水电机组故障诊断系统信号预处理

水电机组故障诊断系统信号预处理
水电机组故障诊断系统信号预处理

作者简介

水电机组故障诊断系统信号预处理

水力机电研究所

北京

摘要随着水电站对水电机组安全稳定运行要求的不断提高相应的对故障诊断系统中故障诊断的准确性提出了更高的要求而信号处理是故障诊断成功与否的关键监测得到的故障信号不可避免的受到水电机组运行中的

为得到真实的故障特征信息有必要进行

关键词

故障诊断

小波分析除噪

故障诊断是以故障特征信息为基础的信

因此信号处理是水轮机故障诊断成又信号采集中不可避免地受到水影响机组的安全稳定水电机组的

一种新的数学工具

小尤其在处理非平稳信号时比传统的信号处自相关

定义

定义

根据自相关函数

的定义可以推出

因为它在对称

区间上的积分为

可以看出

一般情况下水电机组故障信号

有用信号白噪声

故障信号

故障信号

白噪声

时取一值即它的方差

一个含有噪声和有用信号的故障信号经过自相

变换计算出各频率成分的幅值

小波分析

小波分析介绍

它在时频两域都具局部化分析方法因而被誉为数学显微镜

小波分析被广泛应用于信号处

其中是尺度参数是时改变的值对函数参数

小波

设对

当较大时视野宽而分析频率低较小时

实际应用中需要对尺度参数和定位参数可以选取是整数

且保证小波函数生选则

相应的离散小波变换为

小波分析除噪小波去噪的方法

小波分解与重构法若

换分解公式为

式中为一对正交镜像滤波器组为离散采样点小波分解与重构法去噪具体步骤

非线性小波变换阈值法

在水电机组故障诊断中有用故障信号通常表现为低频

图原始信号小波分解过程示意

图中的则噪声部分通常包含在

到第选择一个阀值量化

层到第

实例分析

欧阳海水电站

由图和图自相关除噪的效果比小波分析要好

等于信号中正弦成分的幅

小波分析将

采样频率

由图其单幅值

图图图结论

自相关函

参考

梁武科罗兴 张彦宁等张常年王立忠屈梁生

董小刚秦喜文

王洪刚韩文秀基于

故障诊断专家系统及其发展

综述与评论 计算机测量与控制.2008.16(9) C omputer Measurement &Control 1217 中华测控网https://www.360docs.net/doc/da11575899.html, 收稿日期:2008-06-08; 修回日期:2008-07-16。 作者简介:安茂春(1967-),山东莱阳人,副研究员,主要从事测试与故障诊断技术的管理工作。 文章编号:1671-4598(2008)09-1217-03 中图分类号:TP182 文献标识码:A 故障诊断专家系统及其发展 安茂春 (北京系统工程研究所,北京 100101) 摘要:文章对主要的故障诊断专家系统进行了系统的归纳和分类,主要关注故障诊断专家系统在军事领域的应用;重点讨论了基于规则的诊断专家系统、基于模型的诊断专家系统、基于人工神经网络的诊断专家系统、基于模糊推理的诊断专家系统和基于事例的诊断专家系统的技术要点、发展现状、优缺点及其在军事方面的应用;最后,对该学科的发展做出了预测,指出基于多种模型结合的诊断专家系统、分布式诊断专家系统、实时诊断专家系统是今后的发展方向。 关键词:专家系统;故障诊断;军事应用;基于规则推理;建模技术;人工神经网络;模糊推理;基于事例推理 A Survey on Fault Diagnosis Expert Systems An M ao chun (Beijing Institute o f System and Eng ineering ,Beijing 100101,China) Abstract:In this article w e present a s urvey of fault diagnosis expert system s,and categorize them into 5different types according to know ledge organiz ation m ethod and reasoning m ech anis m,w hich are ru le-b as ed fault diagn osis expert system,model-based fault diagnosis ex pert system,n eural netw ork fault diagnosis exp ert sy stem,fuz zy fault diagn osis expert system and cas e-based fault diagn os is expert sys -tem,for each type w e describ e its techn ical pr op erties,curren t status,ad vantag es and disadvantages,and application s in military field.At the end of th is article,w e point out that hybrid model-based,distributed and real-time diagnosis expert sys tems are fu tu re direction s. Key words:ex pert sys tem;fault diagnosis ;military application;rule -b as ed reasoning;modelin g;artificial neural netw or k;fuzzy reasonin g;ease-b as ed reasoning 1 故障诊断专家系统及其分类 专家系统(Ex per t Sy st em,ES)是人工智能技术(A rt if-i cial I ntelligence,A I)的一个重要分支,其智能化主要表现为能够在特定的领域内模仿人类专家思维来求解复杂问题。专家系统必须包含领域专家的大量知识,拥有类似人类专家思维的推理能力,并能用这些知识来解决实际问题。 故障诊断技术是一门应用型边缘学科,其理论基础涉及多门学科,如现代控制理论、计算机工程、数理统计、模糊集理论、信号处理、模式识别等。故障诊断的任务是在系统发生故障时,根据系统中的各种量(可测的或不可测的)或其中部分量表现出的与正常状态不同的特性,找出故障的特征描述并进行故障的检测与隔离。 故障诊断专家系统是将专家系统应用到故障诊断之中,可以利用领域知识和专家经验提高故障诊断的效率[1]。目前专家系统在故障诊断领域的应用非常广泛,如美空军研制的用于飞机喷气发动机故障诊断专家系统XM AN [2],N A SA 与M IT 合作开发的用于动力系统诊断的专家系统,英国某公司为英美军方开发的直升机发动机转子监控与诊断专家系统[3]等,此外在电力、机械、化工、船舶等许多领域中也大量应用了故障诊断专家系统。 根据知识组织方式与推理机制的不同,可将目前常用的故障诊断专家系统大致分为基于规则的诊断专家系统、基于模型 的诊断专家系统、基于人工神经网络的诊断专家系统、基于模糊推理的诊断专家系统和基于事例的诊断专家系统。 2 故障诊断专家系统对比分析 2 1 基于规则的诊断专家系统 在基于规则的诊断专家系统中,领域专家的知识与经验被 表示成产生式规则,一般形式是:if<前提>then<结论>其中前提部分表示能与数据匹配的任何模型,结论部分表示满足前提时可以得出的结论。基于规则的推理是先根据推理策略从规则库中选择相应的规则,再匹配规则的前提部分,最后根据匹配结果得出结论。 基于规则的诊断知识表达方式直观、形式统一,在求解小规模问题时效率较高,并且具有易于理解与实现的优点,因而取得了一定成功。20世纪90年代,国外在军用水压系统、电力供应网络等方面进行了应用。 但是,对于复杂系统,所观测到的症状与对应的诊断之间的联系是相当复杂的,通过归纳专家经验来获取规则有着相当的难度,且诊断时只能对事先预想到的并能与规则前提匹配的事件进行推理,存在知识获取的瓶颈问题。2 2 基于模型的诊断专家系统 在基于模型的诊断专家系统中,领域专家的专业知识包含在建立的系统模型中,这种基于模型的诊断更多地利用系统的结构、功能与行为等知识。相比基于规则的诊断专家系统,这种诊断方式能够处理预先没有想到的情况,并且可能检测到系统存在的潜在故障。这类系统的知识库相对容易建立并且具有一定的灵活性,已应用于航天器动力燃烧系统故障诊断等方面。

有效振动分析的信号处理

有效振动分析的信号处理 摘要 有效的振动分析首先始于从工业标准的振动传感器,如加速度传感器获得一个准确的时域变化的信号。一个手持式数字仪器一般接入原始的模拟信号,并为用户的多种要求进行处理。根据用户对分析的要求和原始信号的最初单位,信号可被直接处理或经由数学积分器变换成振动测量的其他单位。根据感兴趣的频率,信号可能要经过一系列高通滤波器和低通滤波器的调理。根据期望得到的结果,信号可能被多次采样和平均。如果在数字仪器中需进行时间波形分析,那么确定采样点数和采样速率是必要的。观察的时间长度等于采样周期乘以采样点数。大部分手持式仪器也具有FFT(快速傅里叶变换)处理方法,把全局时变输入信号采样分解为其单独的频率分量。在老式模拟仪器中,这个分析功能是由扫频滤波器来实现的。 定义FFT处理时要考虑很多设置参数:(1)分辨率线数;(2)最大频率;(3)平均类型;(4)平均次数,和(5)窗类型。这些参数互相作用影响得到的结果,并且需要在信息质量和完成数据采集所耗时间之间进行折中考虑。 预知维修的成功依赖于数据采集和变换过程中的几个要素:(1)总振动水平的趋势;(2)复合振动信号各个频率分量的幅值和频率;(3)在相同运行条件下,机器某一部分的振动信号相对于机器上另一个测量的相位关系。 本文将带领读者从振动传感器的输出,经过典型的现代数字技术振动测量仪器所完成的信号处理流程的各个阶段。并且,本文重点介绍了预知维修领域为完成准确分析而进行的快速有效的振动数据采集中所需的多个数据采集设置参数和折中考虑。 关乎振动分析成功的几项内容,将给予详细论述:模拟信号采样和调理;抗混淆测量;噪声滤波器技术;频带-低通,高通,带通;数据平均方法;和FFT频率转换。 1.讨论 振动分析始于传感器输出的时变物理信号。从此信号的输入到振动测量仪器,有很多可能的选择去分析信号。本文的目的是关注内部信号处理路径,以及它和原始振动问题的最终根源分析之间的关系。首先,我们看如图1所示的仪器中典型信号路径的框图。 2.时间波形 图2.所示是一个典型的来自加速度传感器的模拟时间波形信号。

电力系统故障的智能诊断综述

电力系统故障的智能诊断综述 发表时间:2016-06-30T14:34:41.580Z 来源:《电力设备》2016年第9期作者:李艳君蒋杰李玉玲李飞翔 [导读] 在电力系统中,设备故障诊断和厂站级的故障诊断经过了几十年的发展和改革,现今已经较为成熟,而电力系统层面的故障才刚刚开始。 李艳君蒋杰李玉玲李飞翔 (国网新疆检修公司新疆乌鲁木齐 830000) 摘要:常用的智能故障诊断技术有专家系统、人工神经网络、决策树、数据挖掘等,专家系统技术应用最广,最为成熟,但是也需要结合使用其他智能技术来克服专家系统技术自身的缺点。智能故障诊断技术的发展趋势主要有多信息融合、多智能体协同、多种算法结合等,并向提高智能性、快速性、全局性、协同性的方向发展。基于此,本文就针对电力系统故障的智能诊断进行分析。 关键词:电力系统;故障;智能诊断 引言 文章对电力系统故障的智能诊断进行了详细的阐述,通过对电力系统的简介,和对故障诊断的发展阶段进行了简要的分析,并阐述了电力系统故障的智能诊断实际应用存在的问题及对策,文章最后指出了电力系统故障的智能诊断的发展趋势。望文章的阐述推动电力系统故障的智能诊断的发展。 1电力系统概述 电力系统是由发电厂、送变电线路、供配电所和用电等环节组成的电能生产与消费系统。电力系统的主要功能是将自然界中的能源,通过先进的发电动力装置,将能源转换为电能。在通过输电线路和变压系统,将电能传送到各个用户。为了实现这一功能,电力系统在各个环节和不同层次还具有相应的信息与控制系统,对电能的生产过程进行测量、调节、控制、保护、通信和调度,以保证用户获得安全、优质的电能。 2电力系统故障智能诊断技术及发展现状 2.1智能故障诊断技术 传统的故障诊断方法分为基于信号处理和基于数据模型,均需要人工进行信息的处理和分析,缺乏自主学习能力。随着人工智能技术这一新方法的产生及发展,为故障诊断提供了初步的自动分析和学习的途径。人工智能技术能够存储和利用故障诊断长期积累的专家经验,通过模拟人大脑的逻辑思维进行推理,从而解决复杂的诊断问题。 目前在电网故障诊断领域出现了包括专家系统、人工神经网络、决策树理论、数据挖掘、模糊理论、粗糙集理论、贝叶斯网络、支持向量机及多智能体系统等技术以及上述方法的综合应用。 目前,在对电网故障智能诊断领域的研究中,依靠单一智能技术的系统多,信息的综合利用研究较少,协同技术的研究应用更少;投入运行的诊断系统多为专家系统,但是离线运行的多,在线运行的很少。即使广泛投入使用的专家系统也同样存在着:(1)知识的获取和管理问题,难以获取较高适应度和准确度的知识。(2)推理的效率问题。(3)故障诊断的在线应用问题,目前仅限于离线故障诊断,该结论不能指导对电网的实际控制。(4)故障诊断的动态分析问题,缺乏故障的动态分析,从而屏蔽了很多有用的细节,尤其是各元件之间的相互关联关系等。基于以上问题,采用决策树方法可以对系统信息进行归类梳理,可以提高专家系统的速度;通过粗糙集方法建立清晰的数学模型;采用数据挖掘和关联性规则可以提高故障诊断分析的准确度。这几种方法的结合应用有助于提高故障诊断的智能水平、效率和准确度。 2.2电力系统故障智能诊断发展现状 电力系统连锁故障分析理论与应用中提到,电力系统故障智能诊断是相对传统的故障诊断而言的。在传统的故障诊断方法可划分为两类。其一是关于信号出路的方法。其二是数学模型的方法。这些都需要人为地区判断和分析,这些方法应用是没有自动化的处理能力。故障的智能诊断是将传统的方法,与当下先进的计算机技术有效的结合,形成的人工智能技术的新方法,对电力系统的故障进行智能的诊断,这是故障诊断技术发展的新时期。 3智能故障诊断面临的问题和对策 3.1智能故障诊断面临的问题 知识的获取和管理问题,也可以说是规则的表达和维护问题。知识是专家系统行为的核心,如何根据系统的变化,获取具有较高适应度和准确度的知识(规则)。对知识的一致性、冗余性、矛盾性和完备性进行检验、维护和管理,是专家系统亟需解决的首要问题。 推理的效率问题,也可以说是如何解决规则组合爆炸的问题。规则库的规模增大以后,搜索的运算量迅速增长,尽管人们提出了许多算法,规则组合爆炸的问题还是没有得到满意的解决。 故障诊断的在线应用问题。以往的故障诊断离线运行,只能告诉调度员已有故障是如何发展的,因为运行方式的多变性,离线故障诊断结论不一定能够指导调度员对电网的实际控制;只有做到在线运行,才能及时帮助调度员进行控制决策。 故障诊断的动态分析问题。以往的故障诊断只能进行静态分析,忽略了故障动态过程的大量有用的细节,尤其是采用了高速保护的大型电网,更加需要分析动态过程,例如快速相继开断过程中的顺序和相互关系、复杂故障中各元件之间的相互影响、电压崩溃的动态过程、运行方式切换或调度控制过程对电网的影响等。 3.2智能故障诊断面临问题的解决对策 对于知识的获取和管理问题,可以采用提高故障诊断系统的学习能力的方法,如 ANN、数据挖掘、仿生学方法等。这些智能方法都有其优点和局限性,需要有针对性地应用。 对于推理的效率问题,可以采用计算速度更快的计算机硬件和软件算法,通信速度更快的数据采集和传输手段;数据挖掘是从各种复杂故障中发现最常见的故障或分解出简单故障的有力手段;建立系统的故障案例库,可以降低决策分析的计算量,提高诊断推理的效率。 对于故障诊断的在线应用和动态分析问题,可以采用更能够反映电网实时运行状态的信息,如广域量测系统、高速保护信息系统和故障录波信息系统、稳定控制系统等提供的动态数据;实时进行电网的灵敏度分析,动态分析电网的健康状况;增量挖掘技术只处理实时的

语音信号处理实验一采集和预处理

实验一语音信号的采集及预处理 一、实验目的 在理论学习的基础上,进一步地理解和掌握语音信号预处理及短时加窗的意义及基于matlab的实现方法。 二、实验原理 1.语音信号的录音、读入、放音等:练习matlab中几个音频处理函数,利用函数wavread 对语音信号进行采样,记住采样频率和采样点数,给出以下语音的波形图(2.wav)。利用wavplay或soundview放音。也可以利用wavrecord自己录制一段语音,并进行以上操作(需要话筒)。 2.语音信号的分帧:对语音信号进行分帧,可以利用voicebox工具箱中的函数enframe。 voicebox工具箱是基于GNU协议的自由软件,其中包含了很多语音信号相关的函数。3.语音信号的加窗:本步要求利用window函数设计窗口长度为256(N=256)的矩形窗(rectwin)、汉明窗(hamming)及汉宁窗(hann)),利用wvtool函数观察其时域波形图及频谱特性,比较得出结论。观察整个信号加矩形窗及汉明窗后的波形,利用subplot与reshape函数将分帧后波形、加矩形窗波形及加汉明窗波形画在一张图上比较。取出其中一帧,利用subplot与reshape函数将一帧语音的波形、加矩形窗波形及加汉明窗波形画在一张图上比较将得出结论。 4.预加重:即语音信号通过一个一阶高通滤波器1 9375 1- -z。 .0 三、实验步骤、实验程序、图形及结论 1.语音信号的录音、读入、放音等 程序: [x,fs,nbit]=wavread('D:\2.wav'); %fs=10000,nbit=16 y=soundview('D:\2.wav') 2.语音信号的分帧 程序: [x,fs,nbit]=wavread('D:\2.wav'); len=256; inc=128; y=enframe(x,len,inc); figure; subplot(2,1,1),plot(x) subplot(2,1,2),plot(y)

汽轮机轴振动监测中的数据采集与处理

汽轮机轴振动监测中的数据采集与处理 【摘要】本文详细地说明了轴心轨迹振动信号的预处理过程,对振动信号采样和滤波简单的分析了轴心轨迹信号频谱。通过对轴心轨迹特征的识别为轴心轨迹的稳定性及机组的在线监测系统提供 依据,对现场汽轮机发电机组的安全平稳运行有重大的意义。 【关键词】汽轮机组;轨迹识别;滤波;故障诊断 近年来,状态监测和故障诊断技术与系统的研究得到了高速发展。随着电力工业的发展,汽轮发电机组的总装机容量和单机容量都得到了迅速提高,机组轴系也越来越复杂,诱发机组振动的潜在因素也相应增加。振动问题在机组安全运行中的影响越来越大,人们也越来越关注机组振动对于生产安全稳定经济运行的影响。 1.研究意义 结合兰州石化公司动力厂背压发电装置,发电装置的各监控仪器仪表中,没有对整个机组在运行中的振动进行直接的监控。操作人员只能通过机组在运行过程中,对轴瓦的温度监控或是通过机组运行时所产生的声音进行经验性判断。因此,针对汽轮发电机组振动监测的数据采集和预处理做出大胆的设计。 本设计的实施对发电装置的生产运行的意义: (1)避免汽轮机转子发生重大安全事故而造成的巨大经济损失,保证转子在规定的期间内无故障安全可靠运行。 (2)振动监测诊断系统可及时判断转子是否有故障,并能够迅速

查明故障原因、部位、预测故障影响,提高汽轮机转子的维修管理水平,而本文所做的汽轮机发电机组振动监测的数据采集和预处理工作正是振动监测诊断系统的基础。它将对今后的汽轮发电机组进行全面远程监控及自动化改造提供可靠的数据来源。 2.振动信号采集 旋转机械轴系振动信号是以转速为基频的周期信号。在转子系统的振动检测中,需要对振动信号进行整周期采样来避免由于泄露、栅栏等不良效应带来的相位严重失真。传统振动分析方法通过硬件电路锁相倍频法来实现整周期采样,该方法的核心是锁相倍频电路的应用。键相信号经锁相电路倍频后,产生采样脉冲序列,控制采样电路的触发与关闭。该方法的优点在于同步性能好,结合并行采样/保持电路,可自动实现对各个通道振动信号的实时同步采样。但这种方法需要专用的数据采集卡,因此系统硬件成本比较高,开发周期长,且适应能力及硬件升级能力较差。 伪同步采样法充分发挥了通用数据采集卡中数据采集通道资源多的特点,将键相信号与振动信号进行同步采样,对振动信号的整周期截取则在采集后通过数据处理来实现。结合对柔性转子实验系统进行动平衡的实验结果表明:这种伪同步采样方法可有效满足转子振动信号处理对信号采样的要求。 3.振动信号的处理 在机械设备状态监测和故障诊断过程中,传感器的输出信号经采

汽车故障诊断专家系统的研究和设计

摘要 本文介绍了汽车故障诊断专家系统的基本结构及其开发的基本方法,论述了汽车故障诊断专家系统软件的开发研究的意义和设计中的难点,针对汽车故障的复杂性特点模拟经验丰富的维修专家的诊断思路及方法,利用Delphi7进行编程,建立友好的人机界面,依据计算机数据结构原理,采用故障树的数据结构和关系数据库原理完成知识表示建立完善的知识库,实现了确定性故障诊断所需的知识库和推理机。从而可使用户通过人机对话的形式方便、快速、准确地找出故障原因,大大地提高汽修行业的效益及汽车的使用寿命。 关键字:汽车故障诊断专家系统

The paper introduces Automobile Fault Diagnosis Expert System of basic structure and development of basic methods. Discusses the software of Automobile Fault Diagnosis Expert System 's research meaning and the difficulty in the design. Aiming at the complexity characteristic of the fault ,simulating the way that experienced diagnosis maintenance of expert thinking, using Delphi7, established friendly human-machine interface. According to the principle structure data of the computer , adopt the fault tree's data structure and relation theories of database to accomplish the representation of knowledge, and realized the uncertainty of knowledge base for fault diagnosis and reasoning machine. The user could find fault convenient, fast and accurately through the man-machine dialogue form , greatly improve the automobile industry's efficiency and the automobile's service life. Key words:automobile fault diagnosis expert system

嵌入式智能故障诊断系统设计

嵌入式智能故障诊断系统设计 摘要:针对传统的故障诊断方法精度不高,实时性不好的问题,在嵌入式系统 环境下进行故障实时诊断系统的优化设计。本文首先分析了机械状态监测及故障 诊断的相关理论,然后详细分析了嵌入式智能故障诊断系统的设计与实现。实验 结果表明,采用该故障诊断系统进行滚动轴承故障实时检测非常便捷实用又适于 后续联网管理。 关键词:嵌入式系统;滚动轴承;故障诊断;硬件系统 引言 随着现代科技的不断发展,机械设备早已不是一个纯机械装备,而是融合了自动控制、 液压与气压传动等技术的结构和功能都十分复杂的系统。这给机械运行状态的监测和故障诊 断提出了越来越高的要求。机械运行过程中发生的故障不仅会导致重大经济损失,还可能给 人身安全带来极大威胁。因此,实时监测机械设备的运行工况并及时诊断故障,对经济效益 和社会效益的提高都有极其重要的意义。 1 机械状态监测和故障诊断的相关理论 机械诊断技术是通过监测机械设备运行状况,发现故障并预报故障发展趋势,诊断故障 类型及故障原因,确保机器正常运转的技术。目前,普遍采用的机械诊断技术有振动监测、 油液监测、噪声监测和无损探伤等。油液光谱分析技术通过分析机油中的金属颗粒物浓度, 能准确判断机械设备传动系统是否存在磨损型故障隐患。无损探伤技术利用物质的光、磁和 电等特性,能够在不损坏工件或改变机械设备运行状态的前提下准确完成机械部件工况的监测。 故障机理分析是机械诊断的关键。故障机理是在理论研究和实验分析的基础上得到的反 映故障信号和机器参数关系的表达式。从采集到的机械设备的状态信号,它能方便诊断出故 障的位置。这些状态信号通常是机械设备运行过程中表现出来的物理或化学现象,如机械振动、运行噪声、机器温度、油压波动、功耗增多和异常气味等。机械运行状态监测是通过各 种传感器采集机械设备运行过程中的物理或化学状态信号,并据此诊断故障的类型及原因。 故障信号的提取与处理是机械诊断中的重要步骤。通过分析传感器采集到的反映机械设备运 行状态的信号,提取出机械故障特征信息,从而为故障类型和故障原因的准确诊断提供可靠 的依据。信号处理方法经历了从时域分析到频域分析,再由频域分析到时频域分析的发展过程。频域分析将采集到的机械状态信号从时域变换到频域。典型的频域分析法有基于快速傅 里叶变换的经典谱估计法和现代谱估计法。时频分析技术同时在时域和频域分析机械非平稳 信号,其中Wigner-Ville时频分布等时频分析技术在机械诊断中得到了普遍应用。 2 嵌入式智能故障诊断系统设计 本系统将整体结构分为四层,包括管理层、功能层、推理层和数据层。管理层主要负责 整个系统的管理机制与通信机制。决策需要通信的Agent双方需要对话,还是需要进行知识 的交换。二是要Agent之间的关系作出判断。Agent之间的交互有两种关系:正关系和负关系。正关系表示Agent的规划有重叠的部分,或某个Agent具备其他Agent不具备的能力, 各Agent可通过管理层的协调获得帮助,负关系会导致冲突。管理层要进行协调,达到冲突 的消解的目的。功能层是多Agent诊断系统的核心层。主要包括知识处理、特征提取、实时 监控、故障诊断与故障决策等功能组件。推理层处于数据层和功能层之间。主要提供各功能 组件所需的知识或数据,并对推理机制进行定义。数据层包括数据库、知识库与扩展知识库 三个方面。数据库主要用于存储由传感器获得的各种信息,知识库为众多相关领域的专家的 经验总和。扩展知识库主要是为系统的日后扩展诊断功能留下接口。在管理层中主要有两个Agent:管理Agent和数据传输Agent。管理 Agent负责协调各Agent和通信,数据传输Agent 负责与后台计算机上的通信Agent之间传输巡检数据。具体诊断时,数据采集子系统将被诊 断设备的运行状态、参数等数据采集输入到诊断系统,一方面提供给PC端显示,另一方面,将数据提供给诊断方法 Agent,形成诊断请求。管理Agent对诊断请求进行任务分解,得出 多个子任务,再根据对诊断Agent的认识,将诊断任务分配给适当的诊断Agent。管理Agent 还要负责诊断Agent间的工作协调、协作和借助于KQML语言通信,以及将各诊断Agent的

MATLAB在机械振动信号中的应用

MATLAB在机械振动信号中的应用 申振 (山东理工大学交通与车辆工程学院) 摘要:综述了现代信号分析处理理论、方法如时域分析(包括时域参数识别、相关分析等)、频域分析(包括傅立叶变换、功率谱分解等),并结合MATLAB中的相关函数来对所拟合的振动信号进行时域分析和频域分析,并对绘出的频谱图进行说明。 关键词:时域分析频域分析 MATLAB 信号是信息的载体,采用合适的信号分析处理方法以获取隐藏于传感观测信号中的重要信息(包括时域与频域信息等),对于许多工程应用领域均具有重要意义。对获取振动噪声信号的分析处理,是进行状态监测、故障诊断、质量检查、源识别、机器产品的动态性能测试与优化设计等工作的重要环节,它可以预先发现机械部件的磨损和缺陷等故障,从而可以提高产品的质量,降低维护费用。随着测试技术的迅速发展,各种信号分析方法也随之涌现,并广泛应用在各个领域[1]。 时域描述简单直观,只能反映信号的幅值随时间的变化,而不能明确的揭示信号随时间的变化关系。为了研究信号的频率组成和各频率成分的幅值大小、相位关系,应对信号进行频谱分析,即把时域信号通过适当的数学方法处理变成频率f(或角频率 )为独立变量,相应的幅值或相位为因变量的频域描述。频域分析法将时域分析法中的微分或差分方程转换为代数方程,有利于问题的分析[2]。 MATLAB是MathWorks公司于1982年推出的一种功能强大、效率高、交互性好的数值计算和可视化计算机高级语言,它将数值分析、矩阵运算、信号处理和图形显示有机地融合为一体,形成了一个极其方便、用户界面良好的操作环境。随着其自身版本的不断提高,MATLAB的功能越来越强大,应用范围也越来越广,如广泛应用于信号处理、数字图像处理、仿真、自动化控制、小波分析及神经网络等领域[3]。 本文主要运用了MATLAB R2014a对机械振动信号进行分析。分析过程包括时域分析和频域分析两大部分,时域分析的指标包括随机信号的均值、方差以及均方值。频域分析的性能指标包括对功率谱分析、倒频谱分析。在进行上述分析之前先要对振动信号进

智能诊断

智能诊断技术综述 摘要:设备故障诊断技术是在电子、计算机技术的发展中产生的一门技术。当1个系统的状态偏离正常状态时,就称该系统发生了故障,此时系统可能完全也可能部分丧失其功能。故障诊断就是寻找故障原因的过程,包括状态检测、故障原因分析及劣化趋势预测等内容。传统故障诊断技术在分析结构比较复杂的深层次故障时效果不理想,且对操作员能力要求较高;而人工智能技术的发展,则使诊断技术走向了智能化[1]。由于智能故障诊断技术可模拟人类的逻辑思维和形象思维,将人类各种知识融入诊断过程,故可实现对大型复杂设备的实时、可靠、深层次和预测性故障诊断,获得的诊断信息就能准确地对诊断对象的状态进行识别和预测。因此这一技术也受到了世界各国工程研究人员的普遍重视。目前,随着基于行为的人工智能、分布式人工智能、多传感器信息融合技术以及新理论的提出与发展,故障诊断也获得了新的发展机遇[2]。 基于建模处理和信号处理的诊断技术正发展为基于知识处理的智能诊断技术。智能诊断技术在知识层次上实现了辩证逻辑与数理逻辑的集成、符号逻辑与数值处理的统一、推理过程与算法过程的统一、知识库与数据库的交互等功能,目前的研究主要从两方面展开:基于专家系统的智能故障诊断技术和基于神经网络的智能故障诊断技术[3]。 图一智能诊断系统的功能模块 1智能诊断技术 (1)基于专家系统的智能诊断技术 故障诊断专家系统是诊断领域引人注目的发展方向之一,也是研究最多、应用最广的一类智能诊断技术,主要用于那些没有精确数学模型或很难建立数学模型的复杂系统。大致经历了两个发展阶段:基于浅知识的第一代故障诊断专家系统和基于深知识的第二代故障诊断专家系统。近期出现的混合结构的专家系统,是将上述两种方法结合使用,互补不足。基于浅知识(人类专家的经验知识)的故障诊断系统是以领域专家和操作者的启发性经验知识为核心,通过演绎推理或产生式推理来获取诊断结果,目的是寻找一个故障集合使之能对一个给定的征兆(包括存在的和缺席的)集合产生的原因做出最佳解释[4]。基于深知识(诊断对象的模型

振动信号的采集与预处理

振动信号的采集与预处理 几乎所有的物理现象都可看作是信号,但这里我们特指动态振动信号。 振动信号采集与一般性模拟信号采集虽有共同之处,但存在的差异更多,因此,在采集振动信号时应注意以下几点: 1. 振动信号采集模式取决于机组当时的工作状态,如稳态、瞬态等; 2. 变转速运行设备的振动信号采集在有条件时应采取同步整周期采集; 3. 所有工作状态下振动信号采集均应符合采样定理。 对信号预处理具有特定要求是振动信号本身的特性所致。信号预处理的功能在一定程度上说是影响后续信号分析的重要因素。预处理方法的选择也要注意以下条件: 1. 在涉及相位计算或显示时尽量不采用抗混滤波; 2. 在计算频谱时采用低通抗混滤波; 3. 在处理瞬态过程中1X矢量、2X矢量的快速处理时采用矢量滤波。 上述第3条是保障瞬态过程符合采样定理的基本条件。在瞬态振动信号采集时,机组转速变化率较高,若依靠采集动态信号(一般需要若干周期)通过后处理获得1X和2X矢量数据,除了效率低下以外,计算机(服务器)资源利用率也不高,且无法做到高分辨分析数据。机组瞬态特征(以波德图、极坐标图和三维频谱图等型式表示)是固有的,当组成这些图谱的数据间隔过大(分辨率过低)时,除许多微小的变化无法表达出来,也会得出误差很大的分析结论,影响故障诊断的准确度。一般来说,三维频谱图要求数据的组数(△rpm分辨率)较少,太多了反而影响对图形的正确识别;但对前面两种分析图谱,则要求较高的分辨率。目前公认的方式是每采集10组静态数据采集1组动态数据,可很好地解决不同图谱对数据分辨率的要求差异。 影响振动信号采集精度的因素包括采集方式、采样频率、量化精度三个因素,采样方式不同,采集信号的精度不同,其中以同步整周期采集为最佳方式;采样频率受制于信号最高频率;量化精度取决于A/D转换的位数,一般采用12位,部分系统采用16位甚至24位。 振动信号的采样过程,严格来说应包含几个方面: 1. 信号适调 由于目前采用的数据采集系统是一种数字化系统,所采用的A/D芯片对信号输入量程有严格限制,为了保证信号转换具有较高的信噪比,信号进入A/D以前,均需进行信号适调。适调包括大信号的衰减处理和弱信号的放大处理,或者对一些直流信号进行偏置处理,使其满足A/D输入量程要求。 2. A/D转换

智能进入和起动系统故障诊断..

国家职业资格全国统一鉴定 汽车维修工技师论文 (国家职业资格二级) 论文题目:智能进入和起动系统故障诊断 姓名: *** 身份证号: 440**********16 准考证号: 所在省市:广东省广州市 所在单位:广州**汽车销售服务有限公司

智能进入和起动系统故障诊断 *** 广州**汽车销售服务有限公司 摘要: 凯美瑞240V车型智能进入和起动系统可以通过携带钥匙但不需要使用钥匙或发射器按钮实现进入功能和按钮起动功能。本文主要介绍一部2010年款的丰田凯美瑞轿车,由于MPX多路通信系统故障,造成智能钥匙系统不能正常工作,发动机不能正常起动。通过仔细的线路检查,最终发现MPX系统的故障点,并顺利解决故障。 关键词:工作原理非常规强行进入系统 一、前言 智能进入和起动系统日益流行,在为人们带来便利的同时,也常常会因为对这项新技术的不了解而给我们的车主带来不小的麻烦。本文通过对丰田凯美瑞240V车型的智能进入和起动系统的介绍和案例分析,使读者能够了解智能进入和起动技术,希望能帮助广大汽车客户和维修技术人员能够解决与之相关的技术问题。 凯美瑞240V智能凯进入和起动系统不仅具有无线门锁远程控制功能和发动机停机器功能,还可以通过携带钥匙但不需要使用钥匙或发射器按钮实现进入功能和按钮起动功能,如果要进入和起动没有带该系统的车,就必须使用钥匙把车门锁和点火开关打开,而带有智能进入和起动系统的汽车就可以省去了这些操作。智能进入和起动系统不是在任何时候都能起作用,仅当钥匙处于执行区域时,智能进入和

起动系统的特殊功能才能起作用,否则汽车就失去防盗作用。该车钥匙也不是普通的钥匙,钥匙包括了机械钥匙,无线门锁摇控发射器,智能进入和起动系统收发器,以及用于发动机停机器控制的应答器芯片。每个控制单元通过MPX多路通信系统进行连接,传送各种信号。智能进入和起动系统的执行区域如(图一)所示,由前车室振荡器,后车室振荡器,左前门振荡器,行李厢内振荡器和行李厢外振荡器形成,而前车室振荡器和后车室振荡器形成按钮起动功能的执行区域,其它的振荡器就形成进入功能执行区域(注:中国凯美瑞副驾驶室门则没有执行区域)。 (图一)

电力系统故障诊断专家系统

电力系统故障诊断专家系统 李向峰 (哈尔滨工程大学信息与通信工程工程学院,黑龙江哈尔滨150001)摘要:针对电力系统故障诊断问题存在的大量不确定性,提出了将模糊集和模糊推理方法结合专家系统进行故障诊断的新方案。同时,尝试将分布式问题求解方法用于电力系统故障诊断问题,开发了基于模糊推理的分布式电力系统故障诊断专家系统。为方便用户使用,开发了图形建模和模糊知识学习平台,以及故障信息管理系统通过在某地区电网的测试表明,所提方案具有准确的诊断结果和很好的实用性关键词:故障诊断;模糊推理;专家系统;分布式问题求解;故障信息管理。 关键词:故障诊断; 模糊推理; 专家系统; 分布式问题求解; 故障信息管理 Power System Fault Diagnosis Expert System LiXiangfeng (Information and Communication Engineering, Engineering, Harbin Engineering University, Harbin) Abstract: Fault detection system of power exists a lot of uncertainty, the proposed fuzzy sets and fuzzy inference method combines expert system for fault diagnosis of the new program. At the same time, try to distributed problem solving method for power system fault diagnosis, develop a distributed power system fault diagnosis expert system based on fuzzy reasoning. For the convenience of users, the development of graphical modeling and fuzzy knowledge learning platform, and fault information management system through a regional grid in the test shows that the proposed scheme has an accurate diagnosis and good usability Key words: fault diagnosis; fuzzy reasoning; expert system; distributed problem solving; fault information management. Keywords:fault diagnosis; fuzzy inference; expert system; distributed problem solving 1引言 电力系统故障诊断是近年来十分活跃的研究课题之一,人们对此进行了大量研究[1~9],取得了许多有价值的理论研究成果,提出了多种解决方案,如采用专家系统方法[2,4,6,8]和神经网络方法[4]等. 由于实际运行中用于故障诊断的断路器和保护动作信息存在着大量的不确定性,近年来有学者将模 糊推理方法应用于电力系统故障诊断[3,5~7,9]。但以 前的研究大多集中在理论探讨上,在解决电力系统运行过程中出现的实际问题方面进展不大。现代电网互联规模和运行复杂性越来越大,运行越来越接近极限,一旦发生故障,造成的损失也较以往增大,因此对运行人员迅速准确处理事故的能力的要求进一步提高。电力系统故障自动诊断系统不仅可以成为运行人员在处理事故时的得力助手,还可成为运行人员培训的有力工具。 本文在前期开发的面向对象的电力系统故障 诊断专家系统[8]的基础上,借鉴其他研究成果[3,5~7] 增加了基于模糊集的报警信息处理,不但考虑了开关和保护动作的不确定性,还将故障时电压、电流不同于正常运行时的特征信息用模糊集表示,利用模糊推理来提高诊断结果的准确性和可用性;同时开发了模糊集学习平台,以缓解专家系统知识获取 的难题;利用网络通信技术和分层分布式问题求解 方法,解决电力系统信息分层和应用于实际电力系统故障诊断时出现的问题,提出了两种分层分布式故障诊断问题求解方案,并就其中一种方法进行了

复杂系统的智能故障诊断技术现状及其发展趋势

第21卷 第10期计 算 机 仿 真2004年10月 文章编号:1006-9348(2004)10-0004-04 复杂系统的智能故障诊断技术现状及其发展趋势 李 伟 (重庆大学自动化学院,重庆400044) 摘要:智能故障诊断技术为保障工程技术系统的可靠性和安全性开辟了新的途径,随着系统设备和功能的日益复杂化,发生 故障的机率以及由此带来的损失越来越大,现有单一、固定的故障诊断方法却难以满足复杂系统诊断的全部要求。该文针 对复杂系统故障现象的特点,分析了现有基于规则、基于结构和行为、案例、模糊逻辑、神经网络及其集成知识诊断技术的各 自特点和局限性,指出了机器学习对于当前复杂系统智能故障诊断发展的重要性,有利于改变现有单一、固定的故障诊断思 维,并对未来的主要发展方向进行了一些探讨。 关键词:故障诊断;人工智能;复杂系统 中图分类号:TP18;TP306 文献标识码:A Advance of Intelligent Fault Diagnosis for Complex System and Its Present Situation LI Wei (Automation College,Chongqing University,Chongqing400044,China) ABSTRACT:The technology of i ntelligence faul t diagnosis develops a new way for the reliabili ty and safety of indus trial sys tems,with the gradual complication of the equipment and function of system,which leads to more faults and loss,b ut,i t can no longer meet all req uirements of diagnosing fault complex systems by existing soli tary and static means.According to the characteris tics of complex systems,this paper analyses the characteristics and li mitations of the existing fault diagnosis and in tegrated approaches based on rule,structure and behavior,case,fuzzy logic and neural network,points ou t the importance of machine learning to intelli gent diagnosis system,which i s beneficial to change the mind in fault diagn osis,and discusses the mai n research directions of intelligent diagnosis system in the future. KEYWORDS:fault diagnosis;artificial intelligence;complex system 1 引言 当一个系统的状态偏离了正常状态时,称系统发生了故障,此时系统可能完全、也可能部分地失去其功能。故障诊断就是寻找故障原因的过程,包括状态检测、故障原因分析及趋势预测等内容。故障检测与诊断技术发展至今经历了三个阶段:第一阶段由于机器设备比较简单,故障诊断主要依靠专家或维修人员的感觉器官、个人经验及简单仪表就能胜任故障的诊断与排除工作;第二阶段是以传感器技术、动态测试技术为手段,以信号分析和建模处理为基础的现代诊断技术,在工程中已得到了广泛的应用。近年来,由于机器设备日趋复杂、智能化及光机电一体化,传统的诊断技术已经很难适应,随着计算机技术 智能信息处理技术的发展,诊断技术进入了它的第三个发展阶段 信号分析 建模与知识处理相融合的智能诊断技术阶段[1-2]。 概括来说,现有的故障检测与诊断方法(Fault Detection and Diagnosi s FDD),可以分为以下四大类: 基于状态估计的FDD方法; 基于参数估计的FDD方法; 基于信号处理的FDD方法; 基于知识的FDD方法。 、 又统称为基于解析模型的诊断方法,核心思想是用解析冗余取代硬件冗余,通过构造观测器估计出系统的输出值,将其同输出测量值相比较,从中获取故障信息。该方法获得了深入的研究,但在工程实践中,由于获得系统精确模型的困难性,限制了其使用范围和效果;基于信号处理的诊断方法,利用信号模型,如相关函数、频谱等,提取诸如方差、幅值、频率等特征值,检测出故障,随着小波变换、分形等分析技术的不断引入,研究和应用领域在迅猛地拓展;基于知识的诊断方法不需要对象的精确数学模型,诊断对象作为一个有机整体被研究,以知识处理技术为基础,诊断问题的求解致力于通过模拟领域专家在推理过程中控制和运用各种诊断知识的行为 收稿日期:2004-04-02

相关文档
最新文档