近的通讯系统及 弱电设备产生电磁干扰,影响其正常工作; 三、短路的形式 三相短路、两相短路、单相短路、两相接地短路。 第二节无限大容量电力系统发生三相短路时的物

理过程和物理量 一、无限大容量电力系统发生三相短路时的物理过程: 无限大容量电力系统,是指供电容量相对于用户供电系统容量大得多的电力系统。 二、短路有关的物理量 1、短路电流周期分量 2、短路电流非周期分量 3、短路全电流 4、短路冲击电流 ) 高压电路发生三相短路时,一般可取,因此 在及以下的电力变压器和低压电路发生三相短路时,一般可取,因此 5、短路稳态电流 短路稳态电流是短路电流非周期分量衰减完毕以后的短路全电

流,其有效值用表示。 第三节无限大容量电力系统中短路电流的计算 1、概述 短路电流的计算方法,常用的有欧姆法和标幺制法。 2、采用欧姆法进行三相短路计算 在无限大容量系统中发生三相短路时,其三相短路电流周期分量有效值如下: 如果不计电阻,则三相短路电流周期分量有效值为 三相短路容量为 = 1、电力系统的阻抗计算 电力系统的电抗 2、电力变压器的阻抗计算 3、电力线路的阻抗计算 4、阻抗换算公式 3、采用标幺制法进行三相短路计算 电力系统电抗标幺制 电力变压器的电抗标幺值

变压器的平均负荷功率的计算

变压器的平均负荷功率如何计算 [ 标签:变压器负荷,变压器,平均 ] (、荌靜-.. 回答:1 人气:16 解决时间:2009-08-23 16:45 满意答案好评率:0% 简介:负载曲线的平均负载系数越高,为达到损耗电能越小,要选用损耗比越小的变压器;负载曲线的平均负载系数越低,为达到损耗电能越小,要选用损耗比越大的变压器。将负载曲线的平均负载系数乘以一个大于1的倍数,通常可取1-1.3,作为获得最佳效率的负载系数,然后按βb=(1/R)1/2计算变压器应具备的损耗比。 关键字:变压器 1、变压器损耗计算公式 (1)有功损耗:ΔP=P0+KTβ2PK-------(1) (2)无功损耗:ΔQ=Q0+KTβ2QK-------(2) (3)综合功率损耗:ΔPZ=ΔP+KQΔQ----(3) Q0≈I0%SN,QK≈UK%SN 式中:Q0——空载无功损耗(kvar) P0——空载损耗(kW) PK——额定负载损耗(kW) SN——变压器额定容量(kVA) I0%——变压器空载电流百分比。 UK%——短路电压百分比 β——平均负载系数 KT——负载波动损耗系数 QK——额定负载漏磁功率(kvar) KQ——无功经济当量(kW/kvar) 上式计算时各参数的选择条件: (1)取KT=1.05; (2)对城市电网和工业企业电网的6kV~10kV降压变压器取系统最小负荷时,其无功当量KQ=0.1kW/kvar; (3)变压器平均负载系数,对于农用变压器可取β=20%;对于工业企业,实行三班制,可取β=75%; (4)变压器运行小时数T=8760h,最大负载损耗小时数:t=5500h; (5)变压器空载损耗P0、额定负载损耗PK、I0%、UK%,见产品资料所示。 2、变压器损耗的特征 P0——空载损耗,主要是铁损,包括磁滞损耗和涡流损耗; 磁滞损耗与频率成正比;与最大磁通密度的磁滞系数的次方成正比。 涡流损耗与频率、最大磁通密度、矽钢片的厚度三者的积成正比。 PC——负载损耗,主要是负载电流通过绕组时在电阻上的损耗,一般称铜损。其大小随负载电流而变化,与负载电流的平方成正比;(并用标准线圈温度换算值来表示)。 负载损耗还受变压器温度的影响,同时负载电流引起的漏磁通会在绕组内产生涡流损耗,并在绕组外的金属部分产生杂散损耗。 变压器的全损耗ΔP=P0 PC 变压器的损耗比=PC/P0 变压器的效率=PZ/(PZ ΔP),以百分比表示;其中PZ为变压器二次侧输出功率。

[电气工程师]短路电流计算公式归纳

3U B 3U B S T U U S 短路电流计算 在电力系统短路电流计算中,假设各元件的磁路不饱和的目的 :可以应用叠加原理, 在短路的实用计算中,通常只用周期分量电流的有效值来计算短路功率 标么值:任意一个物理量对基准值的比值。U I Z , S U I S U 2 基准值 S B 3U B I B , I B B , Z B B S B 发电机标么值电抗: X X G % ( U GN )2 B G 100 U B S 变压器标么值电抗: X U k % ( U N ) 2 S B 线路标么值电抗: X L X 100 U B B L 2 B X % U S 电抗器标么值电抗: X R B R 100 2 B 不同基准值的标幺值之间的换算: X X ( U N )2 S B B N U B S N 三相短路:短路点电压为零,各相短路电流相等,短路电流只包含正序分量。 无限大系统供电网络短路时,电源电压保持不变,U 1,短路容量的标么值和短路电 流的标么值相等,短路电流周期分量标么值 I f U X f 1 X f S f ,短路电流: I f I f B ,短路容量:S f S f S B ,S f 3U av I f 短路容量用来校验开关的切断 能力。 转移阻抗:任意两个接点之间的等值电抗。 无限大功率电源供电电路的短路电流在暂态过程中包含交流分量和直流分量。 短路冲击电流:短路电流最大瞬时值,在短路发生后约半个周期出现,短路后 0.01s 的 瞬时值, i m 2K m I f 用于校验设备的动稳定。K m 为冲击系数,当短路发生在发电机 电压母线时, K m 1.9 ,当短路发生在发电厂高压母线时, K m 1.85 ,当短路发生在其他地点, K m 1.8 。 非周期电流的初值越大,暂态过程中短路电流最大瞬时值越大。它与短路发生时刻有关, 与短路发生时电源电势的初始相角(合闸角) 有关。短路电流冲击值在短路前空载, 电压初相位为0的情况下最大。 序阻抗:静止磁耦合元件(线路、电抗器、变压器)正序阻抗和负序阻抗相等 Z 1 Z 2 ; 零序电抗比正序电抗大。变压器零序等值电路与外电路的连接,取决于零序电流的流通 S GN S N

变压器功率计算方法

0.65和0.8的系数来自实用电工速算口诀 已知变压器容量,求其各电压等级侧额定电流 口诀 a : 容量除以电压值,其商乘六除以十。 说明:适用于任何电压等级。 在日常工作中,有些电工只涉及一两种电压等级的变压器额定电流的计算。将以上口诀简化,则可推导出计算各电压等级侧额定电流的口诀: 容量系数相乘求。 已知变压器容量,速算其一、二次保护熔断体(俗称保险丝)的电流值。 口诀 b : 配变高压熔断体,容量电压相比求。 配变低压熔断体,容量乘9除以5。 说明: 正确选用熔断体对变压器的安全运行关系极大。当仅用熔断器作变压器高、低压侧保护时,熔体的正确选用更为重要。这是电工经常碰到和要解决的问题。 已知三相电动机容量,求其额定电流 口诀(c):容量除以千伏数,商乘系数点七六。 说明: (1)口诀适用于任何电压等级的三相电动机额定电流计算。由公式及口诀均可说明容量相同的电压等级不同的电动机的额定电流是不相同的,即电压千伏数不一样,去除以相同的容量,所得“商数”显然不相同,不相同的商数去乘相同的系数0.76,所得的电流值也不相同。若把以上口诀叫做通用口诀,则可推导出计算220、380、660、3.6kV电压等级电动机的额定电流专用计算口诀,用专用计算口诀计算某台三相电动机额定电流时,容量千瓦与电流安培关系直接倍数化,省去了容量除以千伏数,商数再乘系数0.76。 三相二百二电机,千瓦三点五安培。 常用三百八电机,一个千瓦两安培。 低压六百六电机,千瓦一点二安培。 高压三千伏电机,四个千瓦一安培。 高压六千伏电机,八个千瓦一安培。 (2)口诀c 使用时,容量单位为kW,电压单位为kV,电流单位为A,此点一定要注意。 (3)口诀c 中系数0.76是考虑电动机功率因数和效率等计算而得的综合值。功率因数为0.85,效率不0.9,此两个数值比较适用于几十千瓦以上的电动机,对常用的10kW以下电动机则显得大些。这就得使用口诀c计算出的电动机额定电流与电动机铭牌上标注的数值有误差,此误差对10kW以下电动机按额定电流先开关、接触器、导线等影响很小。 (4)运用口诀计算技巧。用口诀计算常用380V电动机额定电流时,先用电动机配接电源电压0.38kV数去除0.76、商数2去乘容量(kW)数。若遇容量较大的6kV电动机,容量kW数又恰是6kV数的倍数,则容量除以千伏数,商数乘以0.76系数。 (5)误差。由口诀c 中系数0.76是取电动机功率因数为0.85、效率为0.9而算得,这样计算不同功率因数、效率的电动机额定电流就存在误差。由口诀c 推

自耦变压器

自耦变压器 科技名词定义 中文名称:自耦变压器 英文名称:autotransformer 定义:至少有两个绕组具有公共部分的变压器。 所属学科:电力(一级学科);变电(二级学科) 本内容由全国科学技术名词审定委员会审定公布

编辑本段概述 石家庄金山变压器有限公司 自耦变压器是指它的绕组是初级和次级是在同一调绕组上的变压器。根据结构还可细分为可调压式和固定式。 编辑本段什么是变压器? 自耦变压器降压启动控制线路 在一个闭合的铁芯上绕两个或以上的线圈,当一个线圈通入交流电源时(就是初级线圈),线圈中流过交变电流,这个交变电流在铁芯中产生交变磁场,交变主磁通在初级线圈中产生自身感应电动势,同时另外一个线圈(就是次级线圈)中感应互感电动势。通过改变初、次级的线圈匝数比的关系来改变初、次级线圈端电压,实现电压的变换,一般匝数比为1.5:1~2:1。

因为初级和次级线圈直接相连,有跨级漏电的危险。所以不能作行灯变压器。 编辑本段自耦变压器和与干式变压器的区别 在目前的电网中,从220KV电压等级才开始有自耦变压器,多用作电网间的联络变。220KV以下几乎没有自耦变。 自耦变压器在较低电压下是使用最多是用来作为电机降压启动使用 对于干式变压器来讲,它的绝缘介质是树脂之类的固体,没有油浸式变压器中的绝缘油,所以称为干式。干式变压器由于散热条件差,所以容量不能做得很大,一般只有中小型变压器,电压等级也基本上在35KV及以下,但现在国内外也都已经有额定电压达到66kV甚至更高的干式变压器,容量也可达30000kVA甚至更高。 编辑本段自耦变压器的工作原理 自耦变压器零序差动保护原理图

自耦变压器容量计算

自耦变压器容量计算 【摘要】为保证金属资源的可持续发展,大力研究自耦变压器有十分重要的现实意义。本文主要介绍自耦变压器的容量计算,对自耦变压器的原理以及自耦变压的优点进行论述,最后再根据举例,对自耦变压器的容量进行系统的分析。 【关键词】自耦变压器;容量计算;原理 0.引言 自耦变压器是一、二次边共用一部分绕组,可以实现升压或者降压变化的电力变压器。与普通变压器相比,普通变压器的原、副绕组之间只有磁的联系而没有电路上的联系,而自耦变压器的原、副绕组之间不仅有磁的联系而且还有电路上的直接联系。总的来看,自耦变压器不仅减少了原材料的使用,更有利于磁电之间的联系。 1.自耦变压器的结构原理分析 自耦变压器可以由一台双绕组变压器演变过来。设有一台双绕组变压器,原、副绕组匝数分别为N1和N2,额定电压为U1N和U2N,额定电流为I1N和I2N,其变比为K=N1 /N2≈U1N/U2N.如果保持两个绕组的额定电压和额定电流不变,把原绕组和副绕组顺极性串联起来作为新的原边。而副绕组还同时作为副边,它的两个端点接到负载阻抗ZL,便演变成了一台降压自耦变压器。 从绕组的作用看,绕组ax供高、低压两侧共用,叫做公共绕组;而绕组Aa 则与公共绕组串联后供高压侧使用,叫做串联绕组。 自耦变压器的变比为:Ka===K+1 式中:K=为双绕组变压器的变比。 与双绕组变压器相比,在变压器额定容量(通过容量)相同时,自耦变压器的绕组容量(电磁容量)比双绕组变压器的小;变压器硅钢片和铜线的用量与绕组的额定感应电动势和通过的额定电流有关,也就是和绕组的容量有关,现在自耦变压器的绕组容量减小了,当然所用的材料也少了,从而可以降低成本;由于铜线和硅钢片用量减少,在同样的电流密度和磁通密度下,自耦变压器的铜耗和铁耗以及激磁电流都比较小,从而提高了效率;由于铜线和硅钢片用量减少,自耦变压器的重量及外形尺寸都较双绕组变压器小,即减小了变电所的厂房面积和运输安装的困难;反过来说,在运输条件有一定限制的条件下,即变压器的外形尺寸有一定限制的条件下,自耦变压器的容量可以比双绕组变压器的大,即提高了变压器的极限容量;效益系数越小。 通过以上分析,自耦变压器的变比越接近1就越好,一般以不超过2为宜。此外,如果变比太大,高、低压相差悬殊,由于自耦变压器原、副边有电路上的连接,会给低压边的绝缘及安全用电带来一定的困难,所以,自耦变压器适用于原、副边电压变比不大的场合。 2.自耦变压器的基本方程 2.1电流关系 按照全电流定律,自耦变压器的激磁磁动势m应等于串联绕组的磁动势W 与公共绕组的磁动势W之和。考虑到激磁电流是由电源供给的,它流经的匝数为N+N 3.自耦变压器的容量分析 自耦变压器的额定容量(又叫通过容量) 和绕组容量(又叫电磁容量)二者是

环形变压器额定功率计算公式

深入了解环形变压器额定功率计算公式 2009-08-10 07:41:00 作者:佚名来源:网络文字大小:【大】【中】【小】 发烧友都习惯称环型变压器为“环牛”,由于电源变压器在音响系统中的重要性,所以衡量其性能的优劣也显得非常重要... 发烧友都习惯称环型变压器为“环牛”,由于电源变压器在音响系统中的重要性,所以衡量其性能的优劣也显得非常重要,以下为小编在网上找到的一套计算公式,能在没有环牛具体参数的情况下估算其额定功率。

以下是三诺N-45G环型电源变压器的一些参数: 环型变压器及其应用

环形变压器是电子变压器的一大类型,已广泛应用于家电设备和其它技术要求较高的电子设备中,它的主要用途是作为电源变压器和隔离变压器。环形变压器在国外已有完整的系列,广泛应用于计算机、医疗设备、电讯、仪器和灯光照明等方面。 我国近十年来环形变压器从无到有,迄今为止已形成相当大的生产规模,除满足国内需求外,还大量出口。国内主要用于家电的音响设备和自控设备以及石英灯照明等方面。 环形变压器由于有优良的性能价格比,有良好的输出特性和抗干扰能力,因而它是一种有竞争力的电子变压器,本文拟就它的特点作一介绍。 2环形变压器的特点 环形变压器的铁心是用优质冷轧硅钢片(片厚一般为0.35mm以下),无缝地卷制而成,这就使得它的铁心性能优于传统的叠片式铁心。环形变压器的线圈均匀地绕在铁心上,线圈产生的磁力线方向与铁心磁路几乎完全重合,与叠片式相比激磁能量和铁心损耗将减小25%,由此带来了下述一系列的优点。1)电效率高铁心无气隙,叠装系数可高达95%以上,铁心磁导率可取1.5~1.8T(叠片式铁心只能取1.2~1.4T),电效率高达95%以上,空载电流只有叠片式的10%。2)外形尺寸小,重量轻环形变压器比叠片式变压器重量可以减轻一半,只要保持铁心截面积相等,环形变压器容易改变铁心的长、宽、高比例,可以设计出符合要求的外形尺寸。 3)磁干扰较小环形变压器铁心没有气隙,绕组均匀地绕在环形的铁心上,这种结构导致了漏磁小,电磁辐射也小,无需另加屏蔽都可以用到高灵敏度的电子设备上,例如应用在低电平放大器和医疗设备上。 4)振动噪声较小铁心没有气隙能减少铁心 表1加拿大PLITRON环形变压器外形尺寸及重量输出功率P2/VA变压器外径Dw/mm变压器高度h1/mm装配后高度h2/mm重量m/kg 85525300.25 156333370.35 307033380.45 508038450.9 809735391.00 1209543471.2 16011045501.8 22511050552.2 30011057622.6 50013563674.0 62514578835.0 75015080855.5 100016080856.3 1500200758011.7 环形变压器及其应用: 图1环形变压器外形图 感应振动的噪音,绕组均匀紧紧包住环形铁心,有效地减小磁致伸缩引起的“嗡嗡”声。

变压器功率计算方法

变压器功率计算方法 0.65和0.8的系数来自实用电工速算口诀 已知变压器容量,求其各电压等级侧额定电流 口诀a : 容量除以电压值,其商乘六除以十。 说明:适用于任何电压等级。 在日常工作中,有些电工只涉及一两种电压等级的变压器额定电流的计算。将以上口诀简化,则可推导出计算各电压等级侧额定电流的口诀: 容量系数相乘求。 已知变压器容量,速算其一、二次保护熔断体(俗称保险丝)的电流值。 口诀b : 配变高压熔断体,容量电压相比求。 配变低压熔断体,容量乘9除以5。 说明: 正确选用熔断体对变压器的安全运行关系极大。当仅用熔断器作变压器高、低压侧保护时,熔体的正确选用更为重要。这是电工经常碰到和要解决的问题。 已知三相电动机容量,求其额定电流 口诀(c):容量除以千伏数,商乘系数点七六。 说明:

(1)口诀适用于任何电压等级的三相电动机额定电流计算。由公式及口诀均可说明容量相同的电压等级不同的电动机的额定电流是不相同的,即电压千伏数不一样,去除以相同的容量,所得“商数”显然不相同,不相同的商数去乘相同的系数0.76,所得的电流值也不相同。若把以上口诀叫做通用口诀,则可推导出计算220、380、660、3.6kV 电压等级电动机的额定电流专用计算口诀,用专用计算口诀计算某台三相电动机额定电流时,容量千瓦与电流安培关系直接倍数化,省去了容量除以千伏数,商数再乘系数0.76。 三相二百二电机,千瓦三点五安培。 常用三百八电机,一个千瓦两安培。 低压六百六电机,千瓦一点二安培。 高压三千伏电机,四个千瓦一安培。 高压六千伏电机,八个千瓦一安培。 (2)口诀c 使用时,容量单位为kW,电压单位为kV,电流单位为A,此点一定要注意。 (3)口诀c 中系数0.76是考虑电动机功率因数和效率等计算而得的综合值。功率因数为0.85,效率不0.9,此两个数值比较适用于几十千瓦以上的电动机,对常用的10kW以下电动机则显得大些。这就得使用口诀c计算出的电动机额定电流与电动机铭牌上标注的数值有误差,此误差对10kW以下电动机按额定电流先开关、接触器、导线等影响很小。 (4)运用口诀计算技巧。用口诀计算常用380V电动机额定电流时,

自耦变压器损耗对比

自耦变压器损耗对比: 以DQY-40000/220为例: 注:温升还可以稍微再降低一点点。 变压器器身干燥工艺: 1.适用范围 本工艺适用于电压35Kv、110kV变压器器身真空干燥。 2.适用目的 保证器身干燥,提高变压器运行质量。 3.设备及工具 3.1设备 3.1.1立式真空罐:外形8.8*5.2*5.1m, 净空7.4*4*4m。 3.1.2真空泵 a. H-150A滑阀真空泵,2只,抽气速率150L/S,极限真空1Pa; b. ZJ-1200A机械增压泵,1只,抽气速率1200L/S,极限真空0.06Pa。 3.2测量仪器仪表及工具 3.2.1真空计 a.指针式真空表:(0-0.1)MPa; b.麦氏真空计:(0-650)Pa; c.电子式真空计:(1Pa-1kPa); 3.2.2兆欧表:2500v/2000MΩ; 3.2.3温度计:水银温度计. 0-150℃; 3.2.4量杯:1000ml,2000ml,各一只。 4.工艺准备 4.1器身吊入烘房前,应对真空干燥设备进行检查

4.1.1检查真空干燥设备是否正常完好,尤其注意有无漏气、漏水、漏油。罐沿密封要良好,罐底应清洁无污物; 4.1.2检查真空泵内的油位是否在要求范围内(泵上有油标),并打开放油阀门检查油是否有污物及水份,如果有水必须放出后关闭阀门; 4.1.3定期对真空泵内油进行过滤及添加(一个月进行一次并作记录)。 4.2器身吊入烘房前,对器身进行检查 4.2.1清除器身各处的污物,灰尘,杂物; 4.2.2将器身吊起,用布或棉纱等擦净垫角上的灰尘污物; 4.3器身吊入烘房: 将器身吊入罐内,要求器身各处距烘房壁或蒸汽管距离300mm以上,以防止损坏绝缘件。操作人员对器身栓钢丝绳或接线时,必须穿戴干净的工作服、工作鞋,装配工的服饰要杜绝金属及零散小物件,以防随身物品掉入器身及污染产品。 4.4放测温元件 4.4.1每炉测温元件2只,在靠近加热管最近的线圈侧面上、中、下三处分别放上测温元件一只,测量温度以中间温度为主,其他两只测温元件温度只作为参考。在真空度(20-40)kPa阶段,各个温度均不得超过120℃; 4.4.2测温导线不得互相接触; 4.5关闭罐盖之前检查测量线圈温度计的位置是否正确,测温元件运行是否正常; 4.6把需要与器身一同处理的附件放在器身上,如果器身上无法放置,必须将附件垫高到距烘房底500mm以上,不可直接放在烘房底上; 4.7要求每隔1小时检查测温元件温度值、蒸汽压力、真空度、出水量,如实填入记录表格,同时记录变压器型号、容量、电压、台数、工作号、入炉出炉时间等。 5.工艺过程 5.1真空干燥的工艺过程按表一; 注:下面所注真空度指罐内残压值,单位(Pa) 表一真空干燥工艺过程

电力系统分析短路电流的计算汇总

1课程设计的题目及目的 1.1课程设计选题 如图所示发电机G ,变压器T1、T2以及线路L 电抗参数都以统一基准的标幺值给出,系统C 的电抗值是未知的,但已知其正序电抗等于负序电抗。在K 点发 生a 相直接接地短路故障,测得K 点短路后三相电压分别为0=a U , 1201-∠=b U , 1201∠=c U 。试求:(1)系统C 的正序电抗; (2)K 点发生bc 两相接地短路时故障点电流; (3)K 点发生bc 两相接地短路时发电机G 和系统C 分别提供的故障电流(假设故障前线路电流中没有电流)。 系统C 发电机G 15. 01=T X 15 . 00=T X 25 . 02=T X 25. 02==''X X d 图1-1

1.2课程设计的目的 1. 巩固电力系统的基础知识; 2. 练习查阅手册、资料的能力; 3.熟悉电力系统短路电流的计算方法和有关电力系统的常用软件; 2短路电流计算的基本概念和方法 2.1基本概念的介绍 1. 在电力系统中,可能发生的短路有:三相短路、两相短路、两相短路接地和单相短路。三相短路也称为对称短路,系统各相与正常运行时一样仍处于对称状态。其他类型的短路都属于不对称短路。 2. 正序网络:通过计算对称电路时所用的等值网络。除中性点接地阻抗、空载线路(不计导纳)以及空载变压器(不计励磁电流)外,电力系统各元件均应包括在正序网络中,并且用相应的正序参数和等值电路表示。 3. 负序网络:与正序电流的相同,但所有电源的负序电势为零。因此,把正序网络中各元件的参数都用负序参数代替,并令电源电势等于零,而在短路点引入 代替故障条件的不对称电势源中的负序分量,便得到负序网络。 4. 零序网络:在短路点施加代表故障边界条件的零序电势时,由于三项零序电流大小及相位相同,他们必须经过大地(或架空地线、电缆包庇等)才能构成回路,而且电流的流通与变压器中性点接地情况及变压器的解法有密切关系。 2.2 短路电流计算的基本方法 1. 单相(a相接地短路 单相接地短路是,故障处的三个边界条件为: 0fa V = ; 0fb I = ; 0fc I =

相关文档
最新文档