USE_74LCX16245(3.3v)

USE_74LCX16245(3.3v)
USE_74LCX16245(3.3v)

? 2000 Fairchild Semiconductor Corporation DS012001

https://www.360docs.net/doc/d111506321.html,

February 1994Revised April 2000

74LCX16245 Low Voltage 16-Bit Bidirectional Transceiver with 5V Tolerant Inputs and Outputs

74LCX16245

Low Voltage 16-Bit Bidirectional Transceiver with 5V Tolerant Inputs and Outputs

General Description

The LCX16245 contains sixteen non-inverting bidirectional buffers with 3-STATE outputs and is intended for bus ori-ented applications. The device is designed for low voltage (2.5V or 3.3V) V CC applications with capability of interfac-ing to a 5V signal environment. The device is byte con-trolled. Each byte has separate control inputs which could be shorted together for full 16-bit operation. The T/R inputs determine the direction of data flow through the device.The OE inputs disable both the A and B ports by placing them in a high impedance state.

The LCX16245 is fabricated with an advanced CMOS tech-nology to achieve high speed operation while maintaining CMOS low power dissipation.

Features

s 5V tolerant inputs and outputs s 2.3V–3.6V V CC specifications provided s 4.5 ns t PD max (V CC = 3.3V), 20 μA I CC max s Power down high impedance inputs and outputs s Supports live insertion/withdrawal (Note 1)s ±24 mA output drive (V CC = 3.0V)

s Implements patented noise/EMI reduction circuitry s Latch-up performance exceeds 500 mA s ESD performance:

Human body model > 2000V Machine model > 200V

Note 1: To ensure the high-impedance state during power up or down, OE should be tied to V CC through a pull-up resistor: the minimum value or the resistor is determined by the current-sourcing capability of the driver.

Ordering Code:

Devices also available in T ape and Reel. Specify by appending the suffix letter “X ” to the ordering code.

Logic Symbol Pin Descriptions

Order Number Package Number

Package Description

74LCX16245MEA MS48A 48-Lead Small Shrink Outline Package (SSOP), JEDEC MO-118, 0.300” Wide 74LCX16245MTD

MTD48

48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide

Pin Names Description

OE n Output Enable Input T/R n Transmit/Receive Input

A 0–A 15Side A Inputs or 3-STATE Outputs

B 0–B 15

Side B Inputs or 3-STATE Outputs

https://www.360docs.net/doc/d111506321.html, 2

74L C X 16245

Connection Diagram Truth Tables

H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial

Z = High Impedance

Logic Diagram

Inputs Outputs

OE 1T/R 1L L Bus

B 0–B 7 Data to Bus A 0–A 7L H Bus A 0–A 7 Data to Bus B 0–B 7H X

HIGH Z State on A 0–A 7, B 0–B 7

Inputs Outputs

OE 2T/R 2L L Bus B 8–B 15 Data to Bus A 8–A 15L H Bus A 8–A 15 Data to Bus B 8–B 15H

X HIGH Z State on A 8–A 15, B 8–B 15

https://www.360docs.net/doc/d111506321.html,

74LCX16245

Absolute Maximum Ratings (Note 2)

Recommended Operating Conditions (Note 4)

Note 2: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The “Recom-mended Operating Conditions ” table will define the conditions for actual device operation.Note 3: I O Absolute Maximum Rating must be observed.

Note 4: Unused inputs or I/O's must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol Parameter

Value Conditions

Units V CC Supply Voltage ?0.5 to +7.0V V I DC Input Voltage ?0.5 to +7.0V V O DC Output Voltage ?0.5 to +7.0Output in 3-STATE

V ?0.5 to V CC + 0.5

Output in HIGH or LOW State (Note 3)I IK DC Input Diode Current ?50V I < GND mA I OK DC Output Diode Current ?50V O < GND mA +50V O > V CC

I O DC Output Source/Sink Current ±50mA I CC DC Supply Current per Supply Pin ±100mA I GND DC Ground Current per Ground Pin ±100mA T STG

Storage Temperature

?65 to +150

°C

Symbol Parameter

Min Max Units V CC Supply Voltage Operating 2.0 3.6V Data Retention

1.5 3.6V I Input Voltage 0 5.5V V O Output Voltage HIGH or LOW State

0V CC V

3-STATE

5.5I OH /I OL

Output Current

V CC = 3.0V ? 3.6V ±24mA V CC = 2.7V ? 3.0V ±12V CC = 2.3V ? 2.7V

±8T A Free-Air Operating Temperature

?4085°C ?t/?V

Input Edge Rate, V IN = 0.8V –2.0V, V CC = 3.0V

10

ns/V Symbol Parameter

Conditions

V CC T A = ?40°C to +85°C Units (V)Min Max

V IH HIGH Level Input Voltage 2.3 ? 2.7 1.7V 2.7 ? 3.6 2.0

V IL LOW Level Input Voltage 2.3 ? 2.70.7V

2.7 ?

3.60.8V OH

HIGH Level Output Voltage

I OH = ?100 μA 2.3 ? 3.6V CC ? 0.2V

I OH = ?8 mA 2.3 1.8I OH = ?12 mA 2.7 2.2I OH = ?18 mA 3.0 2.4I OH = ?24 mA

3.0 2.2

V OL

LOW Level Output Voltage

I OL = 100 μA 2.3 ? 3.60.2V I OL = 8mA 2.30.6I OL = 12 mA 2.70.4I OL = 16 mA 3.00.4I OL = 24 mA

3.00.55I I Input Leakage Current 0 ≤ V I ≤ 5.5V 2.3 ? 3.6±5.0μA I OZ 3-STATE I/O Leakage 0 ≤ V O ≤ 5.5V 2.3 ? 3.6

±5.0

μA V I = V IH or V IL I OFF

Power-Off Leakage Current

V I or V O = 5.5V

10

μA

https://www.360docs.net/doc/d111506321.html, 4

74L C X 16245

DC Electrical Characteristics (Continued)

Note 5: Outputs disabled or 3-STATE only.

AC Electrical Characteristics

Note 6: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t OSHL ) or LOW-to-HIGH (t OSLH ). Parameter guaranteed by design.

Dynamic Switching Characteristics

Capacitance

Symbol Parameter

Conditions

V CC T A = ?40°C to +85°C Units (V)Min

Max I CC Quiescent Supply Current V I = V CC or GND

2.3–

3.620μA 3.6V ≤ V I , V O ≤ 5.5V (Note 5) 2.3–3.6±20?I CC

Increase in I CC per Input

V IH = V CC ?0.6V

2.3–

3.6

500

μA

Symbol

Parameter

T A = ?40°C to +85°C, R L = 500?

Units

V CC = 3.3V ± 0.3V

V CC = 2.7V V CC = 2.5V ± 0.2V

C L = 50 pF C L = 50 pF C L = 30 pF Min

Max Min Max Min Max t PHL Propagation Delay 1.5 4.5 1.5 5.2 1.5 5.4ns t PLH A n to B n or B n to A n 1.5 4.5 1.5 5.2 1.5 5.4t PZL Output Enable Time

1.5 6.5 1.57.2 1.58.5ns t PZH 1.5 6.5 1.57.2 1.58.5t PLZ Output Disable Time 1.5 6.4 1.5 6.9 1.57.7ns t PHZ 1.5

6.4 1.5

6.9

1.5

7.7

t OSHL Output to Output Skew (Note 6) 1.0ns t OSLH

1.0

Symbol Parameter

Conditions

V CC (V)T A = 25°C Units Typical V OLP Quiet Output Dynamic Peak V OL C L = 50 pF, V IH = 3.3V, V IL = 0V 3.30.8V C L = 30 pF, V IH = 2.5V, V IL = 0V 2.50.6V OLV

Quiet Output Dynamic Valley V OL

C L = 50 pF, V IH = 3.3V, V IL = 0V 3.3?0.8V

C L = 30 pF, V IH = 2.5V, V IL = 0V

2.5

?0.6

Symbol Parameter

Conditions

Typical Units C IN Input Capacitance V CC = Open, V I = 0V or V CC 7pF C I/O Input/Output Capacitance V CC = 3.3V, V I = 0V or V CC

8pF C PD

Power Dissipation Capacitance

V CC = 3.3V, V I = 0V or V CC , f = 10 MHz

20

pF

https://www.360docs.net/doc/d111506321.html,

74LCX16245

AC LOADING and WAVEFORMS Generic for LCX Family

FIGURE 1. AC Test Circuit (C L includes probe and jig capacitance)

Waveform for Inverting and Non-Inverting Functions

Propagation Delay. Pulse Width and t rec Waveforms

3-STATE Output Low Enable and

Disable Times for Logic

3-STATE Output High Enable and

Disable Times for Logic

Setup Time, Hold Time and Recovery Time for Logic

t rise and t fall

FIGURE 2. Waveforms

(Input Characteristics; f =1MHz, t R = t F = 3ns)

Test Switch t PLH , t PHL Open

t PZL , t PLZ 6V at V CC = 3.3 ± 0.3V

V CC x 2 at V CC = 2.5 ± 0.2V t PZH ,t PHZ

GND

Symbol V CC

3.3V ± 0.3V 2.7V

2.5V ± 0.2V V mi 1.5V 1.5V V CC /2V mo 1.5V 1.5V V CC /2V x V OL + 0.3V V OL + 0.3V V OL + 0.15V V y

V OH ? 0.3V

V OH ? 0.3V

V OH ? 0.15V

https://www.360docs.net/doc/d111506321.html, 6

74L C X 16245

Schematic Diagram

Generic for LCX Family

74LCX16245 Physical Dimensions inches (millimeters) unless otherwise noted

48-Lead Small Shrink Outline Package (SSOP), JEDEC MO-118, 0.300” Wide

Package Number MS48A

https://www.360docs.net/doc/d111506321.html,

https://www.360docs.net/doc/d111506321.html,

8

74L C X 16245 L o w V o l t a g e 16-B i t B i d i r e c t i o n a l T r a n s c e i v e r w i t h 5V T o l e r a n t I n p u t s a n d O u t p u t s

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide

Package Number MTD48

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.LIFE SUPPORT POLICY

FAIRCHILD ’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:1.Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be rea-sonably expected to result in a significant injury to the user. 2. A critical component in any component of a life support device or system whose failure to perform can be rea-sonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

https://www.360docs.net/doc/d111506321.html,

mc34063升压电路图大全(十款模拟电路设计原理图详解)

mc34063升压电路图大全(十款模拟电路设计原理图详解)MC34063DC/DC变换器控制电路简介:MC34063是一单片双极型线性集成电路,专用于直流-直流变换器控制部分。片内包含有温度补偿带隙基准源、一个占空比周期控制振荡器、驱动器和大电流输出开关,能输出1.5A的开关电流。它能使用最少的外接元件构成开关式升压变换器、降压式变换器和电源反向器。 特点:能在3.0-40V的输入电压下工作 短路电流限制 低静态电流 输出开关电流可达1.5A(无外接三极管) 输出电压可调 工作振荡频率从100HZ到100KHZ MC34063电路原理:振荡器通过恒流源对外接在CT管脚(3脚)上的定时电容不断地充电和放电以产生振荡波形。充电和放电电流都是恒定的,振荡频率仅取决于外接定时电容的容量。与门的C输入端在振荡器对外充电时为高电平,D输入端在比较器的输入电平低于阈值电平时为高电平。当C和D输入端都变成高电平时触发器被置为高电平,输出开关管导通;反之当振荡器在放电期间,C输入端为低电平,触发器被复位,使得输出开关管处于关闭状态。电流限制通过检测连接在VCC和5脚之间电阻上的压降来完成功能。当检测到电阻上的电压降接近超过300mV时,电流限制电路开始工作,这时通过CT管脚(3脚)对定时电容进行快速充电以减少充电时间和输出开关管的导通时间,结果是使得输出开关管的关闭时间延长。 MC34063引脚图及原理框图MC34063引脚功能1脚:开关管T1集电极引出端; 2脚:开关管T1发射极引出端; 3脚:定时电容ct接线端;调节ct可使工作频率在100100kHz范围内变化; 4脚:电源地; 5脚:电压比较器反相输入端,同时也是输出电压取样端;使用时应外接两个精度不低于

USB接口手机充电器故障维修及改进方法12V-5V,12v-28V

USB接口手机充电器故障维修及改进方法12V-5V,12v-28V USB接口手机充电器故障维修及改进方法 USB手机充电器的原理是从电脑的USB口取得+5V的电压,再供给充电电压为+5V的手机。但它存在兼容性问题:不能对许多手机(以诺基亚系列居多,也包括其他品牌的某些型号)充电或充不满电。一。故障现象:几乎无法对所有的NOKIA手机充电插入充电器数秒(或者是充了一段时间后),手机液晶屏显示“未能充电”(图1),宣告充电失败。诺基亚手机具有统一的标准充电接口:插头规格相同、充电电压为5.2V(ACP-8C型)或5.7V(ACP-12C型)。USB充电器不能对其充电的原因在于输出电压偏低。USB接口为+5V输出(比标准充电电压略低),加之传输过程中的衰减,最终手机得到的充电电压要小于5V(实测仅为4.95V)。电压值达不到充电要求,自然诺基亚手机要对USB充电器说NO!二。解决之道:提升充电器输出电压值要实现充电的目的,必须将低于5V的输出电压提升至5V以上,就要用到DC-DC变换电路。利用易购且价格低廉(仅10元)的车载手机充电器,可以实现业余条件下提升USB电压的目的。图2就是我们将要改造的车载手机充电器(连接汽车+12V电源一端),它的另一端通过不同的转换插头可以接不同的手机。车载充电器里面有一块DC-DC转换电路板(图

3),用于将+12V电压降为+5V(实测为5.7V)。该车载充电器使用了8脚封装的DC-DC变换专用IC B34063,它由华越微电子公司生产,与最常见的MC34063封装形式、引脚定义相同并可以互换。根据外围电路的不同,34063既可以接成降压方式(如汽车充电器),也可以接成升压方式。[1][2][3]下一页笔者根据实物画出的汽车充电器DC-DC降压电路如图4(图中元件标号与电路板相同)。现在我们所需要的是升压,好在34063的外围元件不多,只需对图4略作改动,我们就可以不“降”反“升”。图5是IC厂家给出的MC34063升压电路图。对照图4、5,我们可以得出二者的主要区别(注:两图中相关元件的标注可能不同,但作用一样)在于:1)升压时,34063第7脚与8脚之间需接一只180欧的电阻,而降压电路中7、8脚直接相连,因此首先要增加一只阻值为180欧的电阻;2)储能电感(图4中的L和图5中的L1)的大小和接法不同,L接在34063第2脚和输出之间,而L1接在1脚和7脚之间,且L大于L1;在改动时只需改接图4中的L,其值维持不变(220uH取值可以获得更好的滤波效果)。3)限流电阻(图4中的R1、图5中的Rsc)取值不一样。限流值等于0.3V除以限流电阻值。图4为536MA,图5为1.36A,输入电流超过限流值,电路开始保护直至切断输出。由于USB接口能够提供的最大电流不超过500MA (0.5A),因而此处无需变动。4)定时电容(图4中的C2、

MC34063升压电路

1. MC34063 DC/DC变换器控制电路简介: MC34063是一单片双极型线性集成电路,专用于直流-直流变换器控制部分。片内包含有温度补偿带隙基准源、一个占空比周期控制振荡器、驱动器和大电流输出开关,能输出1.5A的开关电流。它能使用最少的外接元件构成开关式升压变换器、降压式变换器和电源反向器。 特点: *能在3.0-40V的输入电压下工作 *短路电流限制 *低静态电流 *输出开关电流可达1.5A(无外接三极管) *输出电压可调 *工作振荡频率从100HZ到100KHZ MC34063 电路原理 振荡器通过恒流源对外接在C T管脚(3 脚)上的定时电容不断地充电和放电以产生振荡波形。充电和放电电流都是恒定的,振荡频率仅取决于外接定时电容的容量。与门的C 输入端在振荡器对外充电时为高电平,D 输入端在比较器的输入电平低于阈值电平时为高电平。当C 和D输入端都变成高电平时触发器被置为高电平,输出开关管导通;反之当振荡器在放电期间,C 输入端为低电平,触发器被复位,使得输出开关管处于关闭状态。电流限制通过检测连接在V CC和5 脚之间电阻上的压降来完成功能。当检测到电阻上的电压降接近超过300 mV 时,电流限制电路开始工作,这时通过C T管脚(3 脚) 对定时电容进行快速充电以减少充电时间和输出开关管的导通时间,结果是使得输出开关管的关闭时间延长。 2.MC34063引脚图及原理框图 3 MC34063应用电路图: 3.1 MC34063大电流降压变换器电路

3.2 MC34063大电流升压变换器电路 3.3 MC34063反向变换器电路 3.4 MC34063降压变换器电路

太阳能手机充电器

这是自网络搜集来的一篇自己制作太阳能手机充电器的文章,大家大可发扬diy精神,自己制作太阳能手机充电器。 所需要的元器件如下: (1)MAXl677从VCD上拆得,是一种专为LED提供电源的芯片、16脚双列QSOP封装,输入电压范围0.7V~5.5V,主要输出2.5V~5.5V可调电压和—1OV直流电压,最大输出电流可达350mA,电源效率可达95%. (2)L1、L2磁芯电感,从原液晶显示模块上拆得,型号是D01608C-103表贴磁芯电感。 (3)R1、R2普通贴片电阻。R1和R2的阻值决定了主输出电压值。R3、R4:电阻、普通贴片件,R5、R6电阻:普通贴片元件。 (4)D1、D2肖特基二极管,可用其他型号。 (5)C1、C4、C6陶瓷电容,C2、C3、C5电解电容。 将各元器件按附图焊接好后,并经查准确无误后即可接上太阳能电池组,给电路提供电源。本人使用的是UTstarcom 610Q小灵通、充电器输出5.2V 320mA电流,电池容量为480mA,完全可以给手机充电。光线越好,充电效果越好!若没有太阳能电池,也可以用两节1.5V 电池给电路供电,让手机在没市电的情况照样充电。这样,在阳光下你的手机也可以充电了,有兴趣的朋友不妨试试(笔者对大容量手机尚未测试过)。 太阳能手机充电器电路图 这篇文章没有说明的是用了多大的太阳能电池板,本人根据上文计算,要达到 5.2V 320mA 电流,至少需要2W的太阳能电池板,实际上可能要更大。

本站以前曾发布过有关太阳能手机充电器的一些相关信息,想起来,那已经是两年多的事情了。自从五年前的项目因为种种原因失败以后,由于生计奔波,一直没有再拿起相关的资料,内心很不服输,一直希望东山再起,现在很多太阳能手机充电器已经比较完善了,这些我在五年前就已经想到了,也许是执行力不行,也许是时机不好,不过失败没有借口,虽然我当时只职务低微,本不需要承担太多,很多事情,也是我所不能控制的。 现在深圳有很多厂家生产着各种各样,各种档次的太阳能手机充电器,价高的批价几百块,低的几十元。有黑心商人就拿一个低档太阳能手机充电器作为赠品,然后号称“永不断电”的“光能手机”、“太阳能手机”,其实纯粹是一个噱头。更有甚者拿到电视购物那里天天吹,真的很气愤,难怪人家说电视购物和骗局差不多。 那么,到底太阳能手机充电器实用吗?有没有实用价值? 稍为提一下太阳能手机充电器原理,学过物理的人都能看懂,就是太阳能电池接收光线转换成电能,经一定的电路处理后作为手机充电电源。以前简单的所谓太阳能手机充电器直接将太阳能电池的输出端接入手机,造成的问题很多,直接烧毁手机的都有,现在一般都有处理电路,将电压限制在一定范围内。现在多采用了内置二次电池的方式,即可将太阳能电池的电能先存储在内置二次电池中,然后利用二次电池的电能再对手机充电。 这里面需要区分一下,太阳能手机充电器也有很多种,不能一概而论。有一些所谓太阳能手机充电器的功率只有不到0.4W,这种基本是没有什么使用价值的,从手机耗能角度来看,太阳能板低于1W的意义都不大。我们看到的所谓光能手机所附送的太阳能手机充电器,大都只有0.3-0.4W,好一点的0.6-0.7W,这个批发价只有几十元的东西,加到一个手机上面就成了光能手机、太阳能手机,吹嘘“有光的地方就能通话”“环保节能”,我在这里再次提醒大家不要上当。 那么你也许会问:我去购买的时候,即便在灯光下面也显示充电呀,怎么说不能用呢? 这个是典型的被忽悠的例子,作为普通人对太阳能电池的特性不了解的缘故,让这种说法有了很多模糊说法。太阳能电池的重要特性是:太阳能电池(组件)的输出功率取决于太阳辐照度、太阳光谱分布和太阳能电池(组件)的工作温度。其输出电流取决于日照强度,一般来说,只有在正午,太阳能电池板和阳光成直角时,才大概达到其标称功率输出。在普通灯光下,看上去能对手机充电,实际上是错觉,这种状况下,充电电流非常低,可不充电没有分别。当然,你把电池置于100W灯泡下10cm内的地方,那又另当别论了,但如果那样,还不如直接充电呢。 此外,现在出现的很多太阳能手机充电器,其中又内置了一个锂电池,号称一千多mAH的是锂电池的电量,一般为了迷惑大众出厂的时候已经预充电了,所以你在看人家演示的时候,是正常充电的。实际上却是该充电器内的电池对手机充电,当你想依靠太阳来给你充电,不是说完全没有可能,可是充一个小时连通话十分钟都不能保证的话,那这个充电器又有什么实用意义呢?充其量,也就只能当作移动电源使用,使用以前先把该充电器里面的电池充满电,然后应急,那还可行一点。 太阳能手机充电器真的那么不堪?其实也不是的,而是一分钱一分货,一些太阳能电池比较大的产品,还是很有实用价值的。我以前做的太阳能手机充电器,就是这样的产品,功率接近1.5W,但这样的产品相对比较贵,去深圳批发市场问过价格在两百以上,我以前做这个产品的时候,批发价也差不多。由于功率相对较大,能达到阳光下一定的充电电流。但是也不要指望这个产品能在一个小时充满电,一般在阳光明媚的日子,也需要三四个小时(根据手机电池容量和日光强度,很难一概而论)。不过,这也仅仅能作为旅游和应急品,因为很少会有人拿手机去晒这么久。除非是像这次地震灾害,通讯电力全无的情况,才能发挥一点作用。

MC34063或MC33063接成标准的DC-DC电路(图)

MC34063或MC33063接成标准的DC-DC电路(图) 1:极性反转。2:升压。3:降压。三种典型电路时,外围元件参数的自动计算 使用方法:只要在左中部框中输入你想要的参数,然后点击“进行计算并且刷新电路图”按钮,它就可以自动给所有相关的外围元件参数和相对应的标准电路图纸,使设计DC—DC电路实现智能化高效化。 关于警告:如果您输入的参数超过了34063的极限,它会自动弹出警告窗口提醒您更改它们。 特殊输入:要设计极性反转电路请在输入或输出电压数字的前面加上负号,比如-5V。 这是一种用于DC-DC电源变换的集成电路,应用比较广泛,通用廉价易购。极性反转效率最高65%,升压效率最高90%,降压效率最高80%,变换效率和工作频率滤波电容等成正比。 另外,输出功率达不到要求的时候,比如>250~300MA时,可以通过外接扩功率管的方法扩大电流,双极型或MOS 型扩流管均可,计算公式和其他参数及其含义详见最下部详细介绍即可。 外围元件标称含义和它们取值的计算公式: Vout(输出电压)=1.25V(1+R2/R1) Ct(定时电容):决定内部工作频率。Ct=0.000 004*Ton(工作频率) Ipk=2*Iomax*T/toff Rsc(限流电阻):决定输出电流。Rsc=0.33/Ipk Lmin(电感):Lmin=(Vimin-Vces)*Ton/ Ipk

Co(滤波电容):决定输出电压波纹系数,Co=Io*ton/Vp-p(波纹系数) 固定值参数: Vces=1.0V ton/toff=(Vo+Vf-Vimin)/(Vimin-Vces)Vimin:输入电压不稳定时的最小值 Vf=1.2V 快速开关二极管正向压降 其他手册参数: 在实际应用中的注意: 1:快速开关二极管可以选用IN4148,在要求高效率的场合必须使用IN5819! 2:34063能承受的电压,即输入输出电压绝对值之和不能超过40V,否则不能安全稳定的工作。

通用型手机旅行充电器电路图

通用型手机旅行充电器电路图 目前的手机旅行充电器,输出端口通常都是采用USB接口,输出电压为5V。输入电压为110V-240V,可以适用于不同地区和国家的电源电压。旅行充电器功能实质上就是将市电的交流电变换为5V的直流电,所以我觉得,把它称为“电源变换器”或“电源适配器”更合适。由于不同手机的旅行充电器基本上都类似,所以旅行充电器一般可以互换使用。当然为确保万无一失,互换使用前要一定要仔细确认旅行充电器的输出电压和输出电流等参数,输出电压相同,输出电流相近的旅行充电器,互换使用是完全可以的。 本人剖析过多个手机旅行充电器,其内部电路基本相似。这里,以型号为GC-002 RCC的旅行充电器为例,介绍一下电路图和电路工作原理,供大家参考。电路图系根据旅行充电器实物绘制,其输入电压为110V-240V,输出电压5V,最大输出电流700mA。 工作原理 C1,R1,D3组成的整流滤波电路,将市电输入转换成150-300V的直流电压;C2,R5,Q2及L1,L1组成开关振荡电路,将整流滤波后的直流电压变换成高频脉冲电压。R5,C2组成RC反馈回路,其值的大小决定开关振荡频率及反馈量的大小。R3为振荡电路提供启动电流;R7,C3,D5组成反向高峰电压吸收回路,避免在Q2截止时在L1上产生的反向高峰电压击穿Q2;R11,R12,D8,U1,Q1组成稳压电路,当输出电压发生变化时,通过光电耦合器U1改变Q1的基极电压,Q1的c-e间等效电阻也随之变化,因为这个等效电阻与Q2的基极并联,其阻值的变化将引起反馈电路时间常数的变化,使振荡电路的振荡脉冲宽度发生变化,脉冲宽度的变化将引起输出电压的改变,从而达到调节输出电压的目的,使输出电压趋于稳定;R6,R4,Q1组成保护电路,当负载过大或输出短路时,Q2的射极电流也将增大,此电流在R6上的压降达到约0.7V时,Q1开始导通。Q1的c-e间等效电阻会限制Q2的电流进一步增大,也就可以防止Q2因电流过大而损坏;D7,C5及L3组成输出整流滤波电路,开关振荡电路产生的高频脉冲电压,经过高频变压器T1,在L3上也将得到高频脉冲电压,当Q2处于截止状态时,L3的电压为上正下负,此时D7导通,向输出端供电。

MC34063实现低成本DC-DC变换电路

在电源电路中,出于温升、效率以及其它因素的考虑,DC-DC变换应用很多,本文介绍一种低成本的DC-DC变换实现方案,它可以实现降压、升压与电压反转应用,其电路简单、成本低廉、效率高、温升低,这些电路被广泛应用。 电路的核心元件是MC34063,它是一种单片双极型线性集成电路,专用于直流-直流变换器控制部分,片内包含有温度补偿带隙基准源、一个占空比周期控制振荡器驱动器和大电流输出开关,能输出1.5A的开关电流。它能使用最少的外接元件构成开关式升压变换器、降压式变换器和电源反向器。 MC34063的封装形式为塑封双列8引线直插式,内部电路原理框图如图一所示。 MC34063具有以下特点: 1、能在3.040V的输入电压下工作。 2、带有短路电流限制功能。 3、低静态工作电流。 4、输出开关电流可达1.5A(无外接三极管)。 5、输出电压可调。 6、工作振荡频率从100HZ至100KHZ。 7、可构成升压降压或反向电源变换器 由于内置有大电流的电源开关,MC34063能够控制的开关电流达到1.5A,内部线路包含有参考电压源、振荡器、转换器、逻辑控制线路和开关晶体管。 参考电压源是温度补偿的带隙基准源,振荡器的振荡频率由3脚的外接定时电容决定,开关晶体管由比较器的反向输入端和与振荡器相连的逻辑控制线路置成ON,并由与振荡器输出同步的下一个脉冲置成OFF。

电路原理 图一内部框图中所表示的电路解释如下: 振荡器通过恒流源对外接在CT管脚(3脚)上的定时电容不断地充电和放电以产生振荡波形。充电和放电电流都是恒定的,所以振荡频率仅取决于外接定时电容的容量。与门的C输入端在振荡器对外充电时为高电平,D 输入端在比较器的输入电平低于阈值电平时为高电平,当C和D输入端都变成高电平时触发器被置为高电平,输出开关管导通,反之当振荡器在放电期间,C输入端为低电平,触发器被复位,使得输出开关管处于关闭状态。 电流限制SI检测端(5脚)通过检测连接在V+和5 脚之间电阻上的压降来完成功能。当检测到电阻上的电压降接近超过300mV时,电流限制电路开始工作,这时通过CT管脚(3脚)对定时电容进行快速充电以减少充电时间和输出开关管的导通时间,结果是使得输出开关管的关闭时间延长。 典型应用: 图二是进行降压式的DC-DC转换应用。其输出电压值可通过改变R4、R5 电阻值来进行调整,其输出电压符合以下公式:Vout=(1+R4/R5)*1.25V电路中限流电阻取值为0.15Ω,因此输入电流被限流在0.3V/0.15Ω=2A。改变限流电阻即可改变限流值。(注:下同) 图三是进行升压式的DC-DC转换应用。其输出电压值也是通过改变R4、R5电阻值来进行调整,其输出电压符合以下公式:Vout=(1+R4/R5)*1.25V 图四是反转式的DC-DC转换应用。其输出电压值也是通过改变R2、R3电阻值来进行调整,其输出电压符合以下公式:Vout=(1+R3/R2)*1.25V 电路中限流电阻取值为0.3Ω,因此输入电流被限流在0.3V/0.3Ω=1A。

直流升压电路原理图

几款直流升压电路 直流升压就是将电池提供的较低的直流电压,提升到需要的电压值,其基本的工作过程都是:高频振荡产生低压脉冲——脉冲变压器升压到预定电压值——脉冲整流获得高压直流电,因此直流升压电路属于DC/DC电路的一种类型。 在使用电池供电的便携设备中,都是通过直流升压电路获得电路中所需要的高电压,这些设备包括:手机、传呼机等无线通讯设备、照相机中的闪光灯、便携式视频显示装置、电蚊拍等电击设备等等。 一、几种简单的直流升压电路 以下是几种简单的直流升压电路,主要优点:电路简单、低成本;缺点:转换效率较低、电池电压利用率低、输出功率小。这些电路比较适合用在万用电表中,替代高压叠层电池。

二、24V供电CRT高压电源 一些照相机CRT使用11.4cm(4.5英寸)纯平面CRT作为显示部件,其高压部件的阳极电压为+20kV,聚焦极电压为+3.2kV,加速极电压为+1000V,高压部件供电为直流24V。以下电路是为替换维修这些显示器的高压部件而设计(电路选自网络文章,原作者不详)。该电路的设计也可为其他升压电路设计提供参考。 基本原理:NE555构成脉冲发生器,调节电位器VR2可使之产生频率为20kHz左右的脉冲,电位器VR1调脉宽。TR1为推动级,脉冲变压器T1采用反极性激励,即TR1导通时TR2截止,TR1截止时TR2导通,D3、C9、VR3、R7及D4、R6、TR3组成高压保护电路。VR2用于调频率,调节VR2可调整高压大小。 VR2选用精密可调电阻。T2可选用彩电行输出变压器变通使用。笔者选用的是东洋SE-1438G系列35cm(14英寸)彩电的行输出变压器,采用此变压器阳极电压可达20kV,再适当选取R8的阻值使加速极电压为+1000V、R9的阻值使聚焦极电压为+3.2kV即可。整个部件采用铝盒封装,铝壳接地,这样可减少对电路干扰。 直流升压电压电路图集锦: 三极管升压电路:

MC34063芯片附送部分经典电路

都是来源于网络的治疗,整理整理,与大家分享学习,我想还是免费的好。 34063由于价格便宜,开关峰值电流达1.5A,电路简单且效率满足一般要求,所以得到广泛使用。 1. MC34063 DC/DC变换器控制电路简介: MC34063是一单片双极型线性集成电路,专用于直流-直流变换器控制部分。片内包含有温度补偿带隙基准源、一个占空比周期控制振荡器、驱动器和大电流输出开关,能输出1.5A的开关电流。它能使用最少的外接元件构成开关式升压变换器、降压式变换器和电源反向器。 特点: *能在3.0-40V的输入电压下工作 *短路电流限制 *低静态电流 *输出开关电流可达1.5A(无外接三极管) *输出电压可调 *工作振荡频率从100HZ到100KHZ 2.MC34063引脚图及原理框图 MC34063 电路原理 振荡器通过恒流源对外接在CT 管脚(3 脚)上的定时电容不断地充电和放电以产生振荡波形。充电和放电电流都是恒定的,振荡频率仅取决于外接定时电容的容量。与门的C 输入端在振荡器对外充电时为高电平,D 输入端在比较器的输入电平低于阈值电平时为高电平。当C 和D输入端都变成高电平时触发器被置为高电平,输出开关管导通;反之当振荡器在放电期间,C 输入端为低电平,触发器被复位,使得输出开关管处于关闭状态。 电流限制通过检测连接在VCC(即6脚)和7 脚之间采样电阻(Rsc)上的压降来完成,当检测到电阻上的电压降接近超过300 mV 时,电流限制电路开始工作,这时通过CT 管脚(3 脚) 对定

时电容进行快速充电以减少充电时间和输出开关管的导通时间,结果是使得输出开关管的关闭时间延长。 线性稳压电源效率低,所以通常不适合于大电流或输入、输出电压相差大的情况。开关电源的效率相对较高,而且效率不随输入电压的升高而降低,电源通常不需要大散热器,体积较小,因此在很多应用场合成为必然之选。开关电源按转换方式可分为斩波型、变换器型和电荷泵式,按开关方式可分为软开关和硬开关。 斩波型开关电源 斩波型开关电源按其拓扑结构通常可以分为3种:降压型(Buck)、升压型(Boost)、升降压型(Buck-boost)。降压型开关电源电路通常如图1所示。 图1中,T为开关管,L1为储能电感,C1为滤波电容,D1为续流二极管。当开关管导通时,电感被充磁,电感中的电流线性增加,电能转换为磁能存储在电感中。设电感的初始电流为iL0,则流过电感的电流与时间t的关系为: iLt= iL1+(Vi-Vo-Vs)t/L,Vs为T的导通电压。 当T关断时,L1通过D1续流,从而电感的电流线性减小,设电感的初始电流为iL1,则则流过电感的电流与时间t的关系: iLt="iL1-"(Vo+Vf)t/L,Vf为D1的正向饱和电压。 图1降压型开关电源基本电路 34063的特殊应用 ● 扩展输出电流的应用 DC/DC转换器34063开关管允许的峰值电流为1.5A,超过这个值可能会造成34063永久损坏。由于通过开关管的电流为梯形波,所以输出的平均电流和峰值电流间存在一个差值。如果使用较大的电感,这个差值就会比较小,这样输出的平均电流就可以做得比较大。例如,输入电压为9V,输出电压为3.3V,采用220μH的电感,输出平均电流达到900mA,峰值电流为1200mA。 单纯依赖34063内部的开关管实现比900mA更高的输出电流不是不可以做到,但可靠性会受影响。要想达到更大的输出电流,必须借助外加开关管。图2和图3是外接开关管降压电路和升压电路。 升压型达林顿及非达林顿接法

一种非常实用的Boost升压电路原理详解

一种实用的BOOST电路 0 引言 在实际应用中经常会涉及到升压电路的设计,对于较大的功率输出,如70W以上的DC /DC升压电路,由于专用升压芯片内部开关管的限制,难于做到大功率升压变换,而且芯片的价格昂贵,在实际应用时受到很大限制。考虑到Boost升压结构外接开关管选择余地很大,选择合适的控制芯片,便可设计出大功率输出的DC/DC升压电路。 UC3S42是一种电流型脉宽调制电源芯片,价格低廉,广泛应用于电子信息设备的电源电路设计,常用作隔离回扫式开关电源的控制电路,根据UC3842的功能特点,结合Boos t拓扑结构,完全可设计成电流型控制的升压DC/DC电路,且外接元器件少,控制灵活,成本低,输出功率容易做到100W以上,具有其他专用芯片难以实现的功能。 1 UC3842芯片的特点 UC3842工作电压为16~30V,工作电流约15mA。芯片内有一个频率可设置的振荡器;一个能够源出和吸入大电流的图腾式输出结构,特别适用于MoSFET的驱动;一个固定温度补偿的基准电压和高增益误差放大器、电流传感器;具有锁存功能的逻辑电路和能提供逐个脉冲限流控制的PWM比较器,最大占空比可达100%。另外,具有内部保护功能,如滞后式欠压锁定、可控制的输出死区时间等。 由UC3842设计的DC/DC升压电路属于电流型控制,电路中直接用误差信号控制电感峰值电流,然后间接地控制PWM脉冲宽度。这种电流型控制电路的主要特点是: 1)输入电压的变化引起电感电流斜坡的变化,电感电流自动调整而不需要误差放大器输出变化,改善了瞬态电压调整率; 2)电流型控制检测电感电流和开关电流,并在逐个脉冲的基础上同误差放大器的输出比较,控制PWM脉宽,由于电感电流随误差信号的变化而变化,从而更容易设置控制环路,改善了线性调整率; 3)简化了限流电路,在保证电源工作可靠性的同时,电流限制使电感和开关管更有效地工作; 4)电流型控制电路中需要对电感电流的斜坡进行补偿,因为,平均电感电流大小是决定输出大小的因素,在占空比不同的情况下,峰值电感电流的变化不能与平均电感电流变化相对应,特别是占空比,50%的不稳定性,存在难以校正的峰值电流与平均电流的误差,即使占空比<50%,也可能发生高频次谐波振荡,因而需要斜坡补偿,使峰值电感电流与平均电感电流变化相一致,但是,同步不失真的斜坡补偿技术实现上有一定的难度。

工人宿舍手机充电方案-5v usb接口手机电池充电系统

工人宿舍手机充电方案 ‐5v usb接口手机电池充电系统 一 、‐5v usb接口手机电池充电系统说明 现如今手机普及率高,基本人手一个手机。农民工在外出打工时主要居住在临时搭建的板房中,如果用交流220V来给工人手机充电势必会造成用电安全隐患。为保证工人宿舍区用电安全,消除用电隐患,中建总公司要求所有工人宿舍不提供220v交流电,避免工人使用电热毯、电炉子等易引发火灾的电器。 跟其他中建的项目进行交流和学习时,发现他们也没有好的办法,大多采用专门设置2间屋子,里面提供很多的插排,然后工人集中充电。 这样集中充电,带来了很多的弊端,包括现在的工地农民工都比较多,几百人,至上千人,都集中到一个屋子里去充电,则需要至少1-2名人员去管理这些充电电池,而且可能出现混乱。工人到充电室充电,只能在上下班的时候去更换电池,因此会出现拥堵,混乱等。 经过中建安装东北公司几名员工的研究和探讨最终设计出如下方案以解决建筑工地民工手机、手机电池充电的问题。 我们简称为5Vusb口充电系统。

5Vusb口充电系统的工作灵感产生主要是现在几乎所有的手机充电器都标称220转5v直流充电器,(图1)如果工人宿舍使用220V 交流电源为手机充电,起不到对工人人身安全的保护。而如何保证工人居住安全同时又能方便工人手机充电是我们考虑的问题。如何将使用电压降下来成为手机充电的一大难题。现在车载手机充电很多,它是采用直流12V-24V输入,直流5V-6V输出,并配备USB标准接口,可适应不同手机充电需要。既然车载手机充电可以实现,那么我们是否可以以它作为借鉴,实现工人手机充电。 现在好多的手机充电器都是充电器和充电线通过usb口连接,且可分离。(图2)而民工使用的手机大多是便宜一些的手机,而便宜手机更是大多数都采用usb线转小口usb线即可充电因此。我们所做的是。 1、很多项目按照中建总公司的要求提供36v交流电,这时候, 只需将36v交流电转换成5v直流电。 2、从5v直流电接出USB口。 3、再接各种usb接口的手机充电器,或是接usb手机电池万 能冲。 二、设计内容: 1、手机万能充电器原理: 现在市面上的万能充电器电路主要由振荡电路、充电电路、稳压保护电路等组成,其输入电压AC220V、50/60Hz、40mA,输出电压DC4.2V、输出电流在150mA~180mA,适用250-3000mAh电池。在充

升压(自举)电路原理

自举电路也叫升压电路,利用自举升压二极管,自举升压电容等电子元件,使电容放电电压和电源电压叠加,从而使电压升高.有的电路升高的电压能达到数倍电源电压。 升压电路原理 举个简单的例子:有一个12V的电路,电路中有一个场效应管需要15V的驱动电压,这个电压怎么弄出来?就是用自举。通常用一个电容和一个二极管,电容存储电压,二极管防止电流倒灌,频率较高的时候,自举电路的电压就是电路输入的电压加上电容上的电压,起到升压的作用。 升压电路只是在实践中定的名称,在理论上没有这个概念。升压电路主要是在甲乙类单电源互补对称电路中使用较为普遍。甲乙类单电源互补对称电路在理论上可以使输出电压Vo达到Vcc的一半,但在实际的测试中,输出电压远达不到Vcc的一半。其中重要的原因就需要一个高于Vcc的电压。所以采用升压电路来升压。 开关直流升压电路(即所谓的boost或者step-up电路)原理 the boost converter,或者叫step-up converter,是一种开关直流升压电路,它可以是输出电压比输入电压高。基本电路图见图1. 假定那个开关(三极管或者mos管)已经断开了很长时间,所有的元件都处于理想状态,电容电压等于输入电压。下面要分充电和放电两个部分来说明这个电路。 充电过程 在充电过程中,开关闭合(三极管导通),等效电路如图二,开关(三极管)处用导线代替。这时,输入电压流过电感。二极管防止电容对地放电。由于输入是直流电,所以电感上的电流以一定的比率线性增加,这个比率跟电感大小有关。随着电感电流增加,电感里储存了一些能量。

放电过程 如图,这是当开关断开(三极管截止)时的等效电路。当开关断开(三极管截止)时,由于电感的电流保持特性,流经电感的电流不会马上变为0,而是缓慢的由充电完毕时的值变为0。而原来的电路已断开,于是电感只能通过新电路放电,即电感开始给电容充电,电容两端电压升高,此时电压已经高于输入电压了。升压完毕。 说起来升压过程就是一个电感的能量传递过程。充电时,电感吸收能量,放电时电感放出能量。如果电容量足够大,那么在输出端就可以在放电过程中保持一个持续的电流。如果这个通断的过程不断重复,就可以在电容两端得到高于输入电压的电压。

汽车应急启动电源终于突破5V充电的技术难关

神贝汽车应急启动电源终于突破用手机充电器充电的技术难关 Sbase神贝汽车应急启动电源终于研发成功,Sbase神贝汽车应急启动电源的5V手机充电器充电为什么时说是汽车应急启动电源的一个技术难关突破呢?Sbase神贝汽车应急启动电源的神奇在哪里呢? 目前,市场上的所有汽车移动电源都是12V充电,或者15V充电的,携带一个大的DC 头充电器。而手机充电还要带一大堆的手机头跟数据线。而市场上大部分的移动电源都是可以跟手机充电器或者数据线通用的。为什么汽车应急启动电源不做一个5V充电插口呢?原来汽车应急启动电源跟手机移动电源不一样,手机移动电源的电芯输出只有3.7V,大容量的手机移动电源是几个电芯并联在一起,总体电压没有升高,所以5V充电根本就不用很大的技术攻关。汽车应急启动电源的内在结构就不一样了,锂电的汽车应急启动电源是由3个或者4个锂电芯串联在一起,总电压达到12V以上甚至更高。要是用普通的手机充电器充电,主板的的配置要把5V充电提压到15V以上,才可以把汽车应急启动电源充满,这是一个非常大的技术难关。 深圳市思倍生科技有限公司从2009年开始研发锂电池的汽车应急启动电源,十几个工程师日夜不断反复测试,在近期终于克服了技术难关。研发成功了5V给汽车应急启动电源充电的难题。深圳市思倍生科技旗下品牌Sbase神贝T203型号的汽车应急启动电源终于可以把之前的旧版本汽车应急启动电源再来了一次技术革命。只要带有一个手机数据线,跟一个汽车打火夹子,无论你是旅行,户外活动,就可以解除你的汽车熄火跟手机没电的苦恼。之前的汽车移动电源那一个沉重的包袱再次可以轻装上阵了。

究竟什么是锂电池呢?锂电池的前景究竟有多大?锂电池是前几年出现的金属锂蓄电池的替代产品,它的阳极采用能吸藏锂离子的碳极,放电时,锂变成锂离子,脱离电池阳极,到达锂电池阴极。锂离子在阳极和阴极之间移动,电极本身不发生变化。这是锂电池与金属锂电池本质上的差别。锂电池的阳极为石墨晶体,阴极通常为二氧化锂。充电时,阴极中锂原子电离成锂离子和电子,并且锂离子向阳极运动与电子合成锂原子。放电时,锂原子从石墨晶体内阳极表面电离成锂离子和电子,并在阴极处合成锂原子。所以,在该电池中锂永远以锂离子的形态出现,不会以金属锂的形态出现,所以这种电池叫做锂电池。 锂电池最近十年应用非常广泛,锂电池不仅仅体积小,电力强大。锂电池目前不仅仅应用于手机,手电筒等小功率产品行业,还应用于航模,电摩等行业,现在锂电池更加应用与小车甚至大巴车行业,未来十几年,锂电池还可能应用于航空行业,可见锂电池动力之强大,。锂电池比其它电池都环保,而且安全。国家一直退出环保政策。这也是深圳市思倍生科技有 限公司一直致力于锂电池的性能研究跟相关产品开发的原因。

手机充电器用大电流还是小电流好

关于手机充电器用大电流还是小电流好一个人见解 手机电池容量基本是定型的,电池的充电时间跟充电电流大小息息相关,在同等充电电流下,电池容量越大所需的充电时间越长,同理,充电电流越大,所需的充电时间越短。 如果充电器所能提供的电流小于原装充电器标准电流,充电时间势必要延长,如小6一样是1830毫安的容量,原装的充电器是1.2安的,那么就需要4小时左右才能将一块完全没电的电池充满,而再小一点电流的充电器使用的充电时间会更长,如果电流过小还会充不上电,大家可能没有注意到在原装的小6电池上容量后面还有个7.0wh,1830毫mah/7.0wh,后面的7.0wh指的是瓦时,mah(毫安时)和wh(瓦时)是比较常见的2种表示电池容量的方式,用mah乘以电池额定电压就等于wh,以小6的电池为例就是1.83*3.7=12.81瓦时(指的是每小时消耗的电量)这是官标的理论值,对实际使用没有任何意义,因为各人玩机的时间不同和优化不同会有很大的差异,所以有些人在开屏或玩机时,因为使用的小电流的充电器(低于手机电量消耗瓦时)充不上电,而且,如果充电器电流过小,电池会因为长时间充不到额定容量而对电池造成损害(当然这个长时间可能会很长,没有有搜到相关评测资料),并有可能会烧坏充电器。 那为什么大电流充电不会烧机器,这是因为充电电流是由电池和它本身所带的充电保护电路IC决定的,和充电器无关,如果你所使用的充电器电流是5A的,因为机器充电保护电路已经把充电电流限制在一个安全的范围,所以不会对电池损伤,有些手机上还带了保护电流电路,在接入过高电流时,会自动切断充电电路,但是那不是绝对的,虽然有IC保护但是过大的电流,也有可能会让电池鼓涨或爆炸,为了保证电池的寿命和自己的安全,不建议用超过3A的充电器对电池进行充电,更不建议用过小(500mah)的充电器对手机进行充电。 近日,笔者有一款产品需要用到移动电源的电路,看到有一款移动电源带双USB输出,分别输出5V/1A和5V/2A,前者为IPHONE充电,后者为IPAD充电。 于是,笔者产生了一个疑惑:此款移动电源带双USB输出,且两个充电端口的输出电流不一样,那么,如果产品的用户错将IPHONE手机插至5V/2A的充电端口上,是

MC34063 DCDC降压电源

基于MC34063的降压电源设计 DC—DC降压电源

DC--DC降压电源 摘要:该降压电源变换电路采用MC34063芯片作为其电路构成的核心部分,用以对15v的输入滴电压经过降压电路降至5v;定时电容Ct用以控制振荡器的频率,电感L和电阻R1,R2则是以控制输出端电压;调节电感L的电感量以及电阻R2与R1的比值即可控制输出端的电压输出,该电路设计则是输出端的电压降至5v;且要求在输出端带负载时的电压压降在0---0.5v之间,同时要求输出端波纹尽量小。 English subject:Buck type transform power supply Abstract:The buck power converter circuit adopts MC34063 chip as its core part of a circuit to the input voltage of the 12 V power supply circuit after step-down down to 5 V; Timing capacitance Ct can control the oscillator frequency, inducta nce L and resistance R1, R2 is used to control the output voltage of the; Adjust th e inductance load and inductance L resistance and can control the ratio R2 R1 is the output voltage output, this circuit design is the output voltage drop to 5 V; A nd require in the output voltage of the load to bring pressure drop in 0-between 0 .5 V, also asked the output ripple as low as possible. Keywords:Buck type transform power supply MC34063 12 V down to 5 V

升压降压电源电路工作原理

b o o s t升压电路工作原理 boost升压电路是一种开关直流升压电路,它可以是输出电压比输入电压高。 基本电路图见图一: 假定那个开关(三极管或者mos管)已经断开了很长时间,所有的元件都处于理想状态,电容电压等于输入电压。 下面要分充电和放电两个部分来说明这个电路 充电过程 在充电过程中,开关闭合(三极管导通),等效电路如图二,开关(三极管)处用导线代替。这时,输入电压流过电感。二极管防止电容对地放电。由于输入是直流电,所以电感上的电流以一定的比率线性增加,这个比率跟电感大小有关。随着电感电流增加,电感里储存了一些能量。

放电过程 如图,这是当开关断开(三极管截止)时的等效电路。当开关断开(三极管截止)时,由于电感的电流保持特性,流经电感的电流不会马上变为0,而是缓慢的由充电完毕时的值变为0。而原来的电路已断开,于是电感只能通过新电路放电,即电感开始给电容充电,电容两端电压升高,此时电压已经高于输入电压了。升压完毕。 说起来升压过程就是一个电感的能量传递过程。充电时,电感吸收能量,放电时电感放出能量。 如果电容量足够大,那么在输出端就可以在放电过程中保持一个持续的电流。

如果这个通断的过程不断重复,就可以在电容两端得到高于输入电压的电压。 一些补充1 AA电压低,反激升压电路制约功率和效率的瓶颈在开关管,整流管,及其他损耗(含电感上). 1.电感不能用磁体太小的(无法存应有的能量),线径太细的(脉冲电流大,会有线损大). 2 整流管大都用肖特基,大家一样,无特色,在输出时,整流损耗约百分之 十. 3 开关管,关键在这儿了,放大量要足够进饱和,导通压降一定要小,是成功的关键.总共才一伏,管子上耗多了就没电出来了,因些管压降应选最大电流时不超过单只做不到就多只并联....... 4 最大电流有多大呢?我们简单点就算1A吧,其实是不止的.由于效率低会超过,这是平均值,半周供电时为3A,实际电流波形为0至6A.所以咱建议要用两只号称5A实际3A的管子并起来才能勉强对付.

MC34063芯片原理与应用技巧(车充)

MC34063芯片原理与应用技巧(车充) 1. MC34063 DC/DC变换器控制电路简介: MC34063是一单片双极型线性集成电路,专用于直流-直流变换器。它能使用很少的外接元件构成开关式升压变换器、降压变换器和电源反向器。 特点:价格便宜0.2元,电路简单,且效率满足一般要求 *能在3-40V的输入电压下工作; *低静态电流;*电流限制;*输出电压可调 *输出开关电流峰值可达1.5A(平均0.8A)(无外接三极管时) *工作振荡频率从100HZ到100KHZ 2.MC34063引脚图及原理框图 MC34063 电路原理 振荡器通过恒流源对外接在CT 管脚(3 脚)上的定时电容不断地充电和放电以产生振荡。充电和放电电流都是恒定的,振荡频率仅取决于③脚外接的定时电容。与门的C 输入端在定时电容充电时为高电平,D 输入端在比较器的输入电平低于阈值电平时为高电平。当C 和D输入端都变成高电平时触发器被置为高电平,输出开关管导通;反之当振荡器定时电容(③脚上)在放电期间,C 输入端为低电平,触发器被复位,使得输出开关管处于关闭状态。 电流限制通过检测连接在VCC(即6脚)和7 脚之间安全电阻(Rsc)上的压降来实现,当检测到电阻上的电压降接近超过0.3V 时,电流限制电路开始工作,这时通过CT 管脚(3 脚) 对定时电容进行快速充电以减少充电时间和输出开关管的导通时间,结果是使得输出开关管的关闭时间延长。如⑧②两脚直接连到电源的正负极上,那么, T2上将承受很高的压降:为防T2因承压→发热过大,应在⑧或②外接电阻|电感等负载★。 线性稳压电源效率低,通常不适合于大电流或输入、输出压差大的情况。开关电源的效率相对较高,按转换方式可分为斩波型、变换器型和电荷泵式,按开关方式可分为软开关和硬开关。MC34063属于低成本斩波型硬开关。 2012年7月捡到一个车用手机充电器(车充),芯片是MC34063,MicroUSB接口。

相关文档
最新文档