系统生物学与中药质量控制与安全

系统生物学与中药质量控制与安全
系统生物学与中药质量控制与安全

Journal of Ethnopharmacology 126 (2009) 31–41

Contents lists available at ScienceDirect

Journal of

Ethnopharmacology

j o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /j e t h p h a r

m

Review

Quality and safety of Chinese herbal medicines guided by a systems biology perspective

Jiangshan Wang a ,c ,e ,Rob van der Heijden c ,Shannon Spruit b ,Thomas Hankermeier c ,Kelvin Chan d ,Jan van der Greef b ,c ,e ,Guowang Xu a ,e ,??,Mei Wang b ,e ,?

a

CAS Key Laboratory of Separation Science for Analytical Chemistry,Dalian Institute of Chemical Physics,Chinese Academy of Sciences,116023Dalian,China b

SU BioMedicine and TNO,Quality of Life,Utrechtseweg 48,3700AJ Zeist,The Netherlands c

Division of Analytical Biosciences,Leiden Amsterdam Center for Drug Research,Leiden University,P.O.BOX 9502,2300RA Leiden,The Netherlands d

Department of Pharmacy &Research Institute in Healthcare Science,School of Applied Sciences,University of Wolverhampton,Wolverhampton WV11LY,UK e

Sino-Dutch Centre for Preventive and Personalized Medicine,Utrechtseweg 48,3700AJ Zeist,The Netherlands

a r t i c l e i n f o Article history:

Received 2April 2009

Received in revised form 15July 2009Accepted 18July 2009

Available online 13 August 2009Keywords:

Chinese materia medica Systems biology Systems toxicology Metabolomics Aconitum roots

a b s t r a c t

Chinese herbal medicines,often referred as Chinese materia medica (CMM),are comprised of a complex multicomponent nature.The activities are aimed at the system level via interactions with a multitude of targets in the human body.This review aims at the toxicity aspects of CMM and its preparations at the different steps of production;harvesting,processing and the ?nal formulation.The historic perspective and today’s issues of the safety of CMM are introduced brie?y,followed by the descriptions of the toxic CMM in the current Chinese Pharmacopoeia (2005).Subsequently,several aspects of safety are illustrated using a typical example of a toxic CMM,Aconitum roots,and some recent ?ndings of our own research are included to illustrate that proper processing and multi-herbs formulation can reduce the level of toxic components.This also explains that in CMM,some herbs,such as Aconitum ,Ephedra species are never used as single herb for intervention and that aconite is only used when it is processed and in combination with speci?c matched other herbs.The formulation principle of multi-herbs intervention strategy is a systems approach for the treatment and prevention of disease.In this light,the role of systems toxicology in the safety and quality of Chinese herbal medicine is proposed as a promising method.Moreover the principles of practiced-based and evidence-based research are discussed from a symbiotic perspective.

? 2009 Elsevier Ireland Ltd. All rights reserved.

Contents 1.

Introduction (32)

1.1.Chinese materia medica and underlying principles..........................................................................................321.

2.Global interest and challenges ...............................................................................................................322.

The past and present safety evaluation of CMM.....................................................................................................332.1.Historical safety evaluation of CMM..........................................................................................................332.2.Present safety evaluation of CMM............................................................................................................

33

Abbreviations:CM,Chinese medicine;CMM,Chinese materia medica or Chinese medicinal materials;LD 50,the median lethal dose for 50%of the tested subjects;DI-ESI-MS,direct infusion electrospray ionization mass spectrometry;MALDI-MS,matrix assistant laser desorption ionization mass spectrometry;HPLC–MS,high performance liquid chromatography mass spectrometry;PCA,principle component analysis;PLS-DA,partial least squares-discriminant analysis;SCN,sodium channel;Na(v)I Alpha,Voltage-gated sodium channel type I alpha protein (encoded by the gene SCN1A);ASCT2(SLC1A5),amino acid transport system;ENaC,epithelial Na(+)channel;RAI,(or PPP1R13L protein)-protein phosphatase 1,regulatory (inhibitor)subunit 13like;GRO3,an early growth response transcription factor that is essential for the development of muscle spindles;XRCC1,X-ray repair cross complementing protein 1,involved in the rejoining of DNA single-strand breaks that arise following treatment with alkylating agents or ionizing radiation;NMDA receptors,N-methyl-d -aspartate receptors (a class of ionotropic glutamate receptors characterized by af?nity for N-methyl-d-aspartate);Annexin A1,Protein of the annexin family exhibiting lipid interaction and steroid-inducibility;AMPA receptors,Cell surface proteins that bind glutamate and directly gate ion channels in cell membranes.AMPA receptors were originally discriminated from other glutamate receptors by their af?nity for the agonist AMPA;SLICK,a type of rapidly gating sodium-activated channel.

?Corresponding author at:SU BioMedicine and TNO,Quality of Life,Utrechtseweg 48,3700AJ Zeist,The Netherlands.Tel.:+31306944848;fax:+31306944040.??Corresponding author at:CAS Key Laboratory of Separation Science for Analytical Chemistry,Dalian Institute of Chemical Physics,Chinese Academy of Sciences,116023Dalian,The Netherlands.Tel.:+8641184379530;fax:+8641184379559.

E-mail addresses:xugw@https://www.360docs.net/doc/d310651945.html, (G.Xu),mei.wang@tno.nl (M.Wang).0378-8741/$–see front matter ? 2009 Elsevier Ireland Ltd. All rights reserved.doi:10.1016/j.jep.2009.07.040

32J.Wang et al./Journal of Ethnopharmacology126 (2009) 31–41

3.CMM and constituents with known side effects in the Chinese Pharmacopoeia (33)

4.Application of systems toxicology in toxicity investigations (34)

5.From pharmacovigilance to mechanisms of toxicity (35)

6.The toxicity of Aconitum species (36)

6.1.Origin of the CMM from the Aconitum species (36)

6.2.Toxic constituents of A.carmichaeli and quality control (36)

6.3.Processing and formulations (36)

6.4.Biological effects of Aconitum alkaloids (36)

7.Conclusion (39)

Acknowledgements (40)

References (40)

1.Introduction

1.1.Chinese materia medica and underlying principles

Chinese herbal medicine is often referred as Chinese mate-ria medica(CMM).The use of CMM in the practice of Chinese medicine(CM)has a history of several thousands of years and has developed into a unique holistic health care system for the pre-vention,diagnosis and treatment of diseases.The human body is a complex and highly interconnected system,which is dynami-cally regulated within boundaries,the so-called homeostasis.The strategy of CM is based on supporting the self-healing capabilities of the body(salutogenesis)to recover from an imbalanced state. This approach is a?ne-tuned at the individual level by optimiz-ing each formula and is as such not addressing a disease with a single chemical compound or aiming at relieving a single symp-tom.In practice a Chinese medicine practitioner uses a unique detailed diagnostic procedure,not familiar to Western medicine,in order to prescribe a personalized mixture of CMM that the patient would typically take orally as an aqueous decoction.In the for-mula,each herb contains many compounds that possess concerted actions(Chan and Lee,2002;Chan,2005).A successful formula organizes these concerted actions derived from different herbs to create holistic,multi-target,multi-dimensional pharmacological actions to achieve personalized therapy.Such an approach is not yet embedded in Western medicine,but the advance of pharma-cogenomics and systems biology have created the building blocks to bridge this CMM approach with modern pharmacology(Wang et al.,2005a;Van der Greef et al.,2006;Van der Greef and McBurney, 2005).

1.2.Global interest and challenges

Currently,the practice of CMM is not only popular in China and some Asian regions;but also it is appreciated worldwide.A large-scale study of the Chinese population of Taiwan showed that from1996to2001,more than60%of all subjects have used Chi-nese medicine during the6-year interval.CMMs(85.9%)were the most common modality(Chen et al.,2007).It was estimated that more than1.5billion people all over the world are trusting in the ef?cacy and safety of Chinese medicine(Hosbach et al.,2003).In the‘Western world’,the term‘alternative’medicine is now often replaced by‘complementary’medicine.This emphasizes the com-plimentary nature of both developed medical systems.The latest term‘integrative’medicine underpin the gain that can be obtained when Western and complementary modalities are used together (Wang et al.,2005a).Parallel to this increased popularity,clini-cal pharmacological interest in the quality,safety and ef?cacy of CMM and herbal remedies in general have also grown.An aque-ous decoction from a mixture of CMM can be viewed as a source of many chemical entities,and side effects are inevitable espe-cially when not taken according to the‘CM practitioners’https://www.360docs.net/doc/d310651945.html,pared with the safety of pharmaceutical medicines,the inves-tigation of toxicity of CMM is far more dif?cult(Chan,2005).An estimated number of11,145medicines retrieved from medicinal plants are known in China(Huang et al.,2004).Their ef?cacy and toxicity are mostly based on historical,long term clinical experi-ence instead of modern scienti?c evaluation.A challenge is the variation in chemical contents caused by the variation of growth during the day–night rhythm,seasonal change,age and polymor-phisms within one species(Zhu,1998;Chang et al.,2006).The variation in chemical contents contributes to varying observations of potential toxicity of CMMs.Furthermore,the physiological status of the body plays a role in the toxicity as it may reduce or pro-mote toxicity by molecular interactions.Moreover,the causes of adverse reactions associated with CMM are complex and diverse (Ko,2004).Important to note is that given the personalized char-acter of CMM,different scienti?c methods need to be applied rather than the golden standard randomized,cross-over,double blinded clinical trial designs.Moreover one could argue that a prac-tical evaluation over many more patients than normally used in clinical trials yields a better insight.Typically clinical trials for Western medicine are started with evidence for possible posi-tive action in human,but only10%of the new chemical entities tested pass the clinical trial research often with toxicology as major stumble block.After the introduction into the market the practice-based regime is entered and a signi?cant number of newly introduced drugs need to be withdrawn because of serious side effects.In principle the sequence of practice-based and evidence based research is reversed in the current research.However,the lack of large scale comparisons between doctors and the variability of the herbal materials as well as the production,create a challenge for a more meta-analysis view.The limited knowledge collected today makes it dif?cult to diagnose the toxic effects derived from herbal medicines in general(Chan et al.,2005).On the other hand modern Chinese medicines produced under good manufacturing practice(GMP)and distributed through hospital channels provided a clear view on the ef?cacy and safety of a number of formulas.Tra-ditional knowledge on the practice of processing of crude CMM and the knowledge of the optimal combination of herbs in for-mulas to limit or reduce toxicity are as important as the ef?cacy issue.

In recent years,modern chemical,physical and biological meth-ods are applied for the investigation of the toxicity of CMM and signi?cant progress has been achieved.Poisonous compounds from individual toxic CMMs have been identi?ed and the mech-anisms of toxicity are under scienti?c investigations.Despite the great progress,safety of CMM is still a dif?cult task,partly due to the complexity of CMM but also due to the lack of appro-priate approaches within toxicity research of complex herbal mixtures.In this paper,we will give a general introduction on the safety of CMM.Furthermore,the systems toxicology approach is addressed as a promising tool to investigate CMM toxic-ity.

J.Wang et al./Journal of Ethnopharmacology126 (2009) 31–4133

2.The past and present safety evaluation of CMM

2.1.Historical safety evaluation of CMM

The toxicity of potent CMM was recorded in the earliest Chi-nese Pharmacopoeia(ShenNong BenChao Jing)in the East Han dynasty(25–220AD)(Liu et al.,2003;Liang and Gao,1992),a total of365CMMs derived from plants,animals and minerals were recorded as medicines and classi?ed into superior,average and inferior medicines.In the inferior category125medicines were con-sidered to be toxic or with side effects.Cautions on these medicines were recommended:to be used only for treatment of speci?c dis-eases in combination with other speci?c CMM;to be processed before using it as formulation;that the dose to be increased gradu-ally to avoid strong toxic effects;that they should not be used alone or for a long period.

Further development,based on experience,of this traditional document concerned the description of toxicity by the introduc-tion of a scale of toxicity ranking from high,medium,small to minor toxicity.Experience in using toxic CMM was further recorded and during the Ming dynasty(1368–1644AD)in the more compre-hensive and famous Chinese Pharmacopoeia–BenChao GangMu –appeared with a systematic review on toxicity of CMM by inclu-sion of a special chapter about toxic herbs.In this chapter,the toxic CMM recorded in previous documents were summarized system-atically.The use of toxic CMM and methods to reduce the toxicity were also covered(Liu et al.,2003).

2.2.Present safety evaluation of CMM

The bene?ts and health risks of all medicines,apart from clearly indicated principles regarding dose-related therapeutic and toxic effects,depend on how they are used and prescribed for public use. In a report of the World Health Organization(WHO),it is described that in the United States of America(USA),annually more than 1.5million people are seriously injured and hospitalized because of prescription drugs making adverse reactions a major cause of death(Patwardhan,2005).Efforts in drug discovery and develop-ment cannot guarantee complete safety of medications introduced by pharmaceutical companies,and about51%of the drugs approved by Food and Drug Administration(FDA)have serious adverse effects not detected prior to their approval(Patwardhan,2005).There-fore,the safety and risks associated with medical intervention is an issue across all categories of health care(Patwardhan,2005). This expands to food safety.In the USA,the Center for Disease Control and Prevention(CDC)estimated that among the country’s 290million residents,food borne diseases cause approximately 76million illnesses annually,including325,000hospitalizations and5000deaths(De Waal and Robert,2005).The safety is also a common concern in all kinds of herbal medicines,including Arabic herbal medicines,Ayurvedic herbal medicines and Kampo medicines(Saad et al.,2006;Ikegami et al.,2004;De Smet,2004). In conjunction to this increased popularity,clinical pharmacologi-cal interest in the safety of CMM has also emerged,especially after recognizing the so-called Chinese herb-induced nephropathy.This in fact is aristolochic acid-induced nephropathy.Nephropathy,a rapid progressive form of interstitial renal?brosis,was observed in patients who had taken a slimming regimen containing a mix-ture of pharmaceutical drugs and CMM that contained aristolochic acid.This incident was identi?ed?rst in Belgium(Vanherweghem et al.,1993).This unfortunate medical disaster is a typical case of inappropriate application of CMM;in the incident the aristolochic acid came from Aristolochiae fangchi Radix(Guang fangji)and not Stephenia tetrandra Radix(Fangji)that should have been added to the CMM drugs.The medical public has hence become more focused on the potential toxicity of CMM progressively(Chan,2005).The causes of adverse reactions associated with CMM are revealed in the literature,including variability in active/toxic ingredients,use of inherent toxic herbs,overdose,drug–herb interactions,coexist-ing diseases,and idiosyncratic reactions(Ko,2004;Tomlinson et al.,2000).

Quality control is another major issue of CMM that is related to adverse reactions,such as contamination(pesticides,heavy metals, microbes etc.),adulteration,misidenti?cation,improper process-ing and preparation(Chan,2005;Ko,2004;Maxion-Bergemann et al.,2006).With respect to the frequency of adverse reactions,a study carried out in Hong Kong showed that adverse events due to CMM accounted for0.2%of hospital admissions(3patients in1701 admissions)during an8-month period,and the frequency was far below that for Western pharmaceuticals at which was about4.4% (Bensoussan et al.,2000).A further investigation through com-prehensive practitioner survey in Australia showed that0.16%of Chinese medicine(including acupuncture and CMM)consultations resulted in an adverse event whilst pharmaceutical drug related hospital admissions in Australia is5.7%(Bensoussan et al.,2000). Similar investigations performed in the United Kingdom indicated that the most common adverse events associated with CMM were diarrhoea,fatigue,and nausea.No serious adverse events were reported(MacPherson and Liu,2005).The complexity of toxico-logical events associated with herbal medicines makes it necessary to have a multidisciplinary team of experts to examine suspicious reports.A total of20reports of suspected herbal poisoning were collected from the public hospitals in Hong Kong during a2-year period.In10patients,the adverse events were unlikely to be related to herbal medicines(Chan et al.,2005).In conclusion CMM is not absolutely safe,but its toxicity should not be exaggerated based on incidents of inappropriate use.The tendency to use a reductionistic view and extrapolate toxicity of components to the formula level neglecting synergetic safety effects is a major source of misunder-standing today.Formulas can only be evaluated in the context of the whole,but studies on single herbs or components can be helpful for

a scienti?c understanding of the toxic and synergetic effects.

3.CMM and constituents with known side effects in the Chinese Pharmacopoeia

All medicines when used inappropriately may turn bene?-cial pharmacological actions into toxicity.From the statements of Paracelsus in the?fteenth century and well-established knowl-edge in modern toxicology it is realized that dosage determines the toxicity of compounds.This is why Table1contains informa-tion about the compound dose which causes lethality or speci?c effects.Therefore,herbs regarded as nontoxic may have poten-tial to cause adverse events.Ginseng,is a well-known safe tonic herb and classi?ed as superior herb traditionally.However,it in higher doses produced in some people nervousness and eleva-tion of mood with occasional depression.Ginkgo biloba possesses platelet aggregation inhibiting effects that may be related to the side effect of spontaneous hemorrhage(Tomlinson et al.,2000). On the other hand,Papaver somniferum is seen as highly toxic,but its seed(poppy seed)does not contain the toxic opium alkaloids in suf?cient high amounts to cause severe toxicity(Dewick,1997). In an early survey of48potent or poisonous CMMs available for CM practice in the Hong Kong market(Xu and Chan,1994),the LD50was determined in mg per kg of these CMMs in mice as a measure of toxicity with microscopic records and thin-layer chro-matograms as the guidance for quality measure.Experiments on mice were carried out to determine the acute toxicity of32plant herbs,9animal products and6mineral products in total.For some of the CMMs,different experiments were made on the unprocessed and processed products for comparison.The results of the exper-

34

J.Wang et al./Journal of Ethnopharmacology 126 (2009) 31–41

Table 1

Main toxic compounds and their toxic https://www.360docs.net/doc/d310651945.html,pound Administration LD 50(mg/kg)Main effects

References

Aconitine Intraperitoneal 0.27Arrhythmias

Dong et al.(1981)Intravenous 0.10Convulsion or effect on seizure threshold.Friese et al.(1997)Mesaconitine Intraperitoneal 0.21No record

Hikino et al.(1977)Intravenous 0.068Convulsion or effect on seizure threshold.Friese et al.(1997)Hypaconitine

Oral

5.8No record Bisset (1981)

Intraperitoneal 1.10Arrhythmias Dong et al.(1981)

Subcutaneous 1.9Ataxia Murayama et al.(1991)Intravenous 0.47No record Bisset (1981)Talatisamine

Intravenous 116No record Bisset (1981)Benzoylhypaconine

Intraperitoneal 120No record Bisset (1981)Oral

830No record Bisset (1981)Subcutaneous 130No record Bisset (1981)Higenamine

Intravenous 58.9No record Bisset (1981)Intraperitoneal 300No record Bisset (1981)oral

3350No record Bisset (1981)Karacoline Intraperitoneal 298No record Bisset (1981)Intravenous 51.5No record Bisset (1981)

Beiwutine

Intraperitoneal

0.42

Arrhythmias

Dong et al.(1981)

iments indicate that:(1)The toxic doses of some potent CMM were under 10g/kg:semen Strychni (Ma Qian Zi),Radix et Rhizoma Sinopodophylli (Tao Er Qi),Fructus bruceae (Ya Dan Zi),Fructus Cro-tonis (Ba Dou),and Semen armeniacae amarum ,preparatum (Bei Xing or Ku Xing Ren,processed);(2)Among the animal products,the toxicity of Mylabris (Ban Mao)and Venenum bufonis (Chan Su)was extremely high (<1g/kg),the toxicity of the other animal prod-ucts could not be detected due to insolubility of the materials;and (3)Among the mineral products,the toxic doses of Chalcan-thitum (Dan Fan),Calomelas (Qing Fen)and Natrii sulhas (Mang Xiao)were found between 1and 10g/kg;the values of LD 50of the other mineral products could not be obtained due to insolubility of materials.Subsequent to this publication the Hospital Authority in Hong

Kong commissioned a Clinical Toxicology Task Force for Chi-nese Medicine to monitor poison cases related to CMM (Hong Kong Hospital Authority,2002).

In this section,the focus is on CMM with recorded toxicity in the latest issue of the Pharmacopoeia of the People’s Republic of China (Chinese Pharmacopoeia (CP),2005).Among the of?cial CMMs included in the CP 2005,59herb derived products are classi?ed as having toxic effects,and which are considered by the Chinese Pharmacopoeia Commission as of?cial drugs based on long term ‘trial &error’practice.Isolation and identi?cation of bioactivity of constituents from toxic herbs are the basis to further research into mechanisms of toxicity involved (Van der Heijden et al.,2004).For example,Aconitum species used in CMM are one of the major causes leading to toxicity,diterpenoid alkaloids isolated from Aconitum

Fig.1.A classi?cation of components from 59toxic CMMs (Number of compounds is 121).

species with pharmacological activities provide the bases to inves-tigate and understand the toxicity (Ameri,1998).The identi?cation of a nephric toxic compound,aristolochic acid,is revealing the toxi-city mechanism and many similar herbal medicines containing the same constituent with similar toxicity have been discovered sub-sequent to the tragic case on Guang fangji (Aristolochiae fangchi ).However,until now knowledge of the constituents of toxic herbs is limited.There are a total of 121toxins that have been reported,and are derived from the known 59toxic CMM in the CP (Dewick,1997;Zhu,1998).Considering the huge number of chemical entities in these herbs,the existing knowledge is limited.These chemicals can be classi?ed into the following categories:alkaloids,terpenes,coumarins and proteins (Fig.1).In terms of knowing the identities of the constituents of herbal medicines,large scale of basic elucidation is needed (Stone,2008).

4.Application of systems toxicology in toxicity investigations

All medicinal products used for human intervention should have proven quality,safety and ef?cacy (QSE).In Western medicine sev-eral factors are taken in account that might in?uence the ?nal drug response.Differences in drug metabolizing enzymes can give an increase or decrease in active or toxic constituents and differences in transporters will affect the bioavailability of drugs in cells,while different drug targets will affect the ef?cacy.Small molecules and proteins can also in?uence the ?nal effect by interaction with the drug and unknown off-targets effects are often only revealed in larger clinical settings.Generally,the above-mentioned factors con-tribute to drug response of CMM.Problems and dif?culties arise in the quality assurance of herbal medicinal products because they contain many unidenti?ed chemical entities in the ?nished prod-ucts and the actual bioactive components are seldom known.This is in principle not different from food science related challenges.Recent advances in analytical chemistry and related disciplines pro-vide opportunities to elucidate the complex chemical compositions of active compounds in CM herbs (Wang et al.,2009).

The current paradigm in evaluating drug safety is the applica-tion of data obtained from animals with extrapolation to possible risks in humans.The sensitivity of animals to detect potential dam-age induced by an intervention,the translational issues as well as variation within human subjects (gender,age,location,culture,etc.)decrease the reliability of risk assessment (Waring and Ulrich,2000).It is not surprising that drugs that have passed extensive safety testing and used in the market for years still can result in health care disasters with subsequent withdrawal from human use

J.Wang et al./Journal of Ethnopharmacology 126 (2009) 31–4135

(Couzin,2005).Understanding the mechanism is the key to improve the safety of drugs (Stevens,2006).The ?rst step is the integration of new advanced technologies and insights in life sciences,into the existing drug development framework.The past decade has witnessed an explosion in the number and variety of techniques available for bio-molecular analysis at different levels providing the opportunity to understand life via system based thinking (Van der Greef et al.,2007,2004).The shift from histopathology towards molecular toxicology as an early assessment of drugs has obtained considerable attention (Waring and Ulrich,2000).Toxi-cogenomics is explored for detection drug induced transcription changes in gene expression.New technologies,such as toxico-proteomics and metabolomics,offer additional complementary approaches and provide a deeper and holistic insight in systems tox-icology (Adourian et al.,2008).Metabolomics focuses on metabolic responses expressed in accessible biological ?uids (e.g.plasma and urine)offering the potential to associate molecular phenotype with the physiological state (Van der Greef et al.,2006).Upon its emergence as metabolite (or body ?uid)pro?ling combined with pattern recognition (Van der Greef et al.,1983a;Van der Greef and Leegwater,1983b ),metabolomics became a valuable technique in toxicology (Van der Greef et al.,1983a;Van der Greef and Leegwater,1983b;Lindon et al.,2003).Inspired by the successful applications,metabolomics was applied in the toxicity of CMM (Chan et al.,2008;Chen et al.,2008,2006).One of our studies also demonstrated that metabolomics was a sensitive approach.Doxorubicin (DOX)is used in the treatment of a variety of human neoplasms.However,the clinical use of DOX is limited by the development of a dose-dependent cardiotoxicity and animal studies reveal potential liver and kidney lesions.A urine metabolite pro?ling based systems tox-icology approach was utilized for the investigation of drug induced pathology.Multivariate analysis,partial least squares-discriminant analysis (PLS-DA),was applied to mine useful information from pro?ling data.PLS-DA is a supervised chemometric method,which builds a regression model for maximum separation between pre-de?ned classes and variables responsible for class differences are highlighted by their coef?cients in loading plot.Urine metabo-lites pro?ling by ultra performance liquid chromatography–mass spectrometry (UPLC–MS)contains information of several hundreds endogenous metabolites,providing a broad view on changes at the systems phenotype level.This method was applied to urine sam-ples of rats exposed to single dosages of DOX (5,10or 20mg/kg)prior and at three time points after dosage (24h,48h and 96h).Clinical chemistry and histopathology cannot detect signi?cant changes in animals dosed at the 5mg/kg level.However,by apply-ing metabolite pro?ling in combination with multivariate analysis changes induced by DOX after dose (Fig.2A)are detected.The observed changes re?ect potential biomarkers (cholic acid,hippuric acid and tryptophan etc.)and insights in the mechanistic studies (Fig.2B).

5.From pharmacovigilance to mechanisms of toxicity

Herbal medicines are complex to evaluate with regards to toxicity and ef?cacy effects using conventional methodological approaches.This complexity includes chemical complexity,in par-ticular in prescriptions containing multiple herbs,the lack of known synergetic active ingredients,the risk of contaminants such as pesticides,heavy metals and addition of other ingredients (some-times pharmaceuticals),deterioration and variation in composition (Chan,2005).Moreover interactions between CMM and pharma-ceutical drugs need to be addressed (Chan and Cheung,2000).On the other hand the knowledge obtained during long periods of use from direct empirical practice requires consideration in toxicity

research.

Fig.2.(A)Score plot of partial least squares-discriminant analysis (PLS-DA).Each spot in the score plot represents an individual rat.The animals before dosing and three time points after dosing can be separated clearly based on urine metabolites determined by UPLC-MS.Square:pre-dose,circle:24h after dose,triangle:48h after dose,cross:96h after dose.Each group contains 5rats.PLS-DA is a data analysis tool for classi?cation in metabolomics.(B)Loading plot of PLS-DA.In the loading plot,each point presents a metabolite (labeled by m/z )detected by UPLC–MS.The metabolites located away from the center have signi?cant impact on classi?cation of the different groups of rats in the score plot and can be assigned as potential biomarkers.

Therefore,the toxicity evaluation of existing CMM or established CMM is guided by re-evaluation of experience and by linking this to recognized mechanisms to obtain a better risk-bene?t consider-ation.The ?rst level is the collection of the data from documents and pharmacovigilance.Many established CMMs with toxicity have been recorded through generations of use and more cases related to toxic effects will be enhanced by improved modern pharma-covigilance.This information is directly obtained from practical use by human subjects and reported by general CM practioners or hospitals.The second level is the analysis and discovery of toxic compounds within suspected CMM.In many of the toxic herbal medicines,the components responsible for toxicity have been found and can be utilized to perform quality control and for further in depth research of toxic mechanisms (such as aconitine and aristolochic acid).The third level is to utilize the ancient ‘wis-dom’for toxicity control.For instance Ma-huang (Ephedra ),a CMM derived from the Ephedra species used to treat asthma,nose and lung congestion and fever with anhidrosis,has recently been used in high amounts for weight reduction resulting in many cases of poisoning.Such practices deviate from the traditional use of Ma-huang as documented in the Chinese literature.This is considered as an unprofessional practice of CM (Lee et al.,2000).During long

36J.Wang et al./Journal of Ethnopharmacology126 (2009) 31–41

period of time,for safety considerations,many methods have been developed to reduce the toxicity,mainly in the processing and for-mulation.

Processing of herbs comprises of the techniques used for trans-forming crude CMM into a form for clinic prescription,including cleaning,drying,boiling,steaming and frying,etc.Formulation is referred to as composition of multiple CMM for clinical use, water based extraction(decoction)etc.The principles that after the processing and formulation,the toxicity or different application ef?cacy of CMMs is reduced or altered are fundamental in Chinese medicine practice.This approach is illustrated in the following sec-tion by our research work on the toxic CMM,Aconitum root.The most important issue to realize in this context when compared to Western medicine principles is that for safety evaluation the whole formulation needs to be considered as synergetic effects in for-mula’s are used not only to enhance the pharmacological principles but especially also to enhance the safety effects.So in depth analyt-ical procedures reveal excellent information on toxic components but the context determines whether the toxicity is maintained in a formula.

6.The toxicity of Aconitum species

6.1.Origin of the CMM from the Aconitum species

Radix Aconitum refers to the root part of the medicinal plant that belongs to the genus of the family Ranunculaceae and is comprised of about400species of which166are endemic in China(http://www.e?https://www.360docs.net/doc/d310651945.html,/?ora page.aspx??ora id=2).The most well-known species is Aconitum napellus(Monk’s hood wolfsbane,aconite).Among them,only two species are used in CMM;Aconitum carmichaeli Debx and Aconitum kusnezof?Reichb. The herbal medicines in the China Pharmacopoeia are Radix A. carmichaeli(Chuanwu,from the major root of the species A. carmichaeli Debx.)and its processed form Radix Aconitum Preparata (Zhichuanwu),Radix A.Kusnezof?i(Caowu,from the root of A. Kusnezof?i Reichb),and its processed form Radix A.Kusnezof?i Preparata(Zhicaowu),Folium A.Kusnezof?i(Caowuye)and the processed Radix Aconitum Lateralis Preparata(Fuzi,the lateral root of the species A.carmichaeli Debx.)(Zhu,1998;Chinese Pharmacopoeia Commission,2005).

6.2.Toxic constituents of A.carmichaeli and quality control

In the early ShengNong BenCao Jing,Radix A.carmichaeli (Chuanwu)was already recorded as a high risk medicine.Diter-pene alkaloids are major chemical components of Radix A. carmichaeli.These alkaloids share a common C19norditerpenoid skeleton and can be divided into four types according to the degree of esteri?cation and substitutes at C8and C14posi-tions.Aconitum alkaloids without any ester side chain at C8and C14are non-ester alkaloids(NEAs).Normally,the C14position is occupied by a benzoyl group and further classi?cation can be made according to the chemical group substituted at the C8position namely,monoester-diterpenoid aconitines(MDAs), diester-diterpenoid aconitines(DDAs)and lipoalkaloids with the substitution of hydroxyl,acetyl and fatty acid acyl,respectively.The diversity of chemical structures leads to different biological effects (Ameri,1998).Table1lists the known compounds from Radix A. carmichaeli and their LD50values on mice(database of ChemIDPlus, https://www.360docs.net/doc/d310651945.html,/chemidplus/).In general,traditional oral dosing is much safer than other routes of application.The toxi-city might be derived from many compounds,in the case of Radix A. carmichaeli,the alkaloids aconitine,mesaconitine and hypaconitine are held responsible for the toxic effects(Zhu,1998;Ameri,1998).Chemical constituents pro?ling is a suitable approach.With the pro?ling approach,as many as possible components are determined simultaneously and provide a method to characterize the quality of herbal medicine in a holistic perspective.Especially,the pro?ling approach based on mass spectrometry is helpful for active/toxic components screening and monitoring(Wang et al.,2009).By applying the pro?ling method described by Wang et al(2009),alka-loids pro?ling based on direct infusion electrospray ionization mass spectrometry(DI-ESI-MS),matrix assistant laser desorption ioniza-tion mass spectrometry(MALDI-MS)and high performance liquid chromatography mass spectrometry(HPLC–MS)reveals that there are several tens of alkaloids detected in processed Radix Aconitum Lateralis Preparata collected from different drug stores(Fig.3A–C). For each speci?c alkaloid,signi?cant variation in content between different samples can be observed.However,focusing on one or several alkaloids is not enough to provide a holistic view.Principle component analysis(PCA)is a multivariate method which presents the chemical constituents in a multivariate way.PCA was used to ?nd the similarity in alkaloids content between different samples by the score plot(Fig.3D)and the speci?c alkaloids responsible for the similarity were revealed by loading plot(Fig.3E).

6.3.Processing and formulations

The proper traditional application of Radix Aconitum Lateralis Preparata means processing by boiling,steaming prior to use in the clinic.In CMM only processed form is used.Additionally,the herbal drug is only used in a multi-herbal formulation.The knowledge from empirical practice indicates that the processing and formu-lation have a great impact on the safety aspects of the Aconitum CMM.A logic way to elucidate the detoxi?cation is to examine if after processing and formulation,the content of the toxic alka-loids(aconitine,mesaconitine and hypaconitine)is dramatically changed.Therefore,we studied the content of alkaloids in the Aconi-tum root before and after the processing and formulation by LC-MS. The raw materials were processed,mainly by steaming,according to the method described in CP2005.The processed roots were for-mulated with Glycyrrhiza uralensis and dry ginger roots and boiled (Chinese Pharmacopoeia Commission,2005).After that,content of alkaloids in the raw materials,processed roots and the formulation was determined by HPLC–MS(Wang et al.,2009).

As shown in Fig.4the content of3toxic markers(aconitine, mesaconitine and hypaconitine)are responsible for arrhythmias decreased,this is consistent with previous studies(Zhu,1998; Ameri,1998).These results indicated that the toxic alkaloids were hydrolyzed to low toxic alkaloids(Ameri,1998).Currently, in Chinese Pharmacopoeia,the content of aconitine should be below0.17mg/g in the Radix Aconitum Lateralis Preparata(Chinese Pharmacopoeia Commission,2005).The limitation of all toxic alka-loids(aconitine,mesaconitine and hypaconitine)is still under investigation.

6.4.Biological effects of Aconitum alkaloids

It is known that the Aconitum alkaloids play a major role in the toxicity(Table1),and the degree of toxicity may be indicated by the LD50values.An approach for elucidating the underlying mechanism could be performed by mapping the toxic chemicals into a biological pathway context.The toxicity of the typical poi-sonous alkaloid aconitine was investigated by the Metacore system (GeneGo Inc,St Joseph,MI).Metacore is an integrated software suite for functional analysis of experimental data.The scope of data types includes microarray and SAGE gene expression,SNPs and CGH arrays,proteomics,metabolomics,pathway analysis,Y2H and other custom interactions.MetaCore TM is based on a proprietary manually created database of human protein–protein,protein–DNA

J.Wang et al./Journal of Ethnopharmacology 126 (2009) 31–4137

Fig.3.Alkaloids pro?ling of A.carmichaeli by ESI-MS (A),LC–MS (B),MALDI-MS (C),PCA score plot (PC1vs.PC2)based on LC–MS measurement (D)and loading plot (E).Each spot in the score presents a sample;the distance between samples indicates their similarity in chemical constituents,i.e.shorter distance indicates higher similarity.The loading plot can be used to ?nd components which are responsible for the similarity.For example,the samples in the square of score plot are similar in chemical constituents,which is mainly because they have higher content of components in the square of the loading plot.

Table 2

Possible targets and its corresponding diseases from Metacore.Channels Corresponding disease

References

Na(v)I Alpha

Epilepsy,seizures,migraine spasms and abnormalities.Lossin et al.(2002);Dichgans et al.(2005);Weiss et al.(2003);Ceulemans et al.(2004);Wallace et al.(2003)SCN 3A No corresponding disease

SCN 2A

Epilepsy,epilepsy of the frontal lobe and abnormalities.Maurer-Morelli et al.(2006)

Tetrodotoxin-resistant Na(I)channel

Several cardiac diseases,including tachycardia,

arrhythmia’s,bradycardia and ventricular ?brillation

Gouas et al.(2005);Makiyama et al.(2005);Wolf and Berul (2006);Itoh et al.(2005)

38J.Wang et al./Journal of Ethnopharmacology

126 (2009) 31–41

Fig.4.The reduction in content of three toxic alkaloids during processing and for-mulation.The contents of three toxic alkaloids in raw material,processed root and formulation are normalized by the content in the raw material.The typical chemical reaction responsible for reduction of toxicity is the hydrolysis of aconitine.

and protein compound interactions,metabolic and signaling path-ways and the effects of bioactive molecules in gene expression (https://www.360docs.net/doc/d310651945.html,/metacore.php ).By using pathway anal-ysis tool integrated in Metacore,Fig.5shows that administration of aconitine may result in a cascade of biological events.Aconitine

has a direct link with 4types of ion channels (Fig.5and Table 2).Na(v)I Alpha is the voltage-gated sodium channel type I alpha (encoded by the gene SCN1A).SCN2A and SCN3A are voltage-gated sodium channels.They are transmembrane glycoprotein complexes and responsible for the generation and propagation of action poten-tials in neurons and muscle.Tetrodotoxin-resistant Na(I)channel is a novel sodium channel and is suggested to be associated with central sensitization in chronic neuropathic pain states.Within the Metacore system the channels connected to related diseases are shown in Table 2.It can be seen from the three channels that there is a direct link between aconitine and its toxic effects,mainly arrhyth-mias.The approach of quality control linking chemical entities with toxicity control is of interest for future consideration for potentially toxic herbs.Deeper insight into the mechanism of the bioactiv-ity of a wide spectrum of Aconitum alkaloids could be helpful to understand this.

We applied the Metadrug software (GeneGo Inc,St Joseph,MI)to deduce mechanism of action of small compounds from manually created networks and analyse molecular inter-actions between given compounds and drug targets using the Elsevier MDL Discovery Gate and GeneGo databases (https://www.360docs.net/doc/d310651945.html,/metacore.php ),to study the mecha-nism and bioactivity pro?le of some Aconitum alkaloids (aconitine,beiwutine,benzoylaconine,benzoylhypaconine,higenamine,hypaconitine,mesaconitine).The data generated results that show the activity to serotonin histamine and dopamine receptors to be the common bio-activities of these alkaloids.In addition,the structural diversity of the compounds results also in other effects such as those affecting the receptor ligands (annexin A1and GRO3),generic binding protein (XRCC1),and ligand-gated ion channel (NMDA receptors,AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid)receptors,kainate receptors).It shows that aconitine in?uences in?ammation reactions through binding receptor ligands (annexin A1and GRO 3)and this can in?uence transmission of nerve impulse through action on the serotonin,the histamine and the dopamine receptor (Table 3

).

Fig.5.The result of the Metacore analysis of the compound aconitine.

J.Wang et al./Journal of Ethnopharmacology126 (2009) 31–4139

Table3

The targets of several alkaloids found by Metadrug.

Target Aconitine Beiwutine Benzoylaconine Benzoylhypaconine Higenamine Hypaconitine Mesaconitine

Annexin A1+

GRO3+

Serotonin receptors+++++++

Histamine receptors+++++++

Dopamine receptors+++++++

XRCC1+++++

NMDA receptors+

AMPA receptors+

Kainate receptors+

+indicates there is an action of compound on target.

Using MetaDrug TM software:this software deduces toxicity and mechanism of action of small compounds from manually curated networks,using the Elsevier MDL Discovery Gate and GeneGo databases(https://www.360docs.net/doc/d310651945.html,/metadrug.php).

In the development of synthetic drugs,the general way to increase therapeutic effects and decrease the toxicity is by molecu-lar structure modi?cation.This method has proven to be effective, but at present it has become more and more dif?cult to?nd an effec-tive drug with little side effects.By contrast,in the development of future CMM another approach is followed by changing the relative quantities of the groups of CMM constituents and using the syner-getic effects to enhance the desired intervention pro?le.Normally, the active compounds from a CMM herb have similar structures which can lead to similar bioactivity.For example,many of the alka-loids from Radix A.carmichaeli share a common C19norditerpenoid skeleton.Therefore,from a group of compounds with similar chem-ical structures(which is common for active compounds from herbal medicine),each of them may have diverse biological activities and some of the functions are shared and others are speci?c to a given structure.In the best situation,the mutual functions are therapeu-tically related,and the additional biological functions derived from speci?c compounds are connected to adverse or toxic effects.The combined usage of these chemically similar compounds results in an accumulated therapeutic effect,while the adverse effects are reduced resulting in safer medicine.In the case of the Aconitum alkaloids the reduction or complete elimination of aconitine,hypa-conitine and mesaconitine is useful which was commonly used by processing and formulation in traditional use of CMM.According to the actual effect of the processed aconite there is less decrease in analgesic activity but there is a decrease in toxicity after pro-cessing(Liou et al.,2005).When the therapeutic effects are derived from a speci?c function related to a certain compound,the Western medicine approach is to purify the active compound,which is nor-mally the method new drugs from herb or other natural sources are found.To decipher the mechanism of an ancient formulae used in CM practice;it is possible to elucidate the composite formulae with the aim to control toxicity or increase the ef?cacy.The prescription or Fu-Fang(multiple herbal formulas)may contain antagonistic or synergistic CMM.In the latter case,the dose of the toxic herb can be reduced.

7.Conclusion

In the present review,the safety of CMM and CMM products, and factors modulating their toxicity has been considered.These factors exert effects on the?nal reactions of the body to the herbal medicines because of the many compounds within multi-herbal preparations or in single herbal preparations.The59toxic herbs, which were identi?ed and discussed shows that toxicological infor-mation about these CMM is limited.The alkaloids and terpenes were the two major classes of toxins.The advances of analytical technology have also provided better methodology for the qual-ity control of complex CMM.The new approaches outdate when applicable the commonly used measurement of some typical or major compounds only within one speci?c species.It was shown that the processing of the CMMs and the use of herbal mixtures in formulas are both important in toxicity assessment and may open up new approaches for toxicity control.For Aconitum roots it was shown how biochemical and bio-statistical analysis provides detailed information about toxicity and suggesting hints about the responsible molecular mechanisms.The present review proposes a systems biology approach for screening extracts of CMM indi-vidually or in combinations to detect biomarkers for bioactivity in cell lines,animal models,and subsequently in human volunteers via clinical studies.The data obtained can be linked and analyzed by means of megavariate data analysis.The latter is a powerful technique that analyses data sets with a large number of vari-ables and correlates for instance metabolomics?ngerprints with a certain phenotype of bioactivity,toxicity or ef?https://www.360docs.net/doc/d310651945.html,ing these biomarkers or biomarker?ngerprints,it is possible to offer better quality assurance for herbal formulations,to relate bioactivity in animal models and human subjects and to link CMM compositions to bioactivity and to optimize CMM formulae to identify toxicity of certain formulations(Wang et al.,2005a).This concept is illus-trated in Fig.6,a system has been developed and patented(Wang et al.,2005b)based on monitoring biological effects with a biomarker pro?le,enabling opportunities to not only discover effects or pro-vide claim support but especially to detect synergetic effects,which are the main principles in herbal medicine.

Finally it is mandatory to understand that Chinese herbal medicine should be investigated and evaluated understanding the principles by which it has been developed.This implies that for-mulas

and not constituents much be researched alone,one cannot investigate building blocks and extrapolate the information to the whole as at each level of complexity new emerging properties are formed.Moreover the realization that practice-based knowl-edge is essential also in Western medicine for?nal evaluation of the risks and bene?ts of a patient,but that scienti?c evidence is

Fig.6.The concept of linking biological activities with multi-component herbal mixture by using bio-statistics.

40J.Wang et al./Journal of Ethnopharmacology126 (2009) 31–41

mandatory for a better guidance and understanding of the future of our medicine provides a balanced view and opening to fuse the knowledge from the science evolved from different philosophical backgrounds.In Western medical science we follow the route form data to information to knowledge and?nally to wisdom,today we have the chance to explore the reversed-route starting out with wisdom and trying to discover the underlying mechanism-based principles.

Acknowledgements

We are grateful for Dr.Suzan Wopereis for her kind help in con-ducting the Metacore and Metadrug analysis,Dr.Andre Schram for valuable discussion.The Sino-Dutch center for Preventive and Per-sonalized Medicine is jointly supported by the China International Science and Technology Cooperation Program(2007DFA31060)and National Key Technologies R&D Program(2006BAI11B07)from the Ministry of Science and Technology of China,the Netherlands Genomics Initiative(NGI),the Netherlands Metabolomics Center and TNO.

References

Adourian,A.,Jennings,E.,Balasubramanian,R.,Hines,W.M.,Damian,D.,Plasterer, T.N.,Clish,C.B.,Stroobant,P.,McBurney,R.,Verheij,E.R.,Bobeldijk,I.,van der Greef,J.,Lindberg,J.,Kenne,K.,Andersson,U.,Hellmold,H.,Nilsson,K.,Salter,H., Schuppe-Koistinen,I.,2008.Correlation network analysis for data integration and biomarker selection.Molecular BioSystems4,249–259.

Ameri,A.,1998.The effects of Aconitum alkaloids on the central nervous system.

Progress in Neurobiology56,211–235.

Bensoussan,A.,Myers,S.P.,Carlton,A.L.,2000.Risks associated with the practice of traditional Chinese medicine:an Australian study.Archives of Family Medicine 9,1071–1078.

Bisset,N.G.,1981.Arrow poisons in China.Part II.Aconitum—botany,chemistry,and pharmacology.Journal of Ethnopharmacology4,247–336.

Ceulemans,B.P.,Claes,L.R.,Lagae,L.G.,2004.Clinical correlations of mutations in the SCN1A gene:from febrile seizures to severe myoclonic epilepsy in infancy.

Pediatric Neurology30,236–243.

Chan,K.,Cheung,L.,2000.Interactions between Chinese Herbal Medicinal Prod-ucts and Orthodox Drugs.Harwood Academic Publishers,The Gordon&Breach Publishing Group,ISBN:90-5702-413-6.

Chan,K.,Lee,H.,2002.The Way Forward for Chinese Medicine.Harwood Academic Publishers,The Taylor and Francis Group,ISBN:0-415-27720-5.

Chan,K.,2005.Chinese medicinal materials and their interface with Western med-ical concepts.Journal of Ethnopharmacology96,1–18.

Chan,W.,Lee,K.C.,Liu,N.,Wong,R.N.S.,Liu,H.W.,Cai,Z.W.,2008.Liquid chro-matography/mass spectrometry for metabolomics investigation induced by aristolochic acid of the biochemical effects in rats:the use of information-dependent acquisition for biomarker identi?cation.Rapid Communications in Mass Spectrometry22,873–880.

Chan,T.Y.K.,Tam,H.P.,Lai,C.K.,Chan,A.Y.W.,2005.A multidisciplinary approach to the toxicological problems associated with the use of herbal medicines.Thera-peutic Drug Monitoring27,53–57.

Chang,W.T.,Thissen,U.,Ehlert,K.A.,Koek,M.M.,Jellema,R.J.,Hankemeier,T.,Van der Greef,J.,Wang,M.,2006.Effects of growth conditions and processing on Rehmannia glutinosa https://www.360docs.net/doc/d310651945.html,ing?ngerprint strategy.Planta Medica72,458–467. Chen,F.P.,Chen,T.J.,Kung,Y.Y.,Chen,Y.C.,Chou,L.F.,Chen,F.J.,Hwang,S.J.,2007.

Use frequency of traditional Chinese medicine in Taiwan.BMC Health Services Research7,26–36.

Chen,M.,Ni,Y.,Duan,H.,Qiu,Y.,Guo,C.,Jiao,Y.,Shi,H.,Su,M.,Jia,W.,2008.Mass spectrometry-based metabolic pro?ling of rat urine associated with general tox-icity induced by the multiglycoside of Tripterygium wilfordii Hook.f.Chemical Research in Toxicology21,288–294.

Chen,M.,Su,M.,Zhao,L.,Jiang,J.,Liu,P.,Cheng,J.,Lai,Y.,Liu,Y.,Jia,W.,2006.

Metabonomic study of aristolochic acid-induced nephrotoxicity in rats.Journal of Proteome Research5,995–1002.

Chinese Pharmacopoeia Commission,2005.Pharmacopoeia of the People’s Republic of China.People’s Medical Publishing House,Beijing.

Couzin,J.,2005.Drug safety.Gaps in the safety net.Science307,196–198.

De Smet,P.A.G.M.,2004.Health risks of herbal remedies:an update.Clinical Phar-macology and Therapeutics76,1–17.

De Waal, C.S.,Robert,N.,2005.Global and Local:Food Safety Around the World.Center for Science in the Public Interest,Washington D.C, https://www.360docs.net/doc/d310651945.html,/new/pdf/global.pdf.

Dewick,P.M.,1997.Medicinal Natural Products(a Biosynthetic Approach).John Wiley&Sons Ltd,Chichester,England.

Dichgans,M.,Freilinger,T.,Eckstein,G.,Babini,E.,Lorenz-Depiereux,B.,Biskup,S., Ferrari,M.D.,Herzog,J.,van den Maagdenberg,A.M.,Pusch,M.,Strom,T.M., 2005.Mutation in the neuronal voltage-gated sodium channel SCN1A in familial hemiplegic https://www.360docs.net/doc/d310651945.html,ncet366,371–377.Dong,Y.L.,Chen,W.Z.,Ding,G.S.,https://www.360docs.net/doc/d310651945.html,parison of arrhythmic effects of aconitine and its5analogues.Chinese Journal of Pharmacology2,173–176.

Friese,J.,Gleitz,J.,Gutser,U.T.,Heubach,J.F.,Matthiesen,T.,Wilffert,B.,Selve,N., 1997.Aconitum sp.alkaloids:the modulation of voltage-dependent Na+chan-nels,toxicity and antinociceptive properties.European Journal of Pharmacology 337,165–174.

Gouas,L.,Nicaud,V.,Berthet,M.,Forhan,A.,Tiret,L.,Balkau,B.,Guicheney,p.,2005.

Association of KCNQ1,KCNE1,KCNH2and SCN5A polymorphisms with QTc inter-val length in a healthy population.European Journal of Human Genetics13, 1213–1222.

Hikino,H.,Yamada,C.,Nakamura,K.,Sato,H.,Ohizumi,Y.,1977.Change of alkaloid composition and acute toxicity of Aconitum roots during processing.Yakugaku Zasshi97,359–366.

Hong Kong Hospital Authority,2002.Handbook on Toxicological Aspect of Chinese Medicines,https://www.360docs.net/doc/d310651945.html,.hk/visitor/ha index.asp.

Hosbach,I.,Neeb,G.,Hager,S.,Kirchhoff,S.,Kirschbaum,B.,2003.In defence of traditional Chinese herbal medicine.Anaesthesia58,282–283.

Huang,X.D.,Kong,L.A.,Li,X.,Chen,X.G.,Guo,M.,Zou,H.F.,2004.Strategy for anal-ysis and screening of bioactive compounds in traditional Chinese medicines.

Journal of Chromatography B:Analytical Technologies in the Biomedical and Life Sciences812,71–84.

Ikegami,F.,Fujii,Y.,Satoh,T.,2004.Toxicological considerations of Kampo medicines in clinical use.Toxicology198,221–228.

Itoh,H.,Shimizu,M.,Mabuchi,H.,Imoto,K.,2005.Clinical and electrophysiological characteristics of Brugada syndrome caused by a missense mutation in the S5-pore site of SCN5A.Journal of Cardiovascular Electrophysiology16,378–383. Ko,R.J.,2004.A U.S.perspective on the adverse reactions from traditional Chinese medicines.Journal of the Chinese Medical Association67,109–116.

Lee,M.K.,Cheng,B.W.H.,Che,C.T.,Hsieh,D.P.H.,2000.Cytotoxicity assessment of ma-huang(Ephedra)under different conditions of preparation.Toxicological Sciences56,424–430.

Liou,S.S.,Liu,I.M.,Lai,M.C.,Cheng,J.T.,https://www.360docs.net/doc/d310651945.html,parison of the antinociceptive action of crude Fuzei,the root of Aconitum,and its processed products.Journal of Ethnopharmacology99,379–383.

Liu,S.M.,Luo,M.J.,Li,Y.J.,2003.Toxic theories of Chinese herbal medicines and their study progress.World Science and Technology-Modernization of Traditional Chinese Medicine5,45–48.

Liang,J.,Gao,X.M.,1992.Toxicity of traditional Chinese medicine:a historical perspective.Journal of Beijing University of Traditional Chinese Medicine15, 38–40.

Lindon,J.C.,Nicholson,J.K.,Holmes,E.,Antti,H.,Bollard,M.E.,Keun,H.,Beckonert,O., Ebbels,T.M.,Reily,M.D.,Robertson,D.,Stevens,G.J.,Luke,P.,Breau,A.P.,Cantor,

G.H.,Bible,R.H.,Niederhauser,U.,Senn,H.,Schlotterbeck,G.,Sidelmann,U.G.,

Laursen,S.M.,Tymiak,A.,Car,B.D.,Lehman-McKeeman,L.,Colet,J.M.,Loukaci,A., Thomas,C.,2003.Contemporary issues in toxicology the role of metabonomics in toxicology and its evaluation by the COMET project.Toxicology and Applied Pharmacology187,137–146.

Lossin,C.,Wang,D.W.,Rhodes,T.H.,Vanoye,C.G.,George A.L.Jr.,2002.Molecular basis of an inherited epilepsy.Neuron34,877–884.

Maxion-Bergemann,S.,Bornhöft,G.,Sonderegger,E.,Renfer,A.,Matthiessen, P.F.,Wolf,U.,2006.Traditional Chinese medicine(phytotherapy):health technol-ogy assessment report—selected aspects.Forschende Komplement?rmedizin13 (Suppl.2),30–41.

MacPherson,H.,Liu,B.,2005.The safety of Chinese herbal medicine:a pilot study for a national survey.Journal of Alternative and Complementary Medicine11, 617–626.

Makiyama,T.,Akao,M.,Tsuji,K.,Doi,T.,Ohno,S.,Takenaka,K.,Kobori,A.,Ninomiya,T., Yoshida,H.,Takano,M.,Makita,N.,Yanagisawa,F.,Higashi,Y.,Takeyama,Y.,Kita, T.,Horie,M.,2005.High risk for Brady arrhythmic complications in patients with Brugada syndrome caused by SCN5A gene mutations.Journal of the American College of Cardiology46,2100–2106.

Maurer-Morelli,C.V.,Secolin,R.,Marchesini,R.B.,Santos,N.F.,Kobayashi,E.,Cendes,

F.,Lopes-Cendes,I.,2006.THE SCN2A gene is not a likely candidate for familial

mesial temporal lobe epilepsy.Epilepsy Research71,233–236.

Murayama,M.,Mori,T.,Bando,H.,Amiya,T.,1991.Studies on the constituents of Aconitum species.IX.The pharmacological properties of pyro-type aconitine alkaloids,components of processed aconite powder‘kako-bushi-matsu’:anal-gesic,antiin?ammatory and acute toxic activities.Journal of Ethnopharmacology 35,159–164.

Patwardhan,B.,2005.Traditional Medicine:Modern Approach For Affordable Global https://www.360docs.net/doc/d310651945.html,mission on Intellectual Property Innovation And Public Health.

WHO,Geneva.

Stevens,J.L.,2006.Future of toxicology—mechanisms of toxicity and drug safety: where do we go from here?Chemical Research in Toxicology19,1393–1401. Stone,R.,2008.Biochemistry.Lifting the veil on traditional Chinese medicine.Sci-ence319,709–710.

Saad, B.,Azaizeh,H.,Abu-Hijleh,G.,Said,O.,2006.Safety of traditional Arab herbal medicine.Evidence-based Complementary and Alternative Medicine3, 433–439.

Tomlinson,B.,Chan,T.Y.K.,Chan,J.C.N.,Critchley,J.A.J.H.,But,P.P.H.,2000.Toxicity of complementary therapies:an Eastern perspective.Journal of Clinical Pharma-cology40,451–456.

Van der Greef,J.,Tas,A.C.,Bouwman,J.,Ten Noever de Brauw,M.C.,Schreurs,W.H.P., 1983a.Evaluation of?eld-desorption and fast atom-bombardment mass spec-trometric pro?les by pattern recognition techniques.Analytica Chimica Acta150, 45–52.

J.Wang et al./Journal of Ethnopharmacology126 (2009) 31–4141

Van der Greef,J.,Leegwater,D.C.,1983b.Urine pro?le analysis by?eld desorp-tion mass spectrometry,a technique for detecting metabolites of xenobiotics: application to3,5-dinitro-o-cresol.Biomedical Mass Spectrometry10,1–4. Van der Greef,J.,McBurney,R.N.,2005.Innovation:rescuing drug discovery:in vivo systems pathology and systems pharmacology.Nature Reviews Drug Discovery 4,961–967.

Van der Greef,J.,Hankemeier,T.,McBurney,R.N.,2006.Metabolomics-based sys-tems biology and personalized medicine:moving towards n=1clinical trials?

Pharmacogenomics7,1087–1094.

Van der Greef,J.,Martin,S.,Juhasz,P.,Adourian,A.,Plasterer,T.,Verheij,E.R.,McBur-ney,R.N.,2007.The art and practice of systems biology in medicine:mapping patterns of relationships.Journal of Proteome Research6,1540–1559.

Van der Greef,J.,Stroobant,P.,van der Heijden,R.,2004.The role of analytical sciences medical systems biology.Current Opinion in Chemical Biology8,559–565. Van der Heijden,R.,Jacobs,D.I.,Snoeijer,W.,Hallard,D.,Verpoorte,R.,2004.The Catharanthus alkaloids:pharmacognosy and biotechnology.Current Medicinal Chemistry11,607–628.

Vanherweghem,J.L.,Depierreux,M.,Tielemans,C.,Abramowicz,D.,Dratwa,M., Jadoul,M.,Richard, C.,Vandervelde, D.,Verbeelen, D.,Vanhaelenfastre,R., Vanhaelen,M.,1993.Rapidly progressive interstitial renal?brosis in young-women—association with slimming regimen including Chinese https://www.360docs.net/doc/d310651945.html,ncet 341,387–391.

Wallace,R.H.,Hodgson,B.L.,Grinton,B.E.,Gardiner,R.M.,Robinson,R.,Rodriguez-Casero,V.,Sadleir,L.,Morgan,J.,Harkin,L.A.,Dibbens,L.M.,Yamamoto,T., Andermann,E.,Mulley,J.C.,Berkovic,S.F.,Scheffer,I.E.,2003.Sodium channel alpha1-subunit mutations in severe myoclonic epilepsy of infancy and infantile spasms.Neurology61,765–769.Waring,J.F.,Ulrich,R.G.,2000.The impact of genomics-based technologies on drug safety evaluation.Annual Review of Pharmacology and Toxicology40, 335–352.

Wang,M.,Lamers,R.J.,Korthout,H.A.,van Nesselrooij,J.H.,Witkamp,R.F.,van der Heijden,R.,Voshol,P.J.,Havekes,L.M.,Verpoorte,R.,van der Greef,J., 2005a.Metabolomics in the context of systems biology:bridging traditional Chinese medicine and molecular pharmacology.Phytotherapy Research19, 173–182.

Wang,M.,Van der Greef,J.,Witkamp,R.,2005b.Determining impact of a multi-component mixture on a biological pro?le of a disease,comprises identifying within compositions,effective components and their respective concentrations required for having an impact on a pro?le.EP1512970-A1.

Wang,J.,van der Heijden,R.,Spijksma,G.,Reijmers,T.,Wang,M.,Xu,G.,Hankemeier, T.,van der Greef,J.,2009.Alkaloid pro?ling of the Chinese herbal medicine Fuzi by combination of matrix-assisted laser desorption ionization mass spectrome-try with liquid chromatography–mass spectrometry.Journal of Chromatography A1216,2169–2178.

Weiss,L.A.,Escayg,A.,Kearney,J.A.,Trudeau,M.,MacDonald,B.T.,Mori,M.,Reichert, J.,Buxbaum,J.D.,Meisler,M.H.,2003.Sodium channels SCN1A,SCN2A and SCN3A in familial autism.Molecular Psychiatry8,186–194.

Wolf, C.M.,Berul, C.I.,2006.Inherited conduction system abnormalities—one group of diseases,many genes.Journal of Cardiovascular Electrophysiology17, 446–455.

Xu,G.J.,Chan,K.,1994.A Pictorial Compendium of Poisonous Traditional Chinese Medicinal Herbs Available in Hong https://www.360docs.net/doc/d310651945.html,mercial Press Ltd,Hong Kong. Zhu,Y.P.,1998.Chinese Materia Medica:Chemistry,Pharmacology and Applications.

Harwood Academic Publishers,Amsterdam.

第十九章 中药及其制剂分析概论

第十九章中药及其制剂分析概论(一)最佳选择题 1.中药检查项下的总灰分是指 A.药材或制剂经炽灼灰化后残留的无机物 B.药材或制剂经炽灼灰化遗留的有机物质 C.中药材所带的泥土、砂石等不溶性物质 D.药物中遇硫酸氧化生成硫酸盐的无机杂质 E.中药的生理灰分 2.对中药制剂分析的项目叙述错误的是 A.中药注射剂的检查项目有装量差异、无菌、澄明度和pH等 B.合剂、口服液的检查项目有相对密度和pH测定等 C.颗粒剂的检查项目有粒度、水分、溶化性、装量等 D.散剂的检查项目有粒度、外观均匀度、水分和装量等 E.丸剂的检查项目主要有溶散时限和含糖量等 3.中药及其制剂分析时,最常用的纯化方法是 A.萃取法B.结晶法C.柱色谱法 D.薄层色谱法E.水蒸气蒸馏法 4.在中药及其制剂分析中,应用最多的鉴别方法是 A.HPLC法B.GC法C.TLC法D.UV法E.IR法5.在中药材的灰分检查中,更能准确地反映外来杂质质量的是A.总灰分B.硫酸盐灰分C.酸不溶性灰分 D.生理灰分E.碳酸盐灰分 6.对中药及其制剂进行残留农药检查时,当接触农药不明时,一般可测定A.总有机氯量B.总有机磷量 C.总有机氯量和总有机磷量D.总有机溴量 E.总有机溴量和总有机氯量 7.以下药品中需进行显微鉴别的是 A.山楂叶提取物B.肉桂油C.清开灵注射液 D.三七E.西洋参口服液 8.对易霉变的桃仁、杏仁、酸枣仁等需额外进行的检查项目是.A.含氯量测定B.含磷量测定C.妥布霉素测定 D.含硫量测定E.黄曲霉素测定 (二)配伍选择题 [9—10] 以下水分测定法中 A.甲苯法B.减压干燥法C.烘干法 D.气相色谱法E.高效液相色谱法 9.含挥发性成贫贵重药的药品中水分测定用 10.不含或少含挥发性成分的药品中水分测定用 [11—13] A.性状鉴别B.微量升华法鉴别C.色谱鉴别 D.显微鉴别E.化学鉴别 11.利用其外观、形状及感官性质等特征作为真伪鉴别依据的方法是

中药饮片的质量控制

中药饮片的质量控制 中药饮片是中医临床医师开展医疗服务活动,进行防病治病的物质保证,其质量的优劣,直接影响患者的身体健康乃至生命安全。确保中药饮片质量安全有效,是药学工作永恒的主题。 医院是中药饮片使用的最终环节,中药饮片从进入药库到经由药房发到患者手中或应用于临床,其质量管理要贯穿始终,才能达到保证饮片质量,保障人体用药安全,维护人民身体健康和用药的合法权益。因此加强医院的中药饮片质量管理具有非常重要的意义。作为我们中医院,严把中药质量关,确保病人吃上放心中药。 一、严格中药饮片采购制度。 (一)制定严格的中药饮片采购管理制度。 (二)严格按照规定从合法的中药饮片生产或经营企业采购中药饮片。 (三)杜绝从中药材专业市场或其他集贸市场购进中药饮片。 (四)严格资质审核。 二、制定中药饮片验收管理制度。 医院应成立中药饮片采购验收小组,按照国家药品标准和省、自治区、直辖市药品监督管理部门制定的标准和规范进行验收。其内容应包括: (一)、查验中药饮片的批准文号、生产批号、生产厂家、质量检验报告等,确保来源合法; (二)、查验发票与随货清单是否相符,名称、等级规格、数量

与票据是否相符;

(三)、查验中药饮片包装、合格标识是否符合要求,标签是否规范、字迹是否清晰,确认包装与标识完整、正确; (四)、查验中药饮片等级规格、性状质量、干燥程度、有无假冒伪劣、虫蛀、霉变、泛油、污染等现象,确保质量合格。 (五)、验收中药饮片时,应当建立并填写验收记录。 三、规范中药饮片在库养护。 (一)、应按中药饮片贮存要求,分别设立常温库、阴凉库和冷藏设施,中药饮片应当按照属性和类别分库、分区、分垛、分架存放,并实行色标管理。 (二)、中药饮片出库应遵循“先进先出”的原则,发放前应进行质量检查,不合格的不得出库使用,并建立相应记录,按照有关规定予以销毁或处理。 (三)、定期对在库饮片进行养护和检查,建立本单位重点养护品种目录。重点关注中药饮片的含水量及是否有虫蛀、霉变、泛油等现象,发现质量问题及隐患,及时采取适宜的养护处理措施,确保储存质量,并做好养护记录。 同时我院依据《中华人民共和国药典》(2010年版)和医院质量标准,结合二氧化硫残留量检测、体视显微镜观察及薄层层析、高效液相等高端设备,对中药饮片进行抽检。 在药品价格放开,逐步取消药品加成,降低药占比的新形势下,建设中药饮片质量控制体系,提高我院的中药饮片质量、临方炮制的水平,提高中药制剂、中药膏方、中药煎药等各项工作质量水平,建

中药制剂质量标准的建立与提高-广东药品检验所

附件5 广东省医疗机构制剂质量标准 起草说明的撰写要求(试行) 质量标准起草说明是说明标准起草过程中,制订各个项目的理由及规定各项指标的依据。起草说明的文字规范及计量单位等统一按《中国药典》的要求撰写,首先应列出本制剂的全部原料(药材)质量标准情况,然后按名称、处方、制法、性状、鉴别、检查、浸出物、含量测定、功能与主治、用法与用量、规格、贮藏等顺序逐项编写。 1. 药品原料(药材)质量标准 1.1.说明处方中的药材、提取物、有效部位、原料(化学药)的质量标准出处,当不是现行版《中国药典》收载的品种时,需详细说明标准的出处,如为地方标准需附复印件;中药制剂处方的的品种如没有国家或地方标准,应按中药材申报要求,注明其科、属、种,拉丁学名及药用部位,写法同药典正文来源,附上相关资料。辅料应符合食品药品监督管理部门的相关要求。 1.2.对涉及《中国药典》中收载的要求分列、来源细化的中药材品种,需对此申报固定的品种作出说明。 1.3.处方中的药味如有《中国药典》未收载的炮制品,应详细说明炮制方法和质量要求。 2.药品成品的质量标准草案的起草说明 2.1.概述 不列标题,写明品种出处、原质量标准出处(如有),必要时写明检验项目及增修订项目等情况。 2.2.名称 说明命名方式。当品种名称有变更时应予以说明。 2.3.处方

必要时对处方中各主成分(药味)排列次序予以说明。如系保密品种,其处方也应完整地列在起草说明中。 2.4.制法 必要时说明关键工艺中各项技术指标及要求的控制目的。说明辅料品名、用量及执行标准。应写明制法过程中需注意的事项。 2.5.性状 说明正文中所描述性状的理由及需要说明的其他问题。 2.6.鉴别 按质量标准正文内容的项目顺序逐一说明。必要时介绍建立或修订此鉴别的理由,介绍操作中应注意事项,特殊试液应注明配制的方法及依据;中药制剂应提供阴性对照实验结果,说明其专属性与可行性。图谱均应附在相应的项目下,并逐一标记与说明。所有附图要求清晰真实。 2.6.1. 显微鉴别:按标准描述顺序写明标准中所鉴别的药味归属,注明增修订情况,并附显微图。 2.6.2. 理化鉴别:说明反应的原理及各反应针对的成分。中药制剂需提供阴性对照实验结果。 2.6. 3. 色谱鉴别:应说明建立或修订项目情况,注明色谱鉴别的归属、前处理条件选择及色谱条件选择等理由。并附色谱图。薄层色谱(包括阴性对照试验)图谱应附彩色照片。 如中药制剂鉴别的药味为多品种来源,确定鉴别方法时必须把多品种来源药材的供试品通过实验比较作出选择,并说明其可行性。 2.7.检查 2.7.1.说明拟定制剂标准中所列检查项目制订的方法选择依据。 2.7.2.如标准中取消了该制剂在《中国药典》“制剂通则”中规定的检查项目,应说明理由。 2.7. 3.对根据制剂的特性及工艺而增加的《中国药典》“制剂通则”以外的项目,应具体说明制定理由。 2.7.4.应说明限量检查的依据,并提供方法学验证考察的情况。

药品生产质量管理规范(2010年修订)检查指南(中药制剂)

药品生产质量管理规范(2010年修订)检查指南 附录5:中药制剂 一、概述 中药制剂处方组成复杂,影响因素较多,含有多种有效成分,能确定的有效成分种类偏小,所以中药制剂生产过程控制相对化学药品过程控制更为复杂。 第一条本附录适用于中药材前处理、中药提取和中药制剂的生产、质量控制、贮存、发放和运输等进行了规定。 第二条民族药参照本附录执行。 二、检查要点 (一)原则 第三条中药制剂的质量与中药材和中药饮片的质量、中药材前处理和中药提取工艺密切相关。应当对中药材和中药饮片的质量以及中药材前处理、中药提取工艺严格控制。在中药材前处理以及中药提取、贮存和运输过程中,应当采取措施控制微生物污染,防止变质。 —中药材、中药饮片的质量是中药制剂质量的物质基础;中药饮片的炮制、中药提取工艺关系到中药制剂的有效性,应重点关注; —指标性成分不代表有效成分,所以不能以是否符合产品质量标准作为判定药品质量的标准,应关注中药材、中药饮片质量及中药制剂生产过程控制。 ·检查时需注意: —中药材或中药饮片是否符合其质量标准要求;是否接照前处理、提取工艺要求来进行加工处理;委托生产过程是否符合正文委托生产相关要求。 —检查企业是否按照质量标准中的处方投料生产,投料量是否符合药典要求;制剂处方中的药味均指饮片,制剂处方中规定的药量系指正文〔制法〕项规定的切碎、破碎或粉碎后的药量。 —是否对中间产品如浸膏、浸膏粉等进行稳定性考察,确定其包装形式、储存条件、有效期。 —抽查净药材与原药材是否分库存放,是否建立药材、饮片养护管理规程,并遵照执行。 第四条中药材来源应当相对稳定。注射剂生产所用中药材的产地应当与注册申报资料中的产地一致,并尽可能采用规范化生产的中药材。 ·检查时需注意: —药材或饮片来源应符合法规要求。如中药饮片应采购自具有相应炮制范围的中药饮片生产企业或中药饮片经营企业,实施批准文号管理的中药饮片如冰片、人工牛黄、青黛等的管理与化学原料药相当;中药材来源应保持相对稳定。 —药材药用部位应与药材标准相一致。

中药质量控制研究的思路与方法

中药质量控制研究的思路与方法 发表时间:2015-10-28T14:26:53.213Z 来源:《健康世界》2015年3期作者:黄华 [导读] 江苏省泰州市富港中医院 225321 笔者通过对中药质量控制的研究并结合各专家研究成果进行借鉴总结,主要针对研究思路与方法进行探讨,笔者认为中药质量控制可根据药物成分与非药物成分两大主题,进行最大程度的表征与控制器成分,探讨分析思路。江苏省泰州市富港中医院 225321 摘要:中药质量控制是确保中医药物研究中极为关键的组成部分。目前中药质量的研究早已成为医疗学者中的热门,有较多的专家通过深入的研究,报道了各自的研究成果与方法,为中药质量控制的研究探明了方向。笔者通过对中药质量控制的研究并结合各专家研究成果进行借鉴总结,主要针对研究思路与方法进行探讨,笔者认为中药质量控制可根据药物成分与非药物成分两大主题,进行最大程度的表征与控制器成分,探讨分析思路。 关键词:中药;质量控制;方法;思路 中药质量控制是确保中医药物研究中极为关键的组成部分,而其中的研究分析的思路和良好的方法以及实际操作的可能则成为了控制质量的好与差以及是否可行的关键。目前,有较多的专家通过深入的研究,报道了各自的研究成果与方法。例如肖小河等[1]曾研究提出了采取以“大质量观”为主的研究思路,表明在中药质量控制的研究中应采取多元化形式,不能仅仅采取“成分论”为研究主题,应通过感官、化学、生物等综合评价中药的质量。又如王智明[2]研究报道中提到的“一测多评”技术来全面分析中药中有效成分的,通过测定某种药物成分来完成其余成分的同步控制。这些优秀的研究思路与方法都具有良好的借鉴效应。 1 现代药物质量控制理念 现代中药质量控制的方法主要是通过对药物的性状、检测、成分测量以及鉴别等进行各项观察。在这些方式中的鉴别也可分为显微鉴定、色谱鉴定、理化鉴定等,成分的测量也分为红外光谱IR,紫外光谱UV,超高效液相色谱UPLC,薄层色谱扫描TLCS,气象色谱GC以及高效毛细管电泳HPCE等方法。在中药质量的研究发展中起到了非常巨大的作用,促进了中药的发展。不过,中药的物质又与化学物质不尽相同,不仅仅是单纯物质或多项已知成分,包括现代总结的五大类中药,也富含多项成分或成分中包含有效部位。在2010年中药药典中就对中药的性状、质量检测,宏观评价中药质量指出,中药的单个或多个成分指标测量也属宏观评价中药质量,但多个指标性成分的检查含量却无法表征该中药的整体质量特征,因此中药质量无法控制。目前,我国许多研究学者都在积极寻找符合中药本质的新型中药质量控制方法。 2基础研究中药药效的质量控制 药物效果的基础物质主要是指能有发挥药物效果的化学成分或组成物质,对中药来讲则可能是单个与多种物质成分或者是某类与多个种类组成。按照逻辑关系而言,当控制了药物效果成分则能够有效的控制整个药物质量,才能够确保药物的疗效及安全。对此,在进行中药质量控制研究时,可针对中药效果成分进行质量研究,不过按照目前的医学技术还难以准确的呈现某种中药药物效果的基础物质。 中药质量控制的重点在于质量控制指标的选择,但是质量控制指标合理习惯与科学性的选取却主要凭借与药物基础效果的准确研究。段为钢[3]研究报道,采取“活性成分谱”可对中药的效果及安全性提供极大的控制,其表示当获取中药的活性成分谱指数后,根据常规的毒性研究分析方式与治疗效果研究对活性成分进行毒性与疗效的验证判断。不过这种研究方式的实际操作性较差,我国当前中医药的基础,特别是中药药物效果成分研究尚且不足。作者认为,可根据中药药效的物质研究对质量控制进行合理的选择中药的主要成分表征与研究,但是在选择何种药物成分或部位来进行质控研究则具有极其重要的意义。这需要研究者具有非常优秀的中医学知识,并掌握现代药理与中药化学的相关学识等。 3中药化学成分指纹图谱的质量控制 中药化学成分中指纹图谱是指当某种中药药物经过得当的初步处理后,采取特定的研究分析方式获取到能够合理呈现该中药药物特征的光图谱或色图谱[4]。中药指纹图谱主要作用于对其特征进行宏观性分析,主要表现几种药物成分通过较稳定的比重与分布位置的特点来概括整个完整的光图谱或色图谱特性,并通过指纹图谱的完整特征与相同特征对某个个体间的差异进行概括性特征。中药指纹图谱对我国中药研究方面质量控制具有极为重要的意义。目前,色谱与质谱技术的联合运用,其高效的分离分析功能让研究者在活动药物的指纹图谱的详细结构信息变得更为准确、清晰,早已成为中药质量控制的普遍方式。中药药物中各组分与各成分的组合物质的属性则是药物发挥效果的基础,不过从药理学研究方面来讲,部分微量的成分虽然有一定的效果,但其所占比例相对较少,若该药的效果成分较少时,就难以发挥其作用。对此,作者认为。中药的药物效果成分并不可能是每一点都可以直接发挥作用的,只有当其效果成分的含量保证了最低成分剂量时才有可能表现出相应的疗效。并且由于各组成分之间也可能存在化学、物理或生物学相互作用,部分当前认为的“无效成分”可能会对有效成分造成一定程度的吸收、代谢、分布及药理学作用进行相关影响。总之,按照逻辑分析,中药质量控制最终也会反应并体现其中药全部物质成分的组成。 参考文献: [1]肖小河,金城,鄢丹,王伽伯,袁海龙,赵艳玲.中药大质量观及实践[J].中草药.2010(04) [2]王智民,高慧敏,付雪涛,王维皓.“一测多评”法中药质量评价模式方法学研究[J].中国中药杂志.2006(23) [3]段为钢.用“活性成分谱”思路破解中药的安全性和有效性[J].医学与哲学(人文社会医学版).2009(09) [4]谢培山.中药色谱指纹图谱鉴别的概念、属性、技术与应用[J].中国中药杂志,2001,26(10):653-655.

(完整版)中药专业中药制剂检验技术复习题

09函授专科中药专业中药制剂检验技术复习题 一、填空题 1.《中国人民共和国药典》简称____________。现行药典为____________年版。 2.相对密度系指在相同的温度下,某物质的密度与___________的密度之比。 3.《中国药典》规定,乙醇没特指浓度,一律是指___________。 4.《中国药典》多选择___________方法鉴别中药制剂中的有效成分。 5.硅胶薄层板活化的温度为___________,时间为___________。 6.硫代乙酰胺试液与重金属反应的最佳pH是___________。 7.若总灰分超过限度范围,则说明___________。 8.用高效液相色谱法测定中药制剂含量时,大多采用___________洗脱。 9.中药制剂中的杂质主要来源于三个方面,即____________、____________和_____________。 10.《中国药典》规定,试验用水,除另有规定外,均是指___________。 11.十八烷基硅烷键合硅胶,又称__________柱或_________柱;在分离分析时一般使用极性流动相,所以属_________色谱法;洗脱时极性________的成分先出柱。 二、单项选择题 1.杂质限量是指药品中所含杂质的() A、最大允许量 B、最小允许量 C、含量 D、含量范围 E、以上都不对 2.吸收池装盛溶液以池体的()为佳 A、1/2 B、1/3 C、2/3 D、3/4 E、4/5 3.若总灰分超过限度范围,则说明有() A、杂质 B、一般杂质 C、特殊杂质 D、掺杂物 E、钠盐 4.检查重金属,如须炽灼,则炽灼的温度应为 A、105~110℃ B、500~600℃ C、700~800℃ D、大于100℃ E、大于500℃ 5.比重瓶法测定相对密度,操作顺序为() A、空比重瓶重→(比重瓶+供试品)称重→(比重瓶+水)称重 B、(比重瓶+水)称重→(比重瓶+供试品)称重→空比重瓶重 C、(比重瓶+供试品)称重→(比重瓶+水)称重→空比重瓶重 D、空比重瓶重→(比重瓶+水)称重→(比重瓶+供试品)称重 E、任意顺序 6.紫外区的波长范围是() A、200~400nm B、100~300nm C、600~900nm D、100~400nm E、100~900nm 7.Ag-DDC法检查砷盐的原理:砷化氢与Ag-DDC吡啶作用,生成的物质是() A、三氧化二砷 B、砷斑 C、胶态银 D、气态银 E、固体银 8.《中国药典》采用()方法测定中药材和中药制剂中残留的有机氯类农药的含量 A、气相色谱法 B、液相色谱法 C、酸碱滴定法 D、紫外分光光度法 E、以上方法均可 9.可见-紫外分光光度法测定含量应选择()来作测定波长 A、最大吸收波长 B、最小吸收波长 C、中间波长

中药质量控制与现代化

中药质量控制与现代化 摘要:通过对“药物分析专论”课程的学习,以及查阅相关资料,本文主要对中药质量控制情况进行简单概述。 关键词:中药;质量控制;现代化 Abstract:Through study the course of " Pharmaceutical Analysis ", as well as search some relevant information, this article focuses on the study of the quality control of the traditional Chinese medicine in an overview. Key words: traditional Chinese medicines(TCMs);quality control technology;modernization of TCM 中医药是中华民族宝贵的文化遗产,有着深厚的文化底蕴和社会基础,同时又具有丰富的实践经验、确切的临床疗效和完整的理论体系,为中华民族的健康与繁衍做出了不可磨灭的贡献。现代社会人们对医药的使用提出越来越高的要求。含量确切、结构清楚、药理明确等都是现代医药质量控制的主要特征,中医药在我国的医疗用药中具有特殊的地位,但其独特的理论体系和复杂的物质基础对质量控制技术提出了巨大的挑战。 中药的质量研究一直是中药研究与应用的难点与重点问题。中药材的种类繁多,成分复杂,产地分散,类同品、代用品不断,加之生长环境、采收期、加工炮制条件不同及制剂生产工艺的因素,造成其内在质量即所含化学成分及临床疗效的差异。中药质量研究的目的是保证中药的有效性和安全性,因而需要搞清中药的药效物质、有毒物质及其作用机制,并对其进行质量控制,即监测上述物质及其变化规律。 中药现代化是指在中医药理论指导下,运用现代科学技术研制和开发出能用现代科学技术阐明其药效物质和作用机理、为国际市场接受、有国际竞争力并能实现大规模工业生产的中药。中药的质量控制是中药现代化的关键之一。 1.色谱法 色谱法是综合的鉴别手段。该方法简便、快速也是药物质量控制的最主要的方法之一,在药物分析中的应用越来越广泛。常用的色谱法有如下几种:高效液相色谱法( HPLC )、薄层色谱法( TLC)、气相色谱法(GC)以及高效毛细管电泳法(HPCE)等。 中药药效物质基础研究的传统方法主要采用植物化学的研究思路,利用各种提取分离技术(如制备色谱法)制备中药中的各种成分,经药理活性测试后确定其有效成分;其中最有代表性的例子是青蒿素的分离提取及其应用。用这种植化-药理活性模式从中草药中获得了很多活性化合物、药物及其前体,如麻黄碱、紫杉醇等。在这种研究模式中广泛应用了各种色谱技术,如薄层色谱(TLC)。低、中压柱色谱,逆流色谱以及现代制备高效液相色谱(HPLC)和模拟流动床色谱等。但是这种模式研究出的大部分药物已经不是传统意义的中药了,这只能作为化学药物及其前体发现的一条有效途径。为了提高分离的效率和增强目的性,近年来

浅谈中药质量的控制

【摘要】中药是在中医药理论指导下,主要用以防治疾病的药物。在医疗临床工作中要充分发挥药物的治疗效果,就必须首先保证中医用药的质量,结合正确运用这些药物去达到提高临床疗效的目的。反之,中药质量不能保证,轻则影响临床疗效,重则危及生命,为此,中药质量工作尤应重视和加强。下面就如何加强中药质量的控制工作,谈谈个人的体会。 【关键词】中药质量;控制 1 中药种植质量及中药药源的管理 中药地道药材的生产种植管理应视同现代药品定点厂生产的规范化管理。也就是讲,中药药源的布局,地道药材基地的建设、开发和研究都应有必要的法令和切实可行的保护措施,既巩固原有的地道药材基地,而保证中药种植质量,还要有长远和统一规划并进一步开发新药源以满足医疗工作的需要。古人在这方面给我们做先例。他们很讲究中药理论生态学的研 《本草衍义》中讲“丸药必须择川地所宜者,帽药力具……,究——地道药材(中药质量要求), 若不推厥理,治病徒费其功,终亦不能活人”。中药生长的土壤地理条件,气候、水质等因素都关系到中药原植物体内各种物持的合成与分解代谢。古人云:“橘生淮为橘,生于淮北则为枳,叶徒相似,其实味不同,所以然者何?水土异也,”历代医学家们用药很药物产地。如川贝母、浙贝母、川黄莲、川芎、宁夏枸杞、怀山药、秦当归、陕枣、辽细辛、怀牛膝及川、牛膝等,既地道药材的运用,实际上也就是对中药药理,中药质量标准的要求控制。因此,我们应给予加强政策性的扶持,加强科学化的管理,创造有特点的生产条件,保证定型,定点中药生产基地——地道药材基地的发展,即扩大优质药材的生产,又是确保和提高中药种植质量的关键。 2 中药采收与干燥质量控制 李东垣在《用药法象》中说:“丸诸草木昆虫,产之有地,根、叶、药、实,采之有实,失其地,则性味不会”,现代医学研究证明,中药采收时间与药材的质量有直接联系,各种植物药性,功效由于生长年限不同,采集时节不同,对中药生化成分的积累均有明显差异。如:雅连、丹皮等以五年生为好,厚札、杜仲、黄柏等以15年以上者为好。再者,干燥方法不同也直接影响中药质量的控制。《神农本草经》序例中写道:“药……有毒、无毒,阴干暴干,采造时月,生熟土地所出,真伪陈新,并名有法”。现代医学研究也进一步证明,中药加工和干燥方法直接影响中药质量,如:菊花直接晒干挥发没含量高,烘干次之,干品更次之,含量仅为生晒品的43%。为了保证中药质量,保证医疗临床的疗效,中药采收,干燥必须按前人所教导的各类药材采收季节及干燥的正确方法。 3加工炮制质量控制 目前,《中药药典》不能完全统一全国中药炮制标准而各省炮炙规范各异。 为使中药达到中医用药的质量标准,保证安全有效,就必须经过加工炮炙,中药经过炮炙是用以提高中药质量行之有效的传统办法。陈嘉漠《本草蒙筌》中认为“凡药制造,贵在适中,不及则功效难求,太地则气味反失”。由于炮炙方法不同,达到的目的和作用也不同,也意味着中医临床的可证性和标准化达不到。如“黄芪顺切和横切饮片,它们各自煎出液含量测定就有明显区别,既是同一方法,由于辅料不同,温度不同均要影响药物的功效”。又如“元胡的炮炙”,醋炙与醋煮两法煎出液测定差别很大,并且南、北各省的醋质也各尽不同。再如:“酒制品,黄酒与白酒之分,其成分和含量也不同等”。通过多年来人们的经验总结,认为不同地区的炮制质量控制差别很大,主要反应在临床疗效不明显。就振兴中医工作以来,中药工作有所发展,中药质量控制也有所提高。但仍然发展不平衡及存在一定的质量方面的问题。医和药不能截然划开,都要同步发展,药的质量是振兴中医的关键,建设国家要有重点的,定点的中药饮片继续政策上照顾,资金设备上的投入和扶持,以生产标准规范化的炮制品,使之达到中药饮片全国标准化,中药饮片质量标准化。

中药材质量控制方法现状分析

中药材质量控制方法现状分析 发表时间:2017-12-12T16:39:10.307Z 来源:《心理医生》2017年31期作者:冯凯1(通讯作者)房庆圆2 [导读] 中药作为我国传统民族文化的结晶、中华民族传统文化的瑰宝。 (1济宁市食品药品检验检测中心山东济宁 272100) (2山东理工职业学院山东济宁 272067) 【摘要】中药材质量控制对药物的安全性、有效性起到至关重要的作用,直接关系到中医药的发展,越来越引起各界的广泛重视。现代分析方法的应用一定程度上促进了中药材质量控制水平的提高,但长期以来,其质量标准仍处于较低水平,不能全面对其进行质量评价,不能有效控制药品的质量,保证其疗效与安全。 【关键词】中药材;质量控制;分析方法;质量标准;质量评价 【中图分类号】R95 【文献标识码】A 【文章编号】1007-8231(2017)31-0303-02 中药作为我国传统民族文化的结晶、中华民族传统文化的瑰宝,在防病治病、药学保健等方面发挥着重要作用,现已成为我国医疗体系的重要组成部分。近几年,随着中药的用量逐渐增大,野生资源迅速减少,许多地区大量种植中药材,这就造成了市场上的中药质量良莠不齐,直接关系到中药处方临床疗效和安全性,直接关系到人们的用药安全、临床治疗效果,加强对中药材的质量控制,有着重要作用。 1.质量控制现状 1.1 法律法规的规定 国家颁布了《药品管理法》,其中规定了中药材属于药品管理的范畴,为中药标准、规范提供了政策保证。且颁布了中药材GAP认证的一系列管理办法,全面规定了中药材GAP生产的总则、产地生态环境、种质和繁殖材料、栽培与养殖管理、采收与初加工、包装、运输与贮藏、质量管理、人员和设备、文件管理等相关内容。 1.2 中药的分类 中药分类是人们认识和区分中药从而掌握中药特性和用药规律的一种基本方法。现代中药分类方法,是在继承传统中药分类方法的基础上发展起来的,目前比较通用、权威的国家中药分类标准《中药分类与编码》收载的《中国药典》及国家标准等所收录的一些比较常用的中药,适应了当时我国中药生产、流通等领域的需要。 1.3 药典的规定 为了保证中药炮制质量,《中国药典》和省、市、自治区地方炮制规范共同形成了中药材的质量标准体系。《中国药典》2015年版完善了“药材和饮片检定通则”、“炮制通则”;制定了中药材及饮片中二氧化硫残留量限度标准;建立和完善重金属及有害元素、黄曲霉毒素、农药残留量等物质的检测限度标准;增加专属性的显微鉴别检查、特征氨基酸含量测定等,涵盖了目前常用品种,在很大程度上控制了制剂的安全性、有效性。 中药材经过提取、分离与纯化、浓缩与干燥,到制成符合制剂要求的原料,涉及到生产工艺、装备及质量管理的多个环节,任何一个环节的疏忽,都会导致药品质量不合格。近年来,计算机自动控制、指纹图谱技术和近红外光谱技术的研究与应用有了很大的进展,已广泛应用中药材生产过程中的质量控制[1]。 2.存在的问题 2.1 法律法规体系不健全,监管措施不到位 《药品管理法》规定“城乡集市贸易市场可以出售中药材,国家另有规定的除外”,这些规定使得中药材在药品生产和流通领域陷入按农副产品管理的尴尬境地。同时相关药品监督管理的法律法规对中药材的管理大多列为排除条款,缺乏明确的管理规定,使得中药材在实际上没有按照严格意义的药品进行监督管理。 2.2 对GAP及其认证的认识和理解不到位 当前,中药农业发展迅猛,栽培中药材不论是种类还是产量都创下历史新高,野生药材被家种,道地药材被异地种植;GAP认证基地布局不够合理,GAP基地产出的药材在市场上所占份额极小,非GAP基地产出的药材中滥用化肥农药[2],并且登记用于中药材的农药数量少[3];采收季节、时间不适和方法不当;仓储过程中出现受潮、霉变、虫蛀等现象;许多品种以非药品标准代替药品标准;在中药材(饮片)中掺杂使假、以伪充真或以次充好;不同产地药材质量相差很大,导致中药材质量参差不齐,从而导致饮片品质降低或者变质、腐败,严重影响人民用药安全。 2.3 中药分类系统的瓶颈 随着时代的发展,大量新的中药不断地被发现,以及中药信息传播的速度加快,人们认识了越来越多的中药、道地药材甚至是海洋中药,这就对于中药的分类提出了更高的要求,尤其是一些大型中药饮片企业、中药流通企业、中药标本馆、医院等单位迫切需要一种涵盖范围广、简便易行、可以自行扩展的中药分类及编码方法。 2.4 质量标准的控制 现有的中药材质量标准体系无法满足中药材质量控制的需要。中药材品种众多,来源复杂,全国尚未建立完整、统一的中药材质量标准体系。一方面《中国药典》和部(局)颁标准收载的中药材标准数量较少,许多作为商品流通的中药材尚未制订完善的质量标准或未被国家药品标准收载,绝大部分中药饮片炮制是以地方规范为依据,从而难以实现饮片质量控制的统一。另一方面由于近年来许多栽培或异地引种的中药材发生了品种及种质的变异,现有的药材质量标准难以有效控制药材质量。此外法定标准中的中药材的质量可控性较差,无法全面反映药材的质量情况。 2.5 重金属和农残的质量控制 目前我国中药重金属限量标准较少、分散,不够系统,且我国中药材重金属检测仪器价格昂贵、不宜携带、需在实验室条件下操作等并且前处理方法复杂,这都限制了中药材重金属的检测条件,也给监管部门带来不便。同时不同国家或地区对药材中重金属的限量标准不同[4],标准不同得到的中药材中重金属污染情况也不同。因此有必要继续深入开展中药材重金属的系统研究。现在农残限量标准不完善,

中药饮片生产过程的质量控制指标及

中药饮片生产过程质量控制指标通则 一、净选过程的质量指标: 1、根、根茎、藤木、叶、花、皮类,泥砂和非药用部位等杂质不得超过2%。 2、果实、种子类,泥砂和非药用部位等杂质不得超过3%。 3、全草类,不允许有非药用部位,泥砂等杂质不得超过3%。 4、动物类,附着物、腐肉和非药用部位等杂质不得超过2%, 5、矿物类,夹石、非药用部位等杂质不得超过2%, 6、菌藻类,杂质不得超过3%。 7、树脂类,杂质不得超过3%。 8、需去毛、刺的药材,其未去净茸毛和硬刺的药材不得超过1%。 净选过程检查方法: 取定量样品,过二号或三号筛筛净灰屑,拣出非药用部位等杂质,合并称重计算。 杂质%=非药用部位的重量/样品重量×100% 二、中药材软化质量指标: 1、喷淋:经清水喷洒或喷淋的药材应略润或润透。未润透后水分过大的不得超过5%。 2、淘洗:经清水淘洗、冲洗或抢水洗的药材,不得伤水。水分过大和未透者不得超过5%。 3、浸泡:经清水或液体辅料浸泡的药材,应软硬适度,未泡透的不得超过5%,伤水的不得超过3%。 4、漂洗:经漂洗需去除腥味、咸味、毒性或需浸洗

透心的药材,漂洗后应无或微有腥味、咸味,内无白心,有毒药材略有麻辣味,不得有霉变、腐烂、酸败。 5、润渍:经清水润过的药材,应软硬适度,不伤水、不酸败,润透程度一致。未润透的不得超过5%。 中药材软化检查方法: 1、取定量样品,用下列方法拣出未润透和水分过大的药材,合并称重计算。 (1)刀劈:质地坚硬药材用刀劈开,内心应有潮湿痕迹。 (2)指掐:团块状药材用指甲应能掐入药材表体(白术,天花粉)。 (3)穿刺法(针刺法):用钢针穿刺药材中心应无坚硬感(大黄、虎杖)。 (4)弯曲:长条形药材用手弯曲应曲而不折断(白芍、山药)。 (5)口尝:口尝断面应无异味。 (6)鼻闻:应有该药材特有气味,无异味。 2、表面泥土较重的药材,取定量样品置清水中淘(冲)洗,洗水不得有明显的沉积物。 三、中药材切制质量控制指标 1、片形 质地疏松或坚实的根及根茎类、菌类药材厚片2~4mm(切制斜片:厚度数2~4mm、直顺片:厚度2~4mm) 皮类(根皮及茎皮) 药材切制成细丝:皮类宽丝2-3mm 质地坚硬的根及根茎类、藤木类和部份动物角类药材切制成极薄片

中药质量认识与质量评价分析

【摘要】本文将站在对中药质量有一个整体认识的角度,从多个方面对中药质量进行论述,包括了生物学内涵、化学实质以及本草学属性。并通过一系列的实验过程来构建系统的中药质量评价体系。 【关键词】中药质量;质量评价;评级体系;草本学 doi:10.3969/j.issn.1004-7484(s).2013.09.683 文章编号:1004-7484(2013)-09-5347-02 保证中药有效性以及安全性的重要手段就是对中药质量的认识、控制和评价。与此同时也与中药生产、研究和临床使用也息息相关。中药质量的形成具有以下特点:一是中药的产生主要源于大自然,因此,在变异以及生物遗传性上也必然遵循大自然的规律;而中药质量的差异性主要取决于不同的外界环境因子对生物有机体的作用以及不同中药遗传物质的基础差异。二是中药质量的二次生成,即通过制备之后,重新获取新的中药化学物质群,制备的过程主要包括了中药的加工和储存、中药的炮制、提纯以及制备成试剂等[1]。三是中药的给药途径与治疗效果的密切关系。其主要原因是中药的化学体系具有复杂性。因此,为了保证中药治疗的有效性和安全性,我们必须充分考虑所用中药的原型成分、给药途径、在体内的反应过程(分布、排泄、吸收和代谢等)以及中药的最终“效应成分”。四是中药的草本学属性。以上对中药质量的认识为研究的基点,来对中药的质量进行综合评估。 1 对中药质量的认识 中药的质量决定了它的有效和安全性,它是通过生长发育来形成期质量,并在后期通过一系列的制备过程,使其在患者机体内运行的时候充分发挥其功效,进而达到缓解、预防和治疗疾病的目的。这也是药物从形成到应用的一个全过程。 1.1 中药质量的本草学属性中药的发展和使用在我国已有上千年的历史,中药学是以经验科学为基础,因此,对中药的正确认识是安全、有效用药的关键,而对中药的本草学认识主要包括了产地、品种、功效以及质量[2]。虽然目前中药的发展已经有了很大的改进,但是在其内涵上却没有得以确定。目前对中药质量的评价以及客观的描述并不能完全凭借中药生物学和化学质量的评价。因此中药的草本学对中药质量的评价也具有重要的意义。 1.2 中药质量的生物学内涵基于绝大多数中药主要源于自然界,其质量的差异性主要由不同的外界环境因子对生物有机体的作用以及不同中药遗传物质的基础差异所决定的。 1.2.1 中药的种内变异对药材质量的影响物种的种内变异是自然界中一种较为常见的现象,并且一般为可遗传变异。目前根据其变异阶段的不同分为地理宗、变型、化学型、亚种、居群以及地方宗等阶元[3]。并且同一中药在不同的变异层次,其品质也存在很大的差异性,主要是由于种间的化学成分以及形态性状不同。一般中药的种内变异主要表现为以下几个方面:环境饰变(表型可塑性)、生态宗、地理宗以及居群的多态现象。 1.2.2 环境对中药质量的影响环境对中药质量的影响通常也称之为环境饰变,即为表型可塑性[4]。其对中药质量的影响主要以以下几种方式来实现:生物量、生物合成原料(如土壤中的有机物)以及生物体内合成反应条件(如水分、光照以及温度等)。 1.2.3 药材系统发育、个体发育对中药质量形成的影响系统发育对中药质量形成的影响因素主要包括了种系发生、分布、生态历程、起源与演化、进化速率、散播途径、共祖近度以及地质历程等。而个体发育影响中药质量形成的相关因素主要包括了药材产地、所处生态条件、种群共生与竞争关系、基原种质、生物期等[5]。 1.3 对中药化学实质的认识中药的化学实质是对其进行质量控制和评价的重要参考依据,然而其生物效应以及化学物质的形成、转变具有复杂性。故而我们必须对其形成的过程有一个正确的认识,才能对其实质进行评估。主要包括了以下几点: 1.3.1 中药本草植物化学成分的生物合成规律它主要包括了生源途径以及亲缘关系,其

中药制剂检验技术题库

中药制剂检验技术题库 说明:此题库适用于36学时、72学时、108学时、144学时的课程,题库分为容易、中等难度、难三类,出题时针对不同学时适当调整不同难度题量。名词解释为每题2分,判断为每题1分,填空为每空1分,选择为每空1分,综合题每题5分,英译汉每题1分。 第一章 一、名词解释: 1中药制剂检验技术 2.药品标准 3.中国药典 4.药品质量 5.取样 二、判断 ()1.精密称定系指准确至所称重量的1∕100. ()2.药典是进行中成药药品检验的唯一标准。 ()3. Chinese pharmacopoeia的中文含义是中国药典。 ()4.中药制剂质量检验一般程序为:取样——预处理——分析(性状—鉴别—检查—含量测定)——报告(填写检验报告,给出结论) ()5.取样的原则为均匀、合理、随机 三、填空 1.对中成药进行检验的法定依据是和。 2.各级是国家设立的专门负责药品检验的法定机构。 3.取样的要求是:取样要有性、性和性。取样的原则是。 4.中药制剂鉴别主要包括、和等。 5.中国药典的主要内容是、和。 6.药品标准中需进行实际检测的项目有、、和。 7. 中国药典规定取某样品约1g,精密称定。其称量范围是;其称量精度是;应使用天平。

8. 我国现行的药品标准有和。 9. 药品检验应坚持的原则,只要有项检验不符合规定,即判定为不合格药品。 10. 样品的提取方法有、、、、等。 四、选择 1. 药品标准中的鉴别项用于药品的————;检查项用于药品的————;含量测定项用于药品的————。(A优劣评价 B纯度和品质检定 C真伪判断) 2.下列项目中不属于检验内容的是(A药品名称 B处方C.性状D.含测E.功能主治) 3.配制100ml50%的乙醇应量取95%乙醇 ml(A.52.6 B.50.0 C. 58.4 ) 4.在精密量取5ml溶液时应采用的量具是(A.量筒 B.量杯 C. 刻度试管 D.移液管) 5.取样前应注意检查的内容有(A生产批号、品名、厂家、规格、包装样式是否一致 B 检查包装的完整性 C.清洁程度及有无水迹 D.霉变或其它物质污染) 6.至今为止我国共颁布发行了版中国药典(A.7 B.8 C.9 D.10)。 7. 大蜜丸的破碎(分散)方法是,水丸的粉碎用。(A.小刀切成小块 B.小刀刮去糖衣层置研钵中研细 C.直接置研钵中研细 D.用小刀或剪刀剪切成小块,加硅藻土研磨分散) 8.片剂的粉碎可用,栓剂的分散可用。(A.小刀切成小块 B.小刀刮去糖衣层置研钵中研细 C.直接置研钵中研细 D.用小刀或剪刀剪切成小块,加硅藻土研磨分散)

第九章 中药制剂质量标准的制定

第九章中药制剂质量标准的制定 一、单项选择题(每题的5个备选答案中,只有一个最佳答案) 1.批准为试生产的新药,其质量标准的试行期为 A.1年 B.2年 C.3年 D.4年 E.5年 2.处方中全处方量应以制成多少个制剂单位的成品量为准 A.100个 B.400个 C.500个 D.800个 E.1000个 3.中药制剂的处方量中重量应以()为单位 A.μg B.mg C.g D.kg E.均可 4. 中药制剂的处方量中容量应以()为单位 A.μL B.mL C.L D.kL E.均可 5.中药制剂色泽如以两种色调组合,应以谁为主 A.前者 B.后者 C.同样 D.中间色 E.其它 6.外用药和剧毒药不描述 A.颜色 B.形态 C.形状 D.气 E.味 7.单味制剂命名时一般采用 A.原料名 B.药材名 C.剂型名 D.原料(药材)名与剂型名结合 E.均可 8.浸出物的建立是以测试多少个批次样品的多少个数据为准 A.5、10 B.5、20 C.10、20 D.10、10 E.20、20 9.在线性关系考察过程中,薄层扫描法的r值应在()以上 A.0.9 B.0.99 C.0.995 D.0.999 E.0.9999 10.质量标准的方法学考察,重现性试验相对标准差一般要求低于 A.1% B.2% C.3% D.4% E.5% 11.中药新药稳定性试验考察中气雾剂考察时间为 A.半年 B.一年 C.一年半 D.二年 E.二年半 12.中药新药稳定性试验考察中丸剂室温考察时间为 A.半年 B.一年 C.一年半 D二年 E.二年半 13.中药制剂稳定性考察采用低温法时,温度宜在 A.10℃~15℃ B.15℃~20℃ C.20℃~25℃ D.25℃~30℃ E.37℃~40℃ 14.中药制剂稳定性考察采用低温法时,相对湿度要求为 A.60% B.65% C.70% D.75% E.80% 15.中药新药稳定性考察试验中,注射剂的考察时间为 A.半年 B.一年 C.一年半 D.二年 E.二年半 16.中药制剂的稳定性考察中初步稳定性试验共考察几次 A.2 B.3 C.4 D.5 E.6 17.药品必须符合 A.《中华人民共和国药典》 B.部颁药品标准 C.省颁药品标准 D. 国家药品标准 E.均可 18.质量标准的制定必须坚持 A.安全有效 B.技术先进 C.经济合理 D.质量第一 E.全部 19.中药制剂质量标准的起草说明,性状描述要求至少观察几批样品 A.1~3 B.2~4 C.3~5 D.4~6 E.10批以上

中药质量控制方法

中药质量控制方法 一、中药指纹图谱技术:1、色谱指纹图谱:它包括薄层色谱(TLC)、气相色谱(GC)、高效液相色谱(HPLC)和高效毛细管电泳色谱(HPCE) 等指纹图谱。目前,色谱指纹图谱在中药研究领域中应用广泛。例如,吕美红等采用 GC 技术建立了苍术的指纹图谱,在 14批样品测定的基础上,初步总结出不同产地苍术指纹图谱的共性,为苍术质量控制标准的建立提供了参考依据。张胜娜等采用水蒸气蒸馏法提取鲜肿节风挥发油,首次采用 GC技术建立鲜肿节风挥发油的共有指纹图谱。随着科学技术的迅速发展,HPCE 指纹图谱日益广泛地应用于中药化学成分的分离、鉴别和含量测定。李峰等建立土鳖虫药材的高效毛细管电泳指纹图谱鉴别方法,通过中药色谱指纹图谱相似度评价系统,确定 6 个共有峰构成土鳖虫药材指纹图谱的特征峰,为药材品种鉴定与质量控制提供了依据。,色谱技术已成为获取中药指纹图谱的主要手段之一。米莉莉等对不同虫草样品建立荧光淬灭薄层色谱指纹图谱,得到的荧光淬灭薄层色谱指纹图谱,能为人工虫草和天然虫草提供直接的指纹鉴别,方法快速简便、重现性好。Rana Ajay等使用 C12反相色谱柱,采用一种快速、简便、灵敏的 H PLC-DAD法对茶黄素进行了分析与含量测定。Aviv Am irav等采用一种新型的气相色谱 - 质谱联用技术半在线地监控反应的最佳化回收率、阐明其反应机理,并且获得反应产物特性及纯度。Gu M ing等采用高速逆流色谱法(H SCCC)分析丹参药材中 12 种成分并获取指纹图谱,根据其相对保留时间、相对峰面积、相对保留时间的相对标准偏差值、相对峰面积的

相对标准偏差值、差异率及特征指纹图谱建立数字化色谱,结果表明高速逆流色谱 - 数字化指纹图谱(H SCCC-DCFS)是一种能够定量、直观的获取丹参药材指纹图谱的方法。 2、光谱指纹图谱:光谱指纹图谱包括紫外、红外、荧光光谱等。根据不同中药材所含成分不同,相对应的光谱性质也会有所差别。红外光谱(IR)指纹图谱是对整个化合物分子的鉴别,中药中若各种化学成分的质和量相对稳定,且样品处理方法按要求进行,则其 IR 也应相对稳定。郑春松等采用衰减全反射-傅里叶变换红外光谱(FTIR)法,建立川芎、白芍及药对川芎、白芍挥发油的红外线(IR),该方法能直接快速、准确地测定样品的 FTIR 图谱,直观揭示二者配伍后的化学特征。 3、核磁共振氢谱:核磁共振氢谱(1H - NMR)对有机化合物所提供的结构信息具有高度的特征性,通过化学成分分离纯化后各化合物的结构鉴定和核磁共振氢谱谱图研究,可实现植物类中药1H - NMR 指纹图谱的解析。莫善烈等应用这一技术,对吴茱萸和其伪品花椒、蚕砂进行鉴别,结果显示三者间 1H -NMR 指纹图谱的区别较大。 4、 X 射线衍射法:X 射线衍射法的原理是当某一物质受到 X 射线照射会产生不同程度的衍射现象。该物质产生特有的衍射图谱反映了物质的组成、晶型、分子内成键方式及分子的构型等特征。王丽娟等用粉末 X 射线衍射技术建立了麋鹿角 X 射线衍射 Fourier指纹图谱分析方法,并与鹿角进行指纹图谱比较分析,为麋鹿角的开发利用、药材品质评价提供了依据与方法。W ang S 等采用粉末 X 射线衍射

相关文档
最新文档