AP3902P——about PWM

AP3902P——about PWM
AP3902P——about PWM

LOW POWER PWM SWITCH FOR OFF-LINE SMPS AP3902 1

BCD Semiconductor Manufacturing Limited

Sep. 2008 Rev. 1.0

General Description

The AP3902 PWM power switch consists of a fixed-frequency current-mode PWM controller and a high voltage transistor. It is specifically designed for high performance off-line switching power supplies or non-isolated small household applications. Compared to discrete MOSFET and PWM controller power supply solutions, AP3902 solution offers advantages such as fewer component numbers, smaller size, and lower total cost.

In normal operation, the AP3902 features with a fixed switching frequency. When the output power falls below a given level, the circuits automatically switches to a burst mode by skipping some switching cycles. In case of failure modes like open loop, over voltage or overload due to short circuit, the device switches into auto restart mode which is controlled by the internal protection unit.

This IC adopts frequency dithering technique to reduce EMI.

The AP3902 is available in DIP-8 package.

Features

·Built-in NPN Transistor with 700V CBO

·Current Mode Control with Skip Cycle Capability ·Low Operating Current: 0.45mA ·Fixed Switching Frequency: 60kHz ·Frequency Dithering for Low EMI ·Short Circuit Protection

·

Open and Short Circuit Protection for Opto-Coupler

·Maximal Input Power less than 0.2W under no

Load

·Output Power Range:

5W to 10W for Adapter with Outer Enclosure 5W to 13W for Open Frame Application

Applications

·Induction Cooker ·Set-Top Boxes/DVB ·Adapters

·Auxiliary Power Supplies ·

DVD

Figure 1. Package Type of AP3902

DIP-8

LOW POWER PWM SWITCH FOR OFF-LINE SMPS AP3902 2

BCD Semiconductor Manufacturing Limited

Sep. 2008 Rev. 1.0

Pin Configuration

Figure 2. Pin Configuration of AP3902 (Top View)

P Package (VA VCC VS B

GND NC C C

Pin Description

Pin Number

Pin Name Function

1

V A This pin is used for short circuit protection, and it will be pulled to low level when short circuit happens at the load terminal

2, VS It is used for line voltage compensation, and PWM uses this pin to terminate the out-put switch conduction

3VCC The power supply of the IC and it is also used for the feedback control 4 B It is internally connected with the base terminal of internal NPN transistor 5, 6C It is internally connected with the collector terminal of internal NPN transistor 7NC No connection to IC 8

GND

Supply ground

DIP-8)

LOW POWER PWM SWITCH FOR OFF-LINE SMPS AP3902 3

BCD Semiconductor Manufacturing Limited

Sep. 2008 Rev. 1.0

Functional Block Diagram

Figure 3. Functional Block Diagram of AP3902

VCC

GND

B

VS

C

VA

LOW POWER PWM SWITCH FOR OFF-LINE SMPS AP3902 4

BCD Semiconductor Manufacturing Limited

Sep. 2008 Rev. 1.0

Parameter Symbol Value Unit Collector Pin V oltage

V CES 700V V oltage at the Emitter of Internal NPN Transistor V E -0.3 to 40V Supply V oltage V CC -0.3 to 6.3V Analog Input at VS V S -0.3 to 6.3V V A Pin V oltage

V A

-0.3 to 40

V Continuous Collector Current 1A Power Dissipation

1.3W

Operating Junction Temperature 150o C Storage Temperature

-65 to 150o C Lead Temperature (Soldering, 10s)300o

C

ESD (Human Body Model)

3000

V

Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

Absolute Maximum Ratings (Note 1)

Package Temperature Range Part Number

Marking ID

Packing Type

Lead Free Green Lead Free Green DIP-8

-40 to 85o C

AP3902P-E1

AP3902P-G1

AP3902P-E1

AP3902P-G1

Tube

BCD Semiconductor's Pb-free products, as designated with "E1" suffix in the part number, are RoHS compliant. Products with "G1" suffix are available in green packages.

Ordering Information

Circuit Type E1: Lead Free AP3902 -

Blank: Tube

Package P: DIP-8

G1: Green

LOW POWER PWM SWITCH FOR OFF-LINE SMPS AP3902 5

BCD Semiconductor Manufacturing Limited

Sep. 2008 Rev. 1.0

Parameter

Symbol

Conditions

Min

Typ

Max

Unit

Power Transistor Section Collector-Emitter Breakdown V oltage

V CES V BE =0, I CE =100μA 700

V Collector-Emitter Saturation V oltage V CE, SAT I C =0.5A, I B =0.1A 0.3V

DC Current Gain h FE

I C =0.5A, V CE =2V

13

18

30

UVLO Section

Turn on Threshold V oltage V CC (on) 5.00 5.25 5.50V Turn off Threshold V oltage V CC (off) 3.37 3.55 3.73V Discharge V oltage V DIS

2.7

2.9

3.1

V

Standby Current Section Start-up Current I ST V CC = 4V

0.220.4mA

Operating Current I CC (op)0.45

0.7

VCC Zener V oltage V Z I CC =5mA 6.5

V Dynamic Impedance R VCC

V CC = 3.8Vto 4.8V

18

26

k ΩInternal Oscillator Section Switching Frequency f SW

55

60

70

kHz Frequency Dithering ±2±3.5

±5

Temperature Stability -40 to 85o C

5

10

%

Driver and Output Section OUT Turn on V oltage V OUT (on)8.511V OUT Turn off V oltage V OUT (off)

4.8

67.2

V

Rise Time t R C L =1nF, 15Ω pull-up 60

ns

Fall Time

t F C L =1nF, 15Ω pull-up 30Maximum Duty Cycle D MAX

V CC (off) + 0.2V 687582

%

Minimum Duty Cycle V CC =V CC (on) - 0.2V 3Driver OUT On-Resistance R OUT I OUT =0.7A

2.54ΩSwitch Off Current Driver off, V OUT =10V 2040μA Effective Current Limit

I LIM V CC =V CC (off) + 0.5V

680800

920

mA

(V CC =4V , T J =25o C, unless otherwise specified.)

Electrical Characteristics

LOW POWER PWM SWITCH FOR OFF-LINE SMPS AP3902 6

BCD Semiconductor Manufacturing Limited

Sep. 2008 Rev. 1.0

Thermal Impedance

Parameter Symbol Value Unit Junction to Ambient R θJA 60

o

C/W

Junction to Case

R θJC

30

Typical Performance Characteristics

Figure 4. Start-up Current vs. Ambient Temperature Figure 5. Operating Current vs. Ambient Temperature

Figure 6. Switching Frequency vs. Ambient Temperature

LOW POWER PWM SWITCH FOR OFF-LINE SMPS AP3902 7

BCD Semiconductor Manufacturing Limited

Sep. 2008 Rev. 1.0

Part Type

Designator

Part Type

Designator Resistor, NTC Resistor, 5ΩR1Capacitor, 10μF/400V C1, C2Resistor, 2 M Ω, 1206R3Capacitor, 2200pF C3

Resistor, 68 k Ω , 1206R4Capacitor, 10μF C4, C5

Resistor, 3 Ω, 1206R5Capacitor, 22nF, 0805C6Resistor, 240Ω, 0805R6Capacitor, 0.47μF, 0805C7Resistor, 2k Ω, 0805R7Electrolytic Capacitor, 1000μF C8Resistor, 5.1 M ΩR8Electrolytic Capacitor, 220μF C9Resistor, 15 Ω, 1206R11Y Capacitor, 2200pF C10Resistor, 200Ω, 0805R13Capacitor, 1nF, 0805C11Resistor, 12k Ω, 0805R14AP3902, DIP-8U1Resistor, 4.7k Ω, 0805R15AZ431, TO-92

U2Resistor, 3.1k Ω, 0805R16Opto-Coupler, PC817, DIP-4U3Diode, 1N4007, DO-41D1 to D4Inductor, 300μH/0.3A L2Diode, 1N4148D5, D6Inductor, 10μH/1A L3Diode, FR107, DO-15D7Transformer, EE-20T1Diode, 3100, DO-201

D8

Zener, 13V/1W

Z2

Typical Application

Figure 7. 12V/0.85A Off-Line Adapter Application Circuit

LOW POWER PWM SWITCH FOR OFF-LINE SMPS AP3902 8

BCD Semiconductor Manufacturing Limited

Sep. 2008 Rev. 1.0

Mechanical Dimensions

DIP-8

Unit: mm(inch)

BCD Semiconductor Manufacturing Limited reserves the right to make changes without further notice to any products or specifi-- Wafer Fab

Shanghai SIM-BCD Semiconductor Manufacturing Limited

800, Yi Shan Road, Shanghai 200233, China

Tel: +86-21-6485 1491, Fax: +86-21-5450 0008

BCD Semiconductor Manufacturing Limited

REGIONAL SALES OFFICE

Shenzhen Office

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd. Shenzhen Office

Advanced Analog Circuits (Shanghai) Corporation Shenzhen Office

Room E, 5F, Noble Center, No.1006, 3rd Fuzhong Road, Futian District, Shenzhen 518026, China Tel: +86-755-8826 7951

Fax: +86-755-8826 7865Taiwan Office

BCD Semiconductor (Taiwan) Company Limited

4F, 298-1, Rui Guang Road, Nei-Hu District, Taipei,

Taiwan

Tel: +886-2-2656 2808

Fax: +886-2-2656 2806

USA Office

BCD Semiconductor Corporation

30920 Huntwood Ave. Hayward,

CA 94544, U.S.A

Tel : +1-510-324-2988

Fax: +1-510-324-2788

- IC Design Group

Advanced Analog Circuits (Shanghai) Corporation

8F, Zone B, 900, Yi Shan Road, Shanghai 200233, China

Tel: +86-21-6495 9539, Fax: +86-21-6485 9673

BCD Semiconductor Manufacturing Limited

https://www.360docs.net/doc/d78678346.html,

BCD Semiconductor Manufacturing Limited

IMPORTANT NOTICE

cations herein. BCD Semiconductor Manufacturing Limited does not assume any responsibility for use of any its products for any particular purpose, nor does BCD Semiconductor Manufacturing Limited assume any liability arising out of the application or use of any its products or circuits. BCD Semiconductor Manufacturing Limited does not convey any license under its patent rights or other rights nor the rights of others.

- Wafer Fab

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd.

800 Yi Shan Road, Shanghai 200233, China

Tel: +86-21-6485 1491, Fax: +86-21-5450 0008

MAIN SITE

REGIONAL SALES OFFICE

Shenzhen Office

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd., Shenzhen Office Room E, 5F, Noble Center, No.1006, 3rd Fuzhong Road, Futian District, Shenzhen, 518026, China

Tel: +86-755-8826 7951

Fax: +86-755-8826 7865Taiwan Office

BCD Semiconductor (Taiwan) Company Limited

4F, 298-1, Rui Guang Road, Nei-Hu District, Taipei,

Taiwan

Tel: +886-2-2656 2808

Fax: +886-2-2656 2806

USA Office

BCD Semiconductor Corp.

30920 Huntwood Ave. Hayward,

CA 94544, USA

Tel : +1-510-324-2988

Fax: +1-510-324-2788

- Headquarters

BCD Semiconductor Manufacturing Limited

No. 1600, Zi Xing Road, Shanghai ZiZhu Science-based Industrial Park, 200241, China Tel: +86-21-24162266, Fax: +86-21-24162277

转速电流双闭环的数字式可逆直流调速系统的仿真与设计(课程设计完整版)

湖南科技大学 信息与电气工程学院 《课程设计报告》 题目:转速电流双闭环的数字式可逆直流调速系统的仿真与设计 专业:电气工程及其自动化 班级: 姓名: 学号: 指导教师:

任务书 题 目 转速电流双闭环的数字式可逆直流调速系统的仿真与设计 时 间安排 2013年下学期17,18周 目 的: 应用所学的交、直流调速系统的基本知识与工程设计方法,结合生产实际,确定系统的性能指标与实现方案,进行运动控制系统的初步设计。 应用计算机仿真技术,通过在MATLAB 软件上建立运动控制系统的数学模型,对控制系统进行性能仿真研究,掌握系统参数对系统性能的影响。 在原理设计与仿真研究的基础上,应用PROTEL 进行控制系统的印制板的设计,为毕业设计的综合运用奠定坚实的基础。 要 求:电动机能够实现可逆运行。要求静态无静差。动态过渡过程时间s T s 1.0≤,电流超调量%5%≤i σ,空载起动到额定转速时的转速超调量%30%≤n σ。 总体方案实现:主电路选用直流脉宽调速系统,控制系统选用转速、电流双闭环控制方案。主电路采用25JPF40电力二极管不可控整流,逆变器采用带续流二极管的功率开关管IGBT 构成H 型双极式控制可逆PWM 变换器。其中属于脉宽调速系统特有的部分主要是UPM 、逻辑延时环节DLD 、全控型绝缘栅双极性晶体管驱动器GD 和PWM 变换器。系统中设置了电流检测环节、电流调节器以及转速检测环节、转速调节器,构成了电流环和转速环,前者通过电流元件的反馈作用稳定电流,后者通过转速检测元件的反馈作用保持转速稳定,最终消除转速偏差。 从而使系统达到调节电流和转速的目的。该系统起动时,转速外环饱和不起作用,电流内环起主要作用,调节起动电流保持最大值,使转速线性变化,迅速达到给定值;稳态运行时,转速负反馈外环起主要作用,使转速随转速给定电压的变化而变化,电流内环跟随转速外环调节电机的电枢电流以平衡负载电流。 指导教师评语: 评分等级:( ) 指导教师签名:

单极性模式PWM逆变电路的计算机仿真

摘要 逆变电路是P W M控制技术最为重要的应用场合。这里在研究单相桥式P WM逆变电路的理论基础上,采用Ma t la b的可视化仿真工具S i mu lin k建立单相桥式单极性控制方式下P W M逆变电路的仿真模型,通过动态仿真,研究了调制深度、载波频率对输出电压、负载上电流的影响;并分析了输出电压、负载上电流的谐波特性。仿真结果表明建模的正确性,并证明了该模型具有快捷、灵活、方便、直观等一系列特点,从而为电力电子技术教学和研究中提供了一种较好的辅助工具。 关键词:Matlab/Simulink;PWM逆变电路;动态仿真;建模;

前言 PWM控制技术是逆变电路中应用最为广泛的技术,现在大量应用的逆变电路中,绝大部分都是PWM型逆变电路。为了对PWM型逆变电路进行分析,首先建立了逆变器控制所需的电路模型,采用IGBT作为开关器件,并对单相桥式电压型逆变电路和PWM控制电路的工作原理进行了分析,运用MATLAB中的SIMULINK对电路进行了仿真,给出了仿真波形,并运用MATLAB提供的powergui模块对仿真波形进行了FFT分析(谐波分析)。通过仿真分析表明,运用PWM控制技术可以很好的实现逆变电路的运行要求。

目录 摘要 (1) 前言 (2) 一逆变电路相关概述 (4) 1.1 .MATLAB的介绍 (4) 1.2 PWM技术 (4) 1.3PWM控制方法 (5) 二主电路工作原理说明 (10) 2.1 PWM控制的基本原理 (10) 三主电路设计的详细过程 (12) 四仿真模型的建立及各模块参数设置 (14) 4.1单极性PWM控制发生电路模型 (14) 4.2单极性SPWM方式下的单相桥式逆变电路 (16) 五、总结 (23) 参考文献 (24) 七、体会 (25)

直流PWMM可逆调速系统的设计与仿真

基础课程设计(论文) 直流PWM-M可逆调速系统的设计与仿真 专业:电气工程及其自动化 指导教师:刘雨楠 小组成员:陈慧婷(20114073166) 石文强(20114073113) 刘志鹏(20114073134) 张华国(20114073151) 信息技术学院电气工程系 2014年10月20日

摘要 当今,自动化控制系统已经在各行各业得到了广泛的应用和发展,而直流调速控制作为电气传动的主流在现代化生产中起着主要作用。本文主要研究直流调速系统,它主要由三部分组成,包括控制部分、功率部分、直流电动机。长期以来,直流电动机因其具有调节转速比较灵活、方法简单、易于大范围内平滑调速、控制性能好等特点,一直在传动领域占有统治地位。微机技术的快速发展,在控制领域得到广泛应用。本文对基于微机控制的双闭环可逆直流PWM调速系统进行了较深入的研究,从直流调速系统原理出发,逐步建立了双闭环直流PWM调速系统的数学模型,用微机硬件和软件发展的最新成果,探讨一个将微机和电力拖动控制相结合的新的控制方法,研究工作在对控制对象全面回顾的基础上,重点对控制部分展开研究,它包括对实现控制所需要的硬件和软件的探讨,控制策略和控制算法的探讨等内容。在硬件方面充分利用微机外设接口丰富,运算速度快的特点,采取软件和硬件相结合的措施,实现对转速、电流双闭环调速系统的控制。论文分析了系统工作原理和提高调速性能的方法,研究了IGBT模块应用中驱动、吸收、保护控制等关键技术.在微机控制方面,讨论了数字触发、数字测速、数字PWM调制器、双极式H型PWM变换电路、转速与电流控制器的原理,并给出了软、硬件实现方案。 关键词:直流可逆调速数字触发PWM 数字控制器

PWM-逆变器设计与仿真

PWM-逆变器设计与仿真

摘要 随着电力电子技术的不断发展,电力电子技术的各种装置在国民经济各行各业中得到了广泛应用。从电能转换的观点,电力电子的装置涵盖交流——直流变换、直流——交流变换、直流——直流变换、交流——交流变换。比如在可控电路直流电动机控制,可变直流电源等方面都得到了广泛的应用,而这些都是以逆变电路为核心。由于电力电子技术中有关电能的变换与控制过程,内容大多涉及电力电子各种装置的分析与大量的计算、电能变幻的波形分析、测量与绘制等,这些工作特别适合Matlab的使用。本次设计的题目是基于PWM逆变器的设计与仿真,所以在此次仿真就用的是Matlab软件,建立了基于Matlab的单相桥式SPWM逆变电路,采用IGBT作为开关器件,并对单相桥式电压型逆变电路和PWM控制电路的工作原理进行了分析,运用MATLAB中的simulink/simupowersystems对电路进行了仿真,给出了仿真波形,并运用MATLAB提供的powergui模块,分别用单极性SPWM和双极性SPWM的动态模型给出了仿真的实例与仿真结果,验证了模型的正确性,并展现了Matlab仿真具有的快捷,灵活,方便,直观的以及Matlab绘制的图形准确、清晰、优美的优点,从而进一步展示了Matlab的优越性。 关键字:PWM逆变器单极性SPWM 双极性SPWM MATLAB仿真

目录 摘要 绪论 (1) 第1章 MATLAB软件 (3) 1.1软件的介绍 (3) 1.2 电力电子电路的Matlab仿真 (4) 1.2.1实验系统总体设计 (5) 1.2.2电力电子电路Simulink仿真d特点 (5) 第2章逆变主电路的方案论证与选择 (6) 第3章 PWM逆变器的工作原理 (9) 3.1 PWM控制理论基础 (9) 3.1.1面积等效原理 (9) 3.2 PWM逆变电路及其控制方法 (11) 3.2.1计算法…………………………………………………… 11 3.2.2调制法…………………………………………………… 11 3.2.3 SPWM控制方式………………………………………… 15 第4章单相桥式PWM逆变器的仿真 (18) 4.1单相桥式PWM逆变器调制电路的Simulink模型 (18) 4.1.1单极性SPWM仿真模型图 (18)

单相桥式PWM逆变电路设计

指导教师评定成绩: 审定成绩: 重庆邮电大学 自动化学院 综合设计报告 设计题目:单相桥式PWM逆变电路设计 单位(二级学院):自动化学院 学生姓名:梁勇 专业:电气工程与自动化 班级: 0830702 学号: 07350225 指导教师:罗萍 设计时间:2010年10月 重庆邮电大学自动化学院制 目录 一、课程设计任务 (2) 二、SPWM逆变器的工作原理 (2) 1.工作原理 (3) 2.控制方式 (4) 3.单片机电源与程序下载模块 (7)

4.正弦脉宽调制的调制算法 (8) 5.基于STC系列单片机的SPWM波形实现 (11) 三、总结 (14) 四、心得体会 (15) 五、附录: (17) 1.程序 (17) 2.模拟电路图 (19) 3.电路图 (22) 摘要: 单片机控制逆变电路,以逆变器为主要元件,稳压、稳频输出的电源保护设备。采用面积等效的SPWM波,又单片机为主导,输出三角波和正弦波再由这两个波相叠加输出spwm波来控制逆变电路的触发,使其把直流编程频率可变的交流电 关键字:单片机逆变电源正弦波脉冲触发 单相桥式PWM逆变电路设计 一、课程设计任务 对单相桥式pwm逆变电路的主电路及控制电路进行设计,参数要求如下:直流电压为12 V,L=1mH,要求频率可调,输出为5V的正弦交流电。 设计要求:1.理论设计:了解掌握单相桥式PWM逆变电路的工作原理,设计单相桥式PWM逆变电路的主电路和控制电路。包括: IGBT电流,电压额定的选择 驱动电路的设计 画出完整的主电路原理图和控制原理图

列出主电路所用元器件的明细表 二、SPWM逆变器的工作原理 由于期望的逆变器输出是一个正弦电压波形,可以把一个正弦半波分作N 等分。然后把每一等分的正弦曲线与横轴所包围的面积都用个与此面积相等的等高矩形脉冲来代替,矩形脉冲的中点与正弦波每一等分的中点重合。这样,由N 个等幅不等宽的矩形脉冲所组成的波形为正弦的半周等效。同样,正弦波的负半周也可用相同的方法来等效。 这一系列脉冲波形就是所期望的逆变器输出SPWM波形。由于各脉冲的幅值相等,所以逆变器可由恒定的直流电源供电,逆变器输出脉冲的幅值就是整流器的输出电压。当逆变器各开关器件都是在理想状态下工作时,驱动相应开关器件的信号也应为与形状相似的一系列脉冲波形,这是很容易推断出来的。 从理论上讲,这一系列脉冲波形的宽度可以严格地用计算方法求得,作为控制逆变器中各开关器件通断的依据。但较为实用的办法是引用通信技术中的“调制”这一概念,以所期望的波形(在这里是正弦波)作为调制波(ModulationWave ),而受它调制的信号称为载波(Carrier Wave )。在SPWM中常用等腰三角波作为载波,因为等腰三角波是上下宽度线性对称变化的波形,当它与任何一个光滑的曲线相交时,在交点的时刻控制开关器件的通断,即可得到一组等幅而脉冲宽度正比于该曲线函数值的矩形脉冲,这正是SPWM所需要的结果。 1.工作原理 图2-4是SPWM变频器的主电路,图中VTl~VT6是逆变器的六个功率开关器件(在这里画的是IGBT),各由一个续流二极管反并联,整个逆变器由恒值直流电压U供电。图2-5是它的控制电路,一组三相对称的正弦参考电压信号由参考信号发生器提供,其频率决定逆变器输出的基波频率,应在所要求的输出频率范围内可调。参考信号的幅值也可在一定范围内变化,决定输出电压的大小。三角载波信号C U是共用的,分别与每相参考电压比较后,给出“正”或“零”的 饱和输出,产生SPWM脉冲序列波 ,, da db dc U U U 作为逆变器功率开关器件的 驱动控制信号。

PWM_逆变器设计与仿真

摘要 随着电力电子技术的不断发展,电力电子技术的各种装置在国民经济各行各业中得到了广泛应用。从电能转换的观点,电力电子的装置涵盖交流——直流变换、直流——交流变换、直流——直流变换、交流——交流变换。比如在可控电路直流电动机控制,可变直流电源等方面都得到了广泛的应用,而这些都是以逆变电路为核心。由于电力电子技术中有关电能的变换与控制过程,内容大多涉及电力电子各种装置的分析与大量的计算、电能变幻的波形分析、测量与绘制等,这些工作特别适合Matlab的使用。本次设计的题目是基于PWM逆变器的设计与仿真,所以在此次仿真就用的是Matlab软件,建立了基于Matlab的单相桥式SPWM逆变电路,采用IGBT作为开关器件,并对单相桥式电压型逆变电路和PWM控制电路的工作原理进行了分析,运用MATLAB中的simulink/simupowersystems对电路进行了仿真,给出了仿真波形,并运用MATLAB提供的powergui模块,分别用单极性SPWM和双极性SPWM的动态模型给出了仿真的实例与仿真结果,验证了模型的正确性,并展现了Matlab仿真具有的快捷,灵活,方便,直观的以及Matlab绘制的图形准确、清晰、优美的优点,从而进一步展示了Matlab的优越性。 关键字:PWM逆变器单极性SPWM 双极性SPWM MATLAB仿真

目录 摘要 绪论 (1) 第1章 MATLAB软件 (3) 1.1软件的介绍 (3) 1.2 电力电子电路的Matlab仿真 (4) 1.2.1实验系统总体设计 (5) 1.2.2电力电子电路Simulink仿真d特点 (5) 第2章逆变主电路的方案论证与选择 (6) 第3章 PWM逆变器的工作原理 (9) 3.1 PWM控制理论基础 (9) 3.1.1面积等效原理 (9) 3.2 PWM逆变电路及其控制方法 (11) 3.2.1计算法 (11) 3.2.2调制法 (11) 3.2.3 SPWM控制方式 (15) 第4章单相桥式PWM逆变器的仿真 (18) 4.1单相桥式PWM逆变器调制电路的Simulink模型 (18) 4.1.1单极性SPWM仿真模型图 (18) 4.1.2 双极性SPWM仿真模型图 (19) 4.2 仿真参数的设定及仿真图的分析 (19) 4.2.1 单极性SPWM的仿真及分析 (19)

H桥可逆直流调速系统设计与实验(1)

燕山大学 CDIO课程项目研究报告 项目名称: H桥可逆直流调速系统设计与实验 学院(系):电气工程学院 年级专业: 学号: 学生: 指导教师: 日期: 2014年6月3日

目录 前言 (1) 摘要 (2) 第一章调速系统总体方案设计 (3) 1.1 转速、电流双闭环调速系统的组成 (3) 1.2.稳态结构图和静特 (4) 1.2.1各变量的稳态工作点和稳态参数计算 (6) 1.3双闭环脉宽调速系统的动态性能 (7) 1.3.1动态数学模型 (7) 1.3.2起动过程分析 (7) 1.3.3 动态性能和两个调节器的作用 (8) 第二章 H桥可逆直流调速电源及保护系统设计 (11) 第三章调节器的选型及参数设计 (13) 3.1电流环的设计 (13) 3.2速度环的设计 (15) 第四章Matlab/Simulink仿真 (17) 第五章实物制作 (20) 第六章性能测试 (22) 6.1 SG3525性能测试 (22) 6.2 开环系统调试 (23) 总结 (26) 参考文献 (26)

前言 随着交流调速的迅速发展,交流调速技术越趋成熟,以及交流电动机的经济性和易维护性,使交流调速广泛受到用户的欢迎。但是直流电动机调速系统以其优良的调速性能仍有广阔的市场,并且建立在反馈控制理论基础上的直流调速原理也是交流调速控制的基础。采用转速负反馈和PI调节器的单闭环调速系统可以在保证系统稳定的条件下实现转速无静差。但如果对系统的动态性能要求较高,如要求快速起制动、突加负载动态速降时,单闭环系统就难以满足。这主要是因为在单闭环系统中不能完全按照需要来控制动态过程中的电流或转矩。在单闭环系统中,只有电流截至负反馈环节是专门用来控制电流的,但它只是在超过临界电流值以后,靠强烈的负反馈作用限制电流的冲击,并不能很理想的控制电流的动态波形。实际工作中,在电机最大电流受限的条件下,充分利用电机的允许过载能力,最好是在过渡过程中始终保持电流转矩为允许最大值,使电力拖动系统尽可能用最大的加速度启动,到达稳定转速后,又让电流立即降下来,使转矩马上与负载相平衡,从而转入稳态运行。实际上,由于主电路电感的作用,电流不能突跳,为了实现在允许条件下最快启动,关键是要获得一段使电流保持为最大值的恒流过程,按照反馈控制规律,电流负反馈就能得到近似的恒流过程。问题是希望在启动过程中只有电流负反馈,而不能让它和转速负反馈同时加到一个调节器的输入端,到达稳态转速后,又希望只要转速负反馈,不要电流负反馈发挥主作用,因此需采用双闭环直流调速系统。这样就能做到既存在转速和电流两种负反馈作用又能使它们作用在不同的阶段。 项目预期成果: 设计一个双闭环可逆直流调速系统,实现电流超调量小于等于5%;转速超调量小于等于5%;过渡过程时间小于等于0.1s的无静差调速系统。 项目分工:参数计算: 仿真: 电路设计: 电路焊接: PPT答辩: 摘要

pwm逆变电路仿真

题目如下: 使用IGBT完成逆变电路仿真,直流电压300V。阻感负载,电阻值1Ω,电感值3mH。调制深度m=0.5。输出基波频率50Hz,载波频率为基频15倍,即750Hz。分别按下列要求仿真输入输出波形,进行谐波傅里叶分析。绘制主要器件的工作波形。 1,单极性SPWM方式下的单相全桥逆变电路仿真,及双极性SPWM方式下的单相全桥逆变电路仿真。对比两种调制方式的不同。 题目中需要做单极性与双极型SPWM的单相全桥逆变电路仿真,那么首先了解一下SPWM的原理。 SPWM控制的基本原理 PWM(Pulse Width Modulation)控制就是对脉冲的宽度进行调制的技术。即通过对一系列脉冲的宽度进行调制,来等效地获得所需要的波形。PWM控制技术在逆变电路中的应用最为广泛,对逆变电路的影响也最为深刻,PWM控制技术在逆变电路中的应用也最具代表性。面积等效原理是PWM控制技术的重要理论基础,即在采样控制中,冲量相等而形状不同的窄脉冲加在具有惯性的同一环节上时,其效果基本相同。其中,冲量指的是窄脉冲的面积;效果基本相同是指环节的输出响应波形基本相同。如图1.1所示,三个窄脉冲形状不同,但是它们的面积都等于1, 图1.1 SPWM控制如下:

如图1-2是单相PWM逆变电路VT1~VT4是四个IGBT管,VD1~ VD4是四个二极管,调制电路作为控制电路控制IGBT导通与关断来得到所需要的波形。 图1-2 计算法和调制法: SPWM逆变电路主要有两种控制方法:计算法和调制法。计算法是将PWM脉冲宽度的波形计算出来,显然这种方法是很繁琐的,不采用。调制法是用一个三角波作为载波,将一正弦波作为调制信号进行调制。我们采用调制法。因为等腰三角波上下宽度与高度呈线性关系且左右对称,当它与一个平缓变化的正弦调制信号波相交时,在交点时刻就可以得到宽度正比于正弦信号波幅度的脉冲 单极性与双极型的控制方法如下: 1单极性PWM控制方式: 如图1-3所示,在u r和u c的交点时刻控制IGBT的通断 u r正半周,VT1保持通,VT2保持断 . 当u r>u c时使VT4通,VT3断,u o=u d当u r

三相桥式PWM逆变电路

《电力电子技术》课程设计说明书三相桥式PWM逆变电路的设计院、部:电气与信息工程 学生姓名:刘远治 指导教师:桂友超职称副教授 专业:电气工程及其自动化 班级:电气本1104班 完成时间:2014年06月

摘要 本文设计了一个三相桥式PWM控制的逆变电路。PWM控制就是对脉冲的宽度进行调制的技术,如果脉冲的宽度按正弦规律变化而和正弦波等效的PWM波形,也称为SPWM波形。该设计包括主电路、驱动电路、SPWM信号产生电路、过流保护等方面的设计。该逆变器主电路采用的开关器件是IGBT;如需实物制作,驱动电路可采用现在大功率MOSFET、IGBT专用驱动芯片IR2110;PWM信号产生电路可采用CD4538芯片控制产生。 关键词:三相桥式;主电路;IR2110;CD4538

Abstract This paper designed a three-phase PWM controlled inverter bridge circuit. PWM control is on the pulse width modulation technology, if the pulse width changes according to sine law and the sine wave PWM waveform equivalent, also known as SPWM waveform. The design includes the main circuit, driver circuit, SPWM signal generation circuit, over-current protection and other aspects of design. The inverter main circuit uses IGBT; If you need make it real, driver circuit can use high-power MOSFET, IGBT dedicated driver chip IR2110; PWM signal generation circuit controlled by the CD4538 chip produced。 Key words three-phase bridge; main circuit; IR2110; CD4538

逻辑无环流直流可逆调速系统设计

; 课程设计任务书 学生姓名:苌城专业班级:自动化0706 指导教师:饶浩彬工作单位:自动化学院 题目: 逻辑无环流直流可逆调速系统设计 初始条件: 1.技术数据: 晶闸管整流装置:R rec=Ω,K s=40。 / 负载电机额定数据:P N=,U N=230V,I N=37A,n N=1450r/min,R a=Ω,I fn=1.14A, GD2= 系统主电路:T m=,T l= 2.技术指标 稳态指标:无静差(静差率s≤2, 调速范围D≥10) 动态指标:电流超调量:≤5%,起动到额定转速时的超调量:≤8%,(按退饱和方式计算) 要求完成的主要任务: ? 1.技术要求: (1) 该调速系统能进行平滑的速度调节,负载电机可逆运行,具有较宽的调速范围(D≥10),系统在工作范围内能稳定工作 (2) 系统静特性良好,无静差(静差率s≤2) (3) 动态性能指标:转速超调量δn<8%,电流超调量δi<5%,动态速降Δn≤10%,调速系统的过渡过程时间(调节时间)t s≤1s (4) 系统在5%负载以上变化的运行范围内电流连续 (5) 调速系统中设置有过电压、过电流等保护,并且有制动措施

2.设计内容: ! (1) 根据题目的技术要求,分析论证并确定主电路的结构型式和闭环调速系统的组成,画出系统组成的原理框图 (2) 调速系统主电路元部件的确定及其参数计算(包括有变压器、电力电子器件、平波电抗器与保护电路等) (3) 动态设计计算:根据技术要求,对系统进行动态校正,确定ASR调节器与ACR调节器的结构型式及进行参数计算,使调速系统工作稳定,并满足动态性能指标的要求 (4) 绘制逻辑无环流直流可逆调速系统的电气原理总图(要求计算机绘图) (5) 整理设计数据资料,课程设计总结,撰写设计计算说明书 时间安排: 课程设计时间为一周半,共分为三个阶段: (1): (2)复习有关知识,查阅有关资料,确定设计方案。约占总时间的20% (3)根据技术指标及技术要求,完成设计计算。约占总时间的40% (4)完成设计和文档整理。约占总时间的40% 指导教师签名:年月日 系主任(或责任教师)签名:年月日 】

三相桥式PWM逆变电路

湘潭大学 课程设计报告书题目:三相桥式PWM逆变电路设计 学院信息工程学院 专业自动化 学生 同组成员 指导教师 课程编号 课程学分 起始日期

目录 一、课题背景 (1) 二、三相桥式SPWM逆变器的设计内容及要求 (2) 三、SPWM逆变器的工作原理 (3) 1.工作原理 (4) 2.控制方式 (5) 3.正弦脉宽调制的算法 (8) 四、MATLAB仿真分析 (17) 五、电路设计 (11) 1.主电路设计 (11) 2.控制电路设计 (12) 3.保护电路设计 (14) 4.驱动电路设计 (15) 六、实验总结 (21) 附录 (22) 参考文献 (23)

三相桥式SPWM逆变电路设计 一、课题背景 随着电力电子技术的飞速发展,正弦波输出变压变频电源已被广泛应用在各个领域中,与此同时对变压变频电源的输出电压波形质量也提出了越来越高的要求。对逆变器输出波形质量的要求主要包括两个方面:一是稳态精度高;二是动态性能好。因此,研究开发既简单又具有优良动、静态性能的逆变器控制策略,已成为电力电子领域的研究热点之一。 在现有的正弦波输出变压变频电源产品中,为了得到SPWM波,一般都采用双极性调制技术。该调制方法的最大缺点是它的6个功率管都工作在较高频率(载波频率),从而产生了较大的开关损耗,开关频率越高,损耗越大。本实验针对正弦波输出变压变频电源SPWM 调制方式及数字化控制策略进行了研究,以SG3525为主控芯片,以期得到一种较理想的调制方法,实现逆变电源变压、变频输出。 正弦逆变电源作为一种可将直流电能有效地转换为交流电能的电能变换装 置被广泛地应用于国民经济生产生活中 ,其中有:针对计算机等重要负载进行断电保护的交流不间断电源 UPS (Uninterruptle Power Supply) ;针对交流异步电动机变频调速控制的变频调速器;针对智能楼宇消防与安防的应急电源 EPS ( Emergence Power Supply) ;针对船舶工业用电的岸电电源 SPS(Shore Power Supply) ;还有针对风力发电、太阳能发电等而开发的特种逆变电源等等.随着控制理论的发展与电力电子器件的不断革新 ,特别是以绝缘栅极双极型晶体管 IGBT( Insulated Gate Bipolar Transistor)为代表的自关断可控型功率半导体器件出现 ,大大简化了正弦逆变电源的换相问题 ,为各种 PWM 型逆变控制技术的实现提供了新的实现方法 ,从而进一步简化了正弦逆变系统的结构与控制. 电力电子器件的发展经历了晶闸管(SCR)、可关断晶闸管(GTO)、晶体管(BJT)、绝缘栅晶体管(IGBT)等阶段。目前正向着大容量、高频率、易驱动、低损耗、模块化、复合化方向发展,与其他电力电子器件相比,IGBT具有高可靠性、驱动简单、保护容易、不用缓冲电路和开关频率高等特点,为了达到这些高性能,采用了许多用于集成电路的工艺技术,如外延技术、离子注入、精细光刻等。 IGBT最大的优点是无论在导通状态还是短路状态都可以承受电流冲击。它的并联不成问题,由于本身的关断延迟很短,其串联也容易。尽管IGBT模块在大功率应用中非常广泛,但其有限的负载循环次数使其可靠性成了问题,其主要失效机理是阴极引线焊点开路和焊点较低的疲劳强度,另外,绝缘材料的缺陷也是一个问题。

数字式PWM可逆直流调速系统

一、设计要求: 1、调速范围D=20,静差率S ≤5%。再整个调速范围内要求转速无极、平滑可调; 2、动态性能指标:电流环超调量 δ≤5%: 空载启动到额定转速时转速超量δ≤10% 直流电动机的参数: 直流电动机 型号(KW ) Z2—32 额定容量(KW ) 2.2 额定电压(V ) 220 额定电流(A ) 12.5 最大电流(A ) 18.75 额定转速(rpm ) 1500 额定励磁(A ) 0.61 GD 2 (kg m 2 ) 0.105 电动机电枢电阻RA () 1.3 电动机电枢电感la (Mh ) 10 名称 数值 整流侧内阻Rn (Ω) 0.037 整流变压器漏感Lt (mH ) 0.24 电抗器直流电阻Rh (Ω) 0.024 电抗器电感Lh (mh ) 3.2 2.1控制系统的整体设计 直流双闭环调速系统的结构图如图1所示,转速调节器与电流调节器串极联结,转速调节器的输出作为电流调节器的输入,再用电流调节器的输出去控制PWM 装置。其中脉宽调制变换器的作用是:用脉冲宽度调制的方法,把恒定的直流电源电压调制成频率一定、宽度可变的脉冲电压序列,从而可以改变平均输出电压的大小,以调节电机转速,达到设计要求。总体方案简化图如图1所示。 ASR ACR U *n + - U U i U * i + - U c TA V M + U d I d UPE L - M

2.2桥式可逆PWM变换器的工作原理 脉宽调制器的作用是:用脉冲宽度调制的方法,把恒定的直流电源电压调制成频率一定宽度可变的脉冲电压序列,从而平均输出电压的大小,以调节电机转速。桥式可逆PWM 变换器电路如图2所示。这是电动机M两端电压的极性随开关器件驱动电压的极性变化而变化。 图2 桥式可逆PWM变换器电路

PWM逆变器Matlab仿真解析

课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目: PWM逆变器Matlab仿真 初始条件: 输入110V直流电压; 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1、得到输出为220V、50Hz单相交流电; 2、采用PWM斩波控制技术; 3、建立Matlab仿真模型; 4、得到实验结果。 时间安排: 课程设计时间为两周,将其分为三个阶段。 第一阶段:复习有关知识,阅读课程设计指导书,搞懂原理,并准备收集设计资料,此阶段约占总时间的20%。 第二阶段:根据设计的技术指标要求选择方案,设计计算。 第三阶段:完成设计和文档整理,约占总时间的40%。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 摘要 (1) 1设计方案的选择与论证 (2) 2逆变主电路设计 (2) 2.1逆变电路原理及相关概念 (2) 2.2逆变电路的方案论证及选择 (3) 2.3建立单相桥式逆变电路的S IMULINK的仿真模型 (4) 2.3.1模型假设 (5) 2.3.2利用MATLAB/Simulink进行电路仿真 (5) 3正弦脉宽调制(SPWM)原理及控制方法的SIMULINK仿真 (6) 3.1正弦脉冲宽度调制(SPWM)原理 (6) 3.2SPWM波的控制方法 (7) 3.2.1双极性SPWM控制原理及Simulink仿真 (7) 3.2.2单极性SPWM控制原理及Simulink仿真 (9) 4升压电路的分析论证及仿真 (11) 4.1B OOST电路工作原理 (11) 4.2B OOST电路的S IMULINK仿真 (12) 5滤波器设计 (13) 6 PWM逆变器总体模型 (15) 7心得体会 (18) 参考文献 (19)

单相桥式逆变电路设计

《电力电子技术》课程设计说明书单相桥式逆变电路的设计 院、部:电气与信息工程学院 学生姓名: 指导教师:桂友超职称副教授 专业:电气工程及其自动化 班级: 完成时间: 2014年6月

电力电子技术》课程设计任务书 一、课程设计的目的 通过课程设计达到以下目的 1、加强和巩固所学的知识,加深对理论知识的理解; 2、培养学生文献检索的能力,特别是如何利用Internet检索需要的文献资料; 3、培养学生综合分析问题、发现问题和解决问题的能力; 4、培养学生综合运用知识的能力和工程设计能力; 5、培养学生运用仿真软件的能力和方法; 6、培养学生科技写作水平。 二、课程设计的主要内容 1、关于本课程学习情况简述 2、主电路的设计、原理分析和器件的选择; 3、控制电路的设计; 4、保护电路的设计; 5、利用MATLAB软件对自己的设计进行仿真。 三、课程设计的要求 1、通过查阅资料,确定自己的设计方案; 2、按学号尾数定课题,即课题一的学号尾数为1,以此类推。自拟参数不能雷同; 3、要求最后图纸是标准的CAD图; 4、课程设计在第18周五前交上来。 四、课题 1、课题一:单相桥式可控整流电路的设计 已知单相交流输入交流电压220V,负载自拟,要求整流电压在0~100V连续可调,其它性能指标自定。 2、课题二:三相半波可控整流电路的设计 已知三相交流输入线电压380V,要求整流电压在0~100V连续可调,负载自拟,其它性能指标自定。 3、课题三:三相桥式可控整流电路的设计

已知三相交流输入线电压380V,要求整流电压在0~100V连续可调,负载自拟,其它性能指标自定。 4、课题四:直流降压斩波电路的设计 已知直流输入电压200V,负载自拟,要求输出电压在50~100V可调,其它性能指标自定。 5、课题五:直流升压斩波电路的设计 已知直流输入电压200V,负载自拟,要求输出电压在300~400V可调,其它性能指标自定。 6、课题六:直流升降压斩波电路的设计 已知直流输入电压200V,负载自拟,要求输出电压在100~300V连续可调,其它性能指标自定。 7、课题七:单相桥式逆变电路的设计 已知直流输入电压100V,负载自拟,要求交流输出电压频率范围在30~60HZ,电压在30~50V范围可调,其它性能指标自定。 8、课题八:单相交流调压电路设计 已知单相交流输入交流电压220V,负载自拟,要求输出交流电压在0~220V 可调,其它性能指标自定。 9、课题九:三相交流调压电路的设计 已知三相交流输入交流线电压380V,负载自拟,要求输出交流电压在0~200V可调,其它性能指标自定。 10、课题十:三相桥式逆变电路的设计 已知直流输入电压100V,负载自拟,要求交流输出电压频率范围在30~60HZ,电压在30~50V范围可调,其它性能指标自定。 注意:若已经按上课时我讲解的内容和安排的课题进行了设计,则不必再更改。 五、格式要求 1、格式严格按照教务处规定的毕业设计格式; 2、文档内容: 1)绪言:主要介绍对本课程学习情况;本设计内容的掌握情况;拟出设计任务书。 2)主电路设计: (1)电路原理图:用CAD绘制电路; (2)原理分析:用自己的语言;

单闭环可逆直流调速系统

运动控制系统课程设计课题:单闭环可逆直流调速系统 系别:电气与信息工程学院 专业:自动化 姓名: 学号: 成绩: 河南城建学院 2015年12月31日

目录 一、设计目的 (2) 二、设计任务及要求 (2) 三、总体方案设计 (2) 四、硬件电路设计 (3) 4.1.1 直流调速系统稳态性能分析 (3) 4.1.2静态性能指标 (4) 4.1.3 基于稳态性能指标闭环直流调速系统设计 (5) 4.1.4 直流调速系统动态性能分析 (6) 4.1.5基于动态性能指标及系统动态稳定性反馈控制闭环直流调速系统设计 (9) 4.2、控制系统动、静态数学模型的建立 (10) 4.2.1 双极性控制的桥式可逆PWM变换器的工作原理 (10) 4.2.2桥式可逆PWM变换器 (10) 五、计算机仿真 (13) 六、设计总结 (14) 参考文献 (16)

一、设计目的 在电力拖动系统中,调节电压的直流调速系统是应用最为广泛的一种调速方 法,除了利用晶闸管获得可控的直流电源外,还可以利用其他可控的电力电子器 件,采用脉冲调制的方法,直接将恒定的直流电压调制为极性可变、大小可调的 直流电压,用以实现直流电机电枢电压的平滑调节,构成脉宽直流调速系统。 本设计采用了PWM 脉宽调制的方法,完成了带转速负反馈的单闭环直流调 速系统的设计及实验。本设计重点介绍了单闭环可逆直流调速系统的总体结构、 设计原理及参数优化设计方法,提供了通过matlab 仿真进行实验效果预分析和 校正处理,得到较为理想结果后进行实际操作和调试的实验思路。 二、设计任务及要求 本次运动控制课程设计要求自拟控制系统性能指标的要求(调速范围、静差 率、超调量、动态速降、调节时间等)设计系统原理图,完成元器件的选择,选 择调节器并计算调节器参数,并进行仿真或实验验证系统合理性。 为了进行定量的计算,选一组电机参数:功率kw P N 18=,额度电压 v U N 220=,额定电流A I N 94=,额定转速min /1000r n N =, 电枢电阻Ω=15.0a R ,主电路总电阻Ω=45.0R ,40=s k 。最大给定电压V U nm 15*=,整定电流反馈电压 V U im 10=.要求系统调速范围20=D ,静差率%10≤,N dbt I I 5.1=,N dcr I I 1.1=。 三、总体方案设计 为了提高直流系统的动静态性能指标,通常采用单闭环控制系统。对调速系 统的要求不高的场合,采用单闭环系统,而对调速系统指标要求高的采用多闭环 系统。按反馈的方式不同可分为转速反馈、电流反馈、电压反馈等。在单闭环系 统中,转速单闭环运用较多。在本设计中,转速单闭环实验是将反应转速变化的

单相正弦波PWM逆变电路仿真报告(Simulink)

单相正弦波PWM逆变电路仿真报告 1. 仿真目的: 通过对单相SPWM逆变电路不同控制方式的仿真研究,进一步理解SPWM控制信号的产生原理,单极性、双极性控制方式的原理及不同、载波比与调制深度不同对逆变电路输出波形的影响等。 2. 仿真原理: 单相桥式逆变电路 图 1 所示为单相桥式逆变电路的框图,设负载为阻感负载。在桥式逆变电路中,桥臂的上下两个开关器件轮流导通,即工作时V1 和V2 通断状态互补,V3 和V4 的通断状态互补。下面将就单极性及双极性两种不同的控制方法进行分析。 图1 单相桥式PWM逆变电路 不同控制方式原理 单极性控制方式 调制信号u r 为正弦波,载波u c 在u r 的正半周为正极性的三角波,在u r 的负 半周为负极性的三角波。在u r 的正半周,V1保持通态,V2保持断态,在u r >u c

时使V4导通,V3关断,u 0=U d ; 在u r u c 时使V4导通,V3关断,u =0。这样就得到了SPWM波形u 。 图2 单极性PWM控制波形 双极性控制方式 采用双极性方式时,在u r 的半个周期内,三角波不再是单极性的,而是有 正有负,所得的PWM波也是有正有负。在u r 的一个周期内,输出的PWM波只有 两种电平,而不像单极性控制时还有零电平。在u r 的正负半周,对各开关 器件的控制规律相同。即u r >u c 时,给V1和V4导通信号,给V2和V3以关断信 号,如i 0>0,则V1和V4通,如i <0,则VD1和VD4通,不管哪种情况都是输出 电压u 0=U d 。u r 0,则VD2和VD3通,不管哪种情况都是输出电压u =-U d 。

单相桥式整流逆变电路的设计及仿真

单相桥式整流逆变电路的设计及仿真 辽宁工业大学 电力电子技术课程设计(论文)题目:单相桥式整流/逆变电路的设计及仿真 院(系):电气工程学院 专业班级:自动化111班 学号: 110302030 学生姓名: 指导教师:(签字) 起止时间:2013.12.30-2014.1.10

课程设计(论文)任务及评语 院(系):电气工程学院教研室:自动化 注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算

摘要 整流电路是把交流电转换为直流电的电路。大多数整流电路由变压器、整流主电路和滤波器等组成。逆变电路是把直流电变成交流电的电路,与整流电路相对应。无源逆变电路则是将交流侧直接和负载连接的电路。 此次设计的单相桥式整流电路是利用二极管来连接成“桥”式结构,达到电能的充分利用,是使用最多的一种整流电路。无源逆变是指逆变器的交流侧不与电网连接,而是直接接到负载,即将直流电逆变为某一频率或可变频率的交流电供给负载。 关键词:交直流转换;桥式整流;无源逆变电路;

目录 第1章绪论 (1) 第2章课程设计的方案 (2) 2.1概述 (2) 2.2系统组成方案 (2) 2.2.1单相桥式整流电路的结构 (2) 2.2.2单相桥式无源逆变电路的结构 (3) 第3章主电路设计 (4) 3.1单相桥式整流主电路 (4) 3.1.1单相桥式整流主电路图 (4) 3.1.2工作原理 (4) 3.2单相桥式无源逆变电路主电路 (5) 3.2.1单相桥式整流电路主电路图 (5) 3.2.2工作原理 (6) 第4章控制电路设计 (7) 4.1单相桥式整流电路控制 (7) 4.1.1触发电路 (7) 4.1.2保护电路 (8) 4.2单相桥式无源逆变电路控制电路 (9) 4.2.1驱动电路 (9) 4.2.2保护电路 (10) 第5章 MATLAB仿真 (12) 5.1单相桥式整流电路的仿真 (12) 5.2单相桥式无源逆变电路的仿真 (15) 第6章课程设计总结 (17) 参考文献 (18)

直流电动机可逆调速系统设计 (1)

摘要 本次课程设计直流电机可逆调速系统利用的是双闭环调速系统,因其具有调速范围广、精度高、动态性能好和易于控制等优点,所以在电气传动系统中得到了广泛的应用。直流双闭环调速系统中设置了两个调节器, 即转速调节器(ASR)和电流调节器(ACR), 分别调节转速和电流。本文对直流双闭环调速系统的设计进行了分析,对直流双闭环调速系统的原理进行了一些说明,介绍了其主电路、检测电路的设计,介绍了电流调节器和转速调节器的设计以及系统中一些参数的计算。 关键词:双闭环,可逆调速,参数计算,调速器。

目录 1. 设计概述 (1) 1.1 设计意义及要求 (1) 1.2 方案分析 (1) 1.2.1 可逆调速方案 (1) 1.2.2 控制方案的选择 (2) 2.系统组成及原理 (4) 3.1设计主电路图 (7) 3.2系统主电路设计 (8) 3.3 保护电路设计 (8) 3.3.1 过电压保护设计 (8) 3.3.2 过电流保护设计 (9) 3.4 转速、电流调节器的设计 (9) 3.4.1电流调节器 (10) 3.4.2 转速调节器 (10) 3.5 检测电路设计 (11) 3.5.1 电流检测电路 (11) 3.5.2 转速检测电路 (11) 3.6 触发电路设计 (12) 4. 主要参数计算 (14) 4.1 变压器参数计算 (14) 4.2 电抗器参数计算 (14) 4.3 晶闸管参数 (14) 5设计心得 (15) 6参考文献 (16)

直流电动机可逆调速系统设计 1.设计概述 1.1设计意义及要求 直流电动机具有良好的起、制动性能,宜于在大范围内实现平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。从控制的角度来看,直流拖动控制系统又是交流拖动控制系统的基础,所以应该首先掌握直流拖动控制系统。本次设计最终的要求是能够是电机工作在电动和制动状态,并且能够对电机进行调速,通过一定的设计,对整个电路的各个器件参数进行一定的计算,由此得到各个器件的性质特性。 1.2 方案分析 1.2.1 可逆调速方案 使电机能够四象限运行的方法有很多,可以改变直流电机电枢两端电压的方向,可以改变直流电机励磁电流的方向等等,即电枢电压反接法和电枢励磁反接法。 电枢励磁反接方法需要的晶闸管功率小,适用于被控电机容量很小的情况,励磁电路中需要串接很大的电感,调速时,电机响应速度较慢,且需要设计很复杂的电路,故在设计中不采用这种方式。 电枢电压反接法可以应用在电机容量很的情况下,且控制电路相对简单,电枢反接反向过程很快,在实际应用中常常采用,本设计中采用该方法。 电枢电压反接电路可以采用两组晶闸管反并联的方式,两组晶闸管分别由不同的驱动电路驱动,可以做到互不干扰。 图1-1 两组晶闸管反并联示意图

相关文档
最新文档