专题突破--抽象函数的奇偶性周期性对称性

专题突破--抽象函数的奇偶性周期性对称性
专题突破--抽象函数的奇偶性周期性对称性

专题突破--抽象函数的周期性与对称性

知识点梳理

一、 抽象函数的对称性

定理 1. 若函数)(x f y =定义域为R ,且满足条件:)()(x b f x a f -=+,则函数)(x f y =的图象关于直线

2

b

a x +=

对称。 推论 1. 若函数)(x f y =定义域为R ,且满足条件:)()(x a f x a f -=+,则函数)(x f y =的图像关于直线

a x =对称。

推论2. 若函数)(x f y =定义域为R ,且满足条件:)2()(x a f x f -=),则函数)(x f y =的图像关于直线a

x =对称。

总结:x 的系数一个为1,一个为-1,相加除以2,可得对称轴方程

推论3. 若函数)(x f y =定义域为R ,且满足条件:)()(x a f x a f -=+, 又若方程0)(=x f 有n 个根,则

此n 个根的和为na 。

定理2. 若函数)(x f y =定义域为R ,且满足条件:c x b f x a f =-++)()((c b a ,,为常数),则函数)

(x f y =的图象关于点)2

,2(

c

b a +对称。 推论1. 若函数)(x f y =定义域为R ,且满足条件:0)()(=-++x b f x a f 成立,则)(x f y = 的图象关于点

)0,2

(

b

a +对称。 推论2.若函数)(x f y =定义域为R ,且满足条件:0)()(=-++x a f x a f (a 为常数),则函数)(x f y =的

图象关于点)0,(a 对称。

总结:x 的系数一个为1,一个为-1,f(x)整理成两边,其中一个的系数是为1,另一个为-1,存在对称中心。

定理3.若函数)(x f y = 定义域为R ,则函数)(x a f y +=与)(x b f y -=两函数的图象关于直线2

a

b x -=

对称(由x b x a -=+可得)。

推论1. 函数)(a x f y -=与函数)(x a f y -=的图象关于直线a x =对称。 推论2. 函数)(x a f y +=与函数)(x a f y -=的图象关于直线0=x 对称。

定理4.若函数)(x f y = 定义域为R ,则函数)(x a f y +=与)(x b f c y --= 的图象关于点)2

,2(c

a b -对称。 推论. 函数)(x a f y +=与函数)(x b f y --=图象关于点)0,2

(a

b -对称。 二、抽象函数的周期性

定理5.若函数)(x f y = 定义域为R ,且满足条件)()(b x f x a f -=+,则)(x f y =是以b a T +=为周期的

周期函数。

推论1.若函数)(x f y = 定义域为R ,且满足条件)()(b x f x a f --=+,则)(x f y =是以)(2b a T +=为周

期的周期函数。

推论2.若函数满足条件()()

1

,f x a f x +=-

||则T=2a 则)(x f y =是以a T 2=为周期的周期函数。 推论3. 若函数满足条件()()()

1,1f x f x a f x ++=

||-则T=4a 则)(x f y =是以a T 4=为周期的周期函数。

定理7.若函数)(x f y =的图象关于直线 a x =与 )(b a b x ≠=对称,则)(x f y =是以)(2a b T -=为周期的

周期函数。

定理8.若函数)(x f y =的图象关于点)0,(a 与点))(0,(b a b ≠ 对称,则)(x f y =是以)(2a b T -=为周期的周

期函数。

定理9.若函数)(x f y =的图象关于直线a x =与 点))(0,(b a b ≠,则)(x f y =是以)(4a b T -=为周期的周期

函数。

总结:x 的系数同为为1,具有周期性。

例题讲解:

题型一、抽象函数的对称轴

1、若函数()2f x x bx c =++对一切实数都有f (2+x) = f (2-x)则( )

A.f (2)

B.f (1)

C.f (2)

D.f (4)

2、设函数y= f (x)定义在实数集R 上,则函数y= f (x -1)与y= f (1-x)的图象关于( )对称。 A.直线y=0 B.直线 x=0 C.直线 y=1 D.直线 x=1 题型二、抽象函数的对称中心

1、已知定义为R 的函数()x f 满足()()4x f x f +-=-,且函数()x f 在区间()∞+,2上单调递增.如果21x 2x <<,且4x x 21<+,则()()21x f x f +的值( )

A. 恒小于0

B.恒大于0 C .可能为0 D .可正可负

2、函数y =f(x)是定义在实数集R 上的函数,那么y =-f(x +4)与y =f(6-x)的图象之间(D ) A .关于直线x =5对称 B .关于直线x =1对称 C .关于点(5,0)对称 D .关于点(1,0)对称 题型三、抽象函数的周期性

1、f(x)是定义在R 上的偶函数,图象关于x =1对称,证明f(x)是周期函数。

2、设f(x)是定义在R 上的函数,且满足f(10+x)=f(10-x),f(20-x)=-f(20+x),则f(x)是( ) A .偶函数,又是周期函数 B .偶函数,但不是周期函数 C .奇函数,又是周期函数 D .奇函数,但不是周期函数

课后作业:姓名: 班级 座号

1、换题

2、定义在R 上的非常数函数满足:f (10+x)为偶函数,且f (5-x) = f (5+x),则f (x)一定是( ) A.是偶函数,也是周期函数 B.是偶函数,但不是周期函数 C.是奇函数,也是周期函数 D.是奇函数,但不是周期函数

3、已知函数()f x 是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有(1)(1)()xf x x f x +=+,则

5

(())2

f f 的值是( )

A.0

B.

12

C.1

D.

52

4、已知()113x

f x x

+=-,()()1f x f f x =????,()()21f x f f x =????,…,()()1n n f x f f x +=????,则()20042f -=( ). A.1

7

-

B.

17

C. 35

-

D.3

5、ABCD —1111D C B A 是单位长方体,黑白二蚁都从点A 出发,沿棱向前爬行,每走一条棱称为“走完一段”。白蚁爬行的路线是,111 →→D A AA 黑蚁爬行的路线是.1 →→BB AB 它们都遵循如下规则:所爬行的第

2+i 段所在直线与第i 段所在直线必须是异面直线(其中)N i ∈.设黑白二蚁走完第1990段后,各停止在正方

体的某个顶点处,这时黑白蚁的距离是( )

A.1

B.2

C.3

D.0

6、在数列12211(*)n n n n x x x x x x n N ++===-∈{}中,已知,,则100x =

7、()y f x =定义域为R ,且对任意x R ∈都有()()()1

11f x f x f x ++=-,若()21f =f(2009)=

8、已知f(x)是R 上的偶函数,对R x ∈都有f(x +6)=f(x)+f(3)成立,若f(1)=2,则f(2011)=

9、函数)(x f 在R 上有定义,且满足)(x f 是偶函数,且()02005f =,()()1g x f x =-是奇函数,则()2005f 的值为

10、设f(x)是定义在R 上的偶函数,且f(1+x)= f(1-x),当-1≤x ≤0时,f (x) = -2

1x ,则f (8.6 ) = _______

11、设)(x f 是定义在区间),(+∞-∞上且以2为周期的函数,对Z k ∈,用k I 表示区间),12,12(+-k k 已知当

0I x ∈时,.)(2x x f =求)(x f 在k I 上的解析式.

参考答案:

题型一、抽象函数的对称轴

1、若函数()2f x x bx c =++对一切实数都有f (2+x) = f (2-x)则( )

A.f (2)

B.f (1)

C.f (2)

D.f (4)

2、设函数y= f (x)定义在实数集R 上,则函数y= f (x -1)与y= f (1-x)的图象关于( )对称。 A.直线y=0 B.直线 x=0 C.直线 y=1 D.直线 x=1 答案:D 。由1x x 11x =?-=-

题型二、抽象函数的对称中心

1、已知定义为R 的函数()x f 满足()()4x f x f +-=-,且函数()x f 在区间()∞+,2上单调递增.如果21x 2x <<,且4x x 21<+,则()()21x f x f +的值( )

A. 恒小于0

B.恒大于0 C .可能为0 D .可正可负

答案A 。分析:图象关于点()0,2对称.()x f 在区间()+∞,2上单调递增,在区间()2,∞-上也单调递增.我们可以

把该函数想象成是奇函数向右平移了两个单位.1242x x -<< ,且函数在()+∞,2上单调递增,所以

()()124x f x f -<,又由()()4+-=-x f x f ,有()[]()()1111444)4(x f x f x f x f -=+-=--=-, ∴()()<+21x f x f ()()114x f x f -+()()011=-=x f x f

2、函数y =f(x)是定义在实数集R 上的函数,那么y =-f(x +4)与y =f(6-x)的图象之间(D ) A .关于直线x =5对称 B .关于直线x =1对称 C .关于点(5,0)对称 D .关于点(1,0)对称

答案:D 。解:据复合函数的对称性知函数y =-f(x +4)与y =f(6-x)之间关于点((6-4)/2,0)即(1,0)中心对称,故选D 。

题型三、抽象函数的周期性

1、f(x)是定义在R 上的偶函数,图象关于x =1对称,证明f(x)是周期函数。

证明:任取函数()x f y =图象上一点()00y x ,即()00x f y =由()x f y =是偶函数得()

0y x 0,

-也在函数()x f y =的图象上,由因为函数()x f y =的图象关于x =1对称,点()()00y ,x 2--也在函数()x f y =的图象上,即

()00x 2f y +=,由此可得()()000x 2f x f y +==,所以函数()x f y =的周期为2。

2、设f(x)是定义在R 上的函数,且满足f(10+x)=f(10-x),f(20-x)=-f(20+x),则f(x)是( ) A .偶函数,又是周期函数 B .偶函数,但不是周期函数 C .奇函数,又是周期函数 D .奇函数,但不是周期函数 答案:C 。

课后作业:姓名: 班级 座号

1、换题

2、定义在R 上的非常数函数满足:f (10+x)为偶函数,且f (5-x) = f (5+x),则f (x)一定是( ) A.是偶函数,也是周期函数 B.是偶函数,但不是周期函数 C.是奇函数,也是周期函数 D.是奇函数,但不是周期函数

答案:A.解:∵f (10+x)为偶函数,∴f (10+x) = f (10-x).∴f (x)有两条对称轴 x = 5与x =10 ,因此f (x)是以10为其一个周期的周期函数, ∴x =0即y 轴也是f (x)的对称轴,因此f (x)还是一个偶函数。

3、已知函数()f x 是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有(1)(1)()xf x x f x +=+,则

5

(())2

f f 的值是( )

A.0

B.

12

C.1

D.

52

答案:A 。解析:令21-

=x ,则0)2

1

()21(21)21(21)21(21=?=-=-f f f f ;令0=x ,则0)0(=f

由(1)(1)()xf x x f x +=+得()()11f x f x x x +=

+,构造函数()()f x F x x

=,由11222112

22

f f ????+ ? ?

????=+,所以502f ??

= ???

4、已知()113x

f x x

+=-,()()1f x f f x =????,()()21f x f f x =????,…,()()1n n f x f f x +=????,则()20042f -=( ).

A.17

-

B.

17 C. 3

5

- D.3 答案:A 。分析:由()113x f x x +=-,知()1131x f x x -=+,()2131x f x f x x -??

== ?+??

,()()3f x f x =.

)(x f 为迭代周期函数,故()()3n f x f x =,()()2004f x f x =,()()20041

227

f f -=-=-.

5、ABCD —1111D C B A 是单位长方体,黑白二蚁都从点A 出发,沿棱向前爬行,每走一条棱称为“走完一段”。白蚁爬行的路线是,111 →→D A AA 黑蚁爬行的路线是.1 →→BB AB 它们都遵循如下规则:所爬行的第2+i 段所在直线与第i 段所在直线必须是异面直线(其中)N i ∈.设黑白二蚁走完第1990段后,各停止在正方

体的某个顶点处,这时黑白蚁的距离是( )

A.1

B.2

C.3

D.0

答案:B.解:依条件列出白蚁的路线→→→→→CB C C C D D A AA 111111,1 →→AA BA 立即可以发现白蚁走完六段后又回到了A 点.可验证知:黑白二蚁走完六段后必回到起点,可以判断每六段是一个周期.433161990+?=,因此原问题就转化为考虑黑白二蚁走完四段后的位置,不难计算出在走完四段后黑蚁在1D 点,白蚁在C 点,故所求距离是2

6、在数列12211(*)n n n n x x x x x x n N ++===-∈{}中,已知,,则100x = 答案:1-。

7、()y f x =定义域为R ,且对任意x R ∈都有()()()

1

11f x f x f x ++=-,若(

)21f =f(2009)=_

答案:

8、已知f(x)是R 上的偶函数,对R x ∈都有f(x +6)=f(x)+f(3)成立,若f(1)=2,则f(2011)= 答案:2.

9、函数)(x f 在R 上有定义,且满足)(x f 是偶函数,且()02005f =,()()1g x f x =-是奇函数,则()2005f 的值为

答案:0.函数关于()01,

-和0x =对称,周期为4()()()01f 1f 2005f =--==。 10、设f(x)是定义在R 上的偶函数,且f(1+x)= f(1-x),当-1≤x ≤0时,f (x) = -

2

1

x ,则f (8.6 ) = _______ 解:∵f(x)是定义在R 上的偶函数∴x = 0是y = f(x)对称轴;

又∵f(1+x)= f(1-x) ∴x = 1也是y = f (x) 对称轴。故y = f(x)是以2为周期的周期函数,∴f (8.6 ) = f (8+0.6 ) = f (0.6 ) = f (-0.6 ) = 0.3

11、设)(x f 是定义在区间),(+∞-∞上且以2为周期的函数,对Z k ∈,用k I 表示区间),12,12(+-k k 已知当

0I x ∈时,.)(2x x f =求)(x f 在k I 上的解析式.

解:设1211212),12,12(<-<-?+<<-∴+-∈k x k x k k k x

0I x ∈ 时,有22)2()2(121,)(k x k x f k x x x f -=-<-<-∴=得由 )(x f 是以2 为周期的函数,2)2()(),()2(k x x f x f k x f -=∴=-∴.

自己整理抽象函数单调性及奇偶性练习及答案

1、已知f x ()的定义域为R ,且对任意实数x ,y 满足f xy f x f y ()()()=+,求 证:f x ()是偶函数。 2、已知f(x)是定义在(-∞,+∞)上的不恒为零的函数,且对定义域内的任意x,y,f(x)都满足f(xy)=yf(x)+xf(y). (1)求f(1),f(-1)的值; (2)判断f(x)的奇偶性,并说明理由. 3、函数f(x)对任意x ?y ∈R,总有f(x)+f(y)=f(x+y),且当x>0时, f x ()<0, f(3)=-2. (1)判断并证明f(x)在区间(-∞,+∞)上的单调性; (2)求f(x)在[-3,3]上的最大值和最小值. 4、已知函数f (x )在(-1,1)上有定义,f (2 1)=-1,当且仅当0

6、定义在R 上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a 、b ∈R ,有f(a+b)=f(a)f(b), (1) 求证:f(0)=1; (2) 求证:对任意的x ∈R ,恒有f(x)>0; (3)证明:f(x)是R 上的增函数; (4)若f(x)·f(2x-x 2)>1,求x 的取值范围。 7、已知函数()f x 的定义域为R,对任意实数,m n 都有1 ()()()2 f m n f m f n +=++, 且1()02f =,当1 2 x >时, ()f x >0. (1)求(1)f ; (2) 判断函数()f x 的单调性,并证明. 8、函数()f x 的定义域为R,并满足以下条件:①对任意x R ∈,有()f x >0;②对任 意,x y R ∈,有()[()]y f xy f x =;③1 ()13 f >. (1)求(0)f 的值; (2)求证: ()f x 在R 上是单调减函数;

函数奇偶性的归纳总结

函数的奇偶性的归纳总结 考纲要求:了解函数的奇偶性的概念,掌握判断一些简单函数的奇偶性的方法。 教学目标:1、理解函数奇偶性的概念; 2、掌握判断函数的奇偶性的类型和方法; 3、掌握函数的奇偶性应用的类型和方法; 4、培养学生观察和归纳的能力,培养学生勇于探索创新的精神。 教学重点:1、理解奇偶函数的定义; 2、掌握判断函数的奇偶性的类型和方法,并探索其中简单的规律。 教学难点:1、对奇偶性定义的理解; 2、较复杂函数奇偶性的判断及函数奇偶性的某些应用。 教学过程: 一、知识要点: 1、函数奇偶性的概念 一般地,对于函数)(x f ,如果对于函数定义域内任意一个x ,都有)()(x f x f =-,那么函数)(x f 就叫做偶函数。 一般地,对于函数)(x f ,如果对于函数定义域内任意一个x ,都有)()(x f x f -=-,那么函数)(x f 就叫做奇函数。 理解: (1)奇偶性是针对整个定义域而言的,单调性是针对定义域内的某个区间而言的。这两个概念的区别之一就是,奇偶性是一个“整体”性质,单调性是一个“局部”性质; (2)定义域关于原点对称是函数具有奇偶性的必要条件。 2、按奇偶性分类,函数可分为四类: 奇函数非偶函数、偶函数非奇函数、非奇非偶函数、亦奇亦偶函数. 3、奇偶函数的图象:

奇函数?图象关于原点成中心对称的函数,偶函数?图象关于y 轴对称的函数。 4、函数奇偶性的性质: ①具有奇偶性的函数,其定义域关于原点对称(也就是说,函数为奇函数或偶函数的必要条件是其定义域关于原点对称)。 ②常用的结论:若f(x)是奇函数,且x 在0处有定义,则f(0)=0。 ③奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同,最值相反。奇函数f(x)在区间[a,b](0≤a

函数的单调性和奇偶性知识归纳和典型题型

单调性与最大(小)值 要点一、函数的单调性 1.增函数、减函数的概念 一般地,设函数f(x)的定义域为A ,区间D A ?: 如果对于D 内的任意两个自变量的值x 1、x 2,当x 1f(x 2),那么就说f(x)在区间D 上是减函数. 要点诠释: (1)属于定义域A 内某个区间上; (2)任意两个自变量12,x x 且12x x <; (3)都有1212()()(()())f x f x f x f x <>或; 2.单调性与单调区间 (1)单调区间的定义 如果函数f(x)在区间D 上是增函数或减函数,那么就说函数f(x)在区间D 上具有单调性,D 称为函数f(x)的单调区间. 函数的单调性是函数在某个区间上的性质. 要点诠释: ①单调区间与定义域的关系----单调区间可以是整个定义域,也可以是定义域的真子集; ②单调性是通过函数值变化与自变量的变化方向是否一致来描述函数性质的; ③不能随意合并两个单调区间; ④有的函数不具有单调性. (2)已知解析式,如何判断一个函数在所给区间上的单调性? 基本方法:观察图形或依据定义. 3.函数的最大(小)值 一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足: (1)对于任意的x I ∈,都有()f x M ≤(或()f x M ≥); (2) 存在0x I ∈,使得0()f x M =,那么,我们称M 是函数的最大值(或最小值). 要点诠释: ①最值首先是一个函数值,即存在一个自变量0x ,使0()f x 等于最值; ②对于定义域内的任意元素x ,都有0()()f x f x ≤(或0()()f x f x ≥),“任意”两字不可省; ③使函数()f x 取得最值的自变量的值有时可能不止一个; ④函数()f x 在其定义域(某个区间)内的最大值的几何意义是图象上最高点的纵坐标;最小值的几何意义是图象上最低点的纵坐标.

抽象函数的性质问题解析

抽象函数的性质问题解析 抽象函数是高中数学的一个难点,也是近几年来高考的热点。考查方法往往基于一般函数,综合考查函数的各种性质。本节给出抽象函数中的函数性质的处理策略,供内同学们参考。 1、 定义域:解决抽象函数的定义域问题——明确定义、等价转换。 材料一:若函数)1(+=x f y 的定义域为)3,2[-,求函数)21(+=x f y 的定义域。 解析:由)1(+=x f y 的定义域为)3,2[-,知1+x 中的)3,2[-∈x ,从而411<+≤-x ,对函数)21(+=x f y 而言,有1124x -≤+<,解之得:),21(]31,(+∞--∞∈ x 。 所以函数)21(+=x f y 的定义域为),21(]31,(+∞--∞ 总结:函数的定义域是指自变量的取值范围,求抽象函数的定义域的关键是括号内式子的地位等同(即同一对应法则后括号内的式子具有相同的取值范围),如本题中的1+x 与21+x 的范围等同。 2、 值域:解决抽象函数的值域问题——定义域、对应法则决定。 材料二:若函数)1(+=x f y 的值域为]1,1[-,求函数)23(+=x f y 的值域。 解析:函数)23(+=x f y 中定义域与对应法则与函数)1(+=x f y 的定义域与对应法则完全相同,故函数)23(+=x f y 的值域也为]1,1[-。 总结:当函数的定义域与对应法则不变时,函数的值域也不会改变。 3、 对称性:解决抽象函数的对称问题——定义证明是根本、图象变换是捷径、特值代入是妙法。 材料三:设函数)(x f y =定义在实数集上,则函数)1(-=x f y 与)1(x f y -=的图象关于( ) A 、直线0=y 对称 B 直线0=x 对称 C 直线1=y 对称 D 直线1=x 对称 解法一(定义证明):设点),(00y x P 是函数)1(-=x f y 的图象上的任意一点,则)1(00-=x f y ,),(00y x P 关于直线m x =的对称点为),2(00/y x m P -,要使点),2(00/y x m P -在函数)1(x f y -=的图象上,则)21()]2(1[000m x f x m f y -+=--=,应有121-=-m ,故1=m , 所以函数)1(-=x f y 与)1(x f y -=的图象关于直线1=x 对称。 解法二(图象变换法):由函数)(x f y =的图象向右平移1个单位得到函数)1(-=x f y 的

专题抽象函数的单调性和奇偶性应用

抽象函数的单调性和奇偶性应用 抽象函数是指没有明确给出具体的函数表达式,只是给出一些特殊关系式的函数。它是高中数学中的一个难点,因为抽象,解题时思维常常受阻,思路难以展开,而高考中会出现这一题型,本文对抽象函数的单调性和奇偶性问题进行了整理、归类,大概有以下几种题型: 一、判断单调性和奇偶性 1. 判断单调性 根据函数的奇偶性、单调性等有关性质,画出函数的示意图,以形助数,问题迅速获解。 例1.如果奇函数f x ()在区间[]37,上是增函数且有最小值为5,那 么f x ()在区间[]--73,上是 A. 增函数且最小值为-5 B. 增函数且最大值为-5 C. 减函数且最小值为-5 D. 减函数且最大值为-5 分析:画出满足题意的示意图,易知选B 。 例2.偶函数f x ()在(0),+∞上是减函数,问f x ()在()-∞,0上是 增函数还是减函数,并证明你的结论。 分析:如图所示,易知f x ()在()-∞,0上是增函数,证明如下: 任取 x x x x 121200<-> 因为f x ()在(0),+∞上是减函数,所以 f x f x ()()-<-12。 又f x ()是偶函数,所以 f x f x f x f x ()()()()-=-=1122,, 从而f x f x ()()12<,故f x ()在()-∞,0上是增函数。 2. 判断奇偶性 根据已知条件,通过恰当的赋值代换,寻求f x ()与f x ()-的关系。 例3.若函数y f x f x =≠()(())0与y f x =-()的图象关于原点对称,判断:函数 y f x =()是什么函数。

(完整版)函数奇偶性知识点和经典题型归纳

函数奇偶性 知识梳理 1. 奇函数、偶函数的定义 (1)奇函数:设函数()y f x =的定义域为D ,如果对D 内的任意一个x ,都有()()f x f x -=-, 则这个函数叫奇函数. (2)偶函数:设函数()y f x =的定义域为D ,如果对D 内的任意一个x ,都有()()f x f x -=, 则这个函数叫做偶函数. (3)奇偶性:如果函数()f x 是奇函数或偶函数,那么我们就说函数()f x 具有奇偶性. (4)非奇非偶函数:无奇偶性的函数是非奇非偶函数. 注意:(1)奇函数若在0x =时有定义,则(0)0f =. (2)若()0f x =且()f x 的定义域关于原点对称,则()f x 既是奇函数又是偶函数. 2.奇(偶)函数的基本性质 (1)对称性:奇函数的图象关于原点对称,偶函数的图象关于y 轴对称. (2)单调性:奇函数在其对称区间上的单调性相同,偶函数在其对称区间上的单调性相反. 3. 判断函数奇偶性的方法 (1)图像法 (2)定义法 ○ 1 首先确定函数的定义域,并判断其定义域是否关于原点对称; ○ 2 确定f(-x)与f(x)的关系; ○ 3 作出相应结论: 若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数; 若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数. 例题精讲 【例1】若函数2()f x ax bx =+是偶函数,求b 的值. 解:∵函数 f (x )=ax 2+bx 是偶函数, ∴f (-x )=f (x ).∴ax 2+bx= ax 2-bx. ∴2bx=0. ∴b =0. 【例3】已知函数21()f x x =在y 轴左边的图象如下图所示,画出它右边的图象. 题型一 判断函数的奇偶性 【例4】判断下列函数的奇偶性. (1)2()||(1)f x x x =+; (2)1()f x x x =;

最全最详细抽象函数的对称性、奇偶性和周期性常用结论

抽象函数的对称性、奇偶性与周期性常用结论 一.概念: 抽象函数是指没有给出具体的函数解析式或图像,只给出一些函数符号及其满足的条件的函数,如函数的定义域,解析递推式,特定点的函数值,特定的运算性质等,它是高中函数部分的难点,也是大学高等数学函数部分的一个衔接点,由于抽象函数没有具体的解析表达式作为载体,因此理解研究起来比较困难,所以做抽象函数的题目需要有严谨的逻辑思维能力、丰富的想象力以及函数知识灵活运用的能力 1、周期函数的定义: 对于()f x 定义域内的每一个x ,都存在非零常数T ,使得()()f x T f x +=恒成立,则称函数()f x 具有周期性,T 叫做()f x 的一个周期,则kT (,0k Z k ∈≠)也是()f x 的周期,所有周期中的最小正数叫()f x 的最小正周期。 分段函数的周期:设)(x f y =是周期函数,在任意一个周期内的图像为C:),(x f y = []a b T b a x -=∈,,。把)()(a b K KT x x f y -==轴平移沿个单位即按向量 )()0,(x f y kT a ==平移,即得在其他周期的图像: []b kT a kT x kT x f y ++∈-=,),(。 [][]? ??++∈-∈=b kT a,kT x )(b a, x )()(kT x f x f x f 2、奇偶函数: 设[][][]b a a b x b a x x f y ,,,),( --∈∈=或 ①若为奇函数;则称)(),()(x f y x f x f =-=- ②若为偶函数则称)()()(x f y x f x f ==-。 分段函数的奇偶性 3、函数的对称性: (1)中心对称即点对称: ①点对称;关于点与),()2,2(),(b a y b x a B y x A -- ②对称;关于与点),(),(),(b a y b x a B y b x a A ++-- ③成中心对称;关于点与函数),()2(2)(b a x a f y b x f y -=-= ④成中心对称;关于点与函数),()()(b a x a f y b x a f y b +=+-=- ⑤成中心对称。关于点与(函数),(0)2,2(0),b a y b x a F y x F =--= (2)轴对称:对称轴方程为:0=++C By Ax 。 ①))(2,)(2(),(),(2222//B A C By Ax B y B A C By Ax A x B y x B y x A +++-+++-=与点关于

2高一数学函数的奇偶性(1对1)

师:什么是函数的奇偶性呢? 生:回答 师:我们在函数奇偶性的知识点上重点考察的题型有哪些呢? 生:回答 师:我们通过今天的学习一起来回顾一下函数奇偶性的重点题目。 一、函数奇偶性定义 1、图形描述: 函数()f x 的图像关于y 轴对称?()f x 为偶函数; 函数()f x 的图像关于原点轴对称?()f x 为奇函数 定量描述 一般地,如果对于函数()f x 的定义域内任意一个x ,都有()()f x f x -=,则称()f x 为偶函数;如果都有()()--f x f x =,则称()f x 为奇函数;如果()()f x f x -= 与 函数的奇偶性

()()--f x f x =同时成立,那么函数()f x 既是奇函数又是偶函数;如果()()f x f x -=与()()--f x f x =都不能成立,那么函数()f x 既不是奇函数又不是偶函数,称为非奇非偶函 数。 如果函数()f x 是奇函数或偶函数,则称函数()y f x =具有奇偶性。 特别提醒: 1、函数具有奇偶性的必要条件是:函数的定义域在数轴上所表示的区间关于原点对称。换言之,若所给函数的定义域不关于原点对称,则这个函数一定不具备奇偶性。2、用函数奇偶性的定义判断函数是否具有奇偶性的一般步骤:(1)考察函数的定义域是否关于原点对称。若不对称,可直接判定该函数不具有奇偶性;若对称,则进入第二步;(2)判断 ()()f x f x -=与()()f x f x -=-这两个等式的成立情况,根据定义来判定该函数的奇偶 性。 二、函数具有奇偶性的几个结论 1、()y f x =是偶函数?()y f x =的图像关于y 轴对称;()y f x =是奇函数? ()y f x =的图像关于原点对称。 2、奇函数()f x 在0x =有定义,必有()00f =。 3、偶函数在定义域内关于原点对称的两个区间上单调性相反;奇函数在定义域内关于原点对称的两个区间上单调性相同。 4、()(),f x g x 是定义域为12,D D 且1 2D D 要关于原点对称,那么就有以下结论: 奇±奇=奇 偶±偶=偶 奇?奇=偶 偶?偶=偶 奇?偶=奇 5、复合函数的奇偶性特点是:“内偶则偶,内奇同外”。 6、多项整式函数1 10()n n n n P x a x a x a --=++ +的奇偶性 多项式函数()P x 是奇函数?()P x 的偶次项的系数和常数项全为零; 多项式函数()P x 是偶函数?()P x 的奇次项的系数全为零。 (20-40分钟) 类型一 函数奇偶性的判断 例1:判断下列函数是否具有奇偶性: (1)f (x )=2x 4+3x 2 ; (2)f (x )=1x +x ; 练习1:判断下列函数的奇偶性: (1)f (x )=x 2 +1; 考点

最新函数的奇偶性的经典总结

x x x f 1)(+ =1 )(2+= x x x f x x f 1)(= 函数的奇偶性 一、函数奇偶性的基本概念 1.偶函数:一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f =-, 0)()(=--x f x f ,那么函数()x f 就叫做偶函数。 2.奇函数:一般地,如果对于函数()x f 的定义域内任一个x ,都有()()x f x f -=-, 0)()(=+-x f x f ,那么函数()x f 就叫做奇函数。 注意:(1)判断函数的奇偶性,首先看定义域是否关于原点对称,不关于原点对称是非奇非偶函数,若函数的定义域是关于原点对称的,再判断 ()()x f x f ±=- 之一是否成立。 (2)在判断()x f 与()x f -的关系时,只需验证()()0=±-x f x f 及) () (x f x f -=1±是否成立即可来确定函数的奇偶性。 题型一 判断下列函数的奇偶性。 ⑴ x x x f +=2)(,(2) x x x f -=3)( (3) ()()()R x x f x f x G ∈--=,(4) (5)x x x f cos )(= (6)x x x f sin )(= (7) x x x f --=22)(,(8) 提示:上述函数是用函数奇偶性的定义和一些性质来判断 (1)判断上述函数的奇偶性的方法就是用定义。 (2)常见的奇函数有:x x f =)(,3 )(x x f =,x x f sin )(=, (3)常见的奇函数有:2 )(x x f =,x x f =)(,x x f cos )(= (4)若()x f 、()x g 都是偶函数,那么在()x f 与()x g 的公共定义域上,()x f +()x g 为 偶函数,()-x f ()x g 为偶函数。当()x g ≠0时, ) () (x g x f 为偶函数。 (5)若()x f ,()x g 都是奇函数,那么在()x f 与()x g 的公共定义域上,()x f +()x g 是奇函数,()-x f ()x g 是奇函数,()()x g x f ?是偶函数,当()x g ≠0时, ) () (x g x f 是偶函数。

6抽象函数的周期性

抽象函数的周期和对称性 一、关于周期性的结论 1. ()()f x T f x +=型:f x ()的周期为T 。 2. f x a f x b ()()+=+型:f x ()的周期为||b a -。 证明:f x a f x b f x f x b a ()()()()+=+?=+-。 3. f x a f x ()()+=-型:f x ()的周期为2a 。 证明:f x a f x a a f x a f x ()[()]()[()]+=++=-+=--2=f x () 4. ) (1 )(x f a x f ± =+型:f x ()的周期为2a 。 证明:f x a f x a a f x a f x f x ()[()]() () ()+=++= += =21 1 1。 5. f x a f x f x ()() () += +-11型:f x ()的周期为4a 。 证明:f x a f x a a f x a f x a ()[()]() ()+=++=++-+211 = + +--+- =-1111111f x f x f x f x f x () ()()() (), ∴f x a f x a a f x a f x f x ()[()]() () ()+=++=- +=- - =4221 21 1。 6. 两线对称型:函数f x ()关于直线x a =、x b =对称,则f x ()的周期为||22b a -。 证明: f x f a x f x f b x f a x f b x f x f x b a ()()()()()()()()=-=-?? ? ?-=-?=+-222222, 。

函数的奇偶性的经典总结

函数的奇偶性 一、函数奇偶性的基本概念 1.偶函数:一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f =-, 0)()(=--x f x f ,那么函数()x f 就叫做偶函数。 2.奇函数:一般地,如果对于函数()x f 的定义域内任一个x ,都有()()x f x f -=-, 0)()(=+-x f x f ,那么函数()x f 就叫做奇函数。 注意:(1)判断函数的奇偶性,首先看定义域是否关于原点对称,不关于原点对称是非奇非偶函数,若函数的定义域是关于原点对称的,再判断 ()()x f x f ±=- 之一是否成立。 (2)在判断()x f 与()x f -的关系时,只需验证()()0=±-x f x f 及) () (x f x f -=1±是否成立即可来确定函数的奇偶性。 题型一 判断下列函数的奇偶性。 ⑴x x x f +=2 )(,(2)x x x f -=3 )( (3)()()()R x x f x f x G ∈--=,(4) (5)x x x f cos )(= (6)x x x f sin )(= (7) x x x f --=22)(,(8) 提示:上述函数是用函数奇偶性的定义和一些性质来判断 (1)判断上述函数的奇偶性的方法就是用定义。 (2)常见的奇函数有:x x f =)(,3 )(x x f =,x x f sin )(=, (3)常见的奇函数有:2 )(x x f =,x x f =)(,x x f cos )(= (4)若()x f 、()x g 都是偶函数,那么在(x f 与()x g 的公共定义域上,()x f +()x g 为 偶函数,()-x f ()x g 为偶函数。当()x g ≠0时, ) () (x g x f 为偶函数。 (5)若()x f ,()x g 都是奇函数,那么在()x f 与()x g 的公共定义域上,()x f +()x g 是奇函数,()-x f ()x g 是奇函数,()()x g x f ?是偶函数,当()x g ≠0时, ) () (x g x f 是偶函数。 (6)常函数()()为常数c c x f =是偶函数,()f x =0既是偶函数又是奇函数。 (7)在公共定义域内偶函数的和、差、积、商(分母不为零)仍为偶函数;奇函数和、差仍为奇函数;奇(偶)数个奇函数积、商(分母不为零)为奇(偶)函数;一个奇函数与一个偶函数的积为奇函数.(8)对于复合函数()()[]x g f x F =;若()x g 为偶函数, ()f x 为奇(偶)函数,则()x F 都为

函数奇偶性对称性与周期性有关结论

函数奇偶性对称性与周期性有关结论 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

函数奇偶性、对称性与周期性 奇偶性、对称性和周期性是函数的重要性质,下面总结关于它们的一些重要结论及运用它们解决抽象型函数的有关习题。 一、几个重要的结论 (一)函数)(x f y =图象本身的对称性(自身对称) 2、)2()(x a f x f -= ?)(x f y =的图象关于直线a x =对称。 3、)2()(x a f x f +=- ?)(x f y =的图象关于直线a x =对称。 4、)()(x b f x a f -=+ ?)(x f y =的图象关于直线2 2)()(b a x b x a x +=-++=对称。 5、b x a f x a f 2)()(=-++ ?)(x f y =的图象关于点),(b a 对称。 6、b x a f x f 2)2()(=-+ ?)(x f y =的图象关于点),(b a 对称。 7、b x a f x f 2)2()(=++- ?)(x f y =的图象关于点),(b a 对称。 8、c x b f x a f 2)()(=-++ ?)(x f y =的图象关于点),2 (c b a +对称。 (二)两个函数的图象对称性(相互对称)(利用解析几何中的对称曲线轨迹方程理解) 1、函数)(x a f y +=与)(x a f y -=图象关于直线0=x 对称。 2、函数)(x f y =与)2(x a f y -=图象关于直线a x =对称

3、函数)(x f y -=与)2(x a f y +=图象关于直线a x -=对称 4、函数)(x a f y +=与)(x b f y -=图象关于直线0)()(=--+x b x a 对称 即直线2a b x -= 对称 5、函数)(x f y =与)(x f y -=图象关于X 轴对称。 6、函数)(x f y =与)(x f y -=图象关于Y 轴对称。 7、函数)(x f y =与)(x f y --=图象关于原点对称 (三)函数的周期性 1、)()(x f T x f =+ ?)(x f y =的周期为T 2、)()(b x b f a x f ++=+ )(b a < ?)(x f y =的周期为a b T -= 3、)()(x f a x f -=+ ?)(x f y =的周期为a T 2= 4、) (1)(x f a x f =+ ?)(x f y =的周期为a T 2= 5、)(1)(x f a x f - =+ ?)(x f y =的周期为a T 2= 6、) (1)(1)(x f x f a x f +-=+ ?)(x f y =的周期为a T 3= 7、 1)(1)(+- =+x f a x f ?)(x f y =的周期为a T 3= 8、) (1)(1)(x f x f a x f -+=+ ?)(x f y =的周期为a T 4=

抽象函数的对称性与周期性

抽象函数的对称性与周期性 一、 抽象函数的对称性 定理1. 若函数y=f (x) 定义域为R ,且满足条件:f (a+x)=f (b -x), 则函数y=f (x) 的图象关于直线x= 2a b +对称。 推论1. 若函数y=f (x) 定义域为R ,且满足条件:f (a+x)=f (a -x) (或f (2a -x)= f (x) ),则函数y=f (x) 的图像关于直线x= a 对称。 推论2. 若函数y=f (x) 定义域为R ,且满足条件:f (a+x)=f (a -x), 又若方程f (x)=0有n 个根,则此n 个根的和为na 。 定理2. 若函数y=f (x) 定义域为R ,且满足条件:f (a+x)+f (b -x)=c , (a,b,c 为常数),则函数y=f (x) 的图象关于点( ,)22a b c + 对称。 推论1.若函数y=f (x) 定义域为R ,且满足条件:f (a+x)+f (a -x)=0,(a 为常数),则函数y=f (x) 的图象关于点(a ,0)对称。 定理3.若函数y=f (x) 定义域为R ,则函数y=f (a+x) 与y=f (b -x)两 函数的图象关于直线x=2b a -对称。 定理4.若函数y=f (x) 定义域为R ,则函数y=f (a+x) 与y=c -f (b - x)两函数的图象关于点( ,)22b a c -对称。 性质1:对函数y=f(x),若f(a+x)= -f(b -x)成立,则y=f(x)的图象关于点(2b a +,0)对称。 性质2:函数y=f(x -a)与函数y=f(a -x)的图象关于直线x=a 对称。 性质3:函数y=f(a+x)与函数y=f(a -x)的图象关于直线x=0对称。 性质4:函数y=f(a+x)与函数y=-f(b -x)图象关于点(2a b -,0)对称。 二、抽象函数的周期性 定理5.若函数y=f (x) 定义域为R ,且满足条件f (x +a)=f (x -b),则y=f (x) 是以T=a +b 为周期的周期函数。 定理6.若函数y=f (x) 定义域为R ,且满足条件f (x +a)= -f (x -b),则y=f (x) 是以T=2(a +b )为周期的周期函数。 定理7.若函数y=f (x)的图象关于直线 x=a 与 x=b (a ≠b)对称,则y=f (x) 是以T=2(b -a)为周期的周期函数。 定理8.若函数y=f (x)的图象关于点(a,0)与点(b,0) , (a ≠b)对称,则y=f (x) 是以T=2(b -a)为周期的周期函数。 定理9.若函数y=f (x)的图象关于直线 x=a 与 点(b,0),(a ≠b)对称,则

常见抽象函数的单调性与奇偶性

常见函数的抽象函数单调性与奇偶性 特殊模型抽象函数 正比例函数: 幂函数:或 指数函数: 对数函数: 正、余弦函数: 正切函数: 余切函数: 1.已知,对一切实数、都成立,且,求证为偶函数. 2.奇函数在定义域内递减,求满足的实数的取值范围. 3.如果=(a>0)对任意的有,比较的大小. 4.已知函数对任意实数均有且当时求在区间上的值域. 5.已知函数对任意满足条件,且当时,求不等式的解. 6.设函数的定义域是(-∞,+∞),满足条件:存在,使得,对任何和成立,求: (1); (2)对任意值,判断值的正负. 7.是否存在函数,使下列三个条件:同时成立?若存在,求出的解析式,如不存在,说明理由. 8.是定义在上的单调增函数,满足 求:(1) (2)若求的取值范围. 9.设函数的反函数是如果那么是否正确,试说明理由. 10. 己知函数的定义域关于原点对称,且满足以下三条件:①当 是定义域中的数时,有是定义域中的一个数);③当时,f试问:

(1)的奇偶性如何?说明理由. (2)在上,的单调性如何?说明理由. 11. 已知函数对任意实数都有且当时, .(1)判断的奇偶性;(2)判断在上的单调性,并给出证明;(3)若 ,求的取值范围. 12. 设f(x)定义于实数集上,当 时, ,且对于任意实数x、y,有 , 求证: 在R上为增函数. 13.已知函数 对任意不等于零的实数 都有 ,试判断函数f(x)的奇偶性. 14.定义在R上的函数f(x)满足:对任意实数m,n,总有 ,且当x>0时,00时f(x)<0,且f(1)= -2,求f(x) 在[-3,3]上的最大值和最小值. 16.设f(x)定义于实数集上,当x>0时,f(x)>1,且对于任意实数x、y,有f(x+y)=f(x)f(y),求证:f(x)在R上为增函数.

函数的奇偶性的经典总结

x x x f 1)(+=1 )(2+= x x x f x x f 1)(=函数的奇偶性 一、函数奇偶性的基本概念 1.偶函数:一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f =-,0)()(=--x f x f ,那么函数()x f 就叫做偶函数。 2.奇函数:一般地,如果对于函数()x f 的定义域内任一个x ,都有()()x f x f -=-,0)()(=+-x f x f ,那么函数()x f 就叫做奇函数。 注意:(1)判断函数的奇偶性,首先看定义域是否关于原点对称,不关于原点对称是非奇非偶函数,若函数的定义域是关于原点对称的,再判断 ()()x f x f ±=- 之一是否成立。 (2)在判断()x f 与()x f -的关系时,只需验证()()0=±-x f x f 及 ) ()(x f x f -=1±是否成立即可来确定函数的奇偶性。 题型一 判断下列函数的奇偶性。 ⑴x x x f +=2)(,(2)x x x f -=3)( (3)()()()R x x f x f x G ∈--=,(4) (5)x x x f cos )(= (6)x x x f sin )(= (7) x x x f --=22)(,(8) 提示:上述函数是用函数奇偶性的定义和一些性质来判断 (1)判断上述函数的奇偶性的方法就是用定义。 (2)常见的奇函数有:x x f =)(,3)(x x f =,x x f sin )(=, (3)常见的奇函数有:2)(x x f =,x x f =)(,x x f cos )(= (4)若()x f 、()x g 都是偶函数,那么在()x f 与()x g 的公共定义域上,()x f +()x g 为 偶函数,()-x f ()x g 为偶函数。当()x g ≠0时,) ()(x g x f 为偶函数。 (5)若()x f ,()x g 都是奇函数,那么在()x f 与()x g 的公共定义域上,()x f +()x g 是奇函数,()-x f ()x g 是奇函数,()()x g x f ?是偶函数,当()x g ≠0时,) ()(x g x f 是偶函数。

函数对称性、周期性和奇偶性的规律总结大全 .分解

函数对称性、周期性和奇偶性规律 一、 同一函数的周期性、对称性问题(即函数自身) 1、 周期性:对于函数 )(x f y =,如果存在一个不为零的常数 T ,使得当x 取定义域内的每一个值时,都有 )()(x f T x f =+都成立,那么就把函数)(x f y =叫做周期函数,不为零的常数T 叫做这个函数的周 期。如果所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小正周期。 2、 对称性定义(略),请用图形来理解。 3、 对称性: 我们知道:偶函数关于y (即x=0)轴对称,偶函数有关系式 )()(x f x f =- 奇函数关于(0,0)对称,奇函数有关系式 0)()(=-+x f x f 上述关系式是否可以进行拓展?答案是肯定的 探讨:(1)函数)(x f y =关于a x =对称?)()(x a f x a f -=+ )()(x a f x a f -=+也可以写成)2()(x a f x f -= 或 )2()(x a f x f +=- 简证:设点),(11y x 在 )(x f y =上,通过)2()(x a f x f -=可知,)2()(111x a f x f y -==, 即点)(),2(11x f y y x a =-也在上,而点),(11y x 与点),2(11y x a -关于x=a 对称。得证。 若写成:)()(x b f x a f -=+,函数)(x f y =关于直线2 2)()(b a x b x a x +=-++= 对称 (2)函数 )(x f y =关于点),(b a 对称?b x a f x a f 2)()(=-++ b x f x a f 2)()2(=-++上述关系也可以写成 或 b x f x a f 2)()2(=+- 简证:设点),(11y x 在 )(x f y =上,即) (11x f y =,通过 b x f x a f 2)()2(=+-可知, b x f x a f 2)()2(11=+-,所以 1 112)(2)2(y b x f b x a f -=-=-,所以点 )2,2(11y b x a --也在)(x f y =上,而点)2,2(11y b x a --与),(11y x 关于),(b a 对称。得 证。 若写成:c x b f x a f =-++)()(,函数)(x f y =关于点)2 ,2( c b a + 对称 (3)函数 )(x f y =关于点b y =对称:假设函数关于b y =对称,即关于任一个x 值,都有两个 y 值与其对应,显然这不符合函数的定义,故函数自身不可能关于b y =对称。但在曲线c(x,y)=0,则 有可能会出现关于 b y =对称,比如圆04),(22=-+=y x y x c 它会关于y=0对称。 4、 周期性: (1)函数 )(x f y =满足如下关系系,则T x f 2)(的周期为 A 、 )()(x f T x f -=+ B 、) (1 )()(1)(x f T x f x f T x f - =+= +或 C 、 )(1)(1)2(x f x f T x f -+=+或) (1) (1)2(x f x f T x f +-=+(等式右边加负号亦成立)

函数的奇偶性

函数的奇偶性 【学习目标】 1.理解函数的奇偶性定义; 2.会利用图象和定义判断函数的奇偶性; 3.掌握利用函数性质在解决有关综合问题方面的应用. 【要点梳理】 要点一、函数的奇偶性概念及判断步骤 1.函数奇偶性的概念 偶函数:若对于定义域内的任意一个x ,都有f(-x)=f(x),那么f(x)称为偶函数. 奇函数:若对于定义域内的任意一个x ,都有f(-x)=-f(x),那么f(x)称为奇函数. 要点诠释: (1)奇偶性是整体性质; (2)x 在定义域中,那么-x 在定义域中吗?----具有奇偶性的函数,其定义域必定是关于原点对称的; (3)f(-x)=f(x)的等价形式为:() ()()0, 1(()0)() f x f x f x f x f x ---==≠, f(-x)=-f(x)的等价形式为:() ()()01(()0)() f x f x f x f x f x -+-==-≠, ; (4)由定义不难得出若一个函数是奇函数且在原点有定义,则必有f(0)=0; (5)若f(x)既是奇函数又是偶函数,则必有f(x)=0. 2.奇偶函数的图象与性质 (1)如果一个函数是奇函数,则这个函数的图象是以坐标原点为对称中心的中心对称图形;反之,如果一个函数的图象是以坐标原点为对称中心的中心对称图形,则这个函数是奇函数. (2)如果一个函数为偶函数,则它的图象关于y 轴对称;反之,如果一个函数的图像关于y 轴对称,则这个函数是偶函数. 3.用定义判断函数奇偶性的步骤 (1)求函数()f x 的定义域,判断函数的定义域是否关于原点对称,若不关于原点对称,则该函数既不是奇函数,也不是偶函数,若关于原点对称,则进行下一步; (2)结合函数()f x 的定义域,化简函数()f x 的解析式; (3)求()f x -,可根据()f x -与()f x 之间的关系,判断函数()f x 的奇偶性. 若()f x -=-()f x ,则()f x 是奇函数; 若()f x -=()f x ,则()f x 是偶函数; 若()f x -()f x ≠±,则()f x 既不是奇函数,也不是偶函数; 若()f x -()f x =且()f x -=-()f x ,则()f x 既是奇函数,又是偶函数 要点二、判断函数奇偶性的常用方法

奇偶性与对称性

函数的奇偶性与对称性 1. 下列函数中,奇函数的个数为: (1))1ln()(2x x x f -+= (2)x x x f -+-= 22)( (3)x x x f -+=11log )(2 (4)2 )110lg()(x x f x -+= A .1 B.2 C.3 D.4 2.函数11)(22-+-=x x x f 是: A.奇函数非偶函数 B. 偶函数非奇函数 C. 非奇非偶函数 D. 既是奇函数又是偶函数 3.函数2 |2|)1lg()(2---=x x x f 的奇偶性是: A.奇函数 B.偶函数 C. 既是奇函数又是偶函数 D.不是奇函数又不是偶函数 4.若函数11)(-+ =x a m x f 是奇函数,则m 取值是: A.0 B.2 1 C.1 D. 2 5.若函数)(x f y =与)(x f y -=的图象关于原点对称,则是: A.奇函数 B.偶函数 C. 既是奇函数又是偶函数 D.不是奇函数又不是偶函数 6.已知函数)(x f 的定义域为),0()0,(+∞?-∞,且对定义域中的任一x ,均有1)()(=-x f x f ,1 )(1)()(+-=x f x f x g 则)(x g 是: A.奇函数 B.偶函数 C. 既是奇函数又是偶函数 D.不是奇函数又不是偶函数 6.当R x ∈时,)(x f 满足)()()(y f x f y x f +=+,则)(x f 是: A.奇函数 B.偶函数 C. 既是奇函数又是偶函数 D.不是奇函数又不是偶函数 7.若函数)1(log )(223+++=x x ax x f 在)0,(-∞上有最小值-5,则函数)(x f 在),0(+∞上: A.有最大值5 B.有最小值5 C.有最大值3 D.有最大值9 8.如果函数c bx ax x f ++=2)(对于任意的实数t 都有)4()(t f t f -=,则: A.)4()1()2(f f f << B. )4()2()1(f f f << C.)1()4()2(f f f << D.)1()2()4(f f f << 9.若奇函数)(x f 满足)2()2(-=+x f x f ,则)2(f 的值是: A.0 B.4 C.-4 D.不能确定

相关文档
最新文档