光波导练习题

光波导练习题
光波导练习题

光波导练习题

1. 光波导的光场纵向分量与横向分量具有如下关系,试用纵向场分量表示横向场分量,并证明光波导中不存在TEM 模。(P7和P13)

????

?????

-=?+??=?+??-=??=??t t t t 0t t t t 0t t j ?j ? j j E H z H H E z E E H H E ωε??ωμ??ωεωμz z z z z z 2. 从Maxwell 方程得出Helmholtz 方程。P6

3. 在什么情况下,不宜使用高斯近似法?这时可选用的方法有哪些?P107

4. 用高斯近似法,从公式()0d d 1d d 2222222=??????--++y y y

e r m r n k r e r r e β 出发,导出平方律圆非均匀光波导基模模式场的模斑尺寸。

其折射率的分布为()()[]???≥≤?+=a r n a r r f n r n a a 222

21 其中 ()22202a a n n n -=?,()21??

? ??-=a r r f p109 5. 试说明正规光波导模式的含义及其特点。P8,9什么是模式?模式共分几种?P12为什么正规光波导中才存在模式的概念?

6. 正规光波导中模式的传输常数实质指什么?P10

7. 试说明正规光波导辐射模的含义及其特点。P123

8. 简述矢量法求解模式场的思路。P35

9. 什么是简并度?P3(自己找的百度)

10. 什么是模式截止?模式截止的条件是什么?什么是单模传输?P26圆光纤中TE 01和TM 01模式的截止频率是多少?P40

11. 请简述两层圆均匀阶跃光波导中单模传输条件是什么?P43单模传输时光波导中有几个模式?

12. 若一个二层圆均匀光波导,它的芯半径为m 5μ=a ,46.12=n ,如果单模传输的截止波长为m 29.1μλ=,求它的最大的相对折射率差。P43

13. 二层阶跃光纤的芯区折射率n 1=1.45,芯层包层相对折射差Δ=0.004,当

波长为0.85μm 的光在光纤中传输时,要保证单模工作,芯区半径应小于多少? P43

14. 何为非正规光波导?P119非正规光波导常用的分析方法是什么?P122试

写出正规光波导中场量的表达式并说明其物理意义。P121,p10

15. 在同一个光波导中,不同的模式是否可以有相同的传输常数?

16. 什么是圆均匀光波导?最简单的圆均匀光波导是什么?P27

17. 在M-Z 空间干涉仪实验中,使用了一段截止波长为m 29.1μ的普通单模

光纤,而该实验所使用的光源波长为m 65.0μ,请问这时它是否还是单模光纤?(不是)如果不是,请问有几个模式?(两个)

18. 如果光信号是光脉冲,光波导的传输特性有那些?反映到光信号上,它

们如何影响光信号?

19. 说明单模光纤的色散都有哪几种?p176p89请详细说明。试说明它们产生

的原因及对光纤中高斯脉冲信号传输的影响。并说明偏振模色散与距离的关系。P183

20. “光纤的材料色散就是光纤材料的色散”有什么问题?P89

21. 光信号的啁啾是什么意思?P68

22. 什么是正常色散?什么是反常色散?P82

23. 详细说明引起光纤损耗的因素有哪些? P219试说明光纤损耗与波长的关

系;在施工的过程中如何避免光纤损耗增加?

24. 光纤的损耗有哪几种?P219

25. 光纤的连接质量用什么量来表示?P134试画图说明造成两根光纤连接时

连结损耗的主要因素有那些? 假定有两根模斑半径不相等的两根光纤连接在一起,光从模斑半径小的光纤向模斑半径大的光纤传输, 然后反过来传输。二者相比,哪一个损耗更大?P136

26. 如何定义单模光纤的模斑半径?假定光纤的参数(芯半径a 、相对折射率

差Δ、芯区折射率n 1等)为已知,那么随着归一化频率V 的增加,模斑和弯曲损耗分别是变大还是变小?为什么?模斑尺寸大有什么好处或者坏处?

27. 用剪断法测量光纤损耗的原理是:先将被测的一段光纤熔接在光源的输

出尾纤上,测量从光纤输出端的光功率,然后将光纤从熔断点的后部剪断,测量注入光纤的功率。已知输入功率为1mW ,输出端的输出功率为170uW ,光纤的长度为10km ,求这段光线单位长度上的损耗。

28. 请说明光纤Bragg 光栅的滤波原理,光纤布拉格光栅中布拉格波长与什

么因素有关。公式d (P 1-P 2)/dz =0说明了什么?其中P 1和P 2分别是前向模式和反向模式的功率。

29. 试述光纤耦合器的主要性能参数。P207

30. 什么是横向耦合?什么是横向耦合中的弱耦合?P190

31.光纤Mach-Zehnder(M-Z)干涉仪是一个基本的光学部件,试述它的原

理。P208并用公式说明两根光纤的偏振特性、相位特性对干涉结果的影响。

32.试述Sagnac光纤干涉仪的原理,用图进行描述。

33.试比较光纤MZ干涉仪和Sagnac干涉仪的区别。

34.试说明你对偏振主轴p140、偏振本征态p177、偏振主态p178这三个概

念的理解。

35.通常认为偏振模色散是两个不同线偏振模的传输时延差,这种说法有什

么问题?P176

36.试写出斯托克斯矢量的定义。P157

37.如何在邦加球(Poincare Sphere)上体现由于偏振模色散引起的偏振态的

演化?

38.圆正规光波导有偏振主轴吗?有几条?(无数)P162

基于谐振腔体法的材料电磁参数测试(精)

基于谐振腔体法的材料电磁参数测试 摘要:实现了一种全集成可变带宽中频宽带低通滤波器,讨论分析了跨导放大器-电容(OTA—C)连续时间型滤波器的结构、设计和具体实现,使用外部可编程电路对所设计滤波器带宽进行控制,并利用ADS软件进行电路设计和仿真验证。仿真结果表明,该滤波器带宽的可调范围为1~26 MHz,阻带抑制率大于35 dB,带内波纹小于0.5 dB,采用1.8 V电源,TSMC 0.18μm CMOS工艺库仿真,功耗小于21 mW,频响曲线接近理想状态。关键词:Butte 摘要:本文介绍了一种全新的分裂圆柱体谐振腔体,并且以聚四氟乙烯的测量为例,详细介绍了采用这种腔体完成介质材料测试的具体过程。此项方法具有精度高、操作简单的特点,最适合于衬底, 薄膜, PCB等材料的测量,并且遵循IPC测试规范TM-650 2.5.5.13。 关键词:谐振腔体;材料测量;电磁参数;网络分析仪 引言 近年来,随着射频微波技术的飞速发展,航空航天、通信技术与信息技术等高科技领域对射频微波元器件的要求也随着提高,使得射频微波材料在这些领域起到了越来越重要的作用。对于射频微波材料来说,电磁波在其中的传播完全由材料的电磁参数决定,在应用各种射频微波材料时,必须通过测试了解其电磁参数。在各种射频微波器件,微波与毫米波集成电路底板等大量应用射频微波材料的领域,设计对象的研究和设计都需要准确的材料电磁参数。 材料的电磁参数指复介电常数和复磁导率,其中主要集中于其介电特性的研究,有关材料磁特性的测量只占少数,所以本文只讨论复介电常数的测试。测量材料复介电常数的方法有很多,主要分为传输反射法和谐振腔体法。其中传射反射法实质是利用所测出的样品的反射和传射系数得到复介电常数或复磁导率,根据所用夹具的不同,又分为同轴空气线法、波导法、自由空间法和同轴探头法,同轴探头法一般用来测量液体或者半固体例如粉末,被测件的损耗较大;同轴空气线和波导法一般用来测量片状固体或者粉末状固体,被测物质为损耗至低损,这两种方法对被测件的机械加工能力要求都比较高,被测物质的截面必须和空气线或波导的轴线垂直,而且被测物质与空气线或波导之间最好是完全接触,否则会产生一定的测量误差;自由空间法一般是利用聚焦喇叭天线或者拱形门来完成测量,要求被测件是大的平面细状固体,而且尺寸越大越好,最好是十个波长以上,特别适合于高温物质测量或者其他非接触性物质的测量。 而谐振腔体法的原理是将材料样品放入封闭或者开放的谐振腔体中,根据放入前后其谐振频率和品质因子Q值的变化来确定样品复介电常数和复磁导率,通常是将样品置于谐振腔中电场最小磁场最大处测量样品的复介电常数,将样品

1平面光波导技术

光波导是集成光学重要的基础性部件,它能将光波束缚在光波长量级尺寸的介质中,长距离无辐射的传输。平面波导型光器件,又称为光子集成器件。其技术核心是采用集成光学工艺根据功能要求制成各种平面光波导,有的还要在一定的位置上沉积电极,然后光波导再与光纤或光纤阵列耦合,是多类光器件的研究热点. 按材料可分为四种基本类型:铌酸锂镀钛光波导、硅基沉积二氧化硅光波导、InG aAsP/InP光波导和聚合物(Polymer)光波导。 LiNbO3晶体是一种比较成熟的材料,它有极好的压电、电光和波导性质。除了不能做光源和探测器外,适合制作光的各种控制、耦合和传输元件。铌酸锂镀钛光波导开发较早,其主要工艺过程是:首先在铌酸锂基体上用蒸发沉积或溅射沉积的方法镀上钛膜,然后进行光刻,形成所需要的光波导图形,再进行扩散,可以采用外扩散、内扩散、质子交换和离子注入等方法来实现。并沉积上二氧化硅保护层,制成平面光波导。该波导的损耗一般为0.2-0.5dB/cm。调制器和开关的驱动电压一般为10V左右;一般的调制器带宽为几个GHz,采用行波电极的LiNbO3光波导调制器,带宽已达50GHz以上。 硅基沉积二氧化硅光波导是20世纪90年代发展起来的新技术,主要有氮氧化硅和掺锗的硅材料,国外已比较成熟。其制造工艺有:火焰水解法(FHD)、化学气相淀积法(CVD,日本NEC公司开发)、等离子增强CVD法(美国Lucent公司开发)、反应离子蚀刻技术RIE多孔硅氧化法和熔胶-凝胶法(Sol-gel)。该波导的损耗很小,约为0.02dB/cm。 基于磷化铟(InP)的InGaAsP/InP光波导的研究也比较成熟,它可与InP基的有源与无源光器件及InP基微电子回路集成在同一基片上,但其与光纤的耦合损耗较大。

UWB超宽带滤波器背景及设计方法

微波仿真论坛_现代滤波器设计讲座-超宽带

超带宽(UWB :ultra wild band)的定义:(浅谈超宽带技术在未来的应用——谢晓峰) 超宽带滤波器主要是针对相对带宽,其主要方式利用冲击脉冲的频谱特性来实现宽带信息的传播。从定义上讲,FCC对超宽带系统的最新定义是:相对带宽(在-10dB点处)(fh-fl)/fc>20%(fh,fl,fc分别为带宽的高端频率传,低端频率和中心频率)或者总带宽BW>500Mhz。

(摘自百度文库ppt) 超宽带微波滤波器研究现状 ——戚楠,李胜先 1989年,美国国防部首先提出了超宽带(UWB)技术并对它做了定义:发射信号的相对带宽为0.2,或者传输信号的绝对带宽至少为500 MHz,则该信号为超宽带信号。自2002年美国联邦通信委员会(FCC)批准无需许可证便可以使用3.1~10.6 GHz的超宽带通信频谱后,超宽带技术受到了学术界和工业界的极大关注。超宽带技术具有低功耗、高速率、保密性强等特点,早期主要应用于军事通信、军事脉冲雷达等方面[1],近年来在民用雷达、成像、室内短距离通信、监视系统等领域也有广泛应用,欧盟、日本、新加坡等国也制定了各自的超宽带技术标准。在宇航方向,NASA约翰逊空间中心开展了超宽带综合通信、月球/火星漫游者系列超宽带定位系统、UWB?RFID等技术的研究,取得了很多成果[2]。目前对星载微波与激光链路混合通信系统的研究使微波光子技术在未来卫星通信中呈现出很大的优势与潜力,而光波段广阔的频谱几乎没有带

宽限制,不仅可提供THz大容量通信,而且电磁干扰小,重量轻,是超宽带概念的扩展,有着良好的发展前景[3]。 1 超宽带微波滤波器关键问题 和传统滤波器一样,超宽带滤波器用来去除带外信号及噪声,在某些UWB 系统接收端承担着天线与放大器之间的匹配作用。由于UWB系统的脉冲信号产生和消失时间非常短暂,一个符合FCC规范的超宽带滤波器必须要在110%的带宽内具有较小并平坦的群时延特性和较远的寄生通带。因为频带低端大部分已被其他通信系统占用,所以滤波器同时要对频带低端有良好的抑制。有一些超宽带滤波器还要考虑通带内其他通信系统,如GPS,3G,4G,X波段卫星通信的干扰。另外为了适应微波集成电路小型化的要求,滤波器要体积小, 结构紧凑,便于集成与互联。这些都对超宽带滤波器的设计与实现提出了很大的挑战。 超宽带(UWB)无线电技术在 2002 年以后得到了广泛的关注和深入的研究,其中 UWB 带通滤波器是 UWB 系统中关键的无源器件。UWB 带通滤波器的通带必须覆盖 3.1~10.6GHz,这是美国联邦通信委员会认定的商用 UWB 频率范围[1]。在整个UWB 频段范围内,由于已经存在各种窄带无线通信信号,而这些无线通信信号会严重干扰UWB 系统,例如,无限局域网系统(5.8GHz)。因此,为了保证 UWB 系统正常工作,迫切需要具有陷波特性的 UWB 带通滤波器。 2 超宽带滤波器设计方法(略) 统窄带滤波器带宽一般都在1%左右,其综合方法将滤波器参数都确定在中心频率附近,而且频率变换过程中进行了一些窄带近似,因而综合中所用到的计算公式只适合于精确设计窄带或者中等带宽的滤波器。如果用这些窄带滤波器的设计公式来设计超宽带滤波器将会造成很大的误差[4]。以往超宽带滤波器的设计多基于优化算法,设计结构主要采用微带线或耦合线,结构单一,计算量大,时间成本高,这就要求用新的思路来综合超宽带滤波器的设计。 2.1多模谐振器法

基于AWG的平面光波导技术

基于AWG的平面光波导技术 采用平面光波導(Planar Lightwave Circuit,PLC)技术制作的阵列波导光栅(Arrayed Wave-guide Grating, AWG)是应用于光网络中的支撑技术波分复用(Wave Division Multiplexing, WDM)的重要器件。本文介绍了国内外AWG的应用现状和发展前景。 标签:平面光波导阵列波导光栅波分复用 1 平面光波导(Planar Light Circuit,PLC)技术的市场分析 伴随着光通信的发展,在金融危机影响下的亚太地区正成为全球光通信市场中最活跃的一部分,目前所面临的问题主要有:①运营商投资重心从SONET/SDH 转移到WDM的趋势将会持续高涨;②3G网络正式商用化带动了移动与固网宽带市场新旧技术的转换;③受市场驱动和政策面的影响,光纤到户(Fiber to the Home, FTTH)更加深入市场;④系统设备商们将持续兼并收购,以实现技术优势和资源整合。 基于PLC技术开发的光器件在光网络的组网中占据重要地位。波分复用(Waveguide Division Multiplexing, WDM)系统是当前最常见的光层组网技术,它通过复用/解复用器实现多路信号传输。早期的WDM系统并没有实现真正意义上的光层组网,难以满足业务网络IP化和分组化的要求,这种情况直到可重构光分插复用器(Reconfigurable Optical Add Drop Multiplexer, ROADM)的出现才得以改善。平面光波导ROADM是近年来广泛采用的ROADM子系统之一。PLC的ROADM上下路通道是彩色光,这意味着只有预定义的彩色波长可以在每个端口上下,也可以配合可调滤波器和可调激光器使用。由于PLC的集成特性,使其成为低成本的ROADM解决方案之一。目前的光波导,一般都是以玻璃、LiNbO3、GaAs 单晶等做衬底,再用扩散或外延技术制成的。PLC可以集成多种器件,例如:韩国的Byung Sup Rho等人用PLC研制的WDM双向模块[1],我国的浙江大学也研制出一种利用PLC的高集成化的PMD补偿器[2][3]。 2 AWG的结构及其工艺简介 阵列波导光栅(Arrayed Waveguide Grating, AWG)是第一个将PLC技术商品化的元器件。它是基于干涉原理形成的波分复用器件,通过集成的AWG可以实现波长复用和解复用,这种技术已被用于WDM系统中。目前平面波导型WDM器件有多种实现方案,其做法为在硅晶圆上沉积二氧化硅膜层,再利用光刻工艺(Photolithography)及反应式离子蚀刻法(RIE)制作出AWG。该类器件通路数大、紧凑、易于批量生产,但带内频响尚不够平坦。由于AWG采用与一般半导体相同的制作过程,多通道数与低通道数的制作成本相差不多,但更适合生产,而且整合度较高,因此应用在DWDM上具有相当的潜力。北美市场在2008年初呈现活跃状态,比如:美国加州的PLC设备供应商ANDevices在一月份签订协议,提供价值$13.5百万的产品给FTTH发展商Enablence Technologies Inc[4]。在我国,以PLC

光波导

西安邮电大学 专业课程设计报告书 院系名称:电子工程学院 学生姓名:刘寒 学号05103073 专业名称:光信息科学与技术班级:光信息1003 实习时间:2013年4月22日至2013年5月3日

课程设计题目:直波导和弯曲波导的耦合 一.课程设计的任务和要求 1. 学习使用OptiBPM软件 2. 运用BPM仿真直波导和弯曲波导的耦合 二.设计步骤 1.阅读OptiBPM提供的操作指南,了解和学习光波导的参数设置,以及各种波 导的画法。 2.先尝试画一条直波导,观察光在光波导中的能量分布,模拟出古斯汉欣位移 效应,并做出分析,选取不同的折射率观察对光能量有何影响。分析讨论古斯汉欣位移距离的量级。 3.做直波导与弯曲波导的耦合,改变波导的折射率、波导间距离、波导宽度等 参数,观察光波的传播规律。 三.仿真结果分析 1.直波导通入光后,古斯-汉欣位移效应,光波导宽度40um,纤芯折射率:3.3, 包层折射率:3.27.仿真图(图1-1)如下: 图1-1 光在波导中的光强度在波导中,从中心处向两边缘逐渐减小,可是光强的分布范围很明显大于40um的光波导宽度,多余出来的距离就是古斯-汉欣位移。所谓的古斯-汉欣位移,即就是实际的反射点与理想的反射点之间存在一定的距离D,可用公式表示为:

() 212 22 1 22 sin n n cn D -= θλ 式中,c 为常数,n1=3.3,n2=3.27,则C=0.03,λ为光波长。这个现象出现是基于实际光线都具有一定的空间谱宽,也即实际的光线由一光速构成,它们指向同一入射点,但入射角有一定的宽度?? 。接着在其他参数不改变的情况下,改变光波导的纤芯或者包层的折射率,然后再次观察古斯-汉欣位移的变化,如下 图1-2 虽然变化量很小,但依然可以看见,当包层折射率减小到3.15,古斯-汉欣位移减小了。之后再次改变纤芯的折射率到4.0,再次观察其位移的变化,与前两次 的进行比较,如图1-3 图1-3 这三次仿真结果对比,可以看出,无论纤芯的折射率还是包层的折射率的减小都会导致古斯-汉欣位移的减小。而且可以从图中看出古斯-汉欣位移的大小是um

光波导理论与技术 大学课件

光波导理论与技术大学课件 06 年复习题 x E y x t Ay cos t1. 已知一平面电磁波的电场表达式为 c , 写出与之相联系的磁场表达式。(提示:利用麦克斯韦尔方程,注意平面波的特点) 2E 1 2E2. 证明平面电磁波公式 E A cost kx 是波动微分方程 0 的解。 x 2 v 2 t 23. 在直角坐标系任意方向上以角频率传播的平面波为 E A exp j t k r ,根据波动方程 2 2E ,导出用角频率、电容率、导磁率0 表示平面波的传 E 0 2 0 播常数 k。 t4. ?璧ド矫娌ㄓ?E A exp j t kz 表示,求用电容率、导磁率0 表 示的该平面波传播速度。(提示:考虑等相位面的传播速度)5. 用文字和公式说明电磁场的边界条件。6. 设时变电磁场为 A xt A x sin ωt ,写出该电磁场的复振 幅表示式,它是时间的函数还是空间的函数,7. 分别写出麦克斯韦尔方程组和波动方程的时域与频域的表达式。8. 说明平面波的特点和产生的条件。9. 写出平面波在下列情况下的传播常数或传播速度表示式: 1 沿任意方向的传播速度; 2 在折射率为 n 的介质中的传播常数; 3 波矢方向与直角坐标系 z 轴一致的传播常数。10. 平面波波动方程的解如下式,说明等式右边两项中正负号和参数 k 的物理意义。 E x z , t E e j t kz E e j t kz11. 说明制成波片材料的结构特点,如何使波片成为 1/4 波片和 1/2 波片12. 如果要将偏光轴偏离 x 轴度的线偏振光转变 成 x 偏振光,应将/2 波片的主轴设定为偏离 x 轴多大角度13. 什么是布儒斯特 起偏角,产生的条件是什么14. 光波在界面反射时,什么情况下会产生半波损失15. 如何利用全反射使线偏振光变成园偏振光,16. 什么是消逝波,产生消逝波的条件是什么,17. 什么是相位梯度,它与光波的传输方向以及介质折射率是什么关系,18. 在非均匀介质中如何表示折射率与光线传播方向的关系,19. 光纤的数值孔径表示 什么,如何确定它的大小20. 在下列情况下,计算光纤数值孔径和允许的最大入射 角(光纤端面外介质折射率n1.00): 1 阶跃折射率塑料光纤,其纤芯折射率 n1

光波导的一些基本概念

平面光波导,英文缩写PLC是英文Planar Lightwave Circuit的缩写,翻译成中文为: 平面光波导(技术)。所谓平面光波导,也就是说光波导位于一个平面内。正如大家所熟悉的单层电路板,所有电路都位于基板的一个平面内一样。因此,PLC是一种技术,它不是泛指某类产品,更不是分路器!我们最常见的PLC分路器是用二氧化硅(SiO2)做的,其实PLC技术所涉及的材料非常广泛,如玻璃/二氧化硅(Quartz/Silica/SiO2)、铌酸锂(LiNbO3)、III-V族半导体化合物(如InP, GaAs等)、绝缘体上的硅 (Silicon-on-Insulator, SOI/SIMOX)、氮氧化硅(SiON)、高分子聚合物(Polymer)等。 基于平面光波导技术解决方案的器件包括:分路器(Splitter)、星形耦合器(Star coupler)、可调光衰减器(Variable Optical Attenuator, VOA)、光开关(Optical switch)、光梳(Interleaver)和阵列波导光栅(Array Waveguide Grating, AWG)等。根据不同应用场合的需求(如响应时间、环境温度等),这些器件可以选择不同的材料体系以及加工工艺制作而成。值得一提的是,这些器件都是光无源器件,并且是独立的。他们之间可以相互组合,或者和其他有源器件相互组合,能构成各种不同功能的高端器件,如:VMUX = VOA + AWG、WSS = Switch + AWG等(图2)。这种组合就是PLC技术的未来发展方向-光子集成(Photonic Integrated Circuit, PIC

光波导的理论以及制备方法介绍

光波导的理论以及制备方法介绍 摘要 由光透明介质(如石英玻璃)构成的传输光频电磁波的导行结构。光波导的传输原理是在不同折射率的介质分界面上,电磁波的全反射现象使光波局限在波导及其周围有限区域内传播。 光波导的研究条件与当前科技的飞速发展是密不可分的,随着技术的发展,新的制备方法不断产生,从而形成了各种各样的制备方法,如离子注入法、外延生长法、化学气相沉淀法、溅射法、溶胶凝胶法等。重点介绍离子注入法。 光波导简介如图所示为光波导结构 图表1光波导结构 如图中共有三层平面相层叠的光学介质,其对应折射率n0,n1,n2。其中白色曲折线表示光的传播路径形式。可以看出,这是依靠全反射原理使光线限制在一层薄薄的介质中传播,这就是光波导的基本原理。为了形成全反射,图中要求n1>n0,n2。 一般来讲,被限制的方向微米量级的尺度。 图表2光波导模型 如图2所示,选择适当的角度θ(为了有更好的选择空间,一般可以通过调整三层介质的折射率来取得合适的取值),则可以将光线限制在波导区域传播。 光波导具有的特点光波导可以用于限制光线传播光路,由于本身其尺寸在微米量级,就使得其有很多较好的特点: (1)光密度大大增强 光波导的尺寸量级是微米量级,这样就使得光斑从平方毫米尺度到平方微米尺度光密度增大104—106倍。 (2)光的衍射被限制 从前面可以看出,图示的光波导已经将光波限制在平面区域内,后面会提到稍微变动一下技

术就可以做成条形光波导了,这样就把光波限制在一维条形区域传播,这就限制了光波的衍射,有一维限制(一个方向),二维限制(两个方向)区分(注:此处“一维”与“二维”的说法并不是专业术语,仅仅指光的传播方向的空间自由度,不与此研究专业领域的说法相混同)。 (3)微型元件集成化 微米量级的尺寸集成度高,相应的成本降低 (4)某些特性最优化 非线性倍频阈值降低,波导激光阈值降低 综上所述,光波导本身的尺寸优势使得其有很好的研究前景以及广泛的应用范围。 光波导的分类一般来讲,光波导可以分为以下几个大类别: 图表3平面波导(planar) 图表4光纤(fiber)

微波法测量液体介电常数

论文题目:微波法测量液体介电常数 学院:物理学院 姓名:张锦华 年级:2010级 学号:1221410042

液体介电常数的微波测量 一、实验原理 在微波频率范围测量介质材料特性的方法有波导法、谐振腔法和空间波法.其中波导法也称为驻波法或测量线法,较为简便,本实验采用波导反射法测量液体介电常数。实验装置如图所示: 若介质1是空气,其电容率是01εε=(0ε为真空值),介质2是被测液体,其电容率是2ε,则液体的介电常数 1202//εεεεε== (1) 电磁波在这两种介质的无限空间中传输速度分别为 0 111 με= v 0 221 με= v (2) 由(2)式求得1ε和2ε代入(1)式得 221)/(v v =ε (3) 将f v 11λ=、f v 22λ=和11/2λπ=k 、22/2λπ=k 代入(3)式中得到 2 1 2)(k k =ε (4) 1λ、2λ和1k 、2k 分别为电磁波在两种介质的无限空间中的波长和相应的传输波数,f 为频率。

若电磁波在空气和液体界面之间垂直入射反射系数为 2121//k k k k E E r i r +-== (5) r E 和i E 分别是反射波和入射波的振幅。电压驻波比为 ()()r r -+=11ρ (6) 对波导传输,波导中的k 值分别为g k 1和g k 2,且我们的情形有g g k k 12>于是 (5)式便成 ()() g g g g k k k k r 1212+-= (7) 利用无限空间和波导内传播系数之间的关系 22121c g k k k +=和2 2222c g k k k += (8) c c k λπ/2=,c λ为截止波长,a c 2=λ(a 为波导内径的宽边长)。将(7)式 代入(6)式得到 g g k k 12=ρ (9) 将(8)式代入(4)式,利用(9)的关系整理得到 ()() 2 12 2 111g c g c λλρλλε++= (10) 由(10)式可见,只要测得ρ和g 1λ即可求得ε。 在测量中发现随着波导插入液体的深度不同,ρ值有些起伏。为此需要在几个不同深度(最小深度为5mm)下进行测量,测量晶体检波率做驻波曲线,对ρ取平均;采用交叉读法测量g 1λ值。测量频率f ,计算出凡g 1λ,将测量值与计算值进行比较。 二、实验数据处理 样品1:乙二醇 第一次 第二次 第三次 max I (A μ) 98.00 90.00 94.00 min I (A μ) 8.00 9.00 10.00 ρ 3.50 3.16 3.07 24.3=ρ

闭腔谐振法测试微波介质陶瓷介电参数.

收稿日期:2003212208. 作者简介:周东祥(19412),男,教授;武汉,华中科技大学电子科学与技术系(430074). E 2mail :Zhou -Dx @https://www.360docs.net/doc/d113838865.html, 基金项目:国家高技术研究发展计划资助项目(2001AA325110);湖北省科技攻关计划资助项目(2002AA101C01). 闭腔谐振法测试微波介质陶瓷介电参数 周东祥 胡明哲 姜胜林 龚树萍 (华中科技大学电子科学与技术系,湖北武汉430074) 摘要:研究用闭腔谐振法测量微波介质陶瓷介电参数的方法,采用TE 01δ模,开波导法研究了闭腔谐振器的谐振频率和导体的表面损耗,并由此计算了材料的微波介电常数、微波介电损耗,研究了谐振频率、介电损耗随体系结构参数的变化.研究证明开波导法的采用和此计算模型对体系谐振频率的计算误差小于5%.低损耗介质基片的采用不但可降低体系的谐振频率,还可有效提高金属板的品质因子,减小测量误差.关 键 词:闭腔;介电参数;TE 01δ模;介质谐振器 中图分类号:TB973 文献标识码:A 文章编号:167124512(2004)0820050204 Microw ave measurement of dielectric properties of ceramics by the closed cavity resonator method Zhou Dongxiang Hu M i ngz he Jiang S hengli n Gong S hupi ng Abstract :Microwave measurement of dielectric properties of ceramics by the closed cavity resonator method was discussed.By working in TE 01δmode ,the resonant frequencies and the conductor surface loss were studied using DWM theory.Based on the analysis ,the microwave dielectric constant and dielectric loss of the material were calculated.The relationships among the resonant frequency ,dielectric loss and the struc 2ture of the cavity were studied.The results were verified by comparing with other experiments ,and a total error with less than 5%was achieved.With the low 2loss dielectric substrate being presented ,the resonant frequency of the system was suppressed while the Q value of the conductor increased.K ey w ords :closed cavity ;dielectric properties ;TE 01δmode ;dielectric resonator Zhou Dongxiang Prof.;Dept.of Electronics Sci.&Tech.,Huazhong Univ.of Sci.&Tech.,Wuhan 430074,China. 随着多种低损耗、高介电常数、高温度稳定性的微波介质陶瓷材料的发展,微波介质陶瓷介电参数的测量成为材料性能评价及器件设计中的重要环节.目前的介质测试通常采用介质谐振法,它又可分为开式腔法[1]和闭式腔法[2],其中由于闭式腔法不但可有效防止电磁能的辐射,提高无载品质因数,而且可为谐振频率温度系数的测试带来方便.因而本研究采用了介质体在屏蔽腔中谐振的方法来测量低损耗、高介电常数材料的复介电常数.其中高介电常数材料放置于低损耗、低介电常数的聚四氟乙烯基片上,使得电磁场在介质试样内为传输模式,在试样外的空气介质和基片 内为截止模式,这样介质试样外的电磁能可以尽量小,从而使体系有很高的能量填充系数.采用TE 01δ模不但可避免介质试样与基片之间、基片与导电板之间以及上下导电板与侧壁之间的缝隙耦合电容,还可使该体系有较高的无载Q 值. 1 测试原理 本研究计算模型为开波导法,它是一种常用的计算介质谐振器的二阶近似方法[3].图1所示为闭腔测试的结构模型图,并作如下几点假设:介质试样各向同性;介质垫片无损耗;整个器件工作 第32卷第8期 华 中 科 技 大 学 学 报(自然科学版) Vol.32 No.82004年 8月 J.Huazhong Univ.of Sci.&Tech.(Nature Science Edition ) Aug. 2004

光学涡旋场的产生方法_衍射特性及其应用研究_

单位长度上光束的角动量和能量的比率为: ()z z z rdrd J l l W hv c rdrd θγγωθ××++===×∫∫∫∫ r E B E B (2-34) 其中**22() ()i αβαβγαβ?=+。由以上的证明我们得出以下重要的结论:在近轴传播 情况下,具有螺旋波前的偏振光场其光子角动量分为两部分,一部分为轨道角动量,等于l ,这是来源于光场的螺旋波前结构,与光波的偏振态无关;一部分为自旋角动量,等于γ ,这来源于光波的偏振态。对于任意偏振光在近轴近似情况下轨道角动量和自旋角动量是分离的,大小分别为l 和γ 。当0,1γ=±时,分别对应线偏振、左右旋圆偏振光。显然1γ≤,表明光子的自旋角动量最大为 ,即在所有的偏振态中,圆偏振光的光子自旋角动量最大。 事实上,对于任意的偏振态都可以表示为左右旋圆偏振态的叠加。假设一个 线偏振光,它可以表示为11111022i i ???????=+??????, 即左旋偏振态和右旋偏振态的叠加。对于椭圆偏振光也是如此,有1112i i a a αβ???????=+??????,其中12a a α=+, 12()a a i β=?;则此偏振态的自旋角动量可以表示为 22122212a a a a γ?=+ ,由此证明 了上式的普遍适用性。 在这儿,我们不再分析非近轴情况。 §2.3 产生光学涡漩的方法 光学涡旋作为一种特殊的光场,具有许多新颖的特性:具有螺旋波前,中心处存在相位奇点,具有暗中空结构等。这种结构的光束近年来已经在众多领域得到广泛的研究和应用;而所有的应用都有赖于能够产生高质量的光学涡旋场。 在研究光学涡旋初期,科学家并不能任意产生光学涡旋。经过科学家多年的不懈努力,光学涡旋已经可以通过多种不同的方法产生,在形状和排列上也可以控制。常见的方法有以下几种:几何模式转换法[57,60],全息图法[61-63],螺旋相位板法[4,64],中空波导法[67,68],旋转镜面光学参量振荡器法[69]等。另外,通过特殊设计的激光器[70-72]也能直接输出具有螺旋模式的激光束。下面介绍几

平面光波导(PLC, planar Lightwave circuit)技术

平面光波导(PLC, planar Lightwave circuit)技术

平面光波导(PLC, planar Lightwave circuit)技术 随着FTTH的蓬勃发展,PLC(Planar Lightwave Circuit,平面光路)已经成为光通信行业使用频率最高的词汇之一,而PLC的概念并不限于我们光通信人所熟知的光分路器和AWG,其材料、工艺和应用多种多样,本文略作介绍。 1.平面光波导材料 PLC光器件一般在六种材料上制作,它们是:铌酸锂(LiNbO3)、Ⅲ-Ⅴ族半导体化合物、二氧化硅(SiO2)、SOI(Silicon-on-Insulator, 绝缘体上硅)、聚合物(Polymer)和玻璃,各种材料上制作的波导结构如图1所示,其波导特性如表1所示。

图1. PLC光波导常用材料 铌酸锂波导是通过在铌酸锂晶体上扩散Ti离子形成波导,波导结构为扩散型。 InP波导以InP为称底和下包层,以InGaAsP为芯层,以InP或者InP/空气为上包层,波导结构为掩埋脊形或者脊形。 二氧化硅波导以硅片为称底,以不同掺杂的SiO2材料为芯层和包层,波导结构为掩埋矩形。 SOI波导是在SOI基片上制作,称底、下包层、芯层和上包层材料分别为Si、SiO2、Si和空气,

波导结构为脊形。 聚合物波导以硅片为称底,以不同掺杂浓度的Polymer材料为芯层,波导结构为掩埋矩形。 玻璃波导是通过在玻璃材料上扩散Ag离子形成波导,波导结构为扩散型。 表1. PLC光波导常用材料特性 2. 平面光波导工艺 以上六种常用的PLC光波导材料中,InP波导、二氧化硅波导、SOI波导和聚合物波导以刻蚀工艺制作,铌酸锂波导和玻璃波导以离子扩散工艺制作,下面分别以二氧化硅波导和玻璃波导为例,介绍两类波导工艺。 二氧化硅光波导的制作工艺如图2所示,整个工艺分为七步: 1)采用火焰水解法(FHD)或者化学气相淀积工艺

光波导原理及器件简介

包层n 2 芯区n 1 图1. 三层平面介质波导 图2. 矩形波导 图3. 圆光波导 图4. 椭圆光波导 光波导原理及器件简介 摘要:20世纪60年代激光器的出现,导致了半导体电子学、导波光学、非线性光学等一系列新学科的涌现。20世纪70年代,由于半导体激光器和光纤技术的重要突破,导致了以光导纤维通信、光信息处理、光纤传感、光信息存储与显示等为代表的光信息科学技术的蓬勃发展,而导波光学理论是光通信技术的基础,同时也是集成光学、光纤传感等学科的基础。本文简述了光波导的原理,并着重介绍光波导开关。 关键词:光波导,波导光学,平面光波导,光波导开光 1.引言 1.1光波导的概念 波导光学是一门研究光波导中光传输特性及其应用的学科。以光的电磁理论和介质光学特性的理论为基础,研究光波导的传光理论、调制技术及光波导器件的制作与应用技术。导波光学系统是由光源、光波导器件、耦合器、光调制器及光探测器等组成的光路系统。 光波导是将光波限制在特定介质内部或其表面附近进行传输的导光通道。简单的说就是约束光波传输的媒介,又称介质光波导。介质光波导的三要素是:“芯/包”结构,凸形折射率分布(n1>n2),低传输损耗。光波导常用材料有:LiNbO3、Si 基(SiO2、SOI )、Ⅲ-Ⅴ族半导体、聚合物等。 1.2光波导的分类 按几何结构分类,光波导可分为:平面(平板)介质波导,矩形(条形)介质波导,圆和非圆介质波导。

按波导折射率在空间的分布分类,光波导可分为:非线性光波导(n=n(x,y,z,E)),线性光波导(n=n(x,y,z))。线性光波导又可分为:纵向均匀(正规)光波导 (n=n(x,y)),纵向均匀(正规)光波导(n=n(x,y))。 2.光波导的原理简介 一种为大家所熟知的介质光波导就是通常具有圆形截面的光导纤维,简称为光纤。然而,集成光学所注重的光波导往往是平面薄膜所构成的平板波导和条形波导,这里,我只讨论平面光波导。 最简单的平板波导由三层材料所构成,中间一层是折射率为 n1的波导薄膜,它沉积在折射率为 n2的基底上,薄膜上面是折射率为 n3的覆盖层,一般都为空气。薄膜的厚度一般在微米数量级,可与光的波长相比较。薄膜和基底的折射率之差一般在10-1和10-3之间。为了构成真正的光波导,要求n1必须大于 n2和 n3,即 n1>n2>=n3。这样,光能限制在薄膜之中传播。 假定导波光是相干单色光,并假定光波导由无损耗,各向同性,非磁性的无源介质构成。 光在平板波导中的传播可以看作是光线在薄膜—基底和薄膜—覆盖层分界面上发生全反射,在薄膜中沿 Z 字形路径传播。光在波导中以锯齿形沿Z 方向传播,光在x 方向受到约束,而在y 方向不受约束。 在平板波导中,n1>n2且 n1>n3,当入射光的入射角θ1超过临界角θ0时: 入射光发生全反射,此时,在反射点产生一定的位相跃变。我们从菲涅耳反射公式: 出发,推导出反射点的位相跃变φTM 、φTE 为:

光波导与光纤通信课程教学大纲

《光波导与光纤通信》课程教学大纲 一、《光波导与光纤通信》课程说明 (一)课程代码:08131013 (二)课程英文名称:Fundamentals of Light Wave Guide & Fibre Optical Communication (三)开课对象:应用物理学专业本科生 (四)课程性质: 光波导与光纤通信应用物理学专业本科生的专业选修课。其预修课程有大学物理、数理方法、通信原理等。本课程的目的本课程的目的是让学生掌握光纤通信的基本概念,基本理论和基本技术,了解光纤通信的发展现状。 (五)教学目的: 本课程的目的是让学生掌握光纤通信的基本概念,基本理论和基本技术,了解光纤通信的发展现状,更好地适应社会需要。 (六)教学内容: 光纤通信是现代通信网的重要组成部分,本课程内容主要包括光波导和光纤的基本理论和性质;半导体、激光器、光检测器、光放大器等光纤通信器件的基本理论和性质;光发射机、光接收机的基本理论和性质;光纤通信系统的构成、设计方式以及光纤通信中各种新技术、新发展。 (七)学时数、学分数及学时数具体分配 学时数: 54 学时 分数: 3学分 学时数具体分配: 教学内容讲授实验/实践合计第一章概论 2 2 第二章光纤与导光原理8 8

第三章光缆的制造及无源光器件 4 4 第四章光源与光检测器 4 4 第五章光纤激光器 6 6 第六章光纤放大器 6 6 第七章线路编码与多媒体应用 6 6 第八章光发射机与光接收机 6 6 第九章光纤网络通信技术 6 6 第十章光纤通信系统中的测量 6 6 合计54 54 (八)教学方式 以课堂讲授为主要授课方式 (九)考核方式和成绩记载说明 考核方式为考试。严格考核学生出勤情况,达到学籍管理规定的旷课量取消考试资格。综合成绩根据平时成绩和期末成绩评定,平时成绩占40% ,期末成绩占60% 。二、讲授大纲与各章的基本要求 第一章概论 教学要点: 通过本章学习,使学生掌握光纤通信的发展史及其发展方向,光纤通讯的优点及特点。 1.了解光纤通信的发展状况。 2.理解光纤通信的特点。 教学时数:2学时 教学内容: 第一节光纤通信的发展概况 第二节光纤通信的特点

《光波导理论与技术 李玉权版》第一、二章

——自学《光波导理论与技术李玉权版》笔记 第1章绪论 (2) 1.1 光通信技术 (2) 1.2 光通信的发展过程 (2) 1.3 光通信关键技术 (3) 1.3.1 光纤 (3) 1.3.2 光源和光发送机 (5) 第2章电磁场理论基础 (7) 2.1 电磁场基本方程 (7) 2.1.1 麦克斯韦方程组 (7) 2.1.2 电磁场边界条件 (8) 2.1.3 波动方程和亥姆霍兹方程 (10) 2.1.4 柱型波导中的场方程 (11) 2.2 各向同性媒质中的平面电磁波 (13) 2.2.1 无界均匀媒质中的均匀电磁波 (13) 2.2.2 平面电磁波的偏振状态 (13) 2.2.3 平面波的反射和折射 (15) 2.2.4 非理想媒质中的平面电磁波 (16) 2.3 各向异性媒质中的平面电磁波 (18) 2.3.1 电各向异性媒质 (18) 2.3.2 电各向异性媒质中的平面波 (18) 2.4 电磁波理论的短波长极限——几何光学理论 (22) 2.4.1 几何光学的基本方程——eikonal方程 (22) 2.4.2 光线传播的路径方程 (24) 2.4.3 路径方程解的两个特例 (25) 2.4.4 折射定律与反射定律 (28)

第1章 绪论 1.1 光通信技术 光通信的主要优势表现在以下几个方面: (1) 巨大的传输带宽 石英光纤的工作频率为0.8~1.65m μ ,单根光纤的可用频带几乎达到了200THz 。即便是在1.55m μ 附近的低损耗窗口,其带宽也超过了15THz 。 (2) 极低的传输损耗 目前工业制造的光纤载1.3m μ 附近,其损耗在0.3~0.4dB/km 范围以内,在 1.55m μ波段已降至0.2/dB km 以下。 (3) 光纤通信可抗强电磁干扰,不向外辐射电磁波,这样就提高了这种通信手 段的保密性,同时也不会产生电磁污染。 1.2 光通信的发展过程

平面光波导原理(理论)

平面光波导分路器工作原理简介The operating principle of Planar Lightwave Circuit (PLC) splitter 专业2009-12-27 10:55:40 阅读10 评论1 字号:大中小订阅 分路器作为FTTx网络的核心部件,其在无源光网络(Passive Optical Network, PON)的一个典型应用表现在以下两个方面: 1.作为下行光信号(1490nm和1550nm)的功率分配器(Power splitter)使用 2.作为上行光信号(1310nm)的合束器(Combiner)使用 详细的组网形式不是这里的讨论重点,读者可以参考相关专著(如Gerd Keiser的《FTTX Concepts and Applications》)。这里主要讨论的是分路器的工作原理和性能。 目前市场上主流的分路器主要基于两种技术形式:熔融拉锥型(Fused Biconical Taper, FBT)和平面光波导(PLC)型。同样的,两种技术形式孰优孰劣,这里不作评论。无论基于何种技术形式的分路器,都是基于1 x 2基本结构的级联而成。FBT的1 x 2结构是一耦合器,而PLC的是一Y分支结构。这个看似简单的Y分支构件,其实并不简单,因为分路器的性能优劣很大程度上就是由它决定的。如何设计一个性能优异的Y分支结构属于技术机密(Classified technology),这里不便讨论。这里仅就基于平面光波导技术的一个Y分支结构的分路器,即1 x 2分路器的工作原理作一简介。其实也就是从物理本质上粗略地解释为什么1 x 2分路器无论是上行,还是下行信号,其插入损耗都是3 dB。 1 x 2分路器的功能结构可以用图1(a)的框图来表示:一个单模输入波导,两个单模输出波导。中间用来分束的结构有很多种,这里只给出了3种结构:图1(b)的定向耦合器型(Directional Coupler, DC),图1(c)的无间距定向耦合器型(Zero-Gap Directional Coupler, ZGDC),以及图1(d)的模斑转换器型(Spot Size Converter, SSC)。定向耦合器型和零间距定向耦合器型输入端都只用其中一个端口,并且无间距定向耦合器型其实是多模干涉型(Multi-Mode Interference, MMI)。现行市场上热卖的PLC分路器都是SSC型的,之所以给出另外两种,是为了进行对比分析。 首先来看图1(b)的DC,入射光在入射单模波导内只存在一个模式:基模(0阶模)。当该0阶模到达耦合区-两相互靠近的波导(间距为波长量级)时,根据超模理论(Supermode theory),将会在耦合区激励出如图中所示的两超模(由各独立波导中的0阶模叠加而成):偶模(even mode)和奇模(odd mode),并且这两个超模具有几乎相等(近于简并)的传播常数。在偶模中,位于2个波导内的电场波峰是同相位;而奇模中两波峰是反相位。根据这样的相位关系,两超模叠加的场分布光功率,可以在相邻两波导中周期性的,成二次正(余)弦函数的,不断的交替变换。图中示意图为刚好等分(half = 3 dB)入射光强时的模式(FBT1 x 2分路器原理与此类同)。 再来考察图1(c)中的ZGDC,同样的入射光在入射单模波导内只存在一个模式:基模(0阶模)。虽然该结构也叫DC,但其工作模式与真正的DC完全不同。当入射0阶模到达两入射波导交叉点时,该处波导宽度突然增大一倍,其场宽也必然增大,变成另一0阶模。由于这两个0阶模不满足场的连续性条件,因此必然同时伴随着另一模式-1阶模的激发,而且1阶模的强度与0阶模相同。如是在中间宽度2w多模波导中便传输着两个模式,并且最多只有这两个模式:0阶模和1阶模(该2w波导为双模波导)。这样,在该区域内,光场分布就是这两个模式(0阶模,1阶模)的相互干涉场分布(前面提到的MMI)。图中示意图为刚好在两输出单模波导中等分(half = 3 dB)输入光强时的模式。 图1(d)就是现行市场上的PLC1 x 2分路器-Y分支。其工作原理如下:当入射单模波导内的0阶模刚到达锥形区域-SSC时,这里波导结构并无发生任何变化,因此仍然保持该0阶模的形态。当该0阶模继续在SSC中传播时,虽然波导宽度不断变宽到2w,此时该波导内可以存在两个模式(前已述)。然而,由于SSC区域变宽的很缓

相关文档
最新文档