220开核

220开核
220开核

“开核”无疑是不少AMD处理器极其吸引人的一大要素,长期关注开核的朋友都知道,Athlon X2 5000算得上之前最热门的开核处理器,可由一颗Athlon X2摇身一变成为更高档的Phenom II X4,用户只需花上不到400元就可得到拥有千元级别性能的四核处理器,其性价比不言而喻。

虽然现在Athlon X2 5000已经逐渐退出市场,但最近出现的新款AthlonII X2 220(参考售价320元),同样可能开核变身为Phenom II X4(包开核的AthlonII X2 220参考售价390元),大有取代Athlon X2 5000之势,一时引起用户们的广泛关注。我们硬派网评测室为了在第一时间让大家了解到AthlonII X2 220开核前/后的性能水平,立刻找来一颗可开核的AthlonII X2 220,希望通过测试将这款处理器的具体表现展示给大家。

新一代“开核代言人”AthlonII X2 220

在测试之前我们先来看一看AthlonII X2 220的基本规格,由CPUZ截图显示,AthlonII X2 220默认频率为2.8GHz,与AthlonII X2 240相同,但二级缓存只有1MB,至于指令集、接口、内存控制器类型等方面则完全相同。由这些规格也能推断出,AthlonII X2 220开核后等于变身成四核心的Phenom II X4 925。

AthlonII X2 220 CPUZ信息截图

既然是了解AthlonII X2 220的开核性能,那么开核前/后的对比自然最能体现出开核所带给用户的性能提升幅度,不过仅仅这么对比还不足以体现AthlonII X2 220开核前/后的性能水平,这就需要加入其它的处理器进行比较。上面已经说到AthlonII X2 220开核后实际就成为了一颗Phenom II X4 925,显然与Phenom II X4 925的对比必不可少。另外,现在能买到比AthlonII X2 220更高一级的CPU就是AthlonII X2 245(AthlonII X2 240已经退市),很多朋友肯定也想了解它们之间的性能差别,所以笔者也将AthlonII X2 245加入进来。

当然,AMD自己处理器之间的比较可能也还不够全面,为此我们还选择了Pentium E5300作为AthlonII X2 220开核前的比较对象,而Core i3 530则作为AthlonII X2 220开核后的比较对象。

现在,我们此次的对比成员都已确定,接下来就随笔者进入到实际测试中来了解AthlonII X2 220开核前后的性能差异,以及不同状态下的性能水平。

中国核废料处理

中国核废料处理 处置库选址 自从上个世纪90年代中国的第一座核电站———秦山核电站投产发电以来,中国核电事业在十几年间获得了飞速发展。根据来自核工业部门的最新资料,2002年中国核电总装机容量已达540万千瓦,预计到2005年,中国核电发电量将占全国总发电量的3%左右。随着我国核电站数量的增加,中国东部经济发达地区能源短缺的巨大压力得到了有效缓解,但这些核电站在发电的同时也产生了大量的核废料。目前我国核电站每年产生150吨具有高度放射性的核废料,预计到2010年这些核废料的积存量将达到1000吨。由于高度放射性核废料对环境与人体都有极大的危害性,中国百姓对于核电安全性的关注也日益增强。为了全面了解中国高放射性核废料处理的详细情况,记者来到了核工业北京地质研究院环保中心,对中国高放射性核废料处理项目负责人王驹博士进行了专访。几十年来,世界各国对高放射性核废料处理技术进行了广泛的研究,经过对各种方法评估比较后,深地质处置法成为最佳选择,即将高放射性核废料保存在深入地下几百米处的特殊处置库内。由于核废料的高度危险性,一旦处置库选址不当,将造成无法挽回的损失。因此核废料处置库选址必须非常慎重,需要综合考虑整个国家的经济发展布局、人口分布、交通设施、候选地的地质、水文和气候条件等因素。王驹博士告诉记者,一般来说,世界各国的核废料处置库都建在经济落后、人烟稀少的地区。那么中国的核废料处置库最终将建在哪里呢?当记者提出这个问题时,王驹博士起身走到办公室墙上的中国地图旁边,手指指向了位于中国西北部的一个地区,“这个地区叫北山,是我国高放射性核废料处置库的重点候选地之一”。谈到为什么选在这里,王驹博士用略带兴奋的语气说道,“北山的条件实在是太好了,这里是一片与海南省面积相当的戈壁滩,人烟非常稀少,整个地区人口不到1.2万人,可以说除了沙砾和枯黄的骆驼草以外,寂寞得连回声都没有。北山经济发展很落后,周围也没有什么矿产资源,建设核废料库对经济发展影响较小。这里气候条件也很理想,全年降雨量只有70毫米,而蒸发量却达3000毫米,因此地下水位很低,也就减少了放射性元素随地下水扩散的危险。北山还拥有便利的交通运输条件,库址距离铁路也就七八十公里。此外北山的地质条件非常优越,这里地处地壳运动稳定区,库址所在地有着完整的花岗岩体,而花岗岩是对付辐射的最好的…防护服?。国际原子能机构的专家们在北山进行考察之后称,北山是世界上最理想的核废料库址之一”。 保障十万年安全 当记者问到核废料处置库是否会对当地环境造成影响时,王驹博士信心十足地表示处置库绝不会对当地造成不良影响。他向记者介绍了高放射性核废料的处理过程。这些核废料首先要被制成玻璃化的固体,然后被装入可屏蔽辐射的金属罐中,最后人们将这些金属罐放入位于地下500—1000米的处置库内。由于核废料的半衰期从数万年到10万年不等,在选择处置库时必须确保其地质条件能够保障处置库至少能在10万年内安全。为了更好地消除记者的顾虑,王驹博士做了一个形象的对比,“为核电站提供核燃料的铀矿矿藏一般都蕴藏在断层较多、地质条件不稳定的地区,但是只要我们不开采它们,这些铀矿床并不会对地表环境造成什么影响。我们的核废料处置库建设在一个没有地质断层,地壳运动稳定的地方,深度比铀矿床要深很多,周围又设有防护辐射的工程屏障,使其与外部环境相隔离。既然与地表隔离条件不好的铀矿床都不会对地表环境造成什么影响,那么我们专门建设的核废料处置库必然比天然的铀矿床更加安全”。

成核剂详细说明

成核剂 效果加快结晶速率、增加结晶密度适用对象聚乙烯、聚丙烯等 拼音cheng he ji 外文名nucleator 类型新功能助剂中文名成核剂 1基本内容 弹性体增韧塑料体系,是以弹性体为分散相以塑料为连续相的两相共混体系。塑料连续相又称为塑料基体。弹性体可以是橡胶也可以是热塑性弹性体,如EPR、EPDM、BR、POE、SBS等。早期的塑料增韧体系主要采用橡胶作为增韧剂,故称为橡胶增韧塑料体系。20世纪80年代以来,除继续采用橡胶作为增韧剂外,以各种热塑性弹性体作为增韧剂的塑料增韧体系也获得广泛的应用 1 乙丙橡胶(EPR)改性PP 为了改善PP的抗冲性能,人们很早就采用橡胶与PP共混。由于EPR与PP 相容性良好,所以成为增韧PP中最常用的橡胶品种。用EPR与PP共混可以改善PP的冲击强度、低温脆性。当EPR含量为20%时,PP/EPR共混物的缺口冲击强度比纯PP高10倍,脆化温度比纯PP下降4倍之多。 2 三元乙丙橡胶(EPDM)改性PP EPDM对PP的增韧与EPR相似,随着EPDM含量的增加,体系冲击强度有较大的提高。当EPDM含量为20%时,PP/EPDM共混物的缺口冲击强度比纯PP高4倍左右,耐低温性能有所改善。 3 PP/BR共混体系 顺丁橡胶(BR)具有高弹性、良好的低温性能(玻璃化温度为-110℃左右)和耐磨性、耐挠曲性等优良特性。而且它的容度参数与PP相近,实践证明,它们的相容性较好,增韧效果明显。以国产容体指数0.4到0.8g/10min的聚丙烯粉料和国产门尼粘度44的顺丁橡胶按100;15(质量比)共混,所得PP/BR共混物的常温冲击强度比纯PP高6倍,脆化温度下降4倍。同时该共混物比PP、PP/LDPE、PP/EVA等的挤出膨胀比都小,成型后尺寸稳定性较好。 4 PP/SBS 共混体系 SBS 具有高弹性、耐低温性等特点,同时它兼具有硫化橡胶和热塑性的优良性能。研究表明,PP/SBS体系的冲击强度、断裂伸长率随着SBS加入量的增加而逐步提高,SBS含量在10到15份时,共混物的综合力学性能最佳。 5 PP/POE共混体系 聚烯烃弹性体POE是一种饱和的乙烯-辛烯共混物,是通过乙烯、辛烯的原位聚合技术生产的。POE具有非常窄的分子量分布和一定的结晶度。其结构中结晶的乙烯链节作为物理交联点承受载荷,非晶的乙烯和辛烯长链贡献弹性,与EPR、EPDM、SBS相比对PP的增韧效果更为显著,在汽车保险杠、挡板等部件上得到普遍的应用。当POE的百分含量超过15%时,对PP的增韧效果明显提高,且共混体系的模量下降较少。另外,POE对高流动性的PP仍具有良好的增韧效果,而EPDM、EPR对MI超过15g/min的PP没有明显的增韧效果。

激光切割机六大核心部件

激光切割机六大核心部件,必须了解! 在金属加工当中,光纤激光切割机以其高效高质的优势,逐渐取代传统工艺成为金属加工 行业利器。 但即使同样都叫光纤激光切割机,内里配置不同设备的加工效率和效果都会有很大差异, 对于光纤激光切割机而言,六大核心配件选购时一定要看。 1、光纤激光器 激光器是激光设备最为核心的“动力源”,就像汽车发动机一样,也是光纤激光切割机中最为 昂贵的部件。目前市面上光纤激光器进口品牌有德国IPG、ROFN,英国SPI,美国相干等等,随着技术的发展,国产激光器品牌如锐科、创鑫等也崭露头角,以高性价比逐渐受到市场认可。长期以来,我国激光器基本依赖进口,价格昂贵,供货周期长,导致高功率光纤激光切割机价 格高居不下。中国光纤激光器生产商白花齐放局面的产生,打破了国外企业在激光器领域的 垄断,也直接拉低了进口产品的价格。 2、切割头 切割头是光纤激光切割机的激光输出装置,它由喷嘴、聚焦透镜和聚焦跟踪系统组成。激光切割机的切割头会根据设定的切割轨迹行走,但不同材料、不同厚度、不同切割方式情况下,激光切割头高度是需要调节控制的 3.数控系统 控制系统是光纤激光切割机的主导操作系统,主要是控制机床,实现X、Y、Z轴的运动,同 时也控制激光器的输出功率,它的好坏决定了光纤激光切割机的操作性能稳定性,通过软件 的精确控制,可以有效提高精确度和切割效果,目前常用的倍福( Beckhoff )数控系统、PA数 控系统、法利安卡系统等 4、电机 激光切割机的电机是运动系统的核心部件,电机的性能直接影响产品加工的效果和生产效率,目前常用电机包括步进电机、何服电机两大类,根据加工对象的,行业类型和产品类型, 配置最适合的电机 步进电机:起动速度快、反应灵敏,适宜做雕刻加工和要求不高的切割加工价格较低。步进电机品牌较多,性能各不相同。 伺服电机:运动速度快、运动平稳、负载高、性能稳定;加工的产品边缘平滑、切割速度快;价格高,适用于加工要求高的行业和产品 5、机床

多核处理器的主要实现架构及其设计挑战

多核处理器的主要实现架构及其设计挑战 2008年03月01日 为得到更高的处理性能,曾经唯一的做法是提高单一处理器的频率,但当这一做法因为功耗和发热的非线性增长而变得难以为继时,集成多个处理器核心的器件便应运而生。谈到多核处理器,ARM的中国总裁谭军先生给出的定义是:“多核处理器是指在同一个核内具有多个处理器内核,它们可以通过内部的缓存来控制,有选择性的开/关。” 总体上,多核处理器架构分为同质架构和异质架构两大类。MIPS 科技公司产品营销总监P ete Del Vecchio认为:“当SoC 的功能被分解进彼此次之间通信非常有限的的多个子系统时,异质架构的多核系统最为适用。”他还表示:“同质架构的多核系统设计使分配到不同处理器的任务共享的数据可以自动保持一致。这种多核系统比较容易编程,可提供直接的机制,在不同处理器之间动态地迁移任务。” 各种应用于通用领域和嵌入式领域的多核处理器都可以归入到上面提到的这两种架构。TI 采用的是将DSP与CPU核心相结合的混合结构。TI通用DSP业务发展经理郑小龙表示:“DSP速度极快适于实时处理,CPU控制能力全面适合非实时处理,TI的混合结构多核处理器将二者的优点充分结合,构成一个极其高效的SoC。”MIPS的Pete Del Vecchio表示:“目前,MIPS主要致力于最大限度地提高单处理器的频率。”但他同时表示:“已有获得授权的厂商在利用各种MIPS 内核,不论是在异构还是同构多核实现方法方面均取得了巨大的成功。例如,Sigma Designs 开发的一款芯片采用两个MIPS内核,一个用来处理应用软件/OS,另一个用于系统安全。” Freescale的多核平台包含2到32个Power Architecture 的e500-mc Power内核,该平台在高端包含了一个基于互联的片上控制网络,它可以减少由于拥塞而带来的性能降低。ARM在2007年推出了当最多具备四核时性能可达8,000DMIPS 的Cortex-A9处理器。英特尔目前多核处理器采用的微架构是著名的酷睿微架构,酷睿微架构具备以下重要特性: 1. 英特尔宽区动态执行; 2. 英特尔智能内存访问; 3. 英特尔高级数字媒体增强; 4. 英特尔高级智能高速缓存; 5. 英特尔智能功率特性。 在实施多核处理器的过程中,在硬件和软件两方面业界都面临一系列挑战。TI的郑小龙认为:“挑战首先表现在系统配置方面,其次表现在软件协调开发方面。”ARM通过已经被业界证明成功的MPCore 技术看到了以下几大设计挑战:1. 预先整合的并且通过验证的可扩展多核处理技术;2. 整合的中断分配和处理器间的通信;3. 先进的Snoop控制单元,支持增强的缓存一致性。应对这些挑战,谭军表示:“ARM在Cortex-A9 MPCore中在以下几个方面进一步加强了MPCore 技术:1. 加速器一致性端口(ACP);2. 先进的总线接口单元;3. 具有中断虚拟的多核ARM TrustZone技术;4. 通用中断控制器(GIC)。

结晶成核剂

结晶成核剂 Prepared on 22 November 2020

结晶成核剂 一.成核剂的定义 根据结晶形态的不同一般分为α晶型成核剂和β晶型成核剂。α晶型成核剂主要提高制品的透明性、表面光泽、刚性、热变形温度等,又有透明剂、增透剂、增刚剂之称。目前市售种类多属此类,主要包括二叉山梨醇(dbs)及其衍生物、芳香基磷酸酯盐类,取代苯甲酸盐等,尤以dbs类成核透明剂的应用最为普通。 通常所说的成核剂是指α成核剂.按结构的不同,成核剂又可分为、和类.例如无机类有滑石粉、云母、碳酸钙等,其粒径应小于可见,否则会极大影响材料的。 而β晶型成核剂旨在获得高β晶型含量的聚丙烯制品,优点为提高制品抗冲击性但不降低甚至提高制品的热变形温度,使抗冲击性和耐热变形性这矛盾的两个方面得到兼顾。 成核剂的品种及量的选择在结晶过程中起了结晶中心作用的外加物质称为成核剂.有人试验过成核剂在材料表面充分吸收结晶晶体从而降低了形成晶核所需的成核剂可以加快高聚物结晶速度减少结晶速度对温度的制得结构均匀、尺寸制品。 成核剂是适用于聚乙烯、聚丙烯等不完全结晶塑料,透过改变树脂的结晶行为,加快结晶速率、增加结晶密度和促使晶粒尺寸微细化,达到缩短成型周期、提高制品透明性、表面光泽、抗拉强度、刚性、热变形温度、抗冲击性、抗蠕变性等物理机械性能的新功能助剂。 近年来国内聚烯烃成核剂市场发展十分迅速,除下游改性塑料企业外,石化企业纷纷推出透明专用料,显示着国内聚烯烃成核剂市场已经形成。燕山石化高新技术股份有限公司与山西省化工研究所合作建设的300公吨/年tm系列和tmb系列成核剂生产线,使国内成核剂生产技术与国外技术的差距大大缩小。 二、成核剂的常用种类 成核剂(重要的是聚丙烯成核剂)从化学结构上主要可分为无机类和有机类两大类。 1、无机类: 无机类成核剂主要有滑石粉、氧化钙、炭黑、碳酸钙、云母、无机颜料、高岭土及催化剂残渣等。这些是最早开发的价格便宜且实用的成核剂,研究与应用得最多是滑石粉、云母等。 2、有机类 羧酸金属盐类 例:琥珀酸钠、戊二酸钠、己酸钠、4-甲基戊酸钠、己二酸、己二酸铝、特丁基苯甲酸铝(Al-PTB-BA)、苯甲酸铝、苯甲酸钾、苯甲酸锂、肉桂酸钠、

核废料处理工艺流程实习

核废料处理工艺流程实习 一、实习时间 2013年6月14日下午 二、实习地点 四川省绵阳市九院核废料处理实验中心 三、实习单位及单位概况 绵阳九院,全称中国工程物理研究院(CAEP)又叫科学城,中物院,或839 。国家高度保密单位,创建于1958年,是国家计划单列的我国唯一的核武器研制生产单位,是以发展国防尖端科学技术为主的集理论、实验、设计、生产为一体的综合性研究院。 四、背景现状: 目前,世界上约有12万吨高级核废料,而且每年正以7200吨的速度增长。美国是世界上最大的核废料国家,有5万吨左右;欧洲和亚洲分别有3.5万吨左右。 中国过去的核军事工业,造原子弹氢弹产生了一些高放废物, 这些废物现在是液体, 将来要变成固体, 要最终处置。现在中国在大力发展核电站,也要产生乏燃料,乏燃料要经过后处理。处理的整个流程是乏燃料从反应堆里拿出来以后,要经过后处理,把铀和钚回取出来。剩下的是高放废液,这种液体要变成玻璃固化体,最终埋到地底下去。 据了解,在核工业产生的废物中99%属于中低放废物,处理起来相对容易。而剩下的1%含有多种对人体危害极大的高浓度放射性核素,其中一种被称为钚的核素,只需摄入10毫克就能让人致死。其毒性尚不能用普通的物理、化学或生物方法使其降解或消除,只能靠自身的放射性衰变慢慢减轻其危害。高放废物要达到无害化需要数千年、上万年甚至更长的时间。在现阶段深地质处置是高放废物处置最现实的一种方法:即在地下建造一个处置库。为了保障核素不会向外迁移,必须设置层层屏障。首先将高放废液进行玻璃固化,再将玻璃固化体装入金属罐。在处置库中这些废物罐周围充填有回填材料。同时还要找到一块巨大的天然岩石做处置库的外壳。因为稳定完整的岩体才是确保核素不向外迁移的最强有力的保证。

企业核心能力

企业核心能力 企业核心能力的涵义 核心能力是企业在长期生产经营过程中的知识积累和特殊的技能(包括技术的、管理的等)以及相关的资源(如人力资源、财务资源、品牌资源、企业文化等)组合成的一个综合体系,是企业独具的,与他人不同的一种能力。 企业持续竞争的源泉和基础在于核心能力。核心能力是在1990年由两位管理科学家哈默尔和普拉哈拉德在《哈佛商业评论》发表《企业核心能力》一文中提出的,核心能力和企业能力理论在企业发展和企业战略研究方面迅速占据了主导地位,成为指导企业经营和管理的重要理论之一。它的产生代表了一种企业发展的观点:企业的发展由自身所拥有的与众不同的资源决定,企业需要围绕这些资源构建自己的能力体系,以实现自己的竞争优势。根据麦肯锡咨询公司的观点,所谓核心能力是指某一组织内部一系列互补的技能和知识的结合,它具有使一项或多项业务达到竞争领域一流水平的能力。核心能力由洞察预见能力和前线执行能力构成。洞察预见能力主要来源于科学技术知识、独有的数据、产品的创造性、卓越的分析和推理能力等;前线执行能力产生于这样一种情形,即最终产品或服务的质量会因前线工作人员的工作质量而发生改变。企业核心能力是企业的整体资源,它涉及企业的技术、人才、管理、文化和凝聚力等各方面,是企业各部门和全体员工的共同行为。 核心能力源自学习型团队 核心能力积累的关键在于创建学习型组织,在不断修炼中增加企业的专用资产、不可模仿的隐性知识等。湖南有家公司以打造学习型企业为目标,执照“学习型组织”管理理论进行企业再造,积极建立继续教育、终身学习和共同参与、全体受益的良好学习机制,推进企业与员工共同进步、共同发展。公司要求全体人员转变思想观念,在学习目的上,把创建学习型组织当成企业管理革命的武器,通过创建活动,使企业管理模式从“制度加考核”转变到“学习加激励”上来;在学习态度上,变被动学习为主动学习,将学习转变为创造力,变成企业基业常青的有效工具。在学习方法上,坚持内外结合、工余结合、培训与自觉结合。公司通过建立和完善三级中心组学习制度,即决策层、管理层、操作层,针对新的增压技术、绘图软件、新工艺和质量体系、市场营销、财务管理、精益生产等先进的管理方法和经验以及法律、法规方面的知识,公司采取专题培训与班前会相结合,利用专题辅导、组织研讨、团队训练、读书心得交流等多种学习形式,促进员工提高知识水平、业务能力和综合素质。在创建学习型组织过程中,公司坚持做到学习有计划、内容有安排、过程有检查、效果有考核,使全体成员全身心地投入并有能力不断学习,让全体成员工作中体验到生命意义,通过学习增强创造自我、扩展未来的能量。 25种最流行的管理工具 客户关系管理

(完整版)新能源汽车的核心部件大剖析:电池系统篇

新能源汽车的核心部件大剖析:电池系统篇电池系统的选择和设计 如前文所介绍的情况,各家车厂面临油耗和排放的挑战,不断推出新能源汽车的情况,电池系统成了当前汽车电子电气系统中,一个最为昂贵也最为受人重视的子系统。本文将从电池系统的需求、车用电池的状态,以及当前车厂和电池厂的关系角度来介绍电池系统。 电池系统是在混合动力、插入式混合动力和纯电动汽车中用来存储电能,并提供给电驱动系统的需要的能量。电池中的电能,其来源主要有三种,电池处在较低的荷电状态(SOC)时,车辆利用发动机带动高压发电机给电池供电;刹车的时候,能量回收的时候的电能以及充电模式下,从电网得来的能量,如图1所示,在电池的不同的状态,相应的车辆也处在不同的工作模式下。 图1 电池状态vs 车辆模式 电池系统的选择和设计,很大一部分的参数来自于设计什么样的车型,不同

的车型的规范,将直接决定电池系统和电驱动系统的参数,如下图2所示,根据所需要开发的新能源车的具体参数,其电池系统的基本规范也可以确定下来。而电池系统的基本构成,粗略的来说是从电池单体开始,构建电池模组,配置合适电子和电气系统,在电池包层面进行布置和安全分析。 图2 车型规范对电池系统规范的转化 电池单体的选择 1)电池单体的选择 从基本来看,电池单体选择是考虑电池容量、化学体系和单体形状。 ? 单体类型:可选的有铅酸、镍镉(NiCd)、镍氢(NiMH)、高温电池(NaS 和NaNiCl2)、液流电池和锂离子电池,从综合来看,目前只能依靠锂离子电池来作为储能单元。而离子电池内的化学体系,其参数差异也很大。 ? 密度:对电池来说,两个比较重要的参数是能量密度(决定存储电能)和功率密度(决定放电能力),这两者往往不可兼得。值得注意的是,从电极材料理论密度到单体密度再到电池包密度,由于其他不储能的部分,这两个参数往往递减迅速。 ? 寿命:可分为循环寿命和使用寿命两个参数。循环寿命取决于充放电深度、电压、温度和电流(负荷);使用寿命包括不使用的时间,与温度和电压有

片上众核处理器硬件同步机制研究

片上众核处理器硬件同步机制研究* 徐卫志1,2刘志勇1范东睿1焦帅1,2张浩1宋风龙1雷峥蒙1,2余磊1,2 1(中国科学院计算技术研究所系统结构重点实验室北京 100190) 2(中国科学院研究生院北京 100039) 摘要同步机制是片上多核/众核处理器正确执行和协同通信的关键,其效率对处理器的性能非常重要。本文针对片上众核体系结构,提出了两种硬件粗粒度同步机制,集中式同步机制和分布式同步机制,分别通过片上的集中式锁管理器和分布式锁管理器来实现;以片上同构众核处理器Godson-T模拟器为平台,通过量化评估程序,评估比较了提出的两种硬件支持的同步机制与基于原语的软件同步机制的性能。结果表明,硬件支持可以使得片上众核处理器的同步机制性能明显提高,而分布式锁管理器的扩展性要好于集中式锁管理器。 关键词片上众核处理器;同步;硬件支持;集中式锁管理器;分布式锁管理器 中图法分类号: TP302 文献标识码: A 1 引言 传统单核处理器采用指令级并行的技术提高性能,借助于超标量和流水处理提高处理器的主频,但是随着主频的提高却使得功耗和散热问题难以依靠现有的技术解决。而半导体工艺的发展,使得片上可集成的晶体管数目日益增多,因而体系结构设计者为了在性能进一步提升的同时降低功耗和散热,提出了线程级粗粒度并行的片上多核/众核处理器[1]。片上多核/众核处理器与传统多处理器相比,其优点是片上处理能力强、带宽高、通信距离短、传输速度快等,多个线程之间的数据通信效率高,因而需要高效的同步机制与之匹配。 同步操作保证多个线程之间的数据传播,临界区的互斥访问使得多个线程对共享存储的写操作等同于串行执行,保证程序执行语义的正确性。因而,同步操作的性能对片上众核处理器而言非常重要,直接影响了多个线程协同执行的速度。 在传统多处理器系统中,已有许多针对于互斥操作的研究,主要可以分为两类,一类是设计更好的软件算法,第二类是为其提供专用的硬件支持等。软件锁的缺点在于同步开销大、扩展性差、存储空间要求高等。例如,Test&Set锁[2]是基于原子指令Test&Set的软件锁,它需要每个参与同步的线程不断地执行Test&Set指令,每一次执行Test&Set指令,就检查并修改对应的内存块,造成大量的访存操作和网络操作,当线程数增多时,Test&Set锁的扩展性很差。虽然已经有一些改进的基于原子指令的软件同步方法,但是原子指令实现困难,代价高,当片上集成了成百上千个处理器核时,软件锁难以满足众核处理器的性能需求,势必形成“synchronization wall”。 虽然基于同步原语的软件锁相对于硬件锁较灵活,但是在众核片上支持硬件锁,可以充分利用片上通信速度快的特点,大大提高同步操作的效率,从而提高整个芯片的计算能力。文献[3]针对于众核处理器Cyclops-64,提出了专用的硬件同步状态缓存器SSB,用于支持细粒度的同步操作,目的是有效利用众核处理器的片上处理能力。然而,硬件支持对于片上众核处理器中粗粒度同步机制的性能影响仍没有相关的研究。 因而,我们提出了基于片上众核体系结构的两种硬件粗粒度同步机制,使用专门的片上锁管理器来实现同步,包括集中式锁管理器和分布式锁管理器,从不同角度评估了硬件支持对片上众核结构同步机制的性能提升,将集中式同步机制,分布式同步机制,以及软件同步机制进行了比较。结果表明,硬件支持可以使得片上众核处理器的同步机制性能明显提高,而分布式锁管理器比集中式锁管理器扩展性更好。 本文如下组织:第2节介绍多核/众核同步机制的相关研究工作,包括基于原语的同步机制实现方式,硬件同步,细粒度同步,事务内存等;第3节提出片上众核结构中专用硬件支持的同步机制,包括集中式同步管理器与分布式同步管理器,为了评估需要,在片上众核结构中也实现了Ticket Lock;第4节介绍模拟平台和试验结果,并对结果进行分析,对软件锁和硬件锁,集中式锁管理器和分布式锁锁管理器进行比较;第5节总结本文,并提出进一步的工作。 *本课题得到国家自然科学基金重点项目(60736012)、国家“九七三”重点基础研究发展规划项目基金(2005CB321600)、国家“八六三”高技术研究发展计划项目基金(2009AA01Z103)、国家杰出青年科学基金(60925009 )、国家自然科学基金创新研究群体科学基金(60921002)、北京市自然科学基金(4092044)资助。 徐卫志(1982年生),男,山东龙口人,博士研究生,主要研究方向为高性能计算机体系结构、并行算法等;刘志勇(1946年生),男,博士,研究员,博士生导师,主要研究领域为算法、计算机系统结构、并行处理、片上存储系统等;范东睿(1979年生),男,博士,副研究员,主要研究方向为低功耗处理器设计;张浩,博士,助理研究员;宋风龙,博士;雷峥蒙,硕士研究生;余磊,博士研究生。

Lominger67项核心能力详解

LOMINGER 67项能力检核表 在机会面前行动迟缓 可能太中规中矩,力求完美或厌恶风险 可能办事拖拉 可能不会制定挑战性很高的目标 可能对采取行动缺乏信心 可能虽然知道该做什么,但迟疑不决 可能缺少激励;对工作感到厌倦或精疲力竭 喜欢努力工作 以行动为导向,对认 为具有挑战性的事情干劲十足 即使计划很少,也不 惧怕采取行动 抓住的机会比别人 多 可能是个工作狂 可能还未进行充分分析 就急于制定解决办法 可能缺乏战略眼光 可能为了尽快完成工作 而管理过多过细 可能因为漠不关心、疏 忽大意而导致个人和家庭的问题 可能轻视重要但缺乏挑 战性的职责和任务 可能忽略个人生活,劳 累过度

可能对变化或不确定性感到不安 可能处理不好复杂问题,不能拿出明确的解决方案或处理结果 可能比其他人更喜欢掌握更多资料,并对不确定的事情加以组织。 喜欢一成不变、确定无疑的事物 在不明朗的局面下效率和生产力较低 欲速不达 可能有希望结束一切的强烈愿望 可能喜欢反复地以同样的方式做事 能有效地处理变化 能灵活转变做事方式 即使不了解全部情况,也能下 决心采取行动 当事情悬而未决时,不会因此 坐立不安 不会因为事情没有全部解决 而驻足不前 能从容地处理风险和不确定 事物 可能没有充足的数据就 得出结论 可能用不存在的事情填 补空白 可能因工作不够明确而 让人感到灰心 可能低估按部就班解决 问题的价值 可能摒弃先例和历史 可能因追求新奇和冒险 而不采用业经证实的解决方案,导 致错误发生。 可能使事情复杂化

与人疏远,不容易接近 与人第一次接触时会觉得不自在 可能会害羞、冷漠或寡言少语 不太表露自己,很难让人看见自己真实的一面 不会主动营造亲善友好的关系,可能抱着一种“随它去”的态度 可能不善于聆听,或表现得很漠然 可能没领会一般人能够辨认出来的社交暗示 可能容易紧张 不能顺利地与人交流 别人容易接近和交 谈 会努力让别人觉得 轻松自在 热情、愉快和亲切 能敏锐地察觉别人 渴望与人交往的焦虑心情,并 耐心地对待他们 建立起非常融洽的 关系 是一个很好的听众 比别人更早知道情 况,及时获得一些非正式的不 完整信息,从而作出适当反应 可能开会时花过多时间 协调关系 可能会被误认为随和或 容易受他人影响 可能太想讨他人喜欢 可能回避必要的负面的 或不愉快的交易 可能设法掩饰真正的问 题 与上司相处不好 上司在场时可能会觉得不自在 可能不会坦然地接受上司的教导和指示 对上司的权威处理不当 因为和上司的关系不好而在工作中无法出成果 能够响应上司,与上司相处得 很好 愿意为好上司更努力地工作 乐于向上司学习,认为上司是 好教练,而且也提供了自由空间 喜欢向工作上的前辈学习 乐于接受挑战和发展自己 谦恭受教 可能过分依赖上司与高 层人士的建议和忠告 可能关闭其它反馈和学 习渠道 可能选择错误的上司作 为榜样

结晶成核剂

结晶成核剂 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

结晶成核剂 一.成核剂的定义 根据结晶形态的不同一般分为α晶型成核剂和β晶型成核剂。α晶型成核剂主要提高制品的透明性、表面光泽、刚性、热变形温度等,又有透明剂、增透剂、增刚剂之称。目前市售种类多属此类,主要包括二叉山梨醇(dbs)及其衍生物、芳香基磷酸酯盐类,取代苯甲酸盐等,尤以dbs类成核透明剂的应用最为普通。 通常所说的成核剂是指α成核剂.按结构的不同,成核剂又可分为、和类.例如无机类有滑石粉、云母、碳酸钙等,其粒径应小于可见,否则会极大影响材料的。 而β晶型成核剂旨在获得高β晶型含量的聚丙烯制品,优点为提高制品抗冲击性但不降低甚至提高制品的热变形温度,使抗冲击性和耐热变形性这矛盾的两个方面得到兼顾。 成核剂的品种及量的选择在结晶过程中起了结晶中心作用的外加物质称为成核剂.有人试验过成核剂在材料表面充分吸收结晶晶体从而降低了形成晶核所需的成核剂可以加快高聚物结晶速度减少结晶速度对温度的制得结构均匀、尺寸制品。 成核剂是适用于聚乙烯、聚丙烯等不完全结晶塑料,透过改变树脂的结晶行为,加快结晶速率、增加结晶密度和促使晶粒尺寸微细化,达到缩短成型周期、提高制品透明性、表面光泽、抗拉强度、刚性、热变形温度、抗冲击性、抗蠕变性等物理机械性能的新功能助剂。 近年来国内聚烯烃成核剂市场发展十分迅速,除下游改性塑料企业外,石化企业纷纷推出透明专用料,显示着国内聚烯烃成核剂市场已经形成。燕山石化高新技术股份有限公司与山西省化工研究所合作建设的300公吨/年tm系列和tmb系列成核剂生产线,使国内成核剂生产技术与国外技术的差距大大缩小。 二、成核剂的常用种类 成核剂(重要的是聚丙烯成核剂)从化学结构上主要可分为无机类和有机类两大类。 1、无机类: 无机类成核剂主要有滑石粉、氧化钙、炭黑、碳酸钙、云母、无机颜料、高岭土及催化剂残渣等。这些是最早开发的价格便宜且实用的成核剂,研究与应用得最多是滑石粉、云母等。 2、有机类 羧酸金属盐类 例:琥珀酸钠、戊二酸钠、己酸钠、4-甲基戊酸钠、己二酸、己二酸铝、特丁基苯甲酸铝(Al-PTB-BA)、苯甲酸铝、苯甲酸钾、苯甲酸锂、肉桂酸钠、

核废物处理与处置期末复习

核废物处理与处置期末复习 第一章放射性废物内容与原则 1.放射性废物:含有放射性核素或被放射性核素污染,其放射性核素的浓度或活度大于审管机构确定的清洁解控水平,并且预期不再使用的物质。 2.放射性废物治理的基本方法:分散稀释(废气排放、废液排放)、浓集隔离(沉淀、过滤、吸附、蒸发、固化、埋藏)。 3.放射性废物管理体系图: 4.放射性废物管理模式: 5.放射性废物管理的基本原则:保护人类健康、保护环境、超越国界的保护、保护后代、不给后代造成不适当的负担、纳入国家法律框架、控制放射性废物产生、兼顾放射性废物产生和管理各阶段间的相依性、保证废物管理设施安全。 6.实践:为了某种有益目的,增加照射的人类活动。 7.干预:减少业已存在的照射的人类活动。 8.放射性废物的处理与处置和核设施的退役,涉及职业照射、公众照射、潜在照射、应急照射和持续照射。 9.《电离辐射防护与辐射源安全的基本标准》:实践的正当性、防护与安全最优化、个人剂量与限值、干预的正当性和干预措施最优化。 10.放射性元素的衰变的特点:放射性元素的衰变完全不受外界条件的影响:如温度,压力(真空)、电磁场等物理变放射性化,

或参加各种生物、化学反应,其结果都不能改变放射性元素固有的衰变规律。 不能通过化学、物理或生物方法消除。 只能通过自身衰变或核反应嬗变降低。 第二章放射性废物的分类 1.放射性废物的分类方法: 按废物的物理化学形态:气载废物、液体废物、固体废物。 按放射性水平:低放废物、中放废物、高放废物。 按废物来源:核燃料循环废物、核技术利用废物、退役废物、铀(钍)伴生矿脉废物。 按半衰期:长寿命废物、短寿命废物。 按辐射类型:β/γ放射性废物、α废物。 按处置方式:免管废物、可清洁解控废物、近地表处置废物、地质处置废物。 按毒性:低毒组废物、中毒组废物、高毒组废物、极毒组废物。按释热性:高发热废物、低发热废物、微低热废物。 2.放射源对人体健康和环境的潜在的危害程度分类:由Ⅰ到Ⅴ五类: 极度危险源:放射性同位素热电发生器、辐射装置。 高度危险源:工业β照相源。 危险源:固定工业测量源。 低危险源:骨密度仪、静电消除器源。

扬声器的核心部件之Damper

扬声器的核心部件之一-----支片介绍 作者:国光电器股份有限公司陈进 注:本文章版权属于原作者所有,未经许可,请勿转载! 定心支片是扬声器振动系统的主要部件之一。本文介绍定芯支片的作用、特性、材料、加工工艺、形状、测试。 一、定芯支片的作用。 保持在磁缝中音圈的正确位置; 保持音圈在受力时,振动系统只沿轴向往复运动; 防止灰尘进入磁隙; 与振动系统的振膜音圈共同确定扬声器的共振频率。 二、定芯支片的特性。 柔软性(顺性),它影响扬声器共振频率F0,它取决于定芯支片的形状、布料的特性和含浸酚醛树脂的浓度。 一般来说,振纹逾深,布料拉伸逾大,支片F0逾高;同类型布料,布料逾厚,支片F0逾高;相同支片,浸酚醛树脂的浓度逾大,支片F0逾高,浸酚醛树脂的浓度我厂用婆梅氏浓度表示,数字逾小,浓度逾大。 最大位移量,它关系到扬声器的最大振幅。它取决于定芯支片内径与外径的距离和形状。 位移的线性,它表现定芯支片位移对驱动力的顺从性。此特性限定了振幅的范围,超过了此范围,振幅增加减慢,呈饱和状态。它取决于定芯支片的材料和状态。位移的线性小,而振幅又大的扬声器易出现牛音。 位移的复原性(滞后现象或称阻尼),类似于磁体的磁滞现象。当支片受到外力作用产生位移,在外力除去后,位移不马上恢复至零,它的恢复需要一个过程。它取决于定芯支片的材料和制作工艺。 对于定芯支片除了要求可靠性和实用性外,还要求耐湿性、难燃性、耐久性、耐折度强,有适当的透气性与密封性(适当的透气性以减少定芯支片振动时封闭空间的压力)、并有尽量小的异常共振。 三、支片材料介绍。 布料:本厂现有三大类支片材料:棉布、蚕丝、化纤。 棉布包括:100支纱(0.15mm)、60支纱(0.18mm)、42支纱(0.2mm)、32支纱(0.22mm)、21支纱(0.28mm)、16支纱(0.38mm)、10支双纱(0.6mm)。 蚕丝包括:蚕丝筛绢(0.15mm)、电力纺(0.08mm)、扬纺(0.05mm)。 化纤包括:CONEX1722#(0.36mm)、CONEX1638#(0.28mm)、CONEX6348#(0.20mm)、混纺CONEX+COTTON0022#(0.38mm)、MARTON21支(0.38mm)(华盛厂新开发的材料)。 (括号内数字为材料的厚度) 胶水:黄色酚醛树脂,红色改性酚醛树脂。 洒精:只作为胶水的稀释剂, 各种布料的特性介绍。 棉布类支片由于价格便宜,被普遍使用,但棉布支片由于强度低,易发脆,不适用于大功率扬声器的支片,只用在普通的低功率扬声器。 蚕丝类支片较轻及较薄,适用于微小轻巧型扬声器。 化纤类支片,由于化纤有较高的强度,不易折断,适合于大功率的扬器上使用,这类支片的缺点难粘结、支片加工时含浸吸胶性差。 胶水特性介绍。黄色酚醛树脂为原传统树脂,熟透时间较长,温度150°C时,需要120-150秒。红色酚醛树脂是在黄色树脂的基础上改良的,有较短的熟透时间,温度150°C时,熟透时间70-100秒。无论是黄色树脂或红色树脂,都具有以下共性,热固化成形,一旦成形后,变成不溶不熔,耐酸耐碱,具有较稳定的物理化学特性能 四、支片的加工工艺。 加工工艺主要有以下工序,布料清洗整理、布料上胶烘干、上胶布剪裁、用热压机热压成形、冲切、检验进仓。 各工序介绍: 布料清洗整理,这道工序主要是对棉布及蚕丝布的,由于棉布要上浆来加强纱线的强度,易于织造,(浆的成份主要是淀粉),而浆料的存在会影响下工序树脂的渗透性,必需除去,一般使用碱性物泡浸清洗去除。蚕丝布含有丝胶质,性质粗硬,我厂是用,强碱浸煮去除。 布料上胶烘干,上胶是使布料含有一定量的酚醛树脂,以控制支片的顺性。烘干是烘去溶剂酒精。一般在60°C

核废料处理方法

核废料处理方法 1.玻璃固化法 玻璃固化法是将废料混入玻璃材料中作成一固化之产物,如同英Harvest 计画中研究的.这种玻璃固化法废料是在圆柱状容器内制成,在英国现行的容器尺寸为高3米,直径约半米.依目前的核能计画,约需72000 个此类容器. 2.储存法 核废料掩埋法其实就像把食物放进仓库里一样,只不过他需要更精密的防护措施.核能发电是利用核燃料分裂的热,产生蒸汽,推动发电器风扇发电.而核分裂已减弱的燃料便必须丢弃,称为「核废料」.核废料因仍存在辐射,所以必须经过一连串严密的手续,像是送去减容中心,减少废料的体积……等.而各核电厂都自备燃料池可储存40年的时间,时间到了,便必须送去储存厂,大约10年辐射已降低至无害,可像一般垃圾处理. 3.海洋掩埋法 所谓的海洋掩埋法就是......「深海投掷法」故名思义就是将核废料永久弃置於深海底的意思,也就是海洋掩埋法.利用水泥固化法将核废料储存在钢筒内,经过数年的暂时储放〈目前台湾存放在兰屿〉,等核废料中的放射性降的最低后,再投掷到深海或数千公尺海沟中,作永久性储存. A.核废料可否埋存於海底 具有高度放射性的废料是核能应用上无法避免的产物.一法是将这些废料存置於深海底部,但须先将此项海床存置方法对环境的冲击及潜在的影响做一完整的评估.高度放射性废料的产生是核能应用上无法避免的结果.在照过燃料元件再处理过程中,将未曾用尽的铀及钸收回,以供再次使用;而在此过程中将产生一些「高阶废料」这包括分离出来的分裂产物,一些没有被收回的铀和钸,其他的锕系元素,以及一些活化产物.目前此类废料是以液体状态储存於适当的封闭容器内.虽然在短时间(数十年)内此种储存方式颇合适,但现在理论是如欲做长期存置,则应先将废料予以固化.目前的人造容器的寿命还不能长至可供长半衰期的废料在其内完全衰变.因此必须藉核转变先将放射性废料变成伤害性较低之物质,再将之销毁除(在此种作法曾经研究过但结果并不理想).另一方法是先固化废料,再加以「处置」.

PP成核结晶机理

PP成核结晶机理介绍 聚丙烯问世以来,以出色的热性能和机械性能在很多领域,如注塑、薄膜、纤维生产中得到广泛的应用,这种通用性和经济性使聚丙烯超过了聚氯乙烯、聚苯乙烯,成为仅次于聚乙烯的第二大合成树脂。尤其是随着各种晶型聚丙烯实现了商业化的推广应用,使聚丙烯在工程塑料和功能材料上有非常广阔的前景。 从聚丙烯的结构特点上可以得知,由于聚丙烯主链上含有不对称碳原子,因此聚丙烯存在着不同的一级结构,聚合物结晶时,只能部分结晶,很难得到类似无机的高纯度晶体。但是随着结晶条件的变化,可以引起分子链构象的变化或者堆积方式的改变,形成几种不同的晶型,这就是所谓的晶体中的同质多晶现象。 聚丙烯的结晶过程包括成核和晶核生长两个阶段。在成核阶段,高分子链段规则排列生成一个足够大的、热力学上稳定的晶核,随后晶核生长形成球晶,结晶过程进入了晶核生长阶段。成核的方式根据结晶过程是否存在异相晶核而分为均相成核和异相成核。均相成核是指处于无形态的聚丙烯熔体由于温度的变化自发形成晶核的过程。这种成核方式往往获得的晶核数量少,结晶速度慢,球晶尺寸大,结晶率低,制品的加工和应用性能较差;相反,异相成核是指聚丙烯熔体中存在固相"杂质"(如成核剂)或未被破坏的聚丙烯晶核,通过在其表面吸附聚丙烯分子形成晶核的过程。显而易见,异相成核能够提供更多的晶核,在球晶生长速度不变的情况下加快结晶速度,降低球晶尺寸,提高制品的结晶度和结晶温度。这些结晶参数的改变将赋予聚丙烯材料许多新的性能,因此,异相成核实际上是聚丙烯结晶改性的理论基础。 等规聚丙烯有多种晶型,即α、β、γ、δ和拟六方态5种结晶形态。其中γ晶态只存在于低相对分子质量的PP中,δ晶态存在于无规或间同立构PP中,全同立构PP晶态以α、β和拟六方态为主。其中以α晶型最为常见,α晶型是单斜晶方式形成的最普通和最稳定的形式,熔点为167℃,β晶型只在特定结晶条件下或在β晶型成核剂的诱发下才能获得,且稳定性不如α晶型。α晶型与β晶型PP性能上的差异源于α、β两种晶态的结构差异(见表1)。 α晶型成核剂的研究始于20世纪80年代中期,由于汽车、家电等行业对高耐热、高强度聚丙烯需求量的不断增长促进了这一研究领域的活跃。国外一些知名公司,如日本窒素公司、德山曹达公司、三井油化公司等开发的高结晶聚丙烯树脂已经成功地应用于家电、汽车、薄膜及防腐材料领域,产量已达万吨。国内山西省化工研究所、扬子石化研究院、齐鲁石化树脂所也有研究工作报道和部分产品。α晶型成核剂提高聚烯烃性能的幅度同α晶型成核剂的种类、用量有关。从应用角度出发,α晶型成核剂可以分为通用型、透明型和增刚型3种。通用型成核剂通常是价格低廉的成核剂,诸如滑石粉、SiO2、苯甲酸皂盐等,其成核率低、制品透明性差。透明型成核剂俗称增透剂,这类成核剂能有效地降低聚合物的雾度、增加透光率,并能较显著地改善聚合物的理化性能,代表性的物质有二苄叉山梨醇及其衍生物、芳香磷酸酯盐类和脱氢松香酸皂类产物。其中以第三代产品二苄叉山梨醇类(DMDBS)成核剂最为优秀,不仅有优异的增透性而且无味。增刚型成核剂俗称增刚剂,在显著提高聚合物透明性的同时也能明显改善其耐热性和刚度。这类磷酸酯盐类成核剂是日本旭电公司首先开发出来

智能光伏组件及核心部件的研究与发展概要

智能光伏组件及核心部件的研究与发展 作者:段正刚 (苏州快可光伏电子有限公司总经理 摘要: 最近2年来智能光伏组件的研究得到了快速的发展,国际知名太阳能电池组件制造商与光伏智能电路芯片设计供应商、光伏接线盒与连接控制系统供应商三方联合对该领域进行了开发,智能光伏组件已经具备了大规模商业化推广和应用的条件。 1、引言: 传统太阳能电池组件一般是由若干个电池片通过串联方式排列并用封装材 料叠层压制而成的,引出端用防水接线盒并连接电缆与插头,两块电池板之间主要是靠连接电缆与相邻的电池板串联在一起的。一般电池板为了防止发生“热斑效应”都会在接线盒内安装旁路反偏二极管,该二极管的作用是:当电池片发生阴影遮挡时,该串电池片的电效应由“电源特性”变为了“电阻特性”,这时二极管启动,将该“阴影电池串”从整个系统中隔离,起到了电气保护作用。如果没有安装该二极管,则受遮挡的电池片会快速发热可能烧坏电池片、EVA、融化互连带焊锡而造成整块电池板不可恢复损坏。目前全球绝大多数的电池组件都采用了这种旁路隔离保护技术,这种电池板旁路保护技术的优点是原理简单、制造方便、成本低,缺点是如果个别电池板发生“热斑效应”而二极管旁路隔离保护起作用,在该阵列串上的其他电池板会因为这块电池板而受“牵连”,使整个阵列串同其他串发生失配,而大大降低了光伏电站的发电效率。如何提高光伏阵列的整体发电效率,研究智能型光伏组件是目前业界刚刚兴起并迅速开始研究的课题。 2、目前光伏组件的现实使用情况: 太阳能电池板在日常工作中因为受到乌云、灰尘、鸟粪、树木、烟囱等因数的综合影响,往往发电效率低于理论值15-20%,有研究表明,如果一个太阳能电站中大

多核处理器1

多核处理器 摘要: 多核处理器也称为片上多处理器(chip multi-processor,CMP),或单芯片多处理器。自1996年美国斯坦福大学首次提出片上多处理器(CMP)思想和首个多核结构原型,到2001年mM推出第一个商用多核处理器POWER4,再到2005年Intel和AMD多核处理器的大规模应用,最后到现在多核成为市场主流,多核处理器经历了十几年的发展。在这个过程中,多核处理器的应用范围已覆盖了多媒体计算、嵌入式设备、个人计算机、商用服务器和高性能计算机等众多领域,多核技术及其相关研究也迅速发展,比如多核结构设计方法、片上互连技术、可重构技术、下一代众核技术等。然而,多核处理器的技术并未成熟,多核的潜力尚未完全挖掘,仍然存在许多待研究的问题。 二.什么是多核处理器 2.1什么是多核处理器 多核处理器是指在一枚处理器中集成两个或多个完整的计算引擎(内核)。多核技术的开发源于工程师们认识到,仅仅提高单核芯片的速度会产生过多热量且无法带来相应的性能改善,先前的处理器产品就是如此。他们认识到,在先前产品中以那种速率,处理器产生的热量很快会超过太阳表面。即便是没有热量问题,其性价比也令人难以接受,速度稍快的处理器价格要高很多。英特尔工程师们开发了多核芯片,使之满足横向扩展(而非纵向扩充)方法,从而提高性能。该架构实现了分治法战略。通过划分任务,线程应用能够充分利用多个执行内核,并可在特定的时间内执行更多任务。多核处理器是单枚芯片(也称为硅核),能够直接插入单一的处理器插槽中,但操作系统会利用所有相关的资源,将每个执行内核作为分立的逻辑处理器。通过在两个执行内核之间划分任务,多核处理器可在特定的时钟周期内执行更多任务。多核架构能够使软件更出色地运行,并创建一个促进未来的软件编写更趋完善的架构。尽管认真的软件厂商还在探索全新的软件并发处理模式,但是,随着向多核处理器的移植,现有软件无需被修改就可支持多核平台。操作系统专为充分利用多个处理器而设计,且无需修改就可运行。为了充分利用多核技术,应用开发人员需要在程序设计中融入更多思路,但设计流程与对称多处理(SMP)系统的设计流程相同,并且现有的单线程应用也将继续运行。得益于线程技术的应用在多核处理器上运行时将显示出卓越的性能可扩充性。此类软件包括多媒体应用(内容创建、编辑,以及本地和数据流回放)、工程和其他技术计算应用以及诸如应用服务器和数据库等中间层与后层服务器应用。多核技术能够使服务器并行处理任务,而在以前,这可能需要使用多个处理器,多核系统更易于扩充,并且能够在更纤巧的外形中融入更强大的处理性能,这种外形所用的功耗更低、计算功耗产生的热量更少。多核技术是处理器发展的必然。推动微处理器性能不断提高的因素主要有两个:半导体工艺技术的飞速进步和体系结构的不断发展。半导体工艺技术的每一次进步都为微处理器体系结构的研究提出了新的问题,开辟了新的领域;体系结构的进展又在半导体工艺技术发展的基础上进一步提高了微处理器的性能。这两个因素是相互影响,相互促进的。一般说来,工艺和电路技术的发展使得处理器性能提高约20倍,体系结构的发展使得处理器性能提高约4倍,编译技术的发展使得处理器性能提高约1.4倍。但是今天,这种规律性的东西却很难维

相关文档
最新文档