应用探针熔解曲线分析技术快速检测非缺失型α-地中海贫血

应用探针熔解曲线分析技术快速检测非缺失型α-地中海贫血
应用探针熔解曲线分析技术快速检测非缺失型α-地中海贫血

电子探针的分析原理及构造

电子探针在找矿方面的应用 一、电子探针-基本概念 电子探针仪是 X射线光谱学与电子光学技术相结合而 产生的。1948年法国的R.卡斯坦制造了第一台电子探针 仪。1958年法国首先制造出商品仪器。电子探针仪与扫 描电子显微镜在结构上有许多共同处。70年代以来生产 的电子探针仪上一般都带有扫描电子显微镜功能,有的还 附加另一些附件,使之除作微区成分分析外,还能观察和 研究微观形貌、晶体结构等。 用波长色散谱仪(或能量色散谱仪)和检测计数系统, 测量特征X射线的波长(或能量)和强度,即可鉴别元素 的种类和浓度。在不损耗试样的情况下,电子探针通常能 分析直径和深度不小于1微米范围内、原子序数4以上的 所有元素;但是对原子序数小于12的元素,其灵敏度较 差。常规分析的典型检测相对灵敏度为万分之一,在有些 情况下可达十万分之一。检测的绝对灵敏度因元素而异, 一般为10-14~10-16克。用这种方法可以方便地进行点、 线、面上的元素分析,并获得元素分布的图象。对原子序数高于10、浓度高于10%的元素,定量分析的相对精度优于±2%。 电子探针仪主要包括:探针形成系统 (电子枪、加速和聚焦部件等)、X射线信号检测系统和显示、记录系统、样品室、高压电源和扫描系统以及真空系统。 二、电子探针-结构特点 电子探针X射线显微分析仪(简称电子 探针)利用约1Pm的细焦电子束,在样品表 层微区内激发元素的特征X射线,根据特 征X射线的波长和强度,进行微区化学成 分定性或定量分析。电子探针的光学系统、 真空系统等部分与扫描电镜基本相同,通 常也配有二次电子和背散射电子信号检测器,同时兼有组织形貌和微区成分分析两方面的功能。电子探针的构成除了与扫描电镜结构相似的主机系统以外,还主要包括分光系统、检测系统等部分。 电子探针主要由电子光学系统(镜筒),X射线谱仪和信息记录显示系统组成。电子探针和扫描电镜在电子光学系统的构造基本相同,它们常常组合成单一的仪器。 电子光学系统 该系统为电子探针分析提供具有足够高的入射能量,足够大的束流和在样品表面轰击殿处束斑直径近可能小的电子束,作为X射线的激发源。为此,一般也采用钨丝热发射电子枪和2-3个聚光镜的结构。为了提高X射线的信号强度,电

荧光分析法检测原理及应用举例

1 荧光定义 某些化学物质从外界吸收并储存能量而进入激发态,当其从激发态回到基态时,过剩的能量以电磁辐射的形式放射出去即发光,称之为荧光。可产生荧光的分子或原子在接受能量后引起发光,供能一旦停止,荧光现象随之消失。 2 荧光分类 由化学反应引起的荧光称为化学荧光,由光激发引起的荧光称为光致荧光,课题主要研究光致荧光。按产生荧光的基本微粒不同,荧光可分为原子荧光、X 射线荧光和分子荧光,课题主要研究分子荧光。 3 光致荧光机理 某一波长的光照射在分子上,分子对此光有吸收作用,光能量被分子所吸收,分子具有的能量使分子的能级由最低的基态能级上升至较高的各个激发态的不同振动能级,称为跃迁。分子在各个激发态处于不稳定的状态,并随时在激发态的不同振动能级下降至基态,在下降过程中,分子产生发光现象,此过程为释放能量的过程,即为光致荧光的机理。光致荧光的过程按照时间顺序可分为以下几部分。 分子受激发过程 在波长为10~400nm的紫外区或390~780nm的可见光区,光具有较高的能量,当某一特征波长的光照射分子时,是的分子会吸收此特征波长的光能量,能量由光传递到分子上,此过程为分子受激发过程。分子中的电子会出现跃迁过程,在稳定的基态向不稳定的激发态跃迁。跃迁所需要的能量为跃迁前后两个能级的能量差,即为吸收光的能量。分子跃迁至不稳定的激发态中即为电子激发态分子。 在电子激发态中,存在多重态。多重态表示为2S+1。S为0或1,它表示电子在自转过程中,具有的角动量的代数和。S=0表示所有电子自旋的角动量代数和为0,即所有电子都是自旋配对的,那么2S+1=1,电子所处的激发态为单重态, 用S i 表示,由此可推出,S 即为基态的单重态,S 1 为第一跃迁能级激发态的单重 态,S 2 为第二跃迁能级激发态的单重态。S=1表示电子的自旋方向不能配对,说明电子在跃迁过程中自旋方向有变化,存在不配对的电子为2个,2S+1=3,电子 在激发态中位于第三振动能级,称为三重态,用T i 来表示,T 1 即为第一激发态中 的三重态,T 2 即为第二激发态中的三重态,以此类推。

β地中海贫血基因检测怎么做

如对您有帮助,可购买打赏,谢谢β地中海贫血基因检测怎么做 导语:地中海贫血是对我们的身体危害比较大一种疾病,一般比较轻的患者,症状不怎么明显,如果严重的话,有的时候,还会出现晕倒休克等一些不好的 地中海贫血是对我们的身体危害比较大一种疾病,一般比较轻的患者,症状不怎么明显,如果严重的话,有的时候,还会出现晕倒休克等一些不好的现象出现,有很多人认为地中海贫血会遗传,这样的疾病,不仅仅影响我们的身体健康,甚至还会影响我们的下一代的身体,那么应该怎么取检查呢? 地中海贫血相关的检查,可以做血红蛋白全套及地中海贫血基因检测,不需要空腹;但是如果根据您的病情,还需要做其他需要空腹检查的话,建议您还是空腹来检查。 如果女生这三个项目都低于正常值的话,即有90%的可能携带地贫基因;如果男士MCV和MCH都有降低的话而HGB没有降低,即有90%的可能是地贫基因的携带者.需要去医院做基因分析,约1000多元,就能明确知道自己的基因.积极行动,预防地贫,刻不容缓!x0d静止型α地中海贫血基因携带者和β地中海贫血基因携带者同健康人无异,轻型α地中海贫血和β地中海贫血仅有轻度贫血,常无明显的临床症状,在幼儿时期和孕期易误诊为缺铁性贫血,在做血液常规检查时β地中海贫血基因携带者、轻型α地中海贫血患者和轻型β地中海贫血患者会有异常的发现,他们均有平均红细胞体积(MCV)和平均红细胞血红蛋白浓度(MCH)的下降,其中的β地中海贫血经血红蛋白A2测定可明确诊断,而α地中海贫血需经基因检查才能明确诊断. 静止型α地中海贫血基因携带者常无MCV和MCH的下降.α地中海贫血复合β地中海贫血后MCV、MCH值的变化会有所改变.因此建议血 预防疾病常识分享,对您有帮助可购买打赏

荧光比率探针及其应用研究进展

7 前 言 荧光比率技术是荧光分析中的一项重要技术。该技术在生物染色剂中,可被紫外线或蓝紫光(短波长光)激发而发射荧光的染料,称为荧光染料(荧光色素)。可被长波长光激发,这些荧光色素常称为荧光探针。荧光探针通常用于固定组织和细胞的染色,以及或活细胞中的应用, 此外还包括应用于体内荧光探针。 分子荧光探针按用途分类包括离子探针、极性探针、粘度探针、PH值探针、膜荧光探针、细胞活性探针、细胞器探针、位点特异性荧光探针等等。探针通过与分析物(如生命金属离子)进行结合后,引起荧光特性发生变化,通过测定荧光的激发波长、发射波长、荧光强度、峰位、荧光寿命、荧光量子产率和各向异性等,获得相关信息。 荧光方法测定中,荧光探针在与反应物结合后,出现激发或发射光谱移位的探针,可使用在两个不同波长测定的荧光强度比率进行测定,称为比率测量。因为通过二个选择性的波长的荧光强度变化可作为定量的依据, 通常指在波长范围内有荧光强度明显的变化。同普通荧光探针相比,比率测量探针可以被分为两部分。 一种是荧光比率效果是通过原来荧光谱的迁移。通常,这些迁移的背景是荧光探针激发态的电子转移。它被激发通过改变发色团同周围分子或原子交互作用的能量改变(溶剂化显色迁移),同外部电场的交互作用(电致显色迁移)和在发色团中的双电弛豫(双电弛豫迁移)。 另外一种结合探针,荧光谱包括2个或更多的谱带。通常,是这些谱带相对强度的改变,激发态同荧光探针发色团反应。这些反应在不连续的能量状态。 荧光比率探针及其应用研究进展 杨柳* ,郭成海,张国胜 (防化研究院第四研究所,北京 102205) 摘要 本文介绍了荧光比率探针,包括阳离子探针、阴离子探针、pH值探针、极性探针、氧化性和分子的比率测量探针的应用及近几年的研究进展。关键词 荧光分析,比率测量 *作者简介:杨柳(1975-),男,助理研究员,博士研究生,E-mail:yangliujinjin@sina.com 所以在初始和产物状态都随着能量转移而发射荧光。 荧光比率测定法可消除光漂白和探针负载和留存及设备因素(照明稳定性)引起的数据的失真。如阴离子探针可通过有机离子载体从细胞排除,如AM酯可被P糖蛋白多药载体排出荧光比率测定法可减少探针渗漏对实验结果的影响。探针与离子结合后,出现激发或发射光谱移位的探针可使用在两个不同波长测定的荧光强度比率校准,可克服由于离子浓度的变化而造成的荧光信号人工假象。 Bright等(1989)发现比率测量减少或消除几种决定因素的变化对测量荧光强度的影响,包括探针浓度、激发光的光路长度、激发强度、和检测效率。消除的人工假象包括光漂白、探针渗漏、细胞厚度、探针在细胞内(区室化作用引起)或不同细胞群之间(负载效率差异造成)的不均匀分布。 比率测量探针已经应用于不同的测量领域:离子探针(阳离子探针Ca2+、Mg2+,Zn2+,Ag+等)阴离子探针(Cl-,CN-,F-等),膜探针、活性氧和一氧化氮探针,极性探针、PH值探针等等。 1应用比率测量的阳离子探针: 各种各样的阳离子在生命活动中起重要的作用, 如构成细胞和生物体某些结构的重要成分,参与并调节生物体的代谢活动等,荧光方法通常用来测定阳离子在生物体不同组织的含量和分布。阳离子比率测量探针也在不断发展。 1.1 Ca2+检测的比率测量探针: 探针与Ca2+结合后出现光谱移位的探针可进行比率测量。主要包括:Fura-2、双- Fura-2、Fura-4F、Fura-5F、Fura-6F、 indo-1、indo-5F、mag-Fura-2

实验六 电子探针结构原理及分析方法

实验六电子探针结构原理及分析方法 一、实验内容及实验目的 1.结合电子探针仪实物,介绍其结构特点和工作原理,加深对电子探针的了解。 2.选用合适的样品,通过实际操作演示,以了解电子探针分析方法及其应用。 二、电子探针的结构特点及原理 电子探针X射线显微分析仪(简称电子探针)利用约1μm的细聚焦电子束,在样品表层微区内激发元素的特征X射线,根据特征X射线的波长和强度,进行微区化学成分定性或定量分析。电子探针的光学系统、真空系统等部分与扫描电镜基本相同,通常也配有二次电子和背散射电子信号检测器,同时兼有组织形貌和微区成分分析两方面的功能。电子探针的构成除了与扫描电镜结构相似的主机系统以外,还主要包括分光系统、检测系统等部分。本实验这部分内容将参照教材,并结合实验室现有的电子探针,简要介绍与X射线信号检测有关部分的结构和原理。 三、电子探针的分析方法 电子探针有三种基本工作方式:点分析用于选定点的全谱定性分析或定量分析、以及对其中所含元素进行定量分析;线分析用于显示元素沿选定直线方向上的浓度变化;面分析用于观察元素在选定微区内的浓度分布。 1.实验条件 (1) 样品:样品表面要求平整,必须进行抛光;样品应具有良好的导电性,对于不导电的样品,表面需喷镀一层不含分析元素的薄膜。实验时要准确调整样品的高度,使样品分析表面位于分光谱仪聚焦圆的圆周上。 (2) 加速电压:电子探针电子枪的加速电压一般为3~50kV,分析过程中加速电压的选择,应考虑待分析元素及其谱线的类别。原则上加速电压一定要大于被分析元素的临界激发电压,一般选择加速电压为分析元素临界激发电压的2~3倍。若加速电压选择过高,导致电子束在样品深度方向和侧向的扩展增加,使X射线激发体积增大,空间分辨率下降。同时过高的加速电压将使背底强度增大,影响微量元素的分析精度。 (3) 电子束流:特征X射线的强度与入射电子束流成线性关系。为提高X射线信号强度,电子探针必须使用较大的入射电子束流,特别是在分析微量元素或轻元素时,更需选择大的束流,以提高分析灵敏度。在分析过程中要保持束流稳定,在定量分析同一组样品时应控制束流条件完全相同,以获取准确的分析结果。 (4) 分光晶体:实验时应根据样品中待分析元素及X射线线系等具体情况,选用合适的分光晶体。常用的分光晶体及其检测波长的范围见有关表。这些分光晶体配合使用,检测X

缺铁性贫血和地中海贫血患者血常规检验的对比

缺铁性贫血和地中海贫血患者血常规检 验的对比 本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意! 摘要:目的:对比分析缺铁性贫血和地中海贫血患者血常规检验的结果,总结其临床价值。方法:选取血常规检测结果560例进行回顾性分析,其中抽取结果检测正常60例,设为对照组,检验为缺铁性贫血52例,设为观察组A,检验为轻型地中海贫血34例,设为观察组B,对比分析三组的血常规结果。结果:观察组A的RDW在>%,相符率为100%,观察组B的RDW在<%,对照组的RDW在%~%,轻型α地贫的相符率为%,轻型β地贫的相符率为%,观察组A、B间的筛查相符率差异有统计学意义(P<)。结论:利用血常规中红细胞体积分布宽度筛查方法可用于鉴别诊断缺铁性贫血和轻型地中海贫血,操作简便,准确率高。 关键词:血常规;红细胞体积分布宽度;鉴别诊断 目前,临床上通常应用血常规中的MCV和RDW 对缺铁性贫血与地中海贫血进行鉴别诊断。文章通过

对比分析缺铁性贫血和地中海贫血患者血常规检验的结果,总结其临床价值,现报告如下。 1 资料与方法 一般资料:选取我院2009年12月~2010年2月间血常规检测结果560例进行回顾性分析。其中抽取结果检测正常60例,设为对照组,其中男37例,女23例,年龄19~66岁,平均岁;检验为缺铁性贫血52例,设为观察组A,其中男31例,女21例,年龄18~64岁,平均岁;检验为轻型地中海贫血34例,设为观察组B,其中男18例,女16例,年龄16~61岁,平均岁。对比分析三组的血常规结果。三组在年龄、性别方面比较,差异无统计学意义(P>),具有可比性。 方法:①采集血液样本:统一使用血常规的专用管以真空采血法进行采样,抽取受检者静脉血2ml,然后与抗凝剂混匀后备用;②检测:采用同一质控物在检测前进行校正,采用全自动血细胞分析仪(厂家:XXX,型号:XXX)及其专用试剂包进行检测。 血常规参数观察标准:正常PDW(%)的参考值范围为~;按照MCHC、MCV、MCH的分类法:MCHC(g/L)在300以下,MCV(fl)在79以下,MCH(pq)在28以下为地中海贫血的参考值[1]。按

地中海贫血筛查

地中海贫血筛查 地中海贫血是一种隐性遗传性的血液疾病,主要是构成红血球的基因失常所致,其中有α地中海贫血(α链受累)和β地中海贫血(β链受累)。也可按照一个或两个基因缺损来分为轻型或重型地中海贫血,α地中海贫血多见于黑人(黑人中25%至少有一个基因缺陷),β地中海贫血多见于地中海地区或东南亚。日型地中海贫血较为常见,临床上又大致分为重型、中型和轻型三类。轻型患者病情很轻,常没有症状或只有轻度贫血,体力、智力、寿命均不受影响。如果夫妻双方是同型基因携带者,则每次怀孕时,胎儿有Z5%的可能完全正常,50%的可能成为携带者,还有25%的可能成为重型地中海贫血患者。目前国内外对地中海贫血尚无有效的根治方法,患上重型地中海贫血的孩子必须长期输血而且难以活到成年。 重症地中海贫血,都会危及孕妇和胎儿的生命及健康,因此,夫妻在婚前或产前接受地中海贫血筛查,是非常重要的。 地中海贫血三种类型及症状: (1)重型:出生数日即出现贫血、肝脾肿大进行性加重,黄疸,并有发育不良,其特殊表现有:头大、眼距增宽、马鞍鼻、前额突出、两颊突出,其典型的表现是臀状头,长骨可骨折。骨骼改变是骨髓造血功能亢进、骨髓腔变宽、皮质变薄所致。少数患者在肋骨及脊椎之间发生胸腔肿块,亦可见胆石症、下肢溃疡。常见并发症有急性心包炎、继发性脾功能亢进、继发性血色病。

(2)中间型:轻度至中度贫血,患者大多可存活至成年。 (3)轻型:轻度贫血或无症状,一般在调查家族史时发现。 中医认识地中海贫血 海洋性贫血在中医学中属“虚劳”、“黄疸”范畴。自幼贫血,中焦受气,化血不足,更兼禀赋薄弱,阳不生阴,精血匮乏,水谷不能克消,精微反作水湿,阻遏胆液,浸渍肌肤为虚劳发黄之证,若气血阴阳不足,又见外邪客表,则可见虚实挟杂之征。 海洋性贫血最常遭遇的问题 地中海贫血最常遭遇的问题这些病人常会有心脏、肝脏和内分泌的功能异常。 海洋性贫血的治疗 轻型地贫无需特殊治疗。中间型和重型地贫应采取下列一种或数种方法给予治疗。 1.一般治疗注意休息和营养,积极预防感染。适当补充芝元雪康组合进行补血,它的补血功能是经过几十位资深专家检测的,无任何副作用,患者可以放心使用。 2.输血和去铁治疗 红细胞输注少量输注法仅适用于中间型α和β地贫,不主张用于重型β地贫。对于重型β地贫应从早期开始给予中、高量输血,以使患儿生长发育接近正常和防止骨骼病变。其方法是:先反复输注浓缩红细胞,使患儿血红蛋白含量达120~150g/L;然后每隔2~4周输注浓缩红细胞10~15ml/kg ,使血红蛋白含量维持在90~105g/L以上。

地中海贫血基因检测案例

地中海贫血基因检测案例 ——从罕见地贫基因到双线检测 钦州市妇幼保健院 基因科学与遗传医学诊断中心 汇报人:龚菲菲组员:龙驹、龚菲菲、施狄秋、张城鸿

引言 地中海贫血是一种单基因遗传疾病,广西人群中地贫基因携带率约为25%。 目前常规地贫基因分析试剂盒所检测的范围是4种α缺失基因、3种非缺失型α地贫和17种非缺失型β地贫。 研究表明,人群中有一定的地贫基因携带者,其携带的基因型不在常规地贫基因检测试剂盒检测范围内。 本案例将阐述一例由罕见地贫基因的检出而改进地贫基因检测分析流程,进而降低地贫基因检测漏诊风险的事例。

2015年6月,一对夫妇来我院进行地中海贫血基因检测。在检查过程中,我们发现了一些问题。 先证者(来自A家系)是一个28岁的男性个体,其妻子在孕期4个月时检出为--SEA携带者。其丈夫血液学数据如表所示。 结果显示MCH稍低,于是采用MLPA进行检测以排除罕见型。 AⅡ-1 性别-年龄M-28 MCV(fL) 82.3 MCH(pg) 26.5 Hb(g/dL) 16.1 HbF (%) 0.8 HbA2 (%) 2.4 Hb Bart’s+Hb H (%) 0 Ferritin (μg/L)306.8 α 常规基因型αα/ααβ基因型βA/βA 一例罕见地贫家系的检出 该先证者的临床表型

MLPA结果图 MLPA结果显示其缺失的断裂点位于337和142探针,以及283和310探针之间。同时采集了他们家系进行分析。此时,也发现一例患儿疑似携带该变异,合并研究。结果显示,该家系疑似携带2.4KB缺失型基因

电泳和测序验证-α2.4等位基因的确诊。 (A)家系A和一例HbH 病患者的琼脂糖电泳图 (wt表示野生型)。3个 个体检出300bp的PCR产 物。 (B)测序结果以及-α2.4等 位基因的示意图。

地中海贫血的诊断方法.doc

地中海贫血的诊断方法 B-地中海贫血的筛查和诊断主要依赖实验室检查,方法主要有: 1 血常规检测 地中海贫血的重要特征之一是小细胞低色素性贫血,如MCV≤80 fl,MCH≤25.0 Pg,则可疑为地中海贫血患者或基因携带者,可同时测定血清铁和铁蛋白,以排除缺铁性贫血。 2 红细胞渗透脆性试验(一管法) 其原理是地中海贫血红细胞膜表面粗糙、凹陷、折叠和浆膜扩展,膜与内容物之比增大,对渗透溶解的抗性增加,在0.32%(或0.36%)NaC1中溶解度降低(脆性降低)。一管法可用于地中海贫血群体筛查。 3 血红蛋白(Hb)电泳Hb电泳 是检测地中海贫血、异常血红蛋白最常用的方法,可观察到HbE、HbH等异常血红蛋白区带,同时可定量检测HbF、HbA2的含量并区分常见类型的地中海贫血。有研究显示MCV、Hb电泳和红细胞脆性实验三者联合检测的灵敏度可达100%,阴性预告值达100%,联合特异度可达100%,阳性预告值达100%DS。 4 高效液相色谱技术(HPLC) 原理:采用微柱法离子交换层析和梯度洗脱技术,全自动分析仪可分离血红蛋白的变异体与亚型,容易发现重型和轻型B地中海贫血。在操作上,HPLC采用的是全血标本,不需要制备Hb液,只要将全血标本直接放在仪器上,通过电脑操作便能实现HbA、HbA2、HbF等定

量检测。优点:所需样本量少,自动化程度高,操作简单,快速,能消除人为误差,结果准确。HPLC也可用于胎儿脐带血的产前诊断,可诊断出重型B地中海贫血,但不能区分正常胎儿和杂合子胎儿。近年来,地中海贫血高发地区也采用此法进行携带者检测。 5 基因诊断 近年来,随着分子生物学研究领域的不断发展,从最初的B珠蛋白基因簇限制性酶切多态性检测至目前的聚合酶链反应(PCR)技术结合其他分子生物学方法,B地中海贫血的诊断已逐步改进和完善。基因诊断方法有下列几种: 5.1 限制性片段长度多态性连锁分析(RFLP连锁分析) 原理:DNA限制性内切酶可识别并切割DNA上特定的核苷酸序列,得到一定长度的DNA片段,而碱基的突变可导致酶切位点的丢失或形成,从而改变酶切片段的大小。突变基因在经过相应的限制性内切酶水解后,其电泳条带的数量和大小就会发生改变,根据这些改变可判断出突变是否存在。缺点:由于单独使用该方法,不能直接测出受试者突变基因的类型,必须结合寡核苷酸探针等技术,故其应用范围有一定限制,且操作繁琐。如果母亲或父亲在所有的多态性位点上都为纯合子,无法用此方法进行产前诊断,或者患儿和父母所有位点上都是杂合状态,只能进行50%的排除性诊断。 5.2 探针斑点杂交技术(allele—specific oligonucleotide ASO)应用引物扩增珠蛋白基因,同时合成与正常序列和突变序列完全互补的寡核苷酸探针。将PCR扩增产物点在尼龙膜上,分别与

地中海贫血基因检测试剂结果判读

地中海贫血基因检测试剂结果判读 亚能生物技术(深圳)有限公司 1.α-地中海贫血基因检测试剂结果判读 病理生理改变非常轻微,临床一般无症状。红细胞形态正常,出生时脐带血中Hb Bart's含量为~ 但3个月后即消失(少部分可见MCV<79fl,MCH<27pg,红细胞脆性试验阳性)。 遗传学:父母中至少一方为α地中海贫血。 左缺失涉及整个α2-珠蛋白基因缺失,要比右缺失贫血程度要严重。 轻型地贫无需特殊治疗。 尚能代偿性地合成相当数量的α链,临床上亦无症状或有轻度贫血症状,肝脾无肿大。红细胞形 态有轻度改变,血液学检查可呈现平均红细胞体积和平均红细胞血红蛋白的降低 (如大小不等、中央 浅染、异形等;红纽胞渗透脆性降低;变性珠蛋白小体阳性; HbA2和HbF含量正常或稍低。患儿脐 血Hb Bart's含量为~,于生后6个月时完全消失。) 实验室检查:出生时Hb Bart’s可占5%~15%,几个月后消失,红细胞有轻度形态改变,可见 靶形红细胞,血红蛋白稍降低或正常,MCV<79fl,MCH<27pg,红细胞脆性试验阳性。 遗传学:父母一方或双方为α地中海贫血。 一般不需要治疗。 慢性溶血性贫血,此型临床表现差异较大,出现贫血的时间和贫血轻重不一(少数患者血红蛋白可 低于60g/L或高于100g/L)。大多在婴儿期以后逐渐出现贫血,疲乏无力,肝脾大,轻度黄疽;年 龄较大患者可出现类似重型β地贫的特殊面容。合并呼吸道感染或服用氧化性药物,抗疟药物等可诱

发急性溶血而加重贫血,甚至发生溶血危象。 实验室检查:红细胞渗透脆性减低;变性珠蛋白小体阳性;HbA2及HbF 含量正常。红细胞形态基 本同重型β地中海贫血所见,红细胞内可见包涵体。骨髓中红细胞系统增生极度活跃。血红蛋白电泳 出现HbH 区带,HbH 成分占5%~30%(个别患者HbH 成分可小于5%或高达40%),也可出现少量Hb Bart ’s (出生时Hb Bart ’s 可达15%以上)。随年龄增长,HbH 逐渐取代Hb Bart's ,其含量约为 ~。包涵体生成试验阳性。非缺失型血红蛋白H 病可出现微量Hb Constant Spring 。 遗传学:父母双方均为α地中海贫血。 胎儿常于30~40周时流产,死胎或娩出后半小时内死亡,胎儿呈重度贫血,黄疽,水肿,肝脾肿大,腹水,胸水。体腔积液,胎盘巨大且质脆。孕妇可有妊娠高血压综合征。 实验室检查:脐血血红蛋白明显降低,红细胞中心浅染、形态不一、大小不均,有核红细胞显著增多,靶形红细胞增多。血红蛋白电泳:Hb Bart ’s 成分>70%,少量Hb Portland ,可出现微量 HbH 。无HbA 、HbA2和HbF 。 2.β-地中海贫血基因检测试剂结果判读

地中海贫血基因检测

地中海贫血基因检测 说起地中海,你会想到什么? 诱人的沿岸风景和美食?浪漫的地中海风格家装? 对于作者而言,说起地中海,脑海中第一个蹦出来的词汇是地中海贫血。 地中海贫血,即珠蛋白生成障碍性贫血,是全球分布最广、累及人数最多的常染色体隐性单基因遗传病。 地中海贫血首先在地中海沿岸国家发现,因此得名。地贫好发于地中海地区、东南亚、印度次大陆和在我国南方。在我国,广东、广西、海南、等地是高发地区。 地中海贫血有哪些危害? 地中海贫血分为α型、β型、δβ型和δ型4种,其中β和α地贫较为常见。根据病情轻重的不同,地中海贫血可分为重型、中间型和轻型三种。 重型α地贫可引起胎儿水肿,会造成胎死腹中或新生儿死亡。 重型β地贫胎儿出生时看似正常,但往往到3-6个月时会逐渐出现贫血,且贫血会越来越严重。如果不治疗,一般在5岁左右死亡。 中间型地贫患者的症状差异很大,重度的中间型地贫患者会出现肝脾肿大等明显的地贫特征。由于中间型地贫患儿需长期输血,长大后基本丧失劳动力。 轻型患者是轻度贫血或没有症状,一般也不需要治疗。 我没有贫血,会生出地贫的孩子吗? 组成血红蛋白的珠蛋白肽链的结构和合成都是由基因控制的。地贫发生的主要原因就是基因发生缺失或者突变,使珠蛋白出现合成障碍或速率降低,导致血红蛋白产量减少、引起溶血性贫血。 地中海贫血是隐性遗传病,有些人是没有任何贫血症状、看似完全健康的地贫基因携带者。不经过血液和DNA检查,看起来健康的人根本无法判断是否地贫 ????

基因携带者或者轻型地贫患者。 父母双方各将2个α珠蛋白基因、1个β珠蛋白基因遗传给孩子。如果夫妻携带了地贫基因,这些突变就有机会遗传给孩子,让孩子成为地贫患者。 如果夫妻恰好为同型地贫血基因携带者,每一次怀上的孩子有1/4的机会为正常,1/2的机会为基因携带者,另1/4的机会为重型地贫。 如果夫妻双方携带的是不同型的地贫基因,或者其中一方携带地贫基因,孩子一般不会得重型地中海贫血。 如何预防地贫? 对大部分中重型地贫患者来说,输血与排铁是常用的治疗方法,但这两个方法治标不治本,而且长期的治疗给病人和家庭造成很大的精神和经济负担。 暂时来说造血干细胞移植是唯一根治地贫的临床方法,但受限于费用昂贵、难以找到合适配型,所以受益者人数少。 比起治疗,预防无疑是更有效的办法。 地中海贫血是遗传病,不会传染,因此只要夫妻双方做好婚前检查和孕前检查,了解双方有无携带地贫基因,就能避免生出中间型、重型地贫的孩子。 夫妻双方可通过查血常规、血红蛋白电泳等简单方法先做初筛,如结果发现地贫可疑,则需要做地贫基因检测来确诊是否地贫以及是哪一类型地贫。 此外,准妈妈在妊娠11-14周做绒毛检查、15——24 周期间做羊水穿刺、孕24周以后做脐静脉穿刺术,或无创DNA检测,都能检测出胎儿是否有地贫基因。如果查出中间型、重型地贫胎儿,医生一般会建议引产。 ????

地中海贫血的诊断方法

地中海贫血的诊断方法 Document number:PBGCG-0857-BTDO-0089-PTT1998

地中海贫血的诊断方法 B-地中海贫血的筛查和诊断主要依赖实验室检查,方法主要有: 1 血常规检测 地中海贫血的重要特征之一是小细胞低色素性贫血,如MCV≤80 fl,MCH≤25.0 Pg,则可疑为地中海贫血患者或基因携带者,可同时测定血清铁和铁蛋白,以排除缺铁性贫血。 2 红细胞渗透脆性试验(一管法) 其原理是地中海贫血红细胞膜表面粗糙、凹陷、折叠和浆膜扩展,膜与内容物之比增大,对渗透溶解的抗性增加,在0.32%(或0.36%)NaC1中溶解度降低(脆性降低)。一管法可用于地中海贫血群体筛查。 3 血红蛋白(Hb)电泳Hb电泳 是检测地中海贫血、异常血红蛋白最常用的方法,可观察到HbE、HbH等异常血红蛋白区带,同时可定量检测HbF、HbA2的含量并区分常见类型的地中海贫血。有研究显示MCV、Hb电泳和红细胞脆性实验三者联合检测的灵敏度可达100%,阴性预告值达100%,联合特异度可达100%,阳性预告值达100%DS。 4 高效液相色谱技术(HPLC) 原理:采用微柱法离子交换层析和梯度洗脱技术,全自动分析仪可分离血红蛋白的变异体与亚型,容易发现重型和轻型B地中海贫血。在操作上,HPLC采用的是全血标本,不需要制备Hb液,只要

将全血标本直接放在仪器上,通过电脑操作便能实现HbA、HbA2、HbF等定量检测。优点:所需样本量少,自动化程度高,操作简单,快速,能消除人为误差,结果准确。HPLC也可用于胎儿脐带血的产前诊断,可诊断出重型B地中海贫血,但不能区分正常胎儿和杂合子胎儿。近年来,地中海贫血高发地区也采用此法进行携带者检测。 5 基因诊断 近年来,随着分子生物学研究领域的不断发展,从最初的B珠蛋白基因簇限制性酶切多态性检测至目前的聚合酶链反应(PCR)技术结合其他分子生物学方法,B地中海贫血的诊断已逐步改进和完善。基因诊断方法有下列几种: 5.1 限制性片段长度多态性连锁分析(RFLP连锁分析) 原理:DNA限制性内切酶可识别并切割DNA上特定的核苷酸序列,得到一定长度的DNA片段,而碱基的突变可导致酶切位点的丢失或形成,从而改变酶切片段的大小。突变基因在经过相应的限制性内切酶水解后,其电泳条带的数量和大小就会发生改变,根据这些改变可判断出突变是否存在。缺点:由于单独使用该方法,不能直接测出受试者突变基因的类型,必须结合寡核苷酸探针等技术,故其应用范围有一定限制,且操作繁琐。如果母亲或父亲在所有的多态性位点上都为纯合子,无法用此方法进行产前诊断,或者患儿和父母所有位点上都是杂合状态,只能进行50%的排除性诊断。

电子探针分析过程浅析

电子探针分析过程浅析 电子探针(EPMA)是非常先进的元素定性和定量分析设备,是目前微区元素定量分析最准确的仪器。它使用细聚焦电子束入射样品表面,激发出样品元素的特征X射线,分析X射线的波长,即可知道样品中所含元素的种类;分析特征X射线的强度,可知样品中对应元素的相对含量,并配置能谱仪分析附件。电子探针可进行图像观察,并获得元素的定性定量分析数据。它的应用能为钢铁产品的研发工作及质量控制提供准确、有效的分析数据。针对此课题,本报记者采访了首钢技术研究院检验高级工程师严春莲。 电子探针在钢铁工业中有非常重要的作用,国内外许多科研院所、钢铁企业都利用电子探针进行固体样品的微区(微米到纳米级)分析,可分析的元素范围是B5—U92。它利用细聚焦的电子束照射样品,可查明钢铁样品微区中的元素成分,尤其是可以对C、N、O等轻元素进行定性定量分析,X射线取出角可达52.5°,以高信噪比及高灵敏度检测钢材中较轻元素的含量可达ppm级。这是扫描电镜所不能胜任的,因为扫描电镜和能谱仪一般是对元素周期表中Na元素以后的重元素进行定性和半定量分析。现阶段,利用电子探针已经突破这一局限,大大方便研发人员对样品中的轻元素进行微观分析研究。如板材产品会出现明显的碳偏析和析出相,通过电子探针进行微区观察分

析,会有助于生产实际问题的解决,促进新产品强化机理问题的深入研究。另外,电子探针还可以进行镀层成分、厚度的测定、粒度分布的测定及断面分析等。电子探针无疑是钢铁企业提高科研水平、改善产品质量的一种非常有效的技术手段。 与传统的成分分析仪相比,电子探针更偏重成分的微区定量分析,处于微米级的分析精度,它的检测极限一般为0.01—0.05wt%,对原子序数大于11,含量在10wt%以上的元素,其相对误差通常小于2%。而光谱类的分析仪是较宏观的检测,处于毫米级的分析精度。以380CL 车轮钢开裂分析为例,裂纹从边部开裂,沿着中心偏析带附近往里扩展,但未曾沿着中心偏析带开裂。裂纹开裂处周边无夹杂,无氧化物,周边组织无脱碳现象。利用金相显微镜、扫描电镜等分析后只能观察到有偏析带,但具体是什么成分偏析、偏析程度如何就无法准确判定,而利用电子探针分析发现试样中心偏析带附近存在着磷偏析带,裂纹沿着磷偏析带开裂。根据这一结果,倒推出当时在炼钢生产时,同一时间生产的高强钢也发现了严重的磷偏析,现场生产异常排除后,车轮钢至今未发现因磷偏析引起的开裂。 目前,首钢技术研究院利用电子探针开发铸坯枝晶组织显示、枝晶偏析定量分析等技术处于国内领先水平。通过设置适当的分析条件,电子探针的面、线、点分析功能可以较好地表征钢中微量元素的偏析状况,并可获得准确定量的微区化学成分。对成分偏析含量低、组织

浅谈荧光分析法的特点及在环境分析中的应用

荧光分析法的特点及在环境分析中的应用 摘要:论文综述了荧光分析法的特点及在环境分析中的应用。重点分析了荧光分析法的原理、特点,以及常用的荧光分析法的讨论。分析了荧光分析法在环境监测中的应用,测定范围和发展情况。 关键词:荧光分析;环境分析;应用 1.引言 环境中分析、监测的对象往往是微量、超微量的物质,有很多还具有时间性和空间性,因此对分析技术要求越来越高。荧光分析法和分光光度法以其灵敏度高、检测限低、准确性好等优点在近年来得到了迅速发展。荧光分子探针的设计合成以及荧光分析法在环境分析化学中的应用是方兴未艾的研究方向[1]。 分子荧光分析具有检测限低,灵敏度高,选择性好,取样量少,方法简捷快速等特点,是一种重要的光谱化学分析手段,其中荧光分子探针检测技术在环境分析化学中占有重要的地位[2]。因此,在对环境的分析中,荧光分析法应用非常广泛,从天然水、饮用水到废水、污水;从土壤、大气到动植物;从人的头发、骨骼、血液到内脏等各个器官,涉及到的样品和应用范围几乎无所不有[3]。 2.荧光分析法的原理和特点 2.1.荧光分析法 2.1.1荧光及荧光分析 荧光是荧光化合物在受到紫外光、电和化学等能量激发后,电子从基态跃迁到激发态,然后通过辐射衰变释放出光子而回复到基态,即产生荧光。这些物质会在极短的时间内(8-10秒)发射出各种颜色和不同强度的可见光,而当紫外光停止照射时,所发射的光线也随之很快地消失。 荧光分析是指利用某些物质在紫外光照射下产生荧光的特性及其强度进行物质的定性和定量的分析的方法。1852年G.G.斯托克斯(G.G.Strokes)发现荧光,真正的荧光光谱测量则始于本世纪60年代。 2.1.2荧光激发光谱和发射光谱 荧光是一种光致发光现象,由于分子对光的选择性吸收,不同波长的入射光便具有不同的激发效率。如果固定荧光的发射波长不断改变激发光的波长,并记

地中海贫血检查标准值

地中海贫血检查标准值 海洋性贫血又称地中海贫血,是一组遗传性溶血性贫血。地中海贫血筛查在血常规检查时主要看其中的平均红细胞体积(MCV)和平均红细胞血红蛋白含量(MCH)等,具体的项目和参考范围如下,通过下面的表格可以参照自己的检查表格来做一个对比哦! 地中海贫血怎么检查 地中海贫血是怎么检查的呢?做地中海贫血筛查需先抽血做血常规检查,若有异常则需进行肽链检测和基因分析。由于α型地中海贫血的遗传基因病变较为复杂,同属α型轻型贫血者的配偶需要作详细的遗传基因分析才能预测下一代成为中型或重型地中海贫血患者的机会。 1、产前筛查:通过血常规、血红蛋白电泳等方法发现携带者; 2、基因检测:孕前或孕早期通过基因检测技术明确α、β珠蛋白基因的异常位点,为产前诊断做准备; 3、产前诊断:对孕11-14周孕妇取绒毛组织约2-5g,孕15-22周孕妇经羊膜穿刺抽取羊水15-20ml,24-30周孕妇抽取胎儿脐带血0.5-1.5ml,通过基因检测明确胎儿有无α或β珠蛋白基因的缺失或突变以及类型,有效防止重型地贫或畸形患儿的出生。 地中海贫血有哪些症状 怎么样才能判断是否真的患上地中海贫血?其实,可以从一些症状之中猜出一二,但是具体还是要根据检查的结果。 一般地中海贫血患者在刚出生的时候是没有什么特别明显的症状,看上去就像正常的婴儿一样,但是在婴儿期过后,就会出现一些明显的症状了。具体的表现有,贫血、浑身疲乏无力、浑身水肿、肝和脾肿大以及出现轻度的黄疸。 随着年龄的增长,会出现眼睛距离变宽、鼻梁变扁等面容方面的改变,还会出现呼吸道感染,在服用一些药物会出现急性溶血加重贫血的症状,甚至导致溶血危象,有生命危险。这是较为轻型的宝宝出生之后会有的症状。 如果是重度地中海贫血的话,胎宝宝可能会出现死胎的现象,或者在出生后马上死亡。也有一些患者是由中度地中海贫血导致成重度的,只是它的症状比中度的更加严重,直至导致死亡,一般都不可能活到成年。

荧光分析法检测原理及应用举例

1荧光定义 某些化学物质从外界吸收并储存能量而进入激发态,当其从激发态回到基态时,过剩的能量以电磁辐射的形式放射出去即发光,称之为荧光。可产生荧光的分子或原子在接受能量后引起发光,供能一旦停止,荧光现象随之消失。 2荧光分类 由化学反应引起的荧光称为化学荧光,由光激发引起的荧光称为光致荧光,课题主要研究光致荧光。按产生荧光的基本微粒不同,荧光可分为原子荧光、X 射线荧光和分子荧光,课题主要研究分子荧光。 3光致荧光机理 某一波长的光照射在分子上,分子对此光有吸收作用,光能量被分子所吸收,分子具有的能量使分子的能级由最低的基态能级上升至较高的各个激发态的不同振动能级,称为跃迁。分子在各个激发态处于不稳定的状态,并随时在激发态的不同振动能级下降至基态,在下降过程中,分子产生发光现象,此过程为释放能量的过程,即为光致荧光的机理。光致荧光的过程按照时间顺序可分为以下几部分。 3.1 分子受激发过程 在波长为10~400nm的紫外区或390~780nm的可见光区,光具有较高的能量,当某一特征波长的光照射分子时,是的分子会吸收此特征波长的光能量,能量由光传递到分子上,此过程为分子受激发过程。分子中的电子会出现跃迁过程,在稳定的基态向不稳定的激发态跃迁。跃迁所需要的能量为跃迁前后两个能级的能量差,即为吸收光的能量。分子跃迁至不稳定的激发态中即为电子激发态分子。 在电子激发态中,存在多重态。多重态表示为2S+1 o S为0或1,它表示电子在自转过程中,具有的角动量的代数和。S=0 表示所有电子自旋的角动量代数和为0,即所有电子都是自旋配对的,那么2S+仁1,电子所处的激发态为单重态,用S i 表示,由此可推出,S0 即为基态的单重态,S1 为第一跃迁能级激发态的单重态,S2为第二跃迁能级激发态的单重态。S=1表示电子的自旋方向不能配对,说明电子在跃迁过程中自旋方向有变化,存在不配对的电子为2个,2S+仁3,电子在激发态中位于第三振动能级,称为三重态,用T i 来表示,T1 即为第一激发 态中的三重态,T2即为第二激发态中的三重态,以此类推。 分子跃迁至各个激发态中,状态不稳定,随时会释放出能量,释放能量的类型有两种:一种是辐射跃迁,另一种是非辐射跃迁,释放能量会回到稳定的基态。

电子探针分析技术在地学中的应用进展

电子探针分析技术在地学中的应用进展 摘要电子探针分析技术(EPMA)是一种应用较早、且至今仍具有独特魅力的多元素分析技术。二战以后,世界经济和社会的迅猛发展极大地促进了科学技术的进步,电子探针分析技术(EPMA)也进入了一个快速发展时期。在地学领域的应用中,取得了令人瞩目的成就。文章就该技术的发展历史、发展趋势及在地学中的应用进展等方面做出了具体阐述。 关键词:电子探针;地学;应用进展 1引言 电子探针是电子探针X 射线显微分析仪的简称,英文缩写为EPMA (Electron Probe X-ray Micro-Analyser),它用一束聚焦得很细(50nm~1μm)的加速到 5kV-30kV的电子束,轰击用光学显微镜选定的待分析试样上某个“点”(一般直径为1-50um),利用试样受到轰击时发射的X射线的波长及强度,来确定分析区域中的化学组成。 随着电子光学技术和计算机技术的发展,现在的EPMA同时具有扫描电镜SEM的形貌观察、结构分析等功能。不但像仪器发明之初那样,以金属和矿物样品中不同相或不同组成的成分分析为主要目的,而且也应用在冶金、电子电器件、陶瓷、塑料、纤维、木材、牙齿、骨骼、叶、根等等方面。其应用领域之广泛,可说目前已经涉及到所有固体物质的研究工作中,尤其在材料研究工作方面。这种仪器不仅是研究工作中的重要工具,而且也是质量检查的手段之一。本文仅对EPMA在地学领域中的应用进展加以阐述。 2电子探针的发展历史简介 电子探针分析的基本原理早在1913 年就被Moseley发现,但直到1949 年,法国的Castaing在guinier教授的指导下,才用透射电镜(TEM)改装成一台电子探针样机。1951年6月,Castaing在他的博士论文中,不仅介绍了他所设计的电子探针细节,而且还提出了定量分析的基本原理。现在电子探针的定量修正方法尽管作了许多修正,但是,他的一些基本原理仍然适用。1955年Castaing在法国物理学会的一次会议上,展出了电子探针的原形机, 1956 年由法国CAMECA公司制成商品,1958年才把第一台电子探针装进了国际镍公司的研究室中,当时的电子探针是静止型的,电子束没有扫描功能。

时间分辨荧光分析技术

1.1 时间分辨荧光分析技术 时间分辨荧光生化分析技术是基于稀土荧光配合物特殊的荧光性质而建立起来的,自1978年提出以来[1],已广泛的应用于免疫分析、核酸测定、荧光显微镜成像、细胞识别、单细胞原位测定、生物芯片等生化领域,并发展出了相应的时间分辨荧光免疫测定法、时间分辨荧光DNA 杂交测定法、时间分辨荧光显微镜成像测定法、时间分辨荧光细胞活性测定法及时间分辨荧光生物芯片测定法等分支。 本节主要对稀土荧光配合物的发光机理、荧光性质,时间分辨荧光测定的原理,时间分辨荧光免疫分析技术,时间分辨荧光显微镜成像技术的研究进展等加以介绍。 1.1.1 稀土荧光配合物的发光机理及荧光性质 稀土元素指的是元素周期表中IIIB 族的镧系元素以及钪和钇,共17种元素。其中镧系元素的外层电子结构为4f 0-145d 0-106s 1-2,由于5s 和5p 电子对4f 电子的屏蔽作用,导致这些金属及其离子的性质十分相似。图1.1给出了四种三价稀土离子的基态及激发态电子能级图[2]。 1020 152530355 E N E R G Y ,103c m -1 6 H 5/2 G 5/2 6 H 15/2 7 F 0 F 2D 0 5D 1 7F 6 F 5 4 5D 3 13/2 4 9/2 Sm 3+ Eu 3+ Tb 3+ Dy 3+ H 9/2 图1.1 部分三价稀土离子的电子能级图 Fig. 1.1 Electronic energy levels of certain lanthanide(III) ions 大部分稀土离子本身是不具有荧光性质的,只有Sm 3+、Eu 3+、Tb 3+和Dy 3+的水溶液在紫外光或可见光的激发下能够发出微弱的荧光。当Sm 3+、Eu 3+、Tb 3+和Dy 3+与某些有机配位体形成配合物时其荧光强度会显著增强,这种发光是基于配合物由配位体到中心稀土离子的能量转移所产生的[3-8]。以铕(III)配合物为例,其荧

相关文档
最新文档