蚁群算法matlab源代码

蚁群算法matlab源代码
蚁群算法matlab源代码

function [Shortest_Route,Shortest_Length]=ACATSP(D,NC_max,m,Alpha,Beta,Rho,Q)

%%========================================================================= %% ACATSP.m

%% Ant Colony Algorithm for Traveling Salesman Problem

%% ChengAihua,PLA Information Engineering University,ZhengZhou,China

%% Email:aihuacheng@https://www.360docs.net/doc/db12854403.html,

%% All rights reserved

%%-------------------------------------------------------------------------

%% 主要符号说明

%% C n个城市的坐标,n×2的矩阵

%% NC_max 最大迭代次数

%% m 蚂蚁个数

%% Alpha 表征信息素重要程度的参数

%% Beta 表征启发式因子重要程度的参数

%% Rho 信息素蒸发系数

%% Q 信息素增加强度系数

%% R_best 各代最佳路线

%% L_best 各代最佳路线的长度

%% L_ave 各代路线的平均长度

%%=========================================================================

%%第一步:变量初始化

n=size(D,1);

for i=1:n

D(i,i)=eps;

end

Eta=1./D;%Eta为启发因子,这里设为距离的倒数

Tau=ones(n,n);%Tau为信息素矩阵

Tabu=zeros(m,n);%存储并记录路径的生成

NC=1;%迭代计数器

R_best=zeros(NC_max,n);%各代最佳路线

L_best=inf.*ones(NC_max,1);%各代最佳路线的长度

L_ave=zeros(NC_max,1);%各代路线的平均长度

while NC<=NC_max%停止条件之一:达到最大迭代次数

%%第二步:将m只蚂蚁放到n个城市上

Randpos=[];

for i=1:(ceil(m/n))

Randpos=[Randpos,randperm(n)];

end

Tabu(:,1)=(Randpos(1,1:m))';

%%第三步:m只蚂蚁按概率函数选择下一座城市,完成各自的周游

for j=2:n

for i=1:m

visited=Tabu(i,1:(j-1));%已访问的城市

J=zeros(1,(n-j+1));%待访问的城市

P=J;%待访问城市的选择概率分布

Jc=1;

for k=1:n

if length(find(visited==k))==0

J(Jc)=k;

Jc=Jc+1;

end

end

%下面计算待选城市的概率分布

for k=1:length(J)

P(k)=(Tau(visited(end),J(k))^Alpha)*(Eta(visited(end),J(k))^Beta);%(信息素^信息素系数)*(启发因子^启发因子系数)

end

P=P/(sum(P));

%按概率原则选取下一个城市

Pcum=cumsum(P);

Select=find(Pcum>=rand);

to_visit=J(Select(1));

Tabu(i,j)=to_visit;

end

end

if NC>=2

Tabu(1,:)=R_best(NC-1,:);

end

%%第四步:记录本次迭代最佳路线

L=zeros(m,1);

for i=1:m

R=Tabu(i,:);

for j=1:(n-1)

L(i)=L(i)+D(R(j),R(j+1));

end

L(i)=L(i)+D(R(1),R(n));

end

L_best(NC)=min(L);

pos=find(L==L_best(NC));

R_best(NC,:)=Tabu(pos(1),:);

L_ave(NC)=mean(L);

NC=NC+1

%%第五步:更新信息素

Delta_Tau=zeros(n,n);

for i=1:m

for j=1:(n-1)

Delta_Tau(Tabu(i,j),Tabu(i,j+1))=Delta_Tau(Tabu(i,j),Tabu(i,j+1))+Q/L(i);

end

Delta_Tau(Tabu(i,n),Tabu(i,1))=Delta_Tau(Tabu(i,n),Tabu(i,1))+Q/L(i);

end

Tau=(1-Rho).*Tau+Delta_Tau;

%%第六步:禁忌表清零

Tabu=zeros(m,n);

end

%%第七步:输出结果

Pos=find(L_best==min(L_best));

Shortest_Route=R_best(Pos(1),:)

Shortest_Length=L_best(Pos(1))

蚁群算法TSP问题matlab源代码

function [R_best,L_best,L_ave,Shortest_Route,Shortest_Length]=ACATSP(C,NC_max,m,Alpha,Beta ,Rho,Q) %%===================================================== ==================== %% ACATSP.m %% Ant Colony Algorithm for Traveling Salesman Problem %% ChengAihua,PLA Information Engineering University,ZhengZhou,China %% Email:aihuacheng@https://www.360docs.net/doc/db12854403.html, %% All rights reserved %%------------------------------------------------------------------------- %% 主要符号说明 %% C n个城市的坐标,n×4的矩阵 %% NC_max 最大迭代次数 %% m 蚂蚁个数 %% Alpha 表征信息素重要程度的参数 %% Beta 表征启发式因子重要程度的参数 %% Rho 信息素蒸发系数 %% Q 信息素增加强度系数 %% R_best 各代最佳路线 %% L_best 各代最佳路线的长度 %%===================================================== ==================== %%第一步:变量初始化 n=size(C,1);%n表示问题的规模(城市个数) D=zeros(n,n);%D表示完全图的赋权邻接矩阵 for i=1:n for j=1:n if i~=j D(i,j)=max( ((C(i,1)-C(j,1))^2+(C(i,2)-C(j,2))^2)^0.5,min(abs(C(i,3)-C(j,3)),144- abs(C(i,3)-C(j,3))) );%计算城市间距离 else D(i,j)=eps; end D(j,i)=D(i,j); end end Eta=1./D;%Eta为启发因子,这里设为距离的倒数 Tau=ones(n,n);%Tau为信息素矩阵 Tabu=zeros(m,n);%存储并记录路径的生成 NC=1;%迭代计数器 R_best=zeros(NC_max,n);%各代最佳路线

蚁群算法matlab程序代码

先新建一个主程序M文件ACATSP.m 代码如下: function [R_best,L_best,L_ave,Shortest_Route,Shortest_Length]=ACATSP(C,NC_max,m,Alpha,Beta,Rho,Q) %%================================================== ======================= %% 主要符号说明 %% C n个城市的坐标,n×2的矩阵 %% NC_max 蚁群算法MATLAB程序最大迭代次数 %% m 蚂蚁个数 %% Alpha 表征信息素重要程度的参数 %% Beta 表征启发式因子重要程度的参数 %% Rho 信息素蒸发系数 %% Q 表示蚁群算法MATLAB程序信息素增加强度系数 %% R_best 各代最佳路线 %% L_best 各代最佳路线的长度 %%================================================== =======================

%% 蚁群算法MATLAB程序第一步:变量初始化 n=size(C,1);%n表示问题的规模(城市个数) D=zeros(n,n);%D表示完全图的赋权邻接矩阵 for i=1:n for j=1:n if i~=j D(i,j)=((C(i,1)-C(j,1))^2+(C(i,2)-C(j,2))^2)^0.5; else D(i,j)=eps; % i = j 时不计算,应该为0,但后面的启发因子要取倒数,用eps(浮点相对精度)表示 end D(j,i)=D(i,j); %对称矩阵 end end Eta=1./D; %Eta为启发因子,这里设为距离的倒数 Tau=ones(n,n); %Tau为信息素矩阵 Tabu=zeros(m,n); %存储并记录路径的生成

蚁群算法matlab

蚁群算法的matlab源码,同时请指出为何不能优化到已知的最好解 % % % the procedure of ant colony algorithm for VRP % % % % % % % % % % % % %initialize the parameters of ant colony algorithms load data.txt; d=data(:,2:3); g=data(:,4); m=31; % 蚂蚁数 alpha=1; belta=4;% 决定tao和miu重要性的参数 lmda=0; rou=0.9; %衰减系数 q0=0.95; % 概率 tao0=1/(31*841.04);%初始信息素 Q=1;% 蚂蚁循环一周所释放的信息素 defined_phrm=15.0; % initial pheromone level value QV=100; % 车辆容量 vehicle_best=round(sum(g)/QV)+1; %所完成任务所需的最少车数V=40; % 计算两点的距离 for i=1:32; for j=1:32;

dist(i,j)=sqrt((d(i,1)-d(j,1))^2+(d(i,2)-d(j,2))^2); end; end; %给tao miu赋初值 for i=1:32; for j=1:32; if i~=j; %s(i,j)=dist(i,1)+dist(1,j)-dist(i,j); tao(i,j)=defined_phrm; miu(i,j)=1/dist(i,j); end; end; end; for k=1:32; for k=1:32; deltao(i,j)=0; end; end; best_cost=10000; for n_gen=1:50; print_head(n_gen); for i=1:m; %best_solution=[]; print_head2(i);

蚁群算法MATLAB代码

function [y,val]=QACStic load att48 att48; MAXIT=300; % 最大循环次数 NC=48; % 城市个数 tao=ones(48,48);% 初始时刻各边上的信息最为1 rho=0.2; % 挥发系数 alpha=1; beta=2; Q=100; mant=20; % 蚂蚁数量 iter=0; % 记录迭代次数 for i=1:NC % 计算各城市间的距离 for j=1:NC distance(i,j)=sqrt((att48(i,2)-att48(j,2))^2+(att48(i,3)-att48(j,3))^2); end end bestroute=zeros(1,48); % 用来记录最优路径 routelength=inf; % 用来记录当前找到的最优路径长度 % for i=1:mant % 确定各蚂蚁初始的位置 % end for ite=1:MAXIT for ka=1:mant %考查第K只蚂蚁 deltatao=zeros(48,48); % 第K只蚂蚁移动前各边上的信息增量为零 [routek,lengthk]=travel(distance,tao,alpha,beta); if lengthk

matlab蚁群算法精讲及仿真图

蚁群算法matlab精讲及仿真 4.1基本蚁群算法 4.1.1基本蚁群算法的原理 蚁群算法是上世纪90年代意大利学者M.Dorigo,v.Maneizz。等人提出来的,在越来越多的领域里得到广泛应用。蚁群算法,是一种模拟生物活动的智能算法,蚁群算法的运作机理来源于现实世界中蚂蚁的真实行为,该算法是由Marco Dorigo 首先提出并进行相关研究的,蚂蚁这种小生物,个体能力非常有限,但实际的活动中却可以搬动自己大几十倍的物体,其有序的合作能力可以与人类的集体完成浩大的工程非常相似,它们之前可以进行信息的交流,各自负责自己的任务,整个运作过程统一有序,在一只蚂蚁找食物的过程中,在自己走过的足迹上洒下某种物质,以传达信息给伙伴,吸引同伴向自己走过的路径上靠拢,当有一只蚂蚁找到食物后,它还可以沿着自己走过的路径返回,这样一来找到食物的蚂蚁走过的路径上信息传递物质的量就比较大,更多的蚂蚁就可能以更大的机率来选择这条路径,越来越多的蚂蚁都集中在这条路径上,蚂蚁就会成群结队在蚁窝与食物间的路径上工作。当然,信息传递物质会随着时间的推移而消失掉一部分,留下一部分,其含量是处于动态变化之中,起初,在没有蚂蚁找到食物的时候,其实所有从蚁窝出发的蚂蚁是保持一种随机的运动状态而进行食物搜索的,因此,这时,各蚂蚁间信息传递物质的参考其实是没有价值的,当有一只蚂蚁找到食物后,该蚂蚁一般就会向着出发地返回,这样,该蚂蚁来回一趟在自己的路径上留下的信息传递物质就相对较多,蚂蚁向着信息传递物质比较高的路径上运动,更多的蚂蚁就会选择找到食物的路径,而蚂蚁有时不一定向着信

息传递物质量高的路径走,可能搜索其它的路径。这样如果搜索到更短的路径后,蚂蚁又会往更短的路径上靠拢,最终多数蚂蚁在最短路径上工作。【基于蚁群算法和遗传算法的机器人路径规划研究】 该算法的特点: (1)自我组织能力,蚂蚁不需要知道整体环境信息,只需要得到自己周围的信息,并且通过信息传递物质来作用于周围的环境,根据其他蚂蚁的信息素来判断自己的路径。 (2)正反馈机制,蚂蚁在运动的过程中,收到其他蚂蚁的信息素影响,对于某路径上信息素越强的路径,其转向该路径的概率就越大,从而更容易使得蚁群寻找到最短的避障路径。 (3)易于与其他算法结合,现实中蚂蚁的工作过程简单,单位蚂蚁的任务也比较单一,因而蚁群算法的规则也比较简单,稳定性好,易于和其他算法结合使得避障路径规划效果更好。 (4)具有并行搜索能力探索过程彼此独立又相互影响,具备并行搜索能力,这样既可以保持解的多样性,又能够加速最优解的发现。 4.1.2 基本蚁群算法的生物仿真模型 a为蚂蚁所在洞穴,food为食物所在区,假设abde为一条路径,eadf为另外一条路径,蚂蚁走过后会留下信息素,5分钟后蚂蚁在两条路径上留下的信息素的量都为3,概率可以认为相同,而30分钟后baed路径上的信息素的量为60,明显大于eadf路径上的信息素的量。最终蚂蚁会完全选择abed这条最短路径,由此可见,

基于蚁群算法的MATLAB实现

基于蚁群算法的机器人路径规划MATLAB源代码 基本思路是,使用离散化网格对带有障碍物的地图环境建模,将地图环境转化为邻接矩阵,最后使用蚁群算法寻找最短路径。 function [ROUTES,PL,Tau]=ACASPS(G,Tau,K,M,S,E,Alpha,Beta,Rho,Q) %% --------------------------------------------------------------- % ACASP.m % 基于蚁群算法的机器人路径规划 % GreenSim团队——专业级算法设计&代写程序 % 欢迎访问GreenSim团队主页→https://www.360docs.net/doc/db12854403.html,/greensim %% --------------------------------------------------------------- % 输入参数列表 % G 地形图为01矩阵,如果为1表示障碍物 % Tau 初始信息素矩阵(认为前面的觅食活动中有残留的信息素) % K 迭代次数(指蚂蚁出动多少波) % M 蚂蚁个数(每一波蚂蚁有多少个) % S 起始点(最短路径的起始点) % E 终止点(最短路径的目的点) % Alpha 表征信息素重要程度的参数 % Beta 表征启发式因子重要程度的参数 % Rho 信息素蒸发系数 % Q 信息素增加强度系数 % % 输出参数列表 % ROUTES 每一代的每一只蚂蚁的爬行路线 % PL 每一代的每一只蚂蚁的爬行路线长度 % Tau 输出动态修正过的信息素 %% --------------------变量初始化---------------------------------- %load D=G2D(G); N=size(D,1);%N表示问题的规模(象素个数) MM=size(G,1); a=1;%小方格象素的边长 Ex=a*(mod(E,MM)-0.5);%终止点横坐标 if Ex==-0.5 Ex=MM-0.5; end Ey=a*(MM+0.5-ceil(E/MM));%终止点纵坐标 Eta=zeros(1,N);%启发式信息,取为至目标点的直线距离的倒数 %下面构造启发式信息矩阵 for i=1:N

(完整版)蚁群算法matlab程序实例整理

function [y,val]=QACS tic load att48 att48; MAXIT=300; % 最大循环次数 NC=48; % 城市个数 tao=ones(48,48);% 初始时刻各边上的信息最为1 rho=0.2; % 挥发系数 alpha=1; beta=2; Q=100; mant=20; % 蚂蚁数量 iter=0; % 记录迭代次数 for i=1:NC % 计算各城市间的距离 for j=1:NC distance(i,j)=sqrt((att48(i,2)-att48(j,2))^2+(att48(i,3)-att48(j,3))^2); end end bestroute=zeros(1,48); % 用来记录最优路径 routelength=inf; % 用来记录当前找到的最优路径长度 % for i=1:mant % 确定各蚂蚁初始的位置 % end for ite=1:MAXIT for ka=1:mant %考查第K只蚂蚁 deltatao=zeros(48,48); % 第K只蚂蚁移动前各边上的信息增量为零 [routek,lengthk]=travel(distance,tao,alpha,beta); if lengthk

蚁群算法最短路径通用Matlab程序(附图)

蚁群算法最短路径通用Matlab程序(附图) function [ROUTES,PL,Tau]=ACASP(G,Tau,K,M,S,E,Alpha,Beta,Rho,Q) %% --------------------------------------------------------------- % ACASP.m % 蚁群算法动态寻路算法 % ChengAihua,PLA Information Engineering University,ZhengZhou,China % Email:aihuacheng@https://www.360docs.net/doc/db12854403.html, % All rights reserved %% --------------------------------------------------------------- % 输入参数列表 % G 地形图为01矩阵,如果为1表示障碍物 % Tau 初始信息素矩阵(认为前面的觅食活动中有残留的信息素) % K 迭代次数(指蚂蚁出动多少波) % M 蚂蚁个数(每一波蚂蚁有多少个) % S 起始点(最短路径的起始点) % E 终止点(最短路径的目的点) % Alpha 表征信息素重要程度的参数 % Beta 表征启发式因子重要程度的参数 % Rho 信息素蒸发系数 % Q 信息素增加强度系数 % % 输出参数列表 % ROUTES 每一代的每一只蚂蚁的爬行路线 % PL 每一代的每一只蚂蚁的爬行路线长度 % Tau 输出动态修正过的信息素 %% --------------------变量初始化---------------------------------- %load D=G2D(G); N=size(D,1);%N表示问题的规模(象素个数) MM=size(G,1); a=1;%小方格象素的边长 Ex=a*(mod(E,MM)-0.5);%终止点横坐标 if Ex==-0.5 Ex=MM-0.5; end Ey=a*(MM+0.5-ceil(E/MM));%终止点纵坐标 Eta=zeros(1,N);%启发式信息,取为至目标点的直线距离的倒数 %下面构造启发式信息矩阵 for i=1:N if ix==-0.5

蚁群算法最短路径matlab程序

蚁群算法最短路径通用Matlab程序 下面的程序是蚁群算法在最短路中的应用,稍加扩展即可应用于机器人路径规划 function [ROUTES,PL,Tau]=ACASP(G,Tau,K,M,S,E,Alpha,Beta,Rho,Q) %% ---------------------------------------------------------------% ACASP.m % 蚁群算法动态寻路算法 % ChengAihua,PLA Information Engineering University,ZhengZhou,China % Email:aihuacheng@https://www.360docs.net/doc/db12854403.html, % All rights reserved %% ---------------------------------------------------------------% 输入参数列表 % G 地形图为01矩阵,如果为1表示障碍物 % Tau 初始信息素矩阵(认为前面的觅食活动中有残留的信息素) % K 迭代次数(指蚂蚁出动多少波) % M 蚂蚁个数(每一波蚂蚁有多少个) % S 起始点(最短路径的起始点) % E 终止点(最短路径的目的点) % Alpha 表征信息素重要程度的参数 % Beta 表征启发式因子重要程度的参数 % Rho 信息素蒸发系数 % Q 信息素增加强度系数 % % 输出参数列表 % ROUTES 每一代的每一只蚂蚁的爬行路线 % PL 每一代的每一只蚂蚁的爬行路线长度 % Tau 输出动态修正过的信息素 %% --------------------变量初始化---------------------------------- %load D=G2D(G); N=size(D,1);%N表示问题的规模(象素个数) MM=size(G,1); a=1;%小方格象素的边长 Ex=a*(mod(E,MM)-0.5);%终止点横坐标 if Ex==-0.5 Ex=MM-0.5; end Ey=a*(MM+0.5-ceil(E/MM));%终止点纵坐标 Eta=zeros(1,N);%启发式信息,取为至目标点的直线距离的倒数 %下面构造启发式信息矩阵 for i=1:N if ix==-0.5 ix=MM-0.5;

基于蚁群算法的PID控制参数优化Matlab源码

基于蚁群算法的PID控制参数优化Matlab源码 (2009-07-26 12:31:02) 除了蚁群算法,可用于PID参数优化的智能算法还有很多,比如遗传算法、模拟退火算法、粒子群算法、人工鱼群算法,等等。 function [BESTX,BESTY,ALLX,ALLY]=ACOUCP

(K,N,Rho,Q,Lambda,LB,UB,Num,Den,Delay,ts,StepNum,SigType,PIDLB,PIDUB) %% 此函数实现蚁群算法,用于PID控制参数优化 % GreenSim团队原创作品,转载请注明 % Email:greensim@https://www.360docs.net/doc/db12854403.html, % GreenSim团队主页:https://www.360docs.net/doc/db12854403.html,/greensim % [color=red]欢迎访问GreenSim——算法仿真团队→[url=https://www.360docs.net/doc/db12854403.html,/greensim] https://www.360docs.net/doc/db12854403.html,/greensim[/url][/color] %% 输入参数列表 % K 迭代次数 % N 蚁群规模 % Rho 信息素蒸发系数,取值0~1之间,推荐取值0.7~0.95 % Q 信息素增加强度,大于0,推荐取值1左右 % Lambda 蚂蚁爬行速度,取值0~1之间,推荐取值0.1~0.5 % LB 决策变量的下界,M×1的向量 % UB 决策变量的上界,M×1的向量 % Num 被控制对象传递函数的分子系数向量 % Den 被控制对象传递函数的分母系数向量 % Delay 时间延迟 % ts 仿真时间步长 % StepNum 仿真总步数 % SigType 信号类型,1为阶跃信号,2为方波信号,3为正弦波信号 % PIDLB PID控制输出信号限幅的下限 % PIDUB PID控制输出信号限幅的上限 %% 输出参数列表 % BESTX K×1细胞结构,每一个元素是M×1向量,记录每一代的最优蚂蚁 % BESTY K×1矩阵,记录每一代的最优蚂蚁的评价函数值 % ALLX K×1细胞结构,每一个元素是M×N矩阵,记录每一代蚂蚁的位置 % ALLY K×N矩阵,记录每一代蚂蚁的评价函数值

蚁群算法解决TSP问题的MATLAB程序

蚁群算法TSP(旅行商问题)通用matlab程序 function [R_best,L_best,L_ave,Shortest_Route,Shortest_Length]=ACATSP(C,NC_max,m,Alpha, Beta,Rho,Q) %%=================================================================== %% ACA TSP.m %% Ant Colony Algorithm for Traveling Salesman Problem %% ChengAihua,PLA Information Engineering University,ZhengZhou,China %% Email:aihuacheng@https://www.360docs.net/doc/db12854403.html, %% All rights reserved %%------------------------------------------------------------------------- %% 主要符号说明 %% C n个城市的坐标,n×2的矩阵 %% NC_max 最大迭代次数 %% m 蚂蚁个数 %% Alpha 表征信息素重要程度的参数 %% Beta 表征启发式因子重要程度的参数 %% Rho 信息素蒸发系数 %% Q 信息素增加强度系数 %% R_best 各代最佳路线 %% L_best 各代最佳路线的长度 %%=================================================================== %%第一步:变量初始化 n=size(C,1);%n表示问题的规模(城市个数) D=zeros(n,n);%D表示完全图的赋权邻接矩阵 for i=1:n for j=1:n if i~=j D(i,j)=((C(i,1)-C(j,1))^2+(C(i,2)-C(j,2))^2)^0.5; else D(i,j)=eps; end D(j,i)=D(i,j); end end Eta=1./D;%Eta为启发因子,这里设为距离的倒数 Tau=ones(n,n);%Tau为信息素矩阵 Tabu=zeros(m,n);%存储并记录路径的生成 NC=1;%迭代计数器 R_best=zeros(NC_max,n);%各代最佳路线 L_best=inf.*ones(NC_max,1);%各代最佳路线的长度 L_ave=zeros(NC_max,1);%各代路线的平均长度

蚁群算法TSP(旅行商问题)通用matlab程序

蚁群算法TSP(旅行商问题)通用matlab程序!! function [R_best,L_best,L_ave,Shortest_Route,Shortest_Length]=ACATSP(C,NC_max,m,Alpha,B eta,Rho,Q) %%================================================================ ========= %% ACATSP.m %% Ant Colony Algorithm for Traveling Salesman Problem %% ChengAihua,PLA Information Engineering University,ZhengZhou,China %% Email:aihuacheng@https://www.360docs.net/doc/db12854403.html, %% All rights reserved %%------------------------------------------------------------------------- %% 主要符号说明 %% C n个城市的坐标,n×2的矩阵 %% NC_max 最大迭代次数 %% m 蚂蚁个数 %% Alpha 表征信息素重要程度的参数 %% Beta 表征启发式因子重要程度的参数 %% Rho 信息素蒸发系数 %% Q 信息素增加强度系数 %% R_best 各代最佳路线 %% L_best 各代最佳路线的长度 %%================================================================ ========= %%第一步:变量初始化 n=size(C,1);%n表示问题的规模(城市个数) D=zeros(n,n);%D表示完全图的赋权邻接矩阵 for i=1:n for j=1:n if i~=j D(i,j)=((C(i,1)-C(j,1))^2+(C(i,2)-C(j,2))^2)^0.5; else D(i,j)=eps; end D(j,i)=D(i,j); end end Eta=1./D;%Eta为启发因子,这里设为距离的倒数 Tau=ones(n,n);%Tau为信息素矩阵 Tabu=zeros(m,n);%存储并记录路径的生成 NC=1;%迭代计数器 R_best=zeros(NC_max,n);%各代最佳路线 L_best=inf.*ones(NC_max,1);%各代最佳路线的长度

蚁群算法最短路径通用Matlab程序(附图)

ix=MM-0.5; end iy=a*(MM+0.5-ceil(i/MM)); if i~=E Eta(1,i)=1/((ix-Ex)^2+(iy-Ey)^2)^0.5; else Eta(1,i)=100; end end ROUTES=cell(K,M);%用细胞结构存储每一代的每一只蚂蚁的爬行路线 PL=zeros(K,M);%用矩阵存储每一代的每一只蚂蚁的爬行路线长度 %% -----------启动K轮蚂蚁觅食活动,每轮派出M只蚂蚁-------------------- for k=1:K disp(k); for m=1:M %% 第一步:状态初始化 W=S;%当前节点初始化为起始点 Path=S;%爬行路线初始化 PLkm=0;%爬行路线长度初始化 TABUkm=ones(1,N);%禁忌表初始化 TABUkm(S)=0;%已经在初始点了,因此要排除 DD=D;%邻接矩阵初始化 %% 第二步:下一步可以前往的节点 DW=DD(W,:); DW1=find(DW for j=1:length(DW1) if TABUkm(DW1(j))==0 DW(j)=inf; end end LJD=find(DW Len_LJD=length(LJD);%可选节点的个数 %% 觅食停止条件:蚂蚁未遇到食物或者陷入死胡同 while W~=E&&Len_LJD>=1 %% 第三步:转轮赌法选择下一步怎么走 PP=zeros(1,Len_LJD); for i=1:Len_LJD PP(i)=(Tau(W,LJD(i))^Alpha)*(Eta(LJD(i))^Beta); end PP=PP/(sum(PP));%建立概率分布 Pcum=cumsum(PP); Select=find(Pcum>=rand); %% 第四步:状态更新和记录 Path=[Path,to_visit];%路径增加

蚁群算法求解TSP问题MATLAB程序

%% 蚁群算法¨ clear close clc n = 10; % 城市数量 m = 100; % 蚂蚁数量 alfa = 1.5; beta = 2.5; rho = 0.1; Q = 1000; maxgen = 50; x = [2 14 9 6 3 2 4 8 12 5]'; y = [8 9 12 4 1 2 5 8 1 15]'; % x = [37,49,52,20,40,21,17,31,52,51,42,31,5,12,36,52,27,17,13,57,62,42,16,8,7,27,30, 43,58,58,37,38,46,61,62,63,32,45,59,5,10,21,5,30,39,32,25,25,48,56,30]'; % y = [52,49,64,26,30,47,63,62,33,21,41,32,25,42,16,41,23,33,13,58,42,57,57,52,38,68, 48,67,48,27,69,46,10,33,63,69,22,35,15,6,17,10,64,15,10,39,32,55,28,37,40]'; City = [x,y]; % 城市坐标 %% 城市之间的距离 for i = 1:n D(i,:) = ((City(i,1) - City(:,1)).^2 + (City(i,2) - City(:,2)).^2).^0.5 + eps; end eta = 1./D; % 启发因子 tau = ones(n); % 信息素矩阵 path = zeros(m,n); % 记录路径 for iter = 1: maxgen %% 放置蚂蚁 path(:,1) = randi([1 n],m,1); for i = 2 : n for j = 1 : m visited = path(j,1:i-1); leftcity = setdiff(1:n,visited); %% 计算剩下城市的概率 P = zeros(1,length(leftcity)); for k = 1:length(leftcity) P(k) = tau(visited(end),leftcity(k))^alfa*eta(visited(end),leftcity(k))^beta;%判断是否有重复城市 end P1 = sum(P); Pk = P / P1; P = cumsum(Pk); r = rand; index = find(P >= r); nextcity = leftcity(index(1)); path(j,i) = nextcity; end end for flag = 1:m if length(unique(path(flag,:))) ~= n % keyboard; end end if iter >= 2 path(1,:) = Pathbest(iter-1,:); end for i = 1 : m

蚁群算法的Matlab程序

#include #include #include #include #define citynumber 5 #define Q 100 #define p 0.5 #define NM2 1000 #define A 1 #define B 5 int ccdi=-1;//全局变量,用在myrand()中 float myrand()//产生0-1随机数,100个,每调用一次,结果不同 {srand(time(0)); float my[100]; ccdi++; if (ccdi==100) ccdi=0; for(int mi=0;mi<100;mi++) {float fav=rand()%10000; my[mi]=fav/10000;} return my[ccdi]; } double fpkij(double T[citynumber][citynumber],double n[citynumber][citynumber],int tabu[citynumber][citynumber],int k,int s,int i,int j ) //定义函数用于计算Pij { //double A=0.5,B=0.5; double sumup,pkij,sumdown; sumdown=0; for(int aTi=0;aTi

蚁群算法商旅问题matlab程序

%%蚁群算法商旅问题matlab程序 %%导入数据(城市的坐标) citys=[1304 2312;3639 1315;4177 2244;3712 1399;3488 1535;3326 1556;3238 1229;4196 1004;4312 790;4386 570;3007 1970;2562 1756;2788 1491;2381 1676;1332 695;3715 1678;3918 2179;4061 2370;3780 2212;3676 2578;4029 2838;4263 2931;3429 1908;3507 2367;3394 2643;3439 3201;2935 3240;3140 3550;2545 2357;2778 2826;2370 2975]; %%计算城市之间相互距离 n=size(citys,1); D=zeros(n,n); for i=1:n for j=1:n if i~=j D(i,j)=sqrt(sum((citys(i,:)-citys(j,:)).^2)); else D(i,j)=1e-4; end end end %%初始化参数 m=31; alpha=1; beta=5; rho=0.1; Q=1; Eta=1./D; Tau=ones(n,n); Table=zeros(n,n); iter=1; iter_max=200; Route_best=zeros(iter_max,n); Leng_best=zeros(iter_max,1); Leng_ave=zeros(iter_max,1); %%迭代寻找最佳路径(主体循环) while iter<=iter_max %(1)随机产生各个蚂蚁的起点城市 start=zeros(m,1); for i=1:m temp=randperm(n); start(i)=temp(1); end

基于蚁群算法的机器人路径规划MATLAB源码

基于蚁群算法的机器人路径规划MATLAB源码 使用网格离散化的方法对带有障碍物的环境建模,使用邻接矩阵存储该环境,使得问题转化为蚁群算法寻找最短路径。 function [ROUTES,PL,Tau]=ACASPS(G,Tau,K,M,S,E,Alpha,Beta,Rho,Q) %% --------------------------------------------------------------- % ACASP.m % 蚁群算法动态寻路算法 % % %% --------------------------------------------------------------- % 输入参数列表 % G 地形图为01矩阵,如果为1表示障碍物 % Tau 初始信息素矩阵(认为前面的觅食活动中有残留的信息素) % K 迭代次数(指蚂蚁出动多少波) % M 蚂蚁个数(每一波蚂蚁有多少个) % S 起始点(最短路径的起始点) % E 终止点(最短路径的目的点) % Alpha 表征信息素重要程度的参数 % Beta 表征启发式因子重要程度的参数 % Rho 信息素蒸发系数 % Q 信息素增加强度系数 % % % 输出参数列表 % ROUTES 每一代的每一只蚂蚁的爬行路线 % PL 每一代的每一只蚂蚁的爬行路线长度 % Tau 输出动态修正过的信息素 %% --------------------变量初始化---------------------------------- %load D=G2D(G); N=size(D,1);%N表示问题的规模(象素个数) MM=size(G,1); a=1;%小方格象素的边长 Ex=a*(mod(E,MM)-0.5);%终止点横坐标 if Ex==-0.5 Ex=MM-0.5; end Ey=a*(MM+0.5-ceil(E/MM));%终止点纵坐标 Eta=zeros(1,N);%启发式信息,取为至目标点的直线距离的倒数 %下面构造启发式信息矩阵 for i=1:N

蚁群算法整个程序(matlab)

蚁群算法整个程序(matlab) main: %function [bestroute,routelength]=Ant clc clear tic % 读入城市间距离矩阵数据文件 CooCity = load( 'CooCity.txt' ) ;% 城市网络图坐标数据文件,txt形式给出 NC=length(CooCity); % 城市个数 for i=1:NC % 计算各城市间的距离 for j=1:NC distance(i,j)=sqrt((CooCity(i,2)-CooCity(j,2))^2+(CooCity(i,3)-CooCity(j,3))^2); end end % distance=xlsread('DistanceCity.xls'); % 城市间距离矩阵数据文件,excel形式给出 MAXIT=10; % 最大循环次数 Citystart=[]; % 起点城市编号 tau=ones(NC,NC); % 初始时刻各边上的信息痕迹为1 rho=0.5; % 挥发系数 alpha=1; % 残留信息相对重要度 beta=5; % 预见值的相对重要度 Q=10; % 蚁环常数

NumAnt=20; % 蚂蚁数量 %bestroute=zeros(1,48); % 用来记录最优路径 routelength=inf; % 用来记录当前找到的最优路径长度 for n=1:MAXIT for k=1:NumAnt %考查第K只蚂蚁 deltatau=zeros(NC,NC); % 第K只蚂蚁移动前各边上的信息增量为零 %[routek,lengthk]=path(distance,tau,alpha,beta,[]); % 不靠率起始点[routek,lengthk]=path(distance,tau,alpha,beta,Citystart); % 指定起始点 if lengthk

基于蚁群算法的机器人路径规划MATLAB源代码

基于蚁群算法的机器人路径规划MATLAB源代码

————————————————————————————————作者: ————————————————————————————————日期:

基于蚁群算法的机器人路径规划MATLAB源代码基本思路是,使用离散化网格对带有障碍物的地图环境建模,将地图环境转化为邻接矩阵,最后使用蚁群算法寻找最短路径。 function [ROUTES,PL,Tau]=ACASPS(G,Tau,K,M,S,E,Alpha,Beta,Rho,Q)%%--------------------------------------------------------------- % ACASP.m %基于蚁群算法的机器人路径规划 %GreenSim团队——专业级算法设计&代写程序 % 欢迎访问GreenSim团队主页→ %% --------------------------------------------------------------- %输入参数列表 % G地形图为01矩阵,如果为1表示障碍物 %Tau 初始信息素矩阵(认为前面的觅食活动中有残留的信息素) %K 迭代次数(指蚂蚁出动多少波) % M 蚂蚁个数(每一波蚂蚁有多少个) % S起始点(最短路径的起始点) % E终止点(最短路径的目的点) %Alpha表征信息素重要程度的参数 % Beta 表征启发式因子重要程度的参数 %Rho 信息素蒸发系数 % Q 信息素增加强度系数 % %输出参数列表 % ROUTES每一代的每一只蚂蚁的爬行路线 %PL 每一代的每一只蚂蚁的爬行路线长度 %Tau 输出动态修正过的信息素 %% --------------------变量初始化---------------------------------- %load D=G2D(G); N=size(D,1);%N表示问题的规模(象素个数) MM=size(G,1); a=1;%小方格象素的边长 Ex=a*(mod(E,MM)-0.5);%终止点横坐标 if Ex==-0.5 Ex=MM-0.5; end Ey=a*(MM+0.5-ceil(E/MM));%终止点纵坐标 Eta=zeros(1,N);%启发式信息,取为至目标点的直线距离的倒数

相关文档
最新文档