possible therapeutic targets in microglia

possible therapeutic targets in microglia
possible therapeutic targets in microglia

293

Chapter 13Possible Therapeutic Targets in Microglia

Mami Noda

V . Parpura, A. Verkhratsky (eds.), Pathological Potential of Neuroglia,DOI 10.1007/978-1-4939-0974-2_13, ? Springer Science+Business Media New York 2014M. Noda ( )Laboratory of Pathophysiology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, 812-8582 Fukuoka, Japan e-mail: Noda@phar.kyushu-u.ac.jp

Abstract In recent years, microglial cells are becoming to stand in the limelight. They may play a major role not only under physiological condition but also under many pathophysiological conditions. Manipulating their function may lead to cure or attenuation of neurological diseases, traumatic injury, psychiatric disorders, or even sleepiness or aging. In this chapter, the properties of microglial cells including receptors for neurotransmitters and neurohormones/neuromodulators, transporters, and other signals which are related to therapeutic possibilities are summarized.

Keywords Microglia · Inflammation · Pain · Neurodegenerative disorders · Psychiatric disorders · Microglia · Neurotransmitter receptor · Neuropeptide receptor · Endocrine system · Neurohormone · Cytokine · Chemokine · Neuropathic pain · Neurodegenerative diseases · ALS · Traumatic brain injury · LPS · Sleep loss · Aging · Obesity · Psychiatric disorder · Autism

13.1 I ntroduction

Microglial cells are immune cells in the central nervous system (CNS). Their contri -butions towards physiological and pathophysiological processes have been well doc -umented (Kettenmann et al. 2011; Eyo and Dailey 2013; Verkhratsky and Butt 2013). In pathophysiological condition, microglial cells rapidly respond to any kind of dam -age signals accompanying poly-etiological insults to the CNS. Microglial responses in the CNS may occur as a result of trauma, ischemia, infection or neurodegenerative stimuli. Microglial cells have been implicated, to some extent, in the pathogenesis of all of the common neurodegenerative disorders involving protein aggregation such as Alzheimer’s disease (AD), Parkinson’s disease (PD) and amyotrophic lateral sclerosis (ALS). However, the precise role they play in the development of these pathologies remains unclear and it seems that they contribute to the pathological process in different ways in a disease-specific manner. A better understanding of their

294M. Noda varied roles is essential if they are to be the target for novel therapeutic strategies (Gentleman 2013).

Activated microglia proliferate rapidly, migrate to the site of injury or infection and elicit defense response by phagocytosis of cell debris, production of cytokines, chemokines and reactive oxygen species, and presentation of antigens to other im-mune cells. In addition, microglia participate in tissue repair by producing neuro-trophic factors. However, chronically activated microglia become neurotoxic to the surrounding CNS parenchyma.

Chronic activation of microglia has been shown to augment neurodegeneration in PD, AD, brain injury and number of other CNS pathologies. Identification of fac-tors that control microglial activation, therefore, has become the major focus of re-cent research (Rangarajan et al. 2013). Microglial dysfunction may also contribute to genetic neurobehavioral disorders (Benarroch 2013). At the sites of injury or any pathological area, classical “activated” microglia, with an amoeboid morphology, show different molecular and genetic characteristics compared to those in resting microglia. Recently, this subdivision into two main types (resting and activated mi-croglia) is regarded as oversimplification and more sophisticated microglial activity states throughout an activation process were proposed (Hanisch and Kettenmann 2007; Eyo and Dailey 2013).

Microglial activation is also regarded as a biomarker for traumatic brain injury (Hernandez-Ontiveros et al. 2013). During a cascade of secondary cell death and multiple inflammatory responses accompanying traumatic brain injury, inflam-matory cytokines and chemokines spreads to normal brain areas juxtaposed to the core impacted tissue. Among immune cells involved, microglia is a key player in propagating inflammation to tissues neighboring the core site of injury. Multiple sclerosis (MS) exhibits many of the hallmarks of an inflammatory autoimmune disorder including breakdown of the blood-brain barrier (BBB), the recruitment of lymphocytes, microglia, and macrophages to lesion sites. Inflam-matory cascade is amplified by pro-inflammatory cytokines, compromising the BBB, recruiting immune cells from the periphery, and activating resident microg-lia (see review; Ortiz et al. 2013). Genome-wide microarray analysis comparing micro-dissected active cortical MS lesions with those of tuberculous meningitis (inflammatory control) showed that more than 80% of the identified MS-specific genes were related to T cell-mediated inflammation, microglia activation, oxida-tive injury, DNA damage and repair, remyelination and regenerative processes (Fischer et al. 2013).

Correlation between neurodegenerative diseases and oxidative stress is also sug-gested since mitochondrial dysfunction, i.e. cell energy impairment, apoptosis and overproduction of reactive oxygen species (ROS), is a final common pathogenic mechanism in aging and in neurodegenerative disease such as AD, PD and ALS (Emerit et al. 2004).

In this chapter, receptors, and other molecules, which are expressed or up-regulated in activated microglia and possibly contributing to pathological con-ditions, are discussed as potential targets for medical intervention in microglia (Fig. 13.1).

29513 Possible Therapeutic Targets in Microglia 13.2 N eurotransmitter Receptors

Microglia express various types of neurotransmitter receptors (Kettenmann et al. 2011; Verkhratsky and Butt 2013; Kettenmann and Ransom 2013; Lee 2013), each of which can have a specific pathological role(s) which are discussed below.13.2.1 G lutamate Receptors

13.2.1.1 A MPA Receptors

Microglia express functionally heterogeneous AMPA (α-amino-hydroxy-5-methyl-isoxazole-4-propionate)-type of receptors (Noda et al. 2000; Hagino et al. 2004)

and Fig. 13.1 Possible therapeutic targets in microglia. Neurotransmitter receptors, neuropeptide receptors, neuromodulatory receptors, cytokine and chemokine receptors, transporters, and vari -ous factors affecting microglial function

296M. Noda contribute to glutamate (Glu)-mediated neuron-glia interaction (Bezzi et al. 2001). Microglia express highly Ca2+impermeable AMPA receptors due to the expres-sion of GluA2 subunit. In addition, expression of plasmalemmal GluA2 subunits significantly increases upon activation of microglia, for example after treatment by lipopolysaccharide (LPS) (Beppu et al. 2013). Since a decreased expression of GluA2 was reported in some of the neurodegenerative diseases such as AD and Creutzfeldt-Jakob disease (Ferrer and Puig 2003; Carter et al. 2004), functional change in GluA2-deficient microglia was investigated, showing higher Ca2+-per-meability, consequently inducing significant increase in the release of pro-inflam-matory cytokine, such as tumor necrosis factor-α (TNF-α). GluA2-deficient mouse brain also showed more neurotoxicity in response to kainic acid (Beppu et al. 2013). Therefore, involvement of microglia in glutamatergic synaptic transmission may be also important to understand the mechanism of some neurodegeneration in which low GluA2 is suggested (Noda and Beppu 2013).

In the hypothalamus and neurohypophysis of rats with streptozotocin (STZ)-induced diabetes, the expression of GluA2/3 was progressively down-regulated, being hardly detected at 4 months of STZ-diabetes, together with up-regulation of N-methyl D-aspartate receptor (NMDAR) subunit GluN1 and neuronal nitric oxide synthase (nNOS). In addition, both astrocytes and microglia appeared activated. Therefore, it was speculated that the glutamate receptors and NO are linked to over-activation of paraventricular and supraoptic nuclei leading ultimately to cell death (Luo et al. 2002). The lack of GluA2/3 in microglia may also contribute to the cell death.

13.2.1.2 K ainate Receptors

Microglia express kainate (KA) receptor subunits (Yamada et al. 2006; Noda et al. 2000) and KA-induced current was affected by application of concanavalin A which is a positive modulator selective for KA-preferring receptors (subunits GluR5–GluR7 and KA-1 or KA-2) (Huettner 1990; Partin et al. 1993; Wong and Mayer 1993), suggesting that only some of the KA-responsive cells express KA-preferring receptors and not only AMPA-preferring receptors (Noda et al. 2000). It was indica-tive of heterogeneous distribution of AMPA- and KA-preferring receptors among microglial cells; some cells express predominantly AMPA-preferring receptors, some cells express predominantly KA-preferring receptors, and some cells express both. The functional difference has not been identified yet.

13.2.1.3 N MDA Receptors

Although NMDA-induced membrane currents were not observed in primary cul-tured microglial cells (Noda et al. 2000), it was reported that cortical microglia express NMDAR subunits in vitro and in vivo and activation of the microglial NMDARs plays a pivotal role in neuronal cell death in the perinatal and adult brain

29713 Possible Therapeutic Targets in Microglia (Kaindl et al. 2012). Microglia have unique NMDAR subunit expression with a high level of the GluN2D subunit that is distinct from that found in neurons, indicat -ing distinct NMDAR subunit assembly. The pathophysiologic relevance of microg -lial NMDARs is particularly high, as they confer sensitivity to excitotoxic cortical injury that is likely to be significant for a large variety of neurological diseases. For example, after stroke, glutamate released by damaged neurons in the infarct core can diffuse to nearby cells, and this can lead to an activation of microglia via their NMDARs and render them neurotoxic. Conversely, loss of function of the microg -lial NMDARs protects from gray matter damage.

13.2.1.4 M etabotropic Glutamate Receptors

Microglial cells also bear metabotropic glutamate receptors (mGluRs) (Biber et al. 1999; Farso et al. 2009; Taylor et al. 2002); mGluR1,5 (Group I) is linked to intracellular Ca 2+ signaling, while mGluR2,3 (Group II) (Taylor et al. 2002) and mGluR4,6,8 (Group III) (Taylor et al. 2003) are coupled to adenosine 3′:5′ cyclic monophosphate (cAMP) and involved in regulation of TNF-α release and microglial cytotoxicity (Taylor et al. 2005). Since mGluRs is proposed as targets for multipotential treatment of neurological disorders (Byrnes et al. 2009), microglial mGluRs may be critical regulators in neuron to glia transmissions especially under pathological state.

13.2.2 P urinergic Receptors

The most widespread and possibly most functionally important receptors for mi -croglia are purinoceptors (Verkhratsky et al. 2009b ).

13.2.2.1 I onotropic Purinoceptors (P2X Receptors)

The main type of ionotropic purinoceptors expressed in mature microglial cells are P2X 4 and P2X 7 receptors. The P2X 4 receptors are also constitutively expressed in microglia and contribute to microglial activation in particular in the context of neu -ropathic pain. Increased levels of P2X 4 receptors was found in activated microg -lia (Tsuda et al. 2003), whereas intrathecal injection of cultured microglia bearing P2X 4 receptors induced allodynia in the absence of peripheral nerve damage (Inoue and Tsuda 2009). Involvement of P2X 4 in KA-induced status epilepticus was also reported (Ulmann et al. 2013).The P2X 7 receptors are involved in various neuropathologies (Franke et al. 2012) and contribute to various aspects of microglial reactions. P2X 7 receptors are abundantly present in immune cells and mediate many immune reactions, including the processing and the release of various cytokines. Microglial cells

298M. Noda constitutively express P2X 7 receptors and various brain lesions and neuropatholo -gies (such as, for example, MS, ALS and AD) induce substantial up-regulation of P2X 7 receptors expression (Sperlagh et al. 2006; Verkhratsky et al. 2009a ). Acti -vation of P2X 7 receptors regulates multiple microglial processes from microglial activation to apoptotic death. Stimulation of P2X 7 receptors was reported to be necessary for microglial activation by amyloid-β (Aβ) protein (Sanz et al. 2009), and P2X 7 receptors control microglial secretion of pro-inflammatory factors (see (Kettenmann et al. 2011) and references therein). Incidentally, over-expression of P2X 7 receptors in microglia triggers their activation in the in vitro system in com -plete absence of any other exogenous factors (Monif et al. 2009). Recently P2X 7 receptor was reported to regulate microglial survival in living brain tissues (Eyo et al. 2013). Removal of extracellular Ca 2+ or application of a potent P2X 7 recep-tor antagonist, protected microglial cell death. These pharmacological results were complemented by studies in tissue slices from P2X 7 receptor null mice, in which oxygen-glucose deprivation (OGD)-induced microglial cell death was reduced by nearly half. These results indicate that stroke-like conditions induce Ca 2+-depen-dent microglial cell death that is mediated in part by P2X 7 receptor. Increased neocortical expression of the P2X 7 receptor after status epilepticus and anticon -vulsant effect of P2X 7 receptor antagonist were also reported (Jimenez-Pacheco et al. 2013). From a therapeutic standpoint, these findings could help direct novel approaches to enhance microglial survival and function following stroke and other neuropathological conditions.

13.2.2.2 M etabotropic Purinoceptors (P2Y Receptors)

Microglia express several metabotropic purinoceptors with predominant appear -ance of P2Y 2, P2Y 6, P2Y 12, and P2Y 13 receptors. Stimulation of these receptors as a rule triggers Ca 2+ signals that often involve endoplasmic reticulum Ca 2+ release and store-operated Ca 2+ influx; overstimulation of P2Y pathways can produce a long-lasting activation of the latter that can contribute to various aspects of microg -lial activation (Toescu et al. 1998). The P2Y 6 receptors, distinctively sensitive to UDP, regulate microglial phagocytosis (Koizumi et al. 2007), whereas ADP-pre -ferring P2Y 12 receptors are fundamental for acute microglial responses to patho -logical insults, for morphological activation, membrane ruffling and chemotaxis (Verkhratsky et al. 2009a ). In addition P2Y 12 receptors are linked to integrin-β1 signaling, which regulates extension of microglial processes (Ohsawa et al. 2010; Eyo and Wu 2013). In the spinal cord P2Y 12 receptors are involved in the genesis of neuropathic pain (Inoue and Tsuda 2009).As mentioned above, neuron-to-microglia purinergic signaling regulates mi -croglial extension and retraction (see review (Eyo and Wu 2013)). In the event of neuronal injury, neurons release purines including ATP which can be degraded by endogenous enzymes into ADP and adenosine. Released purines diffuse in the extracellular space and activate P1 adenosine (A 3) and P2Y (P2Y 12) receptors on microglia that act in concert.

29913 Possible Therapeutic Targets in Microglia Recently, it was shown that soluble Aβ peptide 1–42 induced self-uptake in mi -croglia through pinocytosis, a process involving activation of P2Y 4 receptors by autocrine ATP signaling. It demonstrates a previously unknown function of ATP as a “drink me” signal for microglia and P2Y 4 receptors as a potential therapeutic target for the treatment of AD (Li et al. 2013).

13.2.2.3 A denosine (P1) Receptors

Adenosine receptors of P1 type are represented by classical seven-transmembrane spanning G protein-coupled receptors and are subclassified into adenosine A1, A2A , A2B , and A3 receptors with distinct pharmacological and functional properties. All four types of adenosine receptors were identified at the mRNA level in cultured rat microglia (Fiebich et al. 1996b ). As mentioned above, purinergic activation leads to extension of microglial processes towards the injury site. Following microglial activation, adenosine can also activate A2A receptors that mediate microglial branch retraction. First, a role for the adenosine A2A receptor in microglial cytoskeletal rearrangements was suggested (Orr et al. 2009). Adenosine A2B receptors mediate an increase in interleukin (IL)-6 in human astroglioma cells (Fiebich et al. 1996a ). Recently, there was a report that microglia also express A1 receptor which is up-regulated upon ATP treatment. Moreover, selective stimulation of A1 receptors inhibits morphological activation of microglia, possibly by suppressing the Ca 2+ influx induced by ATP. Microglial cells, pretreated with the A1 receptor agonist, exhibit lower capability to facilitate the nociceptive neurons, as compared with the cells treated with ATP alone (Luongo et al. 2014).

13.2.3 G ABA?(γ-Aminobutyric?Acid)?Receptors

Functional GABA B receptors were identified in a subpopulation of microglial cells in culture (Kuhn et al. 2004). The physiological role of microglial GABA B receptors are described in Kettenmann et al. (2011), but their pathophysiological role needs to be identified.

13.2.4 C holinergic Receptors

The expression of neuronal α7 nicotinic receptors (nACh) was initially found in cultured mouse microglia (De Simone et al. 2005; Shytle et al. 2004). The activation of nACh receptors generally inhibits the immune response of microg -lial cells, thus representing endogenous “cholinergic anti-inflammatory pathway” (Shytle et al. 2004). On example is that nicotine was shown to inhibit P2X 7-medi-ated radical oxygen species (ROS) production in Aβ peptide 1–42 stimulated cul -tured microglial cells (Moon et al. 2008). Also, long-term (15 days) incubation of

300M. Noda corticostriatal organotypic slices with nicotine reduced the thrombin-dependent activation of microglia (Ohnishi et al. 2009). More recently, the α7 nACh recep -tor ligands reduced LPS-induced TNF-α release from microglia (Thomsen and Mikkelsen 2012).

13.2.5 A drenergic Receptors

Accumulation of intracellular cAMP following stimulation of β2 receptors provided the first evidence for the expression of adrenergic receptors in microglia (Prinz et al. 2001). While β2 receptor stimulation suppressed LPS-induced release of IL-12p40 in cultured microglia (Prinz et al. 2001), stimulation of β1 receptors increased expression of IL-1β mRNA (Tanaka et al. 2002). Increasing intracellular cAMP suppressed proliferation of microglia (Fujita et al. 1998), inhibited ATP-induced release of TNF-α (Morioka et al. 2009) and modulate microglial migration and phagocytosis. Micoglial adrenergic receptors could be relevant in pathogenesis of AD as early degeneration of locus coeruleus in AD and depletion of adrenergic input to the brain affects the ability of microglia to provide for effective clearance of Aβ (Heneka et al. 2010). Recently, it became obvious that norepinephrine modulates the motility of resting and activated microglia via different adrenergic receptors; β2 receptors mediate microglial process dynamics in resting cells whereas α2A recep-tors do in activated cells. In addition, the presence of cross-talk between adrenergic and purinergic signaling in microglia was suggested (Gyoneva and Traynelis 2013). These data show that norepinephrine can modulate microglial motility, which could affect microglial functions in pathogenic situations of either elevated or reduced norepinephrine levels.

13.2.6 D opamine Receptors

The D 1,2,3,4 (but not D 5) receptors were identified on translational level in microglia in culture and visualized by immunostaining in substantia nigra from Parkinso -nian brains, suggesting that activation of microglia in PD triggers expression of dopamine receptors, which may explain an increase in microglia-related toxicity towards dopamine-producing neurons (Mastroeni et al. 2009). In PD, microglial cells in substantia nigra are activated and concentrated around dystrophic dopami -nergic neurons (Rogers et al. 2007); the role of dopamine receptors in this specific activation and migration of microglia needs to be clarified further. The inhibition of D 4 receptors by specific agonist suppressed microglial activation in the spinal cord of superoxide dismutase 1 transgenic animal model of ALS; this reduced mi -croglial activation coincided with slowing down the disease progression (Tanaka et al. 2008).

30113 Possible Therapeutic Targets in Microglia 13.2.7 S erotonin Receptor

Microglia express 5-HT 2 serotonin receptors (Kettenmann et al. 2011; Kato et al. 2013b ). There is a possibility that modulating microglia serotonin receptors may be a key target in the treatment of various psychiatric disorders, which likely will be a hot topic in the near future.

13.3 N europeptide Receptors

In addition to neurotransmitter receptors, microglia has receptors for a wide vari -ety of neuropeptides, such as endothelin, bradykinin, angiotensin II, somatostatin, neurokinin-1, vasoactive intestinal peptide (VIP), neuropeptide Y (see (Kettenmann et al. 2011) (Kettenmann and Ransom 2013) for details). Bradykinin receptors, for example, have distinct effects on microglia from those on neurons. Inducible B 1 re-ceptor stimulate microglial migration (Ifuku et al. 2007) and have rather neuropro-tective effects against LPS-induced activation and inflammatory responses (Noda et al. 2006, 2007). Pituitary adenylate cyclase activating polypeptide (PACAP) ac -tivates a quinine-sensitive K + outward current and modulates activities in microglia (Ichinose et al. 1998), VIP and PACAP inhibit the MEKK1/MEK4/JNK signaling pathway (Delgado 2002b ) and CREB binding protein (CBP)-nuclear factor (NF)-κB interaction (Delgado 2002a ) in endotoxin-activated microglia. Neuropeptide receptors in microglia could become a strong therapeutic target, especially for AD.13.4 H ormones and Hormone Receptors

It was indicated that glial cells may play a significant role in the link between the endocrine and nervous systems (Garcia-Segura et al. 1996; Chowen et al. 1996). Glial cells express nuclear receptors for both thyroid and steroid hormones and par -ticipate in the metabolism of these hormones, resulting in the production of neuro -active metabolites. Furthermore, glial cells synthesize endogenous neuroactive ste -roids, including pregnenolone and progesterone, from cholesterol. It is known that thyroid hormones, glucocorticoids, gonadal steroids, and neurosteroids affect glial functions. Under physiological conditions, hormonal effects on glia may have im -portant consequences for neuronal development, metabolism, and activity and for the formation and plasticity of synaptic connections. In addition, glucocorticoids, gonadal steroids, and neurosteroids may affect regenerative processes in neurons by modulating glial responses after injury. These effects include the activation of microglia, which is regulated by glucocorticoids. Therefore, endocrine impairments affect microglial function as well as other cell types in the CNS.

302M. Noda 13.4.1 S ex Hormones

Estrogen has been shown to be neuroprotective in stroke and other neural injury models. The presence of estrogen receptor-β (ER-β) in rat microglial cells was re-ported a decade ago (Mor et al. 1999). Estrogen-mediated neuroprotection is criti-cally dependent on insulin-like growth factor (IGF)-1 signaling. Microglia appears as the source of IGF-1 and the locus of estrogen-IGF-1 interactions in stroke neuro-protection (Sohrabji and Williams 2013).

Microglial cell line BV-2, responded to hypoxia by enhanced pro-inflammatory cytokine secretion and reduced phagocytic activity, which is prevented by sex ste-roids resulting in a switch of microglial cells from a pro-inflammatory to a more anti-inflammatory phenotype. Anti-inflammatory effects of gonadal steroids might directly be mediated through hormone-microglia interactions in addition to known effects via astroglial regulation (Habib et al. 2013a, b). Estrogen is also neuro-protective in the MS model (Wisdom et al. 2013) and encephalomyelitis (Spence et al. 2013; Wu et al. 2013). Also, testosterone, being metabolized to estradiol and dihydrotestosterone, decreases reactive astroglia and reactive microglia after brain injury in male rats: role of its metabolites, estradiol and dihydrotestosterone (Barreto et al. 2007).

Neuronal plasticity is regulated by the ovarian steroids estradiol and progesterone in many normal brain functions, as well as in acute response to injury and chronic neurodegenerative disease. In a female rat model of axotomy, the estradiol-dependent compensatory neuronal sprouting is antagonized by progesterone (Bali et al. 2013). In developing rat brain, microglia are essential to masculinization of brain and behavior (Lenz et al. 2013). Estradiol up-regulates the synthesis of prostaglandin E2 (PGE2), originally in neurons, and then activate microglia and stimulates their own release of PGE2. This feed-forward loop of PGE2 production is required for the masculinization of the preoptic area and therefore of sexual behavior (Welberg 2013). Microglial dysfunction may be also involved in abnormalities of brain de-velopment and sexual behavior.

13.4.2 C ortisol Receptor

Glucocorticoid- and mineralocorticoid receptors in microglia were reported (Tanaka et al. 1997). Corticosterone suppresses the proliferation of BV2 microglia cells via glucocorticoid, but not mineralocorticoid receptor (Nakatani et al. 2012). Limitaion of microglial activation was also reported in dopaminergic neurodegeneration and in acute stress model (Sugama et al. 2009; 2012). They suggest that glucocorticoids may serve as an important endogenous suppressive signal limiting neuroinflamma-tion. Dexamethasone inhibits the Nox-dependent ROS production via suppression of MKP-1-dependent MAPK pathways in activated microglia, suggesting down-regulation of Nox-2 and overexpression of MKP-1 that regulate ROS and NO may form the potential therapeutic strategy for the treatment of neuroinflammation in neurodegenerative diseases (Huo et al. 2011).

303 13 Possible Therapeutic Targets in Microglia

13.4.3 O xytocin Receptors

Oxytocin mediates social neuroprotection after cerebral ischemia. There is evi-dence for a direct suppressive action of oxytocin on cultured microglia, which is a key instigator in the development of neuroinflammation after cerebral ischemia (Karelina et al. 2011). Since oxytocin is important for social behavior (Eckstein and Hurlemann 2013), possible involvement of microglia via oxytocin needs to be investigated.

13.5 C ytokine and Chemokine Receptors

Microglial cells are in possession of several types of cytokine and chemokines receptors which regulate multitude of immune responses (see (Kettenmann et al. 2011; Kettenmann and Ransom 2013) for details). Microglia express multiple in-terleukin receptors (IL-1RI, IL-1RII, IL-5R, IL-6R, IL-8R, IL-9R, IL-10R, IL-12R, IL-13R, and IL-15R) (Lee et al. 2002) and the activation or cultured mouse mi-croglia with LPS induced expression of IL-2 receptors (Sawada et al. 1995). Spinal cord microglia showed sensitivity to IL-6, connected with a signal transducer and activator of transcription (STAT) pathway, contributing to development of mechani-cal allodynia and neuropathic pain (Dominguez et al. 2008).

Among chemokine receptors (CCR) which are expressed in the cells of the CNS, microglial cells in particular express CCR1, CCR2, CCR7 and CCR5 (ro-dents) and CXCR1, CXCR3 and CCR3 (humans) (Boddeke et al. 1999a, b; Flynn et al. 2003). A major regulator of microglial activation and neurotoxicity in the CNS is the CX3CL1 (fractalkine, i.e. ligand)/CX3CR1 (fractalkine receptor) sig-naling axis (Zujovic et al. 2000; Cardona et al. 2006). On the other hand, it was suggested that CCR2/CCR5 antagonist has the potential for broad clinical use in neuropathic pain treatment (Padi et al. 2012) and decreased pain responses of CCR5 knockout mice to chemical or inflammatory stimuli was reported (Lee et al. 2013). In addition, another important chemokine, chemokine (C-C motif) ligand 1 (CCL-1), originally a well-characterized chemokine secreted by acti-vated T cells, also plays an important role in neuropathic pain induced after par-tial sciatic nerve injury (Akimoto et al. 2013a). CCL-1 plays an important role in neuropathic pain induced by nerve injury and is also produced in various cell types in the CNS, especially in dorsal root ganglia. The specific receptor for CCL-1, CCR8, was found mainly in neurons but also in astrocytes and microglia. CCL-1 has multiple effects on microglia, i.e. increasing chemotaxis, motility, proliferation and phagocytosis. CCL-1 also activated microglia morphologically, promoted mRNA levels for brain-derived neurotrophic factor (BDNF) and IL-6, and increased the release of nitrite from microglia (Akimoto et al. 2013b). These indicate that CCL-1 may contribute to the development of neurological diseases, especially in neuropathic pain.

304M. Noda 13.6 O ther Receptors and Molecules

13.6.1 T oll Like-Receptors

Toll-like receptors (TLR1–9) are particularly diversified in microglia being in -volved in regulation of activation in response to multiple exogenous pathologi -cal factors. Activation of TLRs triggers several complex signaling cascades that often involve adaptor protein MyD88, transcription factors AP-1 and NF-κB (Hansson and Edfeldt 2005; Leulier and Lemaitre 2008). Different TLRs detect different infectious agents. Stimulation of TLRs initiates activation of microglia, and the type or receptor involved may define specific activation programs. It was recently reported that microglia works as key mediators of post-traumatic brain edema and was suggested that high-mobility group box protein 1 (HMGB1)-TLR4 signaling promotes neurovascular dysfunction after traumatic brain injury (Laird et al. 2014).

13.6.2 S igma Receptor

Sigma-1 receptor (S1R), an endoplasmic reticulum-resident receptor with chaper -one-like activity, has recently attracted great interest. S1R is involved in several processes leading to acute and chronic neurodegeneration, including ALS pathol -ogy. Pharmacological manipulation of S1R seems to be a promising strategy to cure ALS. It pointed to increased availability of growth factors and modulation of astrocytosis and of macrophage/microglia as part of the mechanisms (Peviani et al. 2013).

13.6.3 I on Transporters

Microglial plasmalemmal transporters such as Na +/Ca 2+ exchanger (Ifuku et al. 2007), Na +/HCO 3? co-transporter and/or Na +-dependent Cl ?/HCO 3? exchanger (Schwab 2001) and Na +/H + exchanger isoform 1 (Shi et al. 2013) are important in microglial migration.

13.6.4 M acrophage Colony Stimulating Factor

Increased levels of macrophage colony stimulating factor, increased microglia and microglial activation are found in many different CNS pathologies including tumors, neurodegenerative diseases and injury (reviewed in Charles et al. (2012); El Khoury and Luster (2008); Imai and Kohsaka (2002); Loane and Byrnes (2010)).

305 13 Possible Therapeutic Targets in Microglia

13.7 P athological Conditions Relating to Microglial

Activation

13.7.1 S leep Deprivation

Deficit of sleep triggers changes in inflammatory signaling pathways in the brain and periphery. The TLR4 receptors activate inflammatory signaling cascades in response to endogenous and pathogen-associated ligands known to be elevated in association with sleep loss. TLR4 is therefore a possible mediator of some of the inflammation-related effects of sleep loss (Wisor et al. 2011a). In agreement to this observation, microglial changes in the cerebral response were observed after sleep loss, which was modulated by minocycline, a compound that attenuates microglial activation oc-curring in association with neuroinflammatory events (Wisor et al. 2011c). Actually changes in the sleep/wake cycle that occur subsequent to administration of D-meth-amphetamine are modulated by cerebral microglia; the effects of D-methamphet-amine on sleep/wake cycles are mediated in part by actions on microglia, including possibly nNOS activity and cytokine synthesis (Wisor et al. 2011b). Recently more information about interaction between microglial activation and sleep or circadian rythm have been reported (Hayashi et al. 2013; Yang et al. 2013; Yu et al. 2013).

13.7.2 O besity

In addition to neurodegenerative disorders, obesity is also considered to be associ-ated with a state of chronic neuroinflammation. High-fat-diet exposure induces sig-nificant microglial activation not only in the hypothalamus (Yi et al. 2012) but also in the cerebellar white matter (Tapia-Gonzalez et al. 2011). Free fatty acid palmitate on its own induces activation of BV2 microglia cell line. Further, pre-exposure to palmitate changed the response of microglia to LPS, affecting the mRNA levels of the pro-inflammatory cytokines IL-1β and IL-6 (Tracy et al. 2013).

13.7.3 A ging

With aging, microglia change their morphology and may display diminished capac-ity for normal functions related to migration, clearance, and the ability to shift from a pro-inflammatory to an anti-inflammatory state to regulate injury and repair. This shift in microglia potentially contributes to increased susceptibility and neurode-generation as a function of age (Harry 2013), though aging itself it not a disease. However, age-related macular degeneration, as well as neurodegenerative diseases such as AD, PD, share two characteristics in common: (1) a disease prevalence that increases markedly with advancing age, and (2) microglia-related neuroinflamma-tion. These characteristics have led to the hypothesis that pathogenic mechanisms

306M. Noda underlying age-related neurodegenerative disease involve aging changes in microg-lia (Wong 2013).

As mentioned above, microglia have been implicated in disease progression for several age-related brain disorders (Lai et al. 2013). Also, hypothalamic in-flammation and control of systemic ageing was reported. The hypothalamus is important for the development of whole-body ageing in mice, and that the un-derlying basis involves hypothalamic immunity mediated by IκB kinase-β, NF-κB and related microglia–neuron immune crosstalk (Gabuzda and Yankner 2013; Zhang et al. 2013).

Considering these evidence mentioned above, understanding and controlling mi-croglial aging and age-associated microglial priming, being increased inflammatory status, may represent an opportunity for elucidating disease mechanisms and for formulating novel therapies (Wong 2013; Norden and Godbout 2013).

13.7.4 P sychiatric Disorders Including Autism Spectrum

Disorder

Microglial cells, are more and more considered to contribute to multiple neuro-pathologies, including neuropsychiatric and developmental disorders. Growing evidence indicates a role for deregulation or malfunction of glial cells and their neuroinflammatory response in the brains of autistic patients (Theoharides et al. 2013).

Recently neurobiological basis of oligodendroglial abnormalities in schizophre-nia and microglial activity in the context of the disease, in neonatal brain injury and in various experimental models of white matter damage were described (Chew et al. 2013). Microglia, have recently been also suggested to play important roles in neu-ropsychiatric disorders (Kato et al. 2013a) and possibility that modulating microglia may be a key target in the treatment of various psychiatric disorders has been pro-posed (Kato et al. 2013b). Future investigations to clarify the correlation between neuroendocrine factors and microglia may contribute to a novel understanding of the pathophysiology of neuropsychiatric disorders.

C onclusion

Microglial cells are fundamental elements of neuropathology. Microglial cells are constantly scanning the brain tissue for any signs of damage and when these latter occur microglial launch a defensive response generally known as microglial activa-tion. Microglia express variety of receptors and respond to many signals. Identifica-tion of those signaling and manipulating microglial functions may lead to promising therapeutic strategy for neuropathological processes.

13 Possible Therapeutic Targets in Microglia

307 References

Akimoto N, Honda K, Uta D, Beppu K, Ushijima Y, Matsuzaki Y, Nakashima S, Kido MA, Imoto K, Takano Y, Noda M (2013a) CCL-1 in the spinal cord contributes to neuropathic pain in-duced by nerve injury. Cell Death Dis 4:e679. doi:10.1038/cddis.2013.198

Akimoto N, Ifuku M, Mori Y, Noda M (2013b) Effects of chemokine (C-C motif) ligand 1 on microglial function. Biochem Biophys Res Commun 436(3):455–461. doi:10.1016/j.

bbrc.2013.05.126

Bali N, Arimoto JM, Morgan TE, Finch CE (2013) Progesterone antagonism of neurite out-growth depends on microglial activation via Pgrmc1/S2R. Endocrinology 154(7):2468–2480.

doi:10.1210/en.2012–2109

Barreto G, Veiga S, Azcoitia I, Garcia-Segura LM, Garcia-Ovejero D (2007) Testosterone de-creases reactive astroglia and reactive microglia after brain injury in male rats: role of its me-tabolites, oestradiol and dihydrotestosterone. Eur J Neurosci 25(10):3039–3046. doi:10.1111/ j.1460–9568.2007.05563.x

Benarroch EE (2013) Microglia: multiple roles in surveillance, circuit shaping, and response to injury. Neurology 81(12):1079–1088. doi:10.1212/WNL.0b013e3182a4a577

Beppu K, Kosai Y, Kido MA, Akimoto N, Mori Y, Kojima Y, Fujita K, Okuno Y, Yamakawa Y, Ifuku M, Shinagawa R, Nabekura J, Sprengel R, Noda M (2013) Expression, subunit com-position, and function of AMPA-type glutamate receptors are changed in activated microg-lia; possible contribution of GluA2 (GluR-B)-deficiency under pathological conditions. Glia 61(6):881–891. doi:10.1002/glia.22481

Bezzi P, Domercq M, Brambilla L, Galli R, Schols D, De Clercq E, Vescovi A, Bagetta G, Kol-lias G, Meldolesi J, V olterra A (2001) CXCR4-activated astrocyte glutamate release via TNFalpha: amplification by microglia triggers neurotoxicity. Nat Neurosci 4(7):702–710.

doi:10.1038/8949089490 [pii]

Biber K, Laurie DJ, Berthele A, Sommer B, Tolle TR, Gebicke-Harter PJ, van Calker D, Boddeke HW (1999) Expression and signaling of group I metabotropic glutamate receptors in astrocytes and microglia. J Neurochem 72(4):1671–1680

Boddeke EW, Meigel I, Frentzel S, Biber K, Renn LQ, Gebicke-Harter P (1999a) Functional ex-pression of the fractalkine (CX3C) receptor and its regulation by lipopolysaccharide in rat microglia. Eur J Pharmacol 374(2):309–313

Boddeke EW, Meigel I, Frentzel S, Gourmala NG, Harrison JK, Buttini M, Spleiss O, Gebicke-Harter P (1999b) Cultured rat microglia express functional beta-chemokine receptors. J Neu-roimmunol 98(2):176–184

Byrnes KR, Loane DJ, Faden AI (2009) Metabotropic glutamate receptors as targets for multi-potential treatment of neurological disorders. Neurotherapeutics 6(1):94–107. doi:10.1016/j.

nurt.2008.10.038

Cardona AE, Pioro EP, Sasse ME, Kostenko V, Cardona SM, Dijkstra IM, Huang D, Kidd G, Dom-browski S, Dutta R, Lee JC, Cook DN, Jung S, Lira SA, Littman DR, Ransohoff RM (2006) Control of microglial neurotoxicity by the fractalkine receptor. Nat Neurosci 9(7):917–924.

doi:10.1038/nn1715

Carter TL, Rissman RA, Mishizen-Eberz AJ, Wolfe BB, Hamilton RL, et al (2004) Differential preservation of AMPA receptor subunits in the hippocampi of Alzheimer’s disease patients ac-cording to Braak stage. Exp Neurol 187:299–309

Charles NA, Holland EC, Gilbertson R, Glass R, Kettenmann H (2012) The brain tumor microen-vironment. Glia 60(3):502–514

Chew LJ, Fusar-Poli P, Schmitz T (2013) Oligodendroglial alterations and the role of microg-lia in white matter injury: relevance to schizophrenia. Dev Neurosci 35(2–3):102–129.

doi:10.1159/000346157

Chowen JA, Argente J, Busiguina S, Garcia-Segura LM (1996) The role of glia in the neuroendo-crine hypothalamus: possible implications in hormone secretion. Horm Res 45(Suppl 1):15–18

308M. Noda De Simone R, Ajmone-Cat MA, Carnevale D, Minghetti L (2005) Activation of alpha7 nicotinic acetylcholine receptor by nicotine selectively up-regulates cyclooxygenase-2 and prostaglan-din E2 in rat microglial cultures. J Neuroinflam 2(1):4. doi:10.1186/1742-2094-2-4 Delgado M (2002a) Vasoactive intestinal peptide and pituitary adenylate cyclase-activating poly-peptide inhibit CBP-NF-kappaB interaction in activated microglia. Biochem Biophys Res Commun 297(5):1181–1185

Delgado M (2002b) Vasoactive intestinal peptide and pituitary adenylate cyclase-activating poly-peptide inhibit the MEKK1/MEK4/JNK signaling pathway in endotoxin-activated microglia.

Biochem Biophys Res Commun 293(2):771–776. doi:10.1016/S0006-291x(02)00283-8 Dominguez E, Rivat C, Pommier B, Mauborgne A, Pohl M (2008) JAK/STAT3 pathway is acti-vated in spinal cord microglia after peripheral nerve injury and contributes to neuropathic pain development in rat. J Neurochem 107(1):50–60. doi:10.1111/j.1471-4159.2008.05566.x Eckstein M, Hurlemann R (2013) Oxytocin: evidence for a therapeutic potential of the social neu-romodulator. Nervenarzt 84(11):1321–1328. doi:10.1007/s00115-013-3832-6

El Khoury J, Luster AD (2008) Mechanisms of microglia accumulation in Alzheimer’s disease: ther-apeutic implications. Trends Pharmacol Sci 29(12):626–632. doi:10.1016/j.tips.2008.08.004 Emerit J, Edeas M, Bricaire F (2004) Neurodegenerative diseases and oxidative stress. Biomed Pharmacother Biomed Pharmacother 58(1):39–46

Eyo UB, Dailey ME (2013) Microglia: key elements in neural development, plasticity, and pathol-ogy. J Neuroimmune Pharmacol 8(3):494–509. doi:10.1007/s11481-013-9434-z

Eyo UB, Wu LJ (2013) Bidirectional microglia-neuron communication in the healthy brain. Neu-ral Plast 2013:456857. doi:10.1155/2013/456857

Eyo UB, Miner SA, Ahlers KE, Wu LJ, Dailey ME (2013) P2 × 7 receptor activation regulates microglial cell death during oxygen-glucose deprivation. Neuropharmacology 73:311–319.

doi:10.1016/j.neuropharm.2013.05.032

Farso MC, O’Shea RD, Beart PM (2009) Evidence group I mGluR drugs modulate the activa-tion profile of lipopolysaccharide-exposed microglia in culture. Neurochem Res 34(10):1721–1728. doi:10.1007/s11064-009-9999-3

Ferrer I, Puig B (2003) GluR2/3, NMDAepsilon1 and GABAA receptors in Creutzfeldt-Jakob disease. Acta Neuropathol 106:311–318

Fiebich BL, Biber K, Gyufko K, Berger M, Bauer J, van Calker D (1996a) Adenosine A2b recep-tors mediate an increase in interleukin (IL)-6 mRNA and IL-6 protein synthesis in human astroglioma cells. J Neurochem 66(4):1426–1431

Fiebich BL, Biber K, Lieb K, van Calker D, Berger M, Bauer J, Gebicke-Haerter PJ (1996b) Cyclooxygenase-2 expression in rat microglia is induced by adenosine A2a-receptors. Glia 18(2):152–160.doi:10.1002/(SICI)1098-1136(199610)18:2<152::AID-GLIA7>3.0.CO;2-2 Fischer MT, Wimmer I, Hoftberger R, Gerlach S, Haider L, Zrzavy T, Hametner S, Mahad D, Binder CJ, Krumbholz M, Bauer J, Bradl M, Lassmann H (2013) Disease-specific molecular events in cortical multiple sclerosis lesions. Brain 136(Pt 6):1799–1815. doi:10.1093/brain/ awt110

Flynn G, Maru S, Loughlin J, Romero IA, Male D (2003) Regulation of chemokine receptor ex-pression in human microglia and astrocytes. J Neuroimmunol 136(1–2):84–93

Franke H, Verkhratsky A, Burnstock G, Illes P (2012) Pathophysiology of astroglial purinergic signalling. Purinerg Signal 8(3):629–657. doi:10.1007/s11302-012-9300-0

Fujita H, Tanaka J, Maeda N, Sakanaka M (1998) Adrenergic agonists suppress the proliferation of microglia through beta 2-adrenergic receptor. Neurosci Lett 242(1):37–40

Gabuzda D, Yankner BA (2013) Physiology: inflammation links ageing to the brain. Nature 497(7448):197–198. doi:10.1038/nature12100

Garcia-Segura LM, Chowen JA, Naftolin F (1996) Endocrine glia: roles of glial cells in the brain actions of steroid and thyroid hormones and in the regulation of hormone secretion. Front Neuroendocrinol 17(2):180–211. doi:10.1006/frne.1996.0005

Gentleman SM (2013) Review: microglia in protein aggregation disorders: friend or foe? Neuro-pathol Appl Neurobiol 39(1):45–50. doi:10.1111/nan.12017

13 Possible Therapeutic Targets in Microglia

309

Gyoneva S, Traynelis SF (2013) Norepinephrine modulates the motility of resting and activated microglia via different adrenergic receptors. J Biol Chem 288(21):15291–15302. doi:10.1074/ jbc.M113.458901

Habib P, Dreymueller D, Ludwig A, Beyer C, Dang J (2013a) Sex steroid hormone-mediated func-tional regulation of microglia-like BV-2 cells during hypoxia. J Steroid Biochem Mol Biology 138:195–205. doi:10.1016/j.jsbmb.2013.06.003

Habib P, Slowik A, Zendedel A, Johann S, Dang J, Beyer C (2013b) Regulation of hypoxia-in-duced inflammatory responses and M1-M2 phenotype switch of primary rat microglia by sex steroids. J Mol Neurosci. doi:10.1007/s12031-013-0137-y

Hagino Y, Kariura Y, Manago Y, Amano T, Wang B, Sekiguchi M, Nishikawa K, Aoki S, Wada K, Noda M (2004) Heterogeneity and potentiation of AMPA type of glutamate receptors in rat cultured microglia. Glia 47(1):68–77. doi:10.1002/glia.20034

Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10(11):1387–1394. doi:10.1038/nn1997 Hansson GK, Edfeldt K (2005) Toll to be paid at the gateway to the vessel wall. Arterioscler Thromb Vasc Biol 25(6):1085–1087. doi:10.1161/01.ATV.0000168894.43759.47

Harry GJ (2013) Microglia during development and aging. Pharmacol Ther 139(3):313–326.

doi:10.1016/j.pharmthera.2013.04.013

Hayashi Y, Koyanagi S, Kusunose N, Okada R, Wu Z, Tozaki-Saitoh H, Ukai K, Kohsaka S, Inoue K, Ohdo S, Nakanishi H (2013) The intrinsic microglial molecular clock controls synaptic strength via the circadian expression of cathepsin S. Ohdo S, Nakanishi H. Sci Rep 25(3):2744.

doi: 10.1038/srep02744

Heneka MT, Nadrigny F, Regen T, Martinez-Hernandez A, Dumitrescu-Ozimek L, Terwel D, Jardanhazi-Kurutz D, Walter J, Kirchhoff F, Hanisch UK, Kummer MP (2010) Locus ceruleus controls Alzheimer’s disease pathology by modulating microglial functions through norepi-nephrine. Proc Natl Acad Sci U S A 107(13):6058–6063. doi:10.1073/pnas.0909586107 Hernandez-Ontiveros DG, Tajiri N, Acosta S, Giunta B, Tan J, Borlongan CV (2013) Microg-lia activation as a biomarker for traumatic brain injury. Front Neurol 4:30. doi:10.3389/ fneur.2013.00030

Huettner JE (1990) Glutamate receptor channels in rat DRG neurons: activation by kainate and quisqualate and blockade of desensitization by Con A. Neuron 5(3):255–266

Huo Y, Rangarajan P, Ling EA, Dheen ST (2011) Dexamethasone inhibits the Nox-dependent ROS production via suppression of MKP-1-dependent MAPK pathways in activated microg-lia. BMC Neurosci 12:49. doi:10.1186/1471–2202-12–49

Ichinose M, Asai M, Sawada M (1998) Activation of outward current by pituitary adenylate cy-clase activating polypeptide in mouse microglial cells. J Neurosci Res 51(3):382–390

Ifuku M, Farber K, Okuno Y, Yamakawa Y, Miyamoto T, Nolte C, Merrino VF, Kita S, Iwamoto T, Komuro I, Wang B, Cheung G, Ishikawa E, Ooboshi H, Bader M, Wada K, Kettenmann H, Noda M (2007) Bradykinin-induced microglial migration mediated by B1-bradykinin recep-tors depends on Ca2+ influx via reverse-mode activity of the Na+/Ca2+ exchanger. J Neurosci 27(48):13065–13073. doi:10.1523/JNEUROSCI.3467-07.2007

Imai Y, Kohsaka S (2002) Intracellular signaling in M-CSF-induced microglia activation: role of Iba1. Glia 40(2):164–174. doi:10.1002/glia.10149

Inoue K, Tsuda M (2009) Microglia and neuropathic pain. Glia 57:1469–1479

Jimenez-Pacheco A, Mesuret G, Sanz-Rodriguez A, Tanaka K, Mooney C, Conroy R, Miras-Por-tugal MT, Diaz-Hernandez M, Henshall DC, Engel T (2013) Increased neocortical expression of the P2 × 7 receptor after status epilepticus and anticonvulsant effect of P2 × 7 receptor antagonist A-438079. Epilepsia 54(9):1551–1561. doi:10.1111/epi.12257

Kaindl AM, Degos V, Peineau S, Gouadon E, Chhor V, Loron G, Le Charpentier T, Josserand J, Ali C, Vivien D, Collingridge GL, Lombet A, Issa L, Rene F, Loeffler JP, Kavelaars A, Verney C, Mantz J, Gressens P (2012) Activation of microglial N-methyl-D-aspartate receptors trig-gers inflammation and neuronal cell death in the developing and mature brain. Ann Neurol 72(4):536–549. doi:10.1002/ana.23626

310M. Noda Karelina K, Stuller KA, Jarrett B, Zhang N, Wells J, Norman GJ, DeVries AC (2011) Oxytocin me -diates social neuroprotection after cerebral ischemia. Stroke 42(12):3606–3611. doi:10.1161/STROKEAHA.111.628008Kato TA, Hayakawa K, Monji A, Kanba S (2013a) Missing and possible link between neuro -endocrine factors, neuropsychiatric disorders, and microglia. Front Integr Neurosci 7:53. doi:10.3389/fnint.2013.00053Kato TA, Yamauchi Y , Horikawa H, Monji A, Mizoguchi Y , Seki Y , Hayakawa K, Utsumi H, Kanba S (2013b) Neurotransmitters, psychotropic drugs and microglia: clinical implications for psychiatry. Curr Med Chem 20(3):331–344Kettenmann K, Ransom BR (2013) Neuroglia, 3rd edn. Oxford University Press, Oxford Kettenmann H, Hanisch UK, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91(2):461–553. doi:10.1152/physrev.00011.2010Koizumi S, Shigemoto-Mogami Y , Nasu-Tada K, Shinozaki Y , Ohsawa K, Tsuda M, Joshi BV , Jacobson KA, Kohsaka S, Inoue K (2007) UDP acting at P2Y6 receptors is a mediator of mi -croglial phagocytosis. Nature 446(7139):1091–1095Kuhn SA, van Landeghem FK, Zacharias R, Farber K, Rappert A, Pavlovic S, Hoffmann A, Nolte C, Kettenmann H (2004) Microglia express GABA(B) receptors to modulate interleukin re -lease. Mol Cell Neurosci 25(2):312–322. doi:10.1016/j.mcn.2003.10.023Lai AY , Dibal CD, Armitage GA, Winship IR, Todd KG (2013) Distinct activation profiles in mi -croglia of different ages: a systematic study in isolated embryonic to aged microglial cultures. Neuroscience 254:185–195. doi:10.1016/j.neuroscience.2013.09.010Laird MD, Shields JS, Sukumari-Ramesh S, Kimbler DE, Fessler RD, Shakir B, Youssef P, Yana -sak N, Vender JR, Dhandapani KM (2014) High mobility group box protein-1 promotes cere -bral edema after traumatic brain injury via activation of toll-like receptor 4. Glia 62(1):26–38. doi:10.1002/glia.22581Lee M (2013) Neurotransmitters and microglial-mediated neuroinflammation. Curr Protein Pept Sci 14(1):21–32Lee YB, Nagai A, Kim SU (2002) Cytokines, chemokines, and cytokine receptors in human mi -croglia. J Neurosci Res 69(1):94–103. doi:10.1002/jnr.10253Lee YK, Choi DY , Jung YY , Yun YW, Lee BJ, Han SB, Hong JT (2013) Decreased pain responses of C-C chemokine receptor 5 knockout mice to chemical or inflammatory stimuli. Neurophar -macology 67:57–65. doi:10.1016/j.neuropharm.2012.10.030Lenz KM, Nugent BM, Haliyur R, McCarthy MM (2013) Microglia are essential to masculinization of brain and behavior. J Neurosci 33(7):2761–2772. doi:10.1523/JNEUROSCI.1268-12.2013Leulier F, Lemaitre B (2008) Toll-like receptors–taking an evolutionary approach. Nat Rev Genet 9(3):165–178Li HQ, Chen C, Dou Y , Wu HJ, Liu YJ, Lou HF, Zhang JM, Li XM, Wang H, Duan S (2013) P2Y4 receptor-mediated pinocytosis contributes to amyloid beta-induced self-uptake by microglia. Mol Cell Biol 33(21):4282–4293. doi:10.1128/MCB.00544-13Loane DJ, Byrnes KR (2010) Role of microglia in neurotrauma. Neurotherapy 7(4):366–377. doi:10.1016/j.nurt.2010.07.002Luo Y , Kaur C, Ling EA (2002) Neuronal and glial response in the rat hypothalamus-neurohy -pophysis complex with streptozotocin-induced diabetes. Brain Res 925(1):42–54Luongo L, Guida F, Imperatore R, Napolitano F, Gatta L, Cristino L, Giordano C, Siniscalco D, Di Marzo V , Bellini G, Petrelli R, Cappellacci L, Usiello A, de Novellis V , Rossi F, Maione S (2014) The A1 adenosine receptor as a new player in microglia physiology. Glia 62(1):122–132. doi:10.1002/glia.22592Mastroeni D, Grover A, Leonard B, Joyce JN, Coleman PD, Kozik B, Bellinger DL, Rogers J (2009) Microglial responses to dopamine in a cell culture model of Parkinson’s disease. Neu -robiol Aging 30(11):1805–1817. doi:10.1016/j.neurobiolaging.2008.01.001Monif M, Reid CA, Powell KL, Smart ML, Williams DA (2009) The P2X 7 receptor drives microg -lial activation and proliferation: a trophic role for P2X 7R pore. J Neurosci 29(12):3781–3791

311 13 Possible Therapeutic Targets in Microglia

Moon JH, Kim SY, Lee HG, Kim SU, Lee YB (2008) Activation of nicotinic acetylcholine re-ceptor prevents the production of reactive oxygen species in fibrillar beta amyloid peptide (1–42)-stimulated microglia. Exp Mol Med 40(1):11–18. doi:10.3858/emm.2008.40.1.11 Mor G, Nilsen J, Horvath T, Bechmann I, Brown S, Garcia-Segura LM, Naftolin F (1999) Estrogen and microglia: a regulatory system that affects the brain. J Neurobiol 40(4):484–496 Morioka N, Tanabe H, Inoue A, Dohi T, Nakata Y (2009) Noradrenaline reduces the ATP-stim-ulated phosphorylation of p38 MAP kinase via beta-adrenergic receptors-cAMP-protein ki-nase A-dependent mechanism in cultured rat spinal microglia. Neurochem Int 55(4):226–234.

doi:10.1016/j.neuint.2009.03.004

Nakatani Y, Amano T, Tsuji M, Takeda H (2012) Corticosterone suppresses the proliferation of BV2 microglia cells via glucocorticoid, but not mineralocorticoid receptor. Life Sci 91(15–

16):761–770. doi:10.1016/j.lfs.2012.08.019

Noda M, Beppu K (2013) Possible contribution of microglial glutamate receptors to inflam-matory response upon neurodegenerative diseases. J Neurol Disord 1. doi:10.4172/2329–6895.1000131

Noda M, Nakanishi H, Nabekura J, Akaike N (2000) AMPA-kainate subtypes of glutamate recep-tor in rat cerebral microglia. J Neurosci 20(1):251–258

Noda M, Kettenmann H, Wada K (2006) Anti-inflammatory effects of kinins via microglia in the central nervous system. Biol Chem 387(2):167–171. doi:10.1515/BC.2006.022

Noda M, Kariura Y, Pannasch U, Nishikawa K, Wang L, Seike T, Ifuku M, Kosai Y, Wang B, Nolte C, Aoki S, Kettenmann H, Wada K (2007) Neuroprotective role of bradykinin because of the attenuation of pro-inflammatory cytokine release from activated microglia. J Neurochem 101(2):397–410. doi:10.1111/j.1471-4159.2006.04339.x

Norden DM, Godbout JP (2013) Review: microglia of the aged brain: primed to be activated and resistant to regulation. Neuropathol Appl Neurobiol 39(1):19–34. doi:10.1111/j.1365-2990.2012.01306.x

Ohnishi M, Katsuki H, Takagi M, Kume T, Akaike A (2009) Long-term treatment with nicotine suppresses neurotoxicity of, and microglial activation by, thrombin in cortico-striatal slice cul-

tures. Eur J Pharmacol 602(2–3):288–293. doi:10.1016/j.ejphar.2008.11.041 Ohsawa K, Irino Y, Sanagi T, Nakamura Y, Suzuki E, Inoue K, Kohsaka S (2010) P2Y

12 receptor-

mediated integrin-beta1 activation regulates microglial process extension induced by ATP. Glia 58:790–801

Orr AG, Orr AL, Li XJ, Gross RE, Traynelis SF (2009) Adenosine A(2A) receptor mediates mi-croglial process retraction. Nat Neurosci 12(7):872–878. doi:10.1038/nn.2341

Ortiz GG, Pacheco-Moises FP, Bitzer-Quintero OK, Ramirez-Anguiano AC, Flores-Alvarado LJ, Ramirez-Ramirez V, Macias-Islas MA, Torres-Sanchez ED (2013) Immunology and oxida-tive stress in multiple sclerosis: clinical and basic approach. Clin Dev Immunol 2013:708659.

doi:10.1155/2013/708659

Padi SS, Shi XQ, Zhao YQ, Ruff MR, Baichoo N, Pert CB, Zhang J (2012) Attenuation of rodent neuropathic pain by an orally active peptide, RAP-103, which potently blocks CCR2- and CCR5-mediated monocyte chemotaxis and inflammation. Pain 153(1):95–106. doi:10.1016/j.

pain.2011.09.022

Partin KM, Patneau DK, Winters CA, Mayer ML, Buonanno A (1993) Selective modulation of de-sensitization at AMPA versus kainate receptors by cyclothiazide and concanavalin A. Neuron 11(6):1069–1082

Peviani M, Salvaneschi E, Bontempi L, Petese A, Manzo A, Rossi D, Salmona M, Collina S, Bigini P, Curti D (2013) Neuroprotective effects of the Sigma-1 receptor (S1R) agonist PRE-084, in a mouse model of motor neuron disease not linked to SOD1 mutation. Neurobiol Dis 62C:218–232. doi:10.1016/j.nbd.2013.10.010

Prinz M, Hausler KG, Kettenmann H, Hanisch U (2001) Beta-adrenergic receptor stimulation selectively inhibits IL-12p40 release in microglia. Brain Res 899(1–2):264–270 Rangarajan P, Eng-Ang L, Dheen ST (2013) Potential drugs targeting microglia: current knowl-edge and future prospects. CNS Neurol Disord Drug Targets 12(6):799–806

312M. Noda Rogers J, Mastroeni D, Leonard B, Joyce J, Grover A (2007) Neuroinflammation in Alzheimer’s disease and Parkinson’s disease: are microglia pathogenic in either disorder? Int Rev Neurobiol 82:235–246. doi:10.1016/S0074-7742(07)82012 - 5Sanz JM, Chiozzi P, Ferrari D, Colaianna M, Idzko M, Falzoni S, Fellin R, Trabace L, Di Virgilio F (2009) Activation of microglia by amyloid b requires P2X 7 receptor expression. J Immunol 182(7):4378–4385Sawada M, Suzumura A, Marunouchi T (1995) Induction of functional interleukin-2 receptor in mouse microglia. J Neurochem 64(5):1973–1979Schwab A (2001) Ion channels and transporters on the move. News Physiol Sci 16:29–33Shi Y , Yuan H, Kim D, Chanana V , Baba A, Matsuda T, Cengiz P, Ferrazzano P, Sun D (2013) Stimulation of Na(+)/H(+) exchanger isoform 1 promotes microglial migration. PLoS One 8(8):e74201. doi: 10.1371/journal.pone.0074201Shytle RD, Mori T, Townsend K, Vendrame M, Sun N, Zeng J, Ehrhart J, Silver AA, Sanberg PR, Tan J (2004) Cholinergic modulation of microglial activation by alpha 7 nicotinic receptors. J Neurochem 89(2):337–343. doi:10.1046/j.1471–4159.2004.02347.x Sohrabji F, Williams M (2013) Stroke neuroprotection: estrogen and IGF-1 interactions and the role of microglia. J Neuroendocrinol. doi:10.1111/jne.12059Spence RD, Wisdom AJ, Cao Y , Hill HM, Mongerson CR, Stapornkul B, Itoh N, Sofroniew MV , V oskuhl RR (2013) Estrogen mediates neuroprotection and anti-inflammatory effects during EAE through ERalpha signaling on astrocytes but not through ERbeta signaling on astrocytes or neurons. J Neurosci 33(26):10924–10933. doi:10.1523/JNEUROSCI.0886-13.2013Sperlagh B, Vizi ES, Wirkner K, Illes P (2006) P2X 7 receptors in the nervous system. Prog Neu -robiol 78(6):327–346Sugama S, Takenouchi T, Kitani H, Fujita M, Hashimoto M (2009) Microglial activation is inhibit -ed by corticosterone in dopaminergic neurodegeneration. J Neuroimmunol 208(1–2):104–114Sugama S, Takenouchi T, Fujita M, Kitani H, Conti B, Hashimoto M (2012) Corticosteroids limit microglial activation occurring during acute stress. Neurosci 232C:13–20Tanaka J, Fujita H, Matsuda S, Toku K, Sakanaka M, Maeda N (1997) Glucocorticoid- and min -eralocorticoid receptors in microglial cells: the two receptors mediate differential effects of corticosteroids. Glia 20(1):23–37Tanaka KF, Kashima H, Suzuki H, Ono K, Sawada M (2002) Existence of functional beta1- and beta2-adrenergic receptors on microglia. J Neurosci Res 70(2):232–237. doi:10.1002/jnr.10399Tanaka K, Okada Y , Kanno T, Otomo A, Yanagisawa Y , Shouguchi-Miyata J, Suga E, Kohiki E, Onoe K, Osuga H, Aoki M, Hadano S, Itoyama Y , Ikeda JE (2008) A dopamine receptor an -tagonist L-745,870 suppresses microglia activation in spinal cord and mitigates the progression in ALS model mice. Exp Neurol 211(2):378–386. doi:10.1016/j.expneurol.2008.02.004Tapia-Gonzalez S, Garcia-Segura LM, Tena-Sempere M, Frago LM, Castellano JM, Fuente-Mar -tin E, Garcia-Caceres C, Argente J, Chowen JA (2011) Activation of microglia in specific hypothalamic nuclei and the cerebellum of adult rats exposed to neonatal overnutrition. J Neu -roendocrinol 23(4):365–370. doi:10.1111/j.1365-2826.2011.02113.x Taylor DL, Diemel LT, Cuzner ML, Pocock JM (2002) Activation of group II metabotropic glu -tamate receptors underlies microglial reactivity and neurotoxicity following stimulation with chromogranin A, a peptide up-regulated in Alzheimer’s disease. J Neurochem 82(5):1179–1191Taylor DL, Diemel LT, Pocock JM (2003) Activation of microglial group III metabotropic gluta -mate receptors protects neurons against microglial neurotoxicity. J Neurosci 23(6):2150–2160Taylor DL, Jones F, Kubota ES, Pocock JM (2005) Stimulation of microglial metabotropic glu -tamate receptor mGlu2 triggers tumor necrosis factor alpha-induced neurotoxicity in concert with microglial-derived Fas ligand. J Neurosci 25(11):2952–2964. doi:10.1523/JNEURO -SCI.4456-04.2005Theoharides TC, Asadi S, Patel AB (2013) Focal brain inflammation and autism. J Neuroinflam 10:46. doi:10.1186/1742–2094-10-46Thomsen MS, Mikkelsen JD (2012) The alpha7 nicotinic acetylcholine receptor ligands methyl -lycaconitine, NS6740 and GTS-21 reduce lipopolysaccharide-induced TNF-alpha release from microglia. J Neuroimmunol 251(1–2):65–72. doi:10.1016/j.jneuroim.2012.07.006

液位传感器常用的检测方法

为了选择最佳的液位传感器,我们不但需要了解被测液体的属性和状态,同时,也要知道不同的检测方式的优点与局限性,从而才能选出最合适的传感器。以下为目前市场上最常见的检测技术。 激光测量:激光类传感器基于光学检测原理,通过物体表面反射光线至接收器进行检测,其光斑较小且集中,易于安装、校准,灵活性好,可应用于散料或液位的连续或者限位报警等;但其不适合应用于透明液体(透明液体容易折射光线,导致光线无法反射至接收器),含泡沫或者蒸汽环境(无法穿透泡沫或者容易受到蒸汽干扰),波动性液体(容易造成误动作),振动环境等。 tdr(时域反射)/ 导波雷达/微波原理测量:其名称在行业内有多种不同的叫法,其具备了激光测量的好处,如:易于安装、校准,灵活性好等,另外其更优于激光检测,如无需重复校准和多功能输出等,其适用于各种含泡沫的液位检测,不受液体颜色影响,甚至可应用于高粘性液体,受外部环境干扰相对小,但其测量高度一般小于6米。 超声波测量:由于其原理为通过检测超声波发送与反射的时间差来计算液位高度,故容易受到超声波传播的能量损耗影响。其亦具备安装容易、灵活性高等特点,通常可安装于高处进行非接触式测量。但当使用于含蒸汽、粉层等环境时,检测距离将会明显缩短,不建议使用在吸波环境,如泡沫等。 音叉振动测量:音叉式测量仅为开关量输出,不能用于连续性监控液体高度。其原理为:当液体或者散料填充两个振动叉时,共振频率改变时,依靠检测频率改变而发出开关信号。其可用于高粘度液体或者固体散料的高度监控,主要为防溢报警、低液位报警等,不提供模拟量输出,另外,多数情况下需要开孔安装于容器侧面。 光电折射式测量:该检测方式通过传感器内部发出光源,光源通过透明树脂全反射至传感器接受器,但遇到液面时,部分光线将折射至液体,从而传感器检测全反射回来光量值的减少来监控液面。该检测方式便宜,安装、调试简单,但仅能应用于透明液体,同时只输出开关量信号。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解图尔克、奥托尼克斯、科瑞、山武、倍加福、邦纳、亚德客、施克等各类传感器的选型,报价,采购,参数,图片,批发信息,请关注艾驰商城https://www.360docs.net/doc/dc13616258.html,/

超声波传感器

超声波传感器 超声波传感器是利用超声波的特性研制而成的传感器。超声波是一种振动频率高于声波的机械波,由换能晶片在电压的激励下发生振动产生的,它具有频率高、波长短、绕射现象小,特别是方向性好、能够成为射线而定向传播等特点。超声波对液体、固体的穿透本领很大,尤其是在阳光不透明的固体中,它可穿透几十米的深度。超声波碰到杂质或分界面会产生显著反射形成反射成回波,碰到活动物体能产生多普勒效应。因此超声波检测广泛应用在工业、国防、生物医学等方面。 以超声波作为检测手段,必须产生超声波和接收超声波。完成这种功 能的装置就是超声波传感器,习惯上称为超声换能器,或者超声探头。 以超声波作为检测手段,必须产生超声波和接收超声波。完成这种功能的装置就是超声波传感器,习惯上称为超声换能器,或者超声探头。 超声波探头主要由压电晶片组成,既可以发射超声波,也可以接收超声波。小功率超声探头多作探测作用。它有许多不同的结构,可分直探头(纵波)、斜探头(横波)、表面波探头(表面波)、兰姆波探头(兰姆波)、双探头(一个探头反射、一个探头接收)等。 超声探头的核心是其塑料外套或者金属外套中的一块压电晶片。构成晶片的材料可以有许多种。晶片的大小,如直径和厚度也各不相同,因此每个探头的性能是不同的,使用前必须预先了解它的性能。 组成部分 超声波探头主要由压电晶片组成,既可以发射超声波,也可以接收超声波。小功率超声探头多作探测作用。它有许多不同的结构,可分直探头(纵波)、斜探头(横波)、表面波探头(表面波)、兰姆波探头(兰姆波)、双探头(一个探头反射、一个探头接收)等。 性能指标

超声探头的核心是其塑料外套或者金属外套中的一块压 超声波传感器 电晶片。构成晶片的材料可以有许多种。晶片的大小,如直径和厚度也各不相同,因此每个探头的性能是不同的,我们使用前必须预先了解它的性能。超声波传感器的主要性能指标包括: 工作频率 工作频率就是压电晶片的共振频率。当加到它两端的交流电压的频率和晶片的共振频率相等时,输出的能量最大,灵敏度也最高。 工作温度 由于压电材料的居里点一般比较高,特别是诊断用超声波探头使用 超声波传感器 功率较小,所以工作温度比较低,可以长时间地工作而不失效。医疗用的超声探头的温度比较高,需要单独的制冷设备。[1] 灵敏度 主要取决于制造晶片本身。机电耦合系数大,灵敏度高;反之,灵敏度低。 主要应用 超声波传感技术应用在生产实践的不同方面,而医学应用是其

超声波液位传感器结构及工作原理

超声波液位传感器是一种常用的测量仪器,被广泛的应用于多个行业当中。超声波传感器是一种利用超声波的特性研制而成的传感器,具有测量精准、检测范围广、使用灵活、维护简便等优点。接下来艾驰商城小编主要来为大家介绍一下超声波液位传感器的结构及工作原理,希望可以帮助到大家。 超声波液位传感器的结构 超声波传感器主要由压电晶片组成,既可以发射超声波,也可以接收超声波。小功率超声探头多作探测作用。它有许多不同的结构,可分直探头(纵波)、斜探头(横波)、表面波探头(表面波)、兰姆波探头(兰姆波)、双探头(一个探头反射、一个探头接收)等。超声传感器的核心是其塑料外套或者金属外套中的一块压电晶片。构成晶片的材料可以有许多种。晶片的大小,如直径和厚度也各不相同,因此每个传感器的性能是不同的,我们使用前必须预先了解它的性能。 超声波液位传感器的工作原理 超声波是一种振动频率高于声波的机械波,由换能晶片在电压的激励下发生振动产生的,它具有频率高、波长短、绕射现象小,特别是方向性好、能够成为射线而定向传播等特点。超声波对液体、固体的穿透本领很大,尤其是在阳光不透明的固体中,它可穿透几十米的深度。超声波碰到杂质或分界面会产生显著反射形成反射成回波,碰到活动物体能产生多普勒效应。因此超声波检测广泛应用在工业、国防、生物医学等方面以超声波作为检测手段,必须产生超声波和接收超声波。完成这种功能的装置就是超声波传感器,习惯上称为超声换能器,或者超声探头。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解图尔克、奥托尼克斯、科瑞、山武、倍加福、邦纳、亚德客、施克等各类传感器的选型,报价,采购,参数,图片,批发信息,请关注艾驰商城https://www.360docs.net/doc/dc13616258.html,/

超声波传感器简介

超声波传感器 基本介绍 人们能听到声音是由于物体振动产生的,它的频率在20HZ-20KHZ范围内,超过20KHZ称为超声波,低于20HZ的称为次声波。常用的超声波频率为几十KHZ-几十MHZ。超声波传感器是利用超声波的特性研制而成的传感器。超声波是一种振动频率高于声波的机械波,由换能晶片在电压的激励下发生振动产生的,它具有频率高、波长短、绕射现象小,特别是方向性好、能够成为射线而定向传播等特点。超声波对液体、固体的穿透本领很大,尤其是在阳光不透明的固体中,它可穿透几十米的深度。超声波碰到杂质或分界面会产生显著反射形成反射成回波,碰到活动物体能产生多普勒效应。因此超声波检测广泛应用在工业、国防、生物医学等方面。 以超声波作为检测手段,必须产生超声波和接收超声波。完成这种功能的装置是声波传感器,习惯上称为超声换能器,或者超声探头。 以超声波作为检测手段,必须产生超声波和接收超声波。完成这种功能的装置就是超声波传感器,习惯上称为超声换能器,或者超声探头。 超声波探头主要由压电晶片组成,既可以发射超声波,也可以接收超声波。小功率超声探头多作探测作用。它有许多不同的结构,可分直探头(纵波)、斜探头(横波)、表面波探头(表面波)、兰姆波探头(兰姆波)、双探头(一个探头反射、一个探头接收)等。 超声探头的核心是其塑料外套或者金属外套中的一块压电晶片。构成晶片的材料可以有许多种。晶片的大小,如直径和厚度也各不相同,因此每个探头的性能是不同的,使用前必须预先了解它的性能。 组成部分 超声波探头主要由压电晶片组成,既可以发射超声波,也可以接收超声波。小功率超声探头多作探测作用。它有许多不同的结构,可分直探头(纵波)、斜探头(横波)、表面波探头(表面波)、兰姆波探头(兰姆波)、双探头(一个探头反射、一个探头接收)等。 ①

基于超声波传感器的液位测量

基于超声波传感器的液位测量 1.摘要 超声波传感器应用广泛,其中液体液位的准确测量是实现生产过程检测和实时控制的重要保障,也是实现安全生产的重要环节。本文主要介绍液位的测量。液体罐内液位测量的方法有很多种,其中超声波传感器由于结构简单、体积小、费用低、信息处理简单可靠,易于小型化与集成化,并且可以进行实时控制,所以超声波测量法得到了广泛的应用。2.超声波概要 超声波是指频率高于20kHz的机械波,一般由压电效应或磁致伸缩效应产生;它沿直线传播,频率越高,绕射能力越弱,但反射能力越强;它还具有强度大、方向性好等特点,为此,利用超声波的这些性质就可制成超声波传感器。超声波传感器是利用超声波在超声场中的物理特性和各种效应研制而成的传感器。超声波传感器按其工作原理可分为压电式、磁致伸缩式、电磁式等,其中以压电式最为常用。压电式超声波传感器常用的材料是压电晶体和压电陶瓷,它是利用压电材料的压电效应来工作的:逆压电效应将高频电振动转换成高频机械震动,从而产生超声波,可作为发射探头;而正压电效应是将超声波振动转换成电信号,可作为接收探头。 3.检测方法选择 从测量范围来说,有的液位计只能测量几十厘米,有的却可达几十米。从测量条件和环境来说,有的非常简单,有的却十分复杂。例如:有的是高温高压,有的是低温或真空,有的需要防腐蚀、防辐射,有的从安装上提出苛刻的限制,有的从维护上提出严格的要求等。 按测量液位的感应元件与被测液体是否接触,液位仪表可以分为接触型和非接触型两大类。接触型液位测量主要有:人工检尺法、浮子测量装置、伺服式液位计、电容式液位计以及磁致伸缩液位计等。它们的共同点是测量的感应元件与被测液体接触,即都存在着与被测液体相接触的测量部件且多数带有可动部件。因此存在一定的磨损且容易被液体沾污或粘住,尤其是杆式结构装置,还需有较大的安装空间,不方便安装和检修。非接触型液位测量主要有超声波液位计、微波雷达液位计、射线液位计以及激光液位计等。顾名思义,这类测量仪表的共同特点是测量的感应元件与被测液体不接触。因此测量部件不受被测介质影响,也不影响被测介质,因而其适用范围较为广泛,可用于接触型测量仪表不能满足的特殊场合,如粘度高、腐蚀性强、污染性强、易结晶的介质。 根据以上几种因素得知,超声波液位计是非接触式液位计中发展最快的一种。超声波在同一种介质中传播速度相对恒定,遇到被测物体表面时会产生反射,基于此原理研制出

超声波传感器原理

超声波传感器原理 [日期:2007-06-05]来源:作者:[字体:大中小]超声波发射原理是把铁磁材料置于交变磁场中,产生机械振动,发射出超声波。 接收原理是当超声波作用在磁致材料上时,使磁滞材料磁场变化,使线圈产生感应电势输出。 超声波传感器原理与应用 2008-04-1802:40

polaroid6500系列超声波距离模块的硬件电路如图2所示: tl851是一个经济的数字12步测距控制集成电路。内部有一个420khz的陶瓷晶振,6500系列超声波距离模块开始工作时,在发送的前16个周期,陶瓷晶振被8.5分频,形成49.4khz的超声波信号,然后通过三极管q1和变压器t1输送至超声波传感器。发送之后陶瓷晶振被4.5分频,以供单片机定时用。tl852是专门为接收超声波而设计的芯片。因为返回的超声波信号比较微弱,需要进行放大才能被单片机接收,tl852主要提供了放大电路,当tl852接收到4个脉冲信号时,就通过rec 给tl851发送高电平表明超声波已经接收。 2.3at89c51单片机 本系统采用at89c51来实现对polaroid600系列传感器和polaroid6500系列超声波距离模块的控制。单片机通过p1.0引脚经反相器来控制超声波的发送,然后单片机不停的检测int0引脚,当int0引脚的电平由高电平变为低电平时就认为超声波已经返回。计数器所计的数据就是超声波所经历的时间,通过换算就可以得到传感器与障碍物之间的距离。超声波测距的硬件示意图如图3所示:

3、系统软件设计 系统程序流程图如图4所示: 工作时,微处理器at89c51先把p1.0置0,启动超声波传感器发射超声波,同时启动内部定时器t0开始计时。由于我们采用的超声波传感器是收发一体的,所以在发送完16个脉冲后超声波传感器还有余震,为了从返回信号识别消除超声波传感器的发送信号,要检测返回信号必须在启动发射信号后2.38ms才可以检测,这样就可以抑制输出得干扰。当超声波信号碰到障碍物时信号立刻返回,微处理器不停的扫描int0引脚,如果int0接收的信号由高电平变为低电平,此时表明信号已经返回,微处理器进入中断关闭定时器。再把定时器中的数据经过换算就可以得出超声

超声波液位计介绍

超声波液位 超声波液位计是由微处理器控制的数字物位仪表。在测量中脉冲超声波由传感器(换能器)发出,声波经物体表面反射后被同一传感器接收,转换成电信号。并由声波的发射和接收之间的时间来计算传感器到被测物体的距离。由于采用非接触的测量,被测介质几乎不受限制,可广泛用于各种液体和固体物料高度的测量。 目录 基本简介 工作原理 现场条件 产品特点 超声波液位计测量水位的原理以及安装要求 超声波液位计主要技术参数 HD-ALY系列精巧型小盲区超声波液位计 基本简介 QF-8000超声波液位计可采用二线制、三线制或四线制技术,二线制为:供电与信号输出共用;三线制为:供电回路和信号输出回路独立,当采用直流24v供电时,可使用一根3芯电缆线,供电负端和信号输出负端共用一根芯线;四线制为:当采用交流220v供电时,或者当采用直流24v供电,要求供电回路与信号输出回路完全隔离时,应使用一根4芯电缆线。直流或交流供电,具有 4~20mADC,高低位开关量输出。 量程范围:0-50米,多种形式可选,适合各种腐蚀性、化工类场合,精度高,远传信号输出,PLC 系统监控。 工作原理 QF-8000超声波物位计工作原理是由超声波换能器(探头)发出高频脉冲声波遇到被测物位(物料)表面被反射折回反射回波被换能器接收转换成电信号.声波的传播时间与声波的发出到物体表面的距离成正比.声波传输距离S与声速C和声传输时间T的关系可用公式表示:S=C×T/2. 探头部分发射出超声波,然后被液面反射,探头部分

再接收,探头到液(物)面的距离和超声波经过的时间成比例: hb = ct2 即 距离[m] = 时间×声速/2 [m] 声速的温度补偿公式: LU20超声波液位计 环境声速= 331.5 + 0.6×温度 现场条件 1) 环境温度: -10 ~ +60℃(低温情况需特殊说明) 2) 表壳保护等级: IP65 适用于户外安装 3) 适用测量的介质: 适用于大部分液体及粉状颗粒状固体,弱酸,弱碱,强碱,低于40%的强酸。若在强酸应用场合,请与我司联系,应使用防腐探头。 4) 容器压力: 0.7~3 bar 5) 在下面的任何一种情况,要注意: ①有泡沫的液体/固体 ②周围有强电压,强电流,强电磁干扰,尽量避免高电压,高电流及强电磁干扰 ③大风和太阳直晒 ④强震动 超声波液位计是由微处理器控制的数字物位仪表。在测量中脉冲超声波由传感器(换能器)发出,声波经物体表面反射后被同一传感器接收,转换成电信号。并由声波的发射和接收之间的时间来计算传感器到被测物体的距离。由于采用非接触的测量,被测介质几乎不受限制,可广泛用于各种液体和固体物料高度的测量。 产品特点 多脉冲低电压多点发射发射电路,双平衡抑制噪声多点接收电路(QF-9000系列):提高仪器可靠性,解决不物位不平整测量不准确的难题,并大大加强抗干扰能力,可在变电站发射塔附近稳定工作 自动功率调整、增益控制、温度补偿。 先进的检测技术,丰富的软件功能适应各种复杂环境。 采用新型的波形计算技术,提高仪表的测量精度。 具有干扰回波的抑止功能保证测量数据的真实。 16位D/A转换,提高电流输出的精度和分辨率。 传感器采用四氟乙烯材料,可用于各种腐蚀性场合。 多种输出形式:可编程继电器输出、高精度4-20mA电流输出、Rs-485数字通信输出分体超声波液位探头

超声波传感器的原理及应用前景展望

超声波传感器的原理及应用前景展望 一、原理简述: 超声波传感器是利用超声波的特性研制而成的传感器。超声波是一种振动频率高于声波的机械波,由换能晶片在电压的激励下发生振动产生的,它具有频率高、波长短、绕射现象小,特别是方向性好、能够成为射线而定向传播等特点。超声波对液体、固体的穿透本领很大,尤其是在阳光不透明的固体中,它可穿透几十米的深度。超声波碰到杂质或分界面会产生显著反射形成反射成回波,碰到活动物体能产生多普勒效应。因此超声波检测广泛应用在工业、国防、生物医学等方面以超声波作为检测手段,必须产生超声波和接收超声波。完成这种功能的装置就是超声波传感器,习惯上称为超声换能器,或者超声探头。 超声波探头主要由压电晶片组成,既可以发射超声波,也可以接收超声波。小功率超声探头多作探测作用。它有许多不同的结构,可分直探头(纵波)、斜探头(横波)、表面波探头(表面波)、兰姆波探头(兰姆波)、双探头(一个探头反射、一个探头接收)等。 超声探头的核心是其塑料外套或者金属外套中的一块压电晶片。构成晶片的材料可以有许多种。晶片的大小,如直径和厚度也各不相同,因此每个探头的性能是不同的,我们使用前必须预先了解它的性能。超声波传感器的主要性能指标,包括; (1)工作频率。工作频率就是压电晶片的共振频率。当加到它两端的交流电压的频率和晶片的共振频率相等时,输出的能量最大,灵敏度也最高。

(2)工作温度。由于压电材料的居里点一般比较高,特别时诊断用超声波探头使用功率较小,所以工作温度比较低,可以长时间地工作而不产生失效。医疗用的超声探头的温度比较高,需要单独的制冷设备。 (3)灵敏度。主要取决于制造晶片本身。机电耦合系数大,灵敏度高;反之,灵敏度低。 二、结构与工作原理 超声波距离传感器可以广泛应用在物位(液位)监测,机器人防撞,各种超声波接近开关,以及防盗报警等相关领域,工作可靠,安装方便,防水型,发射夹角较小,灵敏度高,方便与工业显示仪表连接,也提供发射夹角较大的探头。 1、超声波测距仪: HpAWK超高能声波测距技术HpAWK系列产品使超声波测距技术有了重大的突破,它不仅拓宽了超声波测距技术的应用场合(适用极恶劣工的工作环境),而且使用智能调节技术,大大提高了超声波产品的可靠性及性能指标,让用户使用无后顾之忧。。 优秀的回波处理技术,5-50KHZ的超高强发波频率使HAWK物位计最大量程可达到0米,适用介质温度为–20℃— +175℃。智能的全自动调节发波频率,自动的温差补偿功能使其工作更加稳定可靠。HpAWK系列产品还拥有灵活多变的工作方式(供电电源可为VDC、24VDC、110VAC、220VAC;二/三/四线制同一仪表中可随意组合。它还拥有先进的远程GSM、CDMA、互联网调试功能,使得用户随时可以得到技术支持。

超声波液位传感器简介

超声波液位传感器简介 超声波液位传感器集非接触开关,控制器,变送器三种功能于一身,适用于小型储罐,EchoPod 超声波液位传感器灵活的设计可以应用于综合系统或者替代浮球开关、电导率开关和静压式传感器,也适用于流体控制和化工供料系统的综合应用,超声波液位传感器对于机器,刹车等设备的小储罐的应用也是很好的选择,PVDF的传感器可以适用于泥浆,腐蚀性介质,超声波液位传感器广泛应用于各种常压储罐,过程罐,小型罐和小型容器,泵提升站,废水储槽等。 工作原理及结构组成 超声波液位传感器 原理 超声波传感器是利用超声波的特性研制而成的传感器。超声波是一种振动频率高于声波的机械波,由换能晶片在电压的激励下发生振动产生的,它具有频率高、波长短、绕射现象小,特别是方向性好、能够成为射线而定向传播等特点。超声波对液体、固体的穿透本领很大,尤其是在阳光不透明的固体中,它可穿透几十米的深度。超声波碰到杂质或分界面会产生显著反射形成反射成回波,碰到活动物体能产生多普勒效应。因此超声波检测广泛应用在工业、国防、生物医学等方面以超声波作为检测手段,必须产生超声波和接收超声波。完成这种功能的装置就是超声波传感器,习惯上称为超声换能器,或者超声探头。[1]组成 超声波传感器主要由压电晶片组成,既可以发射超声波,也可以接收超声波。小功率超声探头多作探测作用。它有许多不同的结构,可分直探头(纵波)、斜探头(横波)、表面波探头(表面波)、兰姆波探头(兰姆波)、双探头(一个探头反射、一个探头接收)等。超声传感器的核心是其塑料外套或者金属外套中的一块压电晶片。构成晶片的材料可以有许多种。晶片的大小,如直径和厚度也各不相同,因此每个传感器的性能是不同的,我们使用前必须预先了解它的性能。 超声波传感器的主要性能指标 (1)工作频率。工作频率就是压电晶片的共振频率。当加到它两端的交流电压的频率和晶片的共振频率相等时,输出的能量最大,灵敏度也最高。 (2)工作温度。由于压电材料的居里点一般比较高,特别时诊断用超声波探头使用功率较小,所以工作温度比较低,可以长时间地工作而不产生失效。医疗用的超声传感器的温度比较高,需要单独的制冷设备。 (3)灵敏度。主要取决于制造晶片本身。机电耦合系数大,灵敏度高;反之,灵敏度低。如超声波传感器,一个复合式振动器被灵活地固定在底座上。该复合式振动器是谐振器以及,由一个金属片和一个压电陶瓷片组成的双压电晶片元件振动器的一个结合体。谐振器呈喇叭形,目的是能有效地辐射由于振动而产生的超声波,并且可以有效地使超声波聚集在振动器的中央部位。 室外用途的超声波传感器必须具有良好的密封性,以便防止露水、雨水和灰尘的侵入。压电陶瓷被固定在金属盒体的顶部内侧。底座固定在盒体的开口端,并且使用树脂进行覆盖。对应用于工业机器人的超声波传感器而言,要求其精确度要达到1mm,并且具有较强的超声波辐射。 特点 超声波液位传感器还有以下特点: □超声波液位传感器的量程为1.25米 □超声波液位传感器DL10 输出4~20mA

超声波传感器原理及应用

[日期:2007-06-05] 来源:作者:[字体:大中小] 超声波发射原理是把铁磁材料置于交变磁场中,产生机械振动,发射出超声波。 接收原理是当超声波作用在磁致材料上时,使磁滞材料磁场变化,使线圈产生感应电势输出。 超声波传感器原理与应用 2008-04-18 02:40 超声波传感器原理及应用 信息来源:转载https://www.360docs.net/doc/dc13616258.html,发布时间:2008-01-02字号:小中大 关键字:超声波传感器 1、遥控开关超声波遥控开关可控制家用电器及照明灯。采用 2、液位指示及控制器由于超声波在空气中有一定的衰减,则发送到液面及从液面反射回来的信号大小与液位有关,液面位置越高,信号越大;液面越低则信号就小。接收到的信号经BG1、BG2放大,经D1、D2整流成直流电压。当4.7KΩ上的电压超过BG3的导通电压时,有电流流过BG3,电流表有指示,电流大小与液面有关。A点与上图A点相连接。当液位低于设置值时,比较器输出为低电平。BG 不导通,若液位升到规定位置,比较器翻转,输出高电平。BG导通,J吸合,可通过电磁阀将输液开关关闭,以达到控制的目的(高位控制)。 超声波传感器 信息来源:https://www.360docs.net/doc/dc13616258.html,/ca.htm发布时间:2007-11-27字号:小中大 关键字:超声波传感器传感器压电陶瓷超声传感器超声波距离传感器 超声波传感器的测距系统设计图

信息来源:中国超声波发布时间:2008-03-17字号:小中大 关键字:超声波传感器 安全避障是移动机器人研究的一个基本问题。障碍物与机器人之间距离的获得是研究安全避障的前提,超声波传感器以其信息处理简单、价格低廉、硬件容易实现等优点,被广泛用作测距传感器。本超声波测距系统选用了senscomp公司生产的polaroid6500系列超声波距离模块和600系列传感器,微处理器采用了atmel公司的at89c51。本文对此超声波测距系统进行了详细的分析与介绍。 1、超声波传感器及其测距原理 超声波是指频率高于20khz的机械波[1]。为了以超声波作为检测手段,必须产生超生波和接收超声波。完成这种功能的装置就是超声波传感器,习惯上称为超声波换能器或超声波探头。超声波传感器有发送器和接收器,但一个超声波传感器也可具有发送和接收声波的双重作用。超声波传感器是利用压电效应[1]的原理将电能和超声波相互转化,即在发射超声波的时候,将电能转换,发射超声波;而在收到回波的时候,则将超声振动转换成电信号。 超声波测距的原理一般采用渡越时间法tof(timeofflight)[2]。首先测出超声波从发射到遇到障碍物返回所经历的时间,再乘以超声波的速度就得到二倍的声源与障碍物之间的距离,即 1、硬件电路设计 我们设计的超声波测距系统由polaroid600系列传感器、polaroid6500系列超声波距离模块和at89c51单片机构成。

超声波传感器的原理及应用

超声波传感器的原理及应用 超声波传感器是利用超声波的特性研制而成的传感器。超声波是一种振动频率高于声波的机械波,由换能晶片在电压的激励下发生振动产生的,它具有频率高、波长短、绕射现象小,特别是方向性好、能够成为射线而定向传播等特点。超声波对液体、固体的穿透本领很大,尤其是在阳光不透明的固体中,它可穿透几十米的深度。超声波碰到杂质或分界面会产生显著反射形成反射成回波,碰到活动物体能产生多普勒效应。因此超声波检测广泛应用在工业、国防、生物医学等方面。以超声波作为检测手段,必须产生超声波和接收超声波。完成这种功能的装置就是超声波传感器,习惯上称为超声换能器,或者超声探头。 超声波传感器的组成超声波探头主要由压电晶片组成,既可以发射超声波,也可以接收超声波。小功率超声探头多作探测作用。它有许多不同的结构,可分直探头(纵波)、斜探头(横波)、表面波探头(表面波)、兰姆波探头(兰姆波)、双探头(一个探头反射、一个探头接收)等。 性能指标超声探头的核心是其塑料外套或者金属外套中的一块压电晶片。构成晶片的材料可以有许多种。晶片的大小,如直径和厚度也各不相同,因此每个探头的性能是不同的,我们使用前必须预先了解它的性能。超声波传感器的主要性能指标包括:1、工作频率工作频率就是压电晶片的共振频率。当加到它两端的交流电压的频率和晶片的共振频率相等时,输出的能量最大,灵敏度也最高。2、工作温度由于压电材料的居里点一般比较高,特别是诊断用超声波探头使用功率较小,所以工作温度比较低,可以长时间地工作而不失效。医疗用的超声探头的温度比较高,需要单独的制冷设备。3、灵敏度主要取决于制造晶片本身。机电耦合系数大,灵敏度高;反之,灵敏度低。

超声波模块的应用

超声波传感器在蒂森旅客登机桥设备中的应用 1、 超声波传感器基本原理: 超声波传感器是利用超声波的特性研制而成的传感器。超声波是一种振动频率高于声波的机械波,由换能晶片在电压的激励下发生振动产生的,它具有频率高、波长短、绕射现象小,特别是方向性好、能够成为射线而定向传播等特点。超声波对液体、固体的穿透本领很大,尤其是在阳光不透明的固体中,它可穿透几十米的深度。超声波碰到杂质或分界面会产生显著反射形成反射成回波,碰到活动物体能产生多普勒效应。因此超声波检测以超声波作为检测手段,必须产生超声波和接收超声波。完成这种功能的装置就是超声波传感器,习惯上称为超声换能器,或者超声探头。 超声波传感器以优异的性能广泛地应用在恶劣、复杂的工业环境中,特别是可以用来检测一些具有表面反射特性的材料或者需要精确测量的场合。超声波介质的特点使其能工作在普通传感器不能胜任的工作环境中。更值得提及的是,目标物的颜色、环境的噪声以及空气中的灰尘都不会影响传感器的功能。超声波传感器提供一种无接触的距离检测方案,并以其较长和较宽的检测范围帮助解决了许多实际应用的难题。超声波检测弥补了接近原理和光电原理检测的不足。相比于电感式或电容式接近开关它更适合需要更长感应距离的检测应用中;相比于光电传感器它更耐脏且适应不同外形物体的检测。超声波传感器特别适合检测高密度和有良好声波反射特性的物体。超声波传感器利用压电陶瓷作为声波的发射器和接收器。超声波换能器能够嵌装在传感器壳体里的聚氨基甲酸泡沫中,不漏水。 2、 旅客登机桥设备主要部件及功能介绍: 旅客登机桥是连接候机大厅与飞机舱门之间的机坪移动式活动通道。此设备能为旅客提供一个不受恶劣天气条件影响的上下飞机的安全环境,确保旅客在正常或紧急情况下都能登上或离开飞机。 (1) 固定端后立柱: 是与地面基础预埋的地脚螺栓连接支撑着旋转平台的部件; 旋转平台组件: 与候机楼柔性连接、走廊、圆形大厅。该组件的设计将保证不会有 任何负载或振动从登机桥传到候机楼; 伸缩活动通道: 分为A 段(最小)、B 段(三节桥的中段,两节桥的最大端)、C 段(三 节桥的最大端)在横截面部分是长方形的,伸缩活动通道的侧壁可以是 玻璃结构,也可以是钢结构。能根据停靠飞机的不同位置,伸缩至相应 的长度; 液压升降系统: 是为登机桥提供垂直方向运动的构件,由液压系统及升降油缸等部 件组成,使登机桥能以最佳的高度泊靠不同的飞机; 1 桥头接机口 伸缩活动通道 旋转平台组件 固定端后立柱 工作服务梯 液压升降系统 行走系统 (图1)登机桥结构图

超声波传感器应用

自动检测与转换技术 项目名称:超声波传感器的应用 专业:电子信息工程技术 班级:信息3091 姓名:李龙 授课老师:张玲娜

科技进步使得今天的超声波传感器坚固耐用并有着精确的感应能力,这些新技术使得超声波传感器可以更加简单、灵活,性价比更高。这些新增的特性拓展了一个新的应用领域,完全超越了传统的超声波传感器的应用。现在的超声波传感器提供给了机械设计师,在工业领域发现了一个新的、极具创造性的解决方案。 数年前在传感器技术领域,超声波传感器一直是备用的选择,设计师只有在其他的传感技术无法工作的时候才会选择超声波技术,一般发生在检测透明物体,长距离的感应或者是当目标颜色改变时的才会采用这种技术。 新技术的应用使得今天的超声波传感器能经受得住恶劣环境的考验,比如有IP67和IP69K防护等级的超声波传感器可以应用于潮湿的环境中;传感器内建温度补偿电路,在正常或者变化的操作状态时,当有明显的温度变化,由温度补偿电路进行校对;Teflon型号的超声波传感器的表面有一种特殊涂层可以用来抵御有害化学物质的侵蚀;先进的过滤电路可以让超声波传感器屏蔽现场干扰;新型传感器感应头有着更强的自我保护能力,可以抵御物质损害,适应比较脏乱的环境等。 一.超声波传感器的易用性 新一代超声波传感器的一个显著特性就是使用更加简单,这包括了按钮的设置、DIP开关编程和一些多重程序的选择。 其开关按钮完全内嵌于传感器装置中,这使得调整安装传感器距离的远近非常容易,把目标物放在传感器前再按下按钮是一件很简单的事情。这种传感器可以自动掌握窗口的大小和距离的远近。方便安装意味着同样的传感器可以适应很多不同的应用。 DIP开关的编程方式意味着可以为某些特殊的应用而定制一个简单的传感器,这些个性化的特性包括响应时间、输出类型、开关量和模拟量选择以及用于物位/液位控制的特别设定。 超声波传感器一般在单个传感器中都包含多种输出类型,具有两路开关量输出型号可以用一个传感器同时感应两个不同距离的物体,而同时拥有一路开关量输出和一路模拟量输出的型号的传感器即可用于测量有提供警报输出。 以上这些特性使得超声波传感器与其他技术的传感器相比,使用更加灵活,更具选择性。二.使用超声波传感器的基本原则 超声波传感器是利用传感器头部的压振陶瓷的振动,产生高频的人耳听不见的声波来进行感应的,如果这声波碰到了某个物体,传感器就能接收到返回波。传感器通过声波的波长和发射声波以及接收到返回声波的时间差就能确定物体的距离。比较具有代表性的,一个传感器可以通过按钮的设定来拥有近距离和远距离两种设定,无论物体在那一种界限里,传感器都可以检测到。例如:超声波传感器可以安装在一个装液体的池子上,或者是一个装小球的箱子上,向这个容器发出声波,通过接收到返回波的时间长短就能确定这个容器是满的、空的或者是部分满的。 超声波传感器还有使用的是独立的发射器和接收器的型号,当检测缓慢移动的物体或者在潮湿环境中应用时,这种对射示的超声波传感器就非常适用。在检测透明物体、液体,检测光滑、粗糙、有光泽的半透明材料等物体表面,以及检测不规则物体时,超声波传感器都是首选。超声波传感器不适用的情况有:户外、极热的环境、有压力的容器内及有泡沫的物体。 三.超声波传感器选型要点 1. 范围和尺寸

超声波液位计原理

超声波液位计测量原理 前言:近几年来,随着电子技术、数字技术和声楔材料等技术的发展,利用超声波脉冲测量流体流量的技术发展很快。基于不同原理,适用于不同场合的各种形式的超声波流量计已相继出现,其应用领域涉及到工农业、水利、水电等部门,正日趋成为流量测量工作的首选工具。 超声波流量计是20世纪70年代随着IC(集成电路)技术迅速发展才开始得到实际应用的一种非接触式仪表,相对于传统的流量计而言,它具有下列主要特点: (1)解决了大管径、大流量及各类明渠、暗渠测量困难的问题。因为一般流量计随着管径的增加会带来制造和运输上的困难,不少流量计只适用于圆形管道,而且造价提高,能耗加大,安装不便,这些问题,超声波流量计都可以避免,这样就提高了流量测量仪表的性能价格比。 (2)对介质几乎无要求。超声波流量计不仅可以测量液体、气体,甚至对双相介质(主要是应用多普勒法)的流体流量也可以测量,由于可制成非接触式的测量仪表,所以不破坏流体的流场,没有压力损失,并且可以解决其它类型流量计难以测量的强腐蚀性、非导电性、放射性的流量问题。 (3)超声波流量计的流量测量准确度几乎不受被测流体温度、压力、密度、粘度等参数的影响。 (4)超声波流量计的测量范围度宽,一般可达到20:1。 关键词:超声波流量计原理流量

一、超声波的基本性质 声波是一种传递信息的媒体,它与机械振动密切相关,可以由物体的撞击、运动所产生的机械振动以波的形式向外传播。根据振动所产生波的频率高低分为可闻声波、次声波和超声波,高于20KHz的声波称为超声波。 超声波具有类似光线的一些物理性质: (1)超声波的传播类似于光线,遵循几何光学的规律,具有反射、折射现象,也能聚焦,因此可以利用这些性质进行测量、定位、探伤和加工处理等。在传播中,超声波的速度与声波相同; (2)超声波的波长很短,与发射器、接收器的几何尺寸相当,由发射器发射出来的超声波不向四面八方发散,而成为方向性很强的波束,波长愈短方向性愈强,因此超声用于探伤、水下探测,有很高的分辨能力,能分辨出非常微小的缺陷或物体; (3)能够产生窄的脉冲,为了提高探测精度和分辨率。要求探测信号的脉冲极窄,但是一般脉冲宽度是波长的几倍(如要产生更窄的脉冲在技术上是有困难的),超声波波长短,因此可以作为窄脉冲的信号发生器; (4)功率大,超声波能够产生并传递强大的能量。声波作用于物体时,物体的分子也要随着运动,其振动频率和作用的声波频率一样,频率越高,分子运动速度越快,物体获得的能量正比于分子运动速度的平方。超声频率高,故可以给出大的功率。

超声波传感器的发展与应用

学号:2011 传感器原理及工程应用 课程报告 学院物理电子工程学院 专业应用物理 年级2011级 姓名***** 论文题目超声波传感器的发展与应用 2015年 1 月 5 日

超声波传感器的发展与应用 摘要:超声波是一种在弹性介质中的机械振荡,有两种形式:横向振荡(横波)及纵和振荡(纵波)。在工业中应用主要采用纵向振荡。超声波可以在气体、液体及固体中传播,其传播速度不同。另外,它也有折射和反射现象,并且在传播过程中有衰减。在空气中传播超声波,其频率较低,一般为几十KHZ,而在固体、液体中则频率可用得较高。在空气中衰减较快,而在液体及固体中传播,衰减较小,传播较远。利用超声波的特性,可做成各种超声传感器,配上不同的电路,制成各种超声测量仪器及装置,并在通迅,医疗家电等各方面得到广泛应用。关键词:超声波传感器应用发展 1超声波传感器原理 超声波传感器是利用超声波的特性研制而成的传感器。超声波是一种振动频率高于声波的机械波,由换能晶片在电压的激励下发生振动产生的,它具有频率高、波长短、绕射现象小,特别是方向性好、能够成为射线而定向传播等特点。超声波对液体、固体的穿透本领很大,尤其是在阳光不透明的固体中,它可穿透几十米的深度。超声波碰到杂质或分界面会产生显著反射形成反射成回波,碰到活动物体能产生多普勒效应。因此超声波检测广泛应用在工业、国防、生物医学等方面以超声波作为检测手段,必须产生超声波和接收超声波。完成这种功能的装置就是超声波传感器,习惯上称为超声换能器,或者超声探头。 超声波探头主要由压电晶片组成,既可以发射超声波,也可以接收超声波。小功率超声探头多作探测作用。它有许多不同的结构,可分直探头(纵波)、斜探头(横波)、表面波探头(表面波)、兰姆波探头(兰姆波)、双探头(一个探头反射、一个探头接收)等。超声探头的核心是其塑料外套或者金属外套中的一块压电晶片。构成晶片的材料可以有许多种[1]。晶片的大小,如直径和厚度也各不相同,因此每个探头的性能是不同的,我们使用前必须预先了解它的性能。 超声波传感器主要材料有压电晶体(电致伸缩)及镍铁铝合金(磁致伸缩)两类。电致伸缩的材料有锆钛酸铅(PZT)等。压电晶体组成的超声波传感器是一种可逆传感器,它可以将电能转变成机械振荡而产生超声波,同时它接收到超声波时,也能转变成电能,所以它可以分成发送器或接收器。有的超声波传感器

超声波传感器应用介绍

超声波传感器应用介绍 主要应用 超声波传感技术应用在生产实践的不同方面,而医学应用是其最主要的应用之一,下面以医学为例子说明超声波传感技术的应用。超声波在医学上的应用主要是诊断疾病,它已经成为了临床医学中不可缺少的诊断方法。超声波诊断的优点是:对受检者无痛苦、无损害、方法简便、显像清晰、诊断的准确率高等。因而推广容易,受到医务工作者和患者的欢迎。超声波诊断可以基于不同的医学原理,我们来看看其中有代表性的一种所谓的A型方法。这个方法是利用超声波的反射。当超声波在人体组织中传播遇到两层声阻抗不同的介质界面时,在该界面就产生反射回声。每遇到一个反射面时,回声在示波器的屏幕上显示出来,而两个界面的阻抗差值也决定了回声的振幅的高低。 在工业方面,超声波的典型应用是对金属的无损探伤和超声波测厚两种。过去,许多技术因为无法探测到物体组织内部而受到阻碍,超声波传感技术的出现改变了这种状况。当然更多的超声波传感器是固定地安装在不同的装置上,“悄无声息”地探测人们所需要的信号。在未来的应用中,超声波将与信息技术、新材料技术结合起来,将出现更多的智能化、高灵敏度的超声波传感器。 超声波距离传感器技术应用 超声波对液体、固体的穿透本领很大,尤其是在不透明的固体中,它可穿透几十米的深度。 超声波碰到杂质或分界面会产生显著反射形成反射成回波,碰到活动物体能产生多普勒效应。因此超声波检测广泛应用在工业、国防、生物医学等方面。 超声波距离传感器可以广泛应用在物位(液位)监测,机器人防撞,各种超声波接近开关,以及防盗报警等相关领域,工作可靠,安装方便,防水型,发射夹角较小,灵敏度高,方便与工业显示仪表连接,也提供发射夹角较大的探头。 具体应用 一、超声波传感器可以对集装箱状态进行探测。将超声波传感器安装在塑料熔体罐或塑料粒料室顶部,向集装箱内部发出声波时,就可以据此分析集装箱的状态,如满、空或半满等。

超声波液位传感器原理应用

1.1 超声波液位传感器原理应用 泥浆池体积传感器是用来测定泥浆池内的泥浆液面的绝对深度。 1.1.1 工作原理: 图 错误!文档中没有指定样式的 文字。-1 超声波液位传感器 1.1.2 性能指标 测量范围:0.25 ~ 5 m ; 精度:0.25%; 输出信号:4 ~ 20mA ; 工作电压:12 ~28V dc ; 工作温度:-40?C ~ +60?C ;若安装在金属上,为-20°C 。 防爆等级:EEX ia IIC T4; 防护等级:IP65。 1.1.3 操作 1.1.3.1 启动 1) 将液位计正确安装好(或对准墙面,距墙面0.25~5m 远),上电。 2) 液位计启动,显示见图3-24: 超声波液位传感器从换能器发射出一系列超声波脉冲,每一个脉冲由液面反射产生一个回波并被换能器接收,并采用滤波技术区分来自液面的真实回波及由声电噪声和运动的搅拌器叶片产生的虚假回波,脉冲传播到被测物并返回的时间经温度补偿后转换成距离。 传感器信号电缆定义: 红色:电源 、 黄色:信号输出 3芯YD20J3TQ 航空插头座定义: 1:屏蔽、2:电源、3:信号。

图 错误!文档中没有指定样式的文字。-2启动界面 3) 此时,液位计工作方式缺省为RUN 方式,显示的读数为传感器表面距介面的距 离。 4) 如果显示与实际不同,查看液位计工作状态。 1.1.3.2 标定 液位计 mA 输出可与液位成正比,也可标定为反比关系。 图 错误!文档中没有指定样式的文字。-3 液位与输出 标定:参考方式 1) 将介面与传感器表面距离调整至期望值 2) 按“4”键或“20”键,查看对应该mA 值的原距离值 3) 再次按下该键,设定新的参考距离值 4) 查看或标定后,液位计会自动转为RUN 方式(6 秒),标定值以传感器表面 为参照物。 按“4”键 再按“4”键 新的4mA 标定值 4mA 标定值 如显示如下,则标定无效,重试一次

超声波传感器介绍

超声波传感器介绍描述:超声波传感器,高精度检测,大距离测量

性能特点: 1通过运行时间测量实现高测量准确度,不受物体颜色(包括玻璃、液体和薄膜)的影响进行物体识别 2SICK西克UM30 产品系列超声波传感器扫描范围可达 8,000 mm 3显示屏可以实现快速且灵活的传感器调整 4抗灰尘、抗污和抗雾能力强 5同样提供组合式的模拟和信号输出端 6同步和复合运行模式 7SICK西克UM30 产品系列超声波传感器灵敏度可调节 7三种操作模式:距离对象 (DtO)、窗口 (Wnd) 或传感器和背景之间的对象 (ObSB) 使用特点: 1SICK西克UM30 产品系列超声波传感器紧凑的结构尺寸使其易于集成至设备 2通过多种参数设置方法能灵活匹配至应用要求 3通过使用同步和复合模式排除相互影响提供最可靠的测量结果 4可通过传感器同步进行低成本的区域监控 5SICK西克UM30 产品系列超声波传感器通过显示屏的离线传感器参数设置能够进行预配置并节省设备调试时间6内置温度补偿,确保达到极高的测量准确度,以获得最佳效果 7ObSB 模式能够识别传感器和示教背景之间的所有物体 8开卷控制系统 开卷控制系统能够将各项过程独立出来,如金属板的开卷、切割等。此外,超声波传感器 UM30 或激光距离传感器 DT35 能够无接触地持续获知金属板的垂度。所得到的测量值被用于控制金属板的拉取速度。

9通过两个开关点的料位检查 通过两个开关点,多任务光电传感器 PowerProx 检测振动式螺旋输送机中不同的装载情况。因而,PowerProx 能够在低于界限值时首先发出警报,并随后在振动式螺旋输送机清空时将缺陷报告发送给机器控制器。缺陷报告使机器停止运行。也可备选地通过超声波传感器 UM30 完成该工作。 10开卷控制系统:垂度和速度测量 开卷控制系统能够将各个工艺过程分离,如压延和物料的供给和运出。安装在卷上方的距离传感器通过模拟输出或两个预设的数据开关点进行持续测量。仅使用一个传感器即可完成每卷的垂度测量,这可将安装成本降至最低。根据材料特性和带宽不同,可选择使用距离传感器 Dx35/Dx50 或超声波传感器UM30。可通过增量型编码器 DSF60 监控辊速。高坚固性和多种机电变型是 DFS60 的显著特点。为解决不同分辨率和由此带来的变型库存储备,可根据需要设定增量型编码器 DFS60 的参数。 超声波传感器 SICK西克UM30 产品系列超声波传感器的优势在于其高可靠性。凭借可达 8 m 的不同扫描范围和多种参数设置方法可以处理所有应用情况。凭借集成温度补偿的高测量准确度、不受颜色影响地识别物体、高耐污性以及至 +70 °C 的高运行温度范围确保了可靠地运行–包括在高要求的条件下。

相关文档
最新文档