二维非线性光子晶体波导全光开关

二维非线性光子晶体波导全光开关
二维非线性光子晶体波导全光开关

基于FDTD二维光子晶体器件设计软件的开发-图文(精)

第 23卷第 6期计算机应用与软件 Vo l 23, No . 6 2006年 6月 Co m puter Applicati o ns and Soft w are Jun . 2006 基于 FDTD 二维光子晶体器件设计软件的开发 彭小舟张冶金杨四刚陆洋陈向飞谢世钟 (清华大学电子工程系北京 100084 收稿日期 :2004-08-31。基金项目 :国家重点基础研究规划 973项目(2003CB314907 。彭小舟 , 硕士生 , 主研领域 :光子晶体平板类与 光纤类器件的研究。

摘要介绍了一个基于时域有限差分法 (FDTD 的二维光子晶体器件设计软件PCCAD, 所用的核心算法是时域有限差分法。 与同类 FDTD 商业软件相比 , 特点在于其具有多种光子晶体结构编辑模板 , 多种点源、线源 , 先进的边界吸收技术及多种参数优化扫描等功能。快速傅里叶变换及 P ade 算法在软件设计中的应用使模拟更加精确、快速。软件适用于各种平面光子晶体的仿真设计 , 探索新的器件结构。最后 , 利用此软件设计了直波导、 T 型波导等二维平面光子晶体器件。关键词时域有限差分法 (FDTD 光子晶体设计软件 THE DEVELOP M ENT OF 2D PHOTON I C CRYS TALS DEVI CE DESI GN S OFT WARE BAS ED ON FDTD Peng X iaozhou Zhang Y ejin Y ang S i g ang Lu Y ang Chen X iangfe i X ie Sh izhong (TheE lectron ics E ng i n ee ring D e part m ent , T sing hua Un i v e rsit y, B eijing 100084, Ch i na Abstrac t A 2D pho ton ic crysta l s dev ice desi gn so ft ware PCCAD, which is based on fi n ite d iffe rence ti m e do m a i n m ethod (FDTD , i s i n troduced i n this paper . T he key a l go rith m used i n t h i s so ft wa re is FDTD. Compared w i th t he ex isting comm erc i a l FDTD appli cations , PCCAD has t he fo llo w i ng advantage :p lenty of photonic crysta l s desi gn te m plates , po int and li ne i ncidentw ave sou rce , advanced abso rb bound conditi on and the facti on o f para m ete r opti m ize scann i ng . T he applica ti on o f FFT and P ade a l gor it hm bring m ore prec i s i on and save much ti m e from s i m u l ating . Th is so ft w are is s u itable for 2D photonic crystals dev ice design or l ook i ng f o r new structure . A t the l ast of this paper , so m e types o f pho t on i c c rystals w avegu i de i s designed usi ng t h is so ft w are . K eywords FDTD Pho ton ic crysta l Des i gn soft w are

光子晶体简介及应用

光子晶体及其应用的研究 (程立锋物理电子学) 摘要:光子晶体(PbmDftic Crystal)是一种新型的人工材料,其最显著的特点就是具有光子禁带(Photonic B锄d.G £lp,简称PBG),频率落在光子禁带内的电磁波是禁止传播的,因而具有光子带隙的周期性奔电结构就称为光子晶体。近几年,光子晶体被广泛地应用于微波、毫米波的电路设计中。的滤波特性,加以优化,则可以实现带通滤波器。迄今为止,已有多种基于光子晶体的全新光子学器件被相继提出,包括无阈值的激光器,无损耗的反射镜和弯曲光路,高品质因子的光学微腔,低驱动能量的非线性开关和放大器,波长分辨率极高而体积极小的超棱镜,具有色散补偿作用的光子晶体光纤,以及提高效率的发光二极管等。光子晶体的出现使光子晶体信息处理技术的"全光子化"和光子技术的微型化与集成化成为可能,它可能在未来导致信息技术的一次革命,其影响可能与当年半导体技术相提并论。 关键词:光子晶体;算法;应用;

1光子晶体简介 在过去的半个世纪里,随着人们对电子在物质尤其是半导体中运动规律的研究,使得对电子控制能力的增加,从而产生了各种微电子器件以及大规模的集成电路。推动了电子工业和现代信息产业的迅猛发展,半导体技术在人们生活中扮演着越来越重要的角色。半导体的工作载体是电子,因此半导体的研究围绕着怎样利用和控制电子的特性。但近年来,电子器件的进一步小型化以及在减小能耗下提高运行速度变得越来越困难。人们感到了电子产业发展的极限,转而把目光投向了光子。与电子相比,以光子作为信息和能量的载体具有优越性。光子是以光速运动的微观粒子,速度快;它的静止质量为零,彼此间不存在相互作用,即使光线交汇时也不存在相互干扰:它还有电子所不具备的频率和偏振等特征。电子能带和能隙结构是电子作为一种波的形式在凝聚态物质中传播的结构,而光子和电子一样具有波动性,那么是否存在这样一种材料,光子作为一种波的形式在其中传播也会产生光子能带和带隙。近来大量的理论和实验表明确实存在这样一种材料,其典型的结构是一个折射率周期变化的三维物体,它的周期为光的波长,折射率变化比较大时,会出现类似于电子情况的光子能带和带隙。这种具有光子能带和带隙的材料被称为光子晶体。 在半导体材料中,电子在晶体的周期势场中传播时,由于电子波会受到周期势场的布拉格散射而形成能带结构,带与带之间可能存在

简单六方结构二维光子晶体能带的COMSOL模拟

简单六方结构二维光子晶 体能带的C O M S O L模拟 Prepared on 22 November 2020

简单六方结构二维光子晶体能带的COMSOL 模拟 北京东之星应用物理研究所 伍勇 1.引言 COMSOL 携带的案例库里,其中一篇 (以下简称)对砷化镓简单正方格子2D 光子能带进行了完整计算和研究。本文将程序用于简单六方结构,并将结果在此做一介绍。 2.关于Floquet (弗洛盖)波矢F k 这是入门COMSOL 光子晶体能带模拟的重要概念,在另一案例 中,在Floquet 周期性边界条件一段写明: )d k (i e )d x (p )x (p ?-+=由此我判断Floquet 波矢就是Bloch (布洛赫)波矢,但“帮助”文档中有:)sin a n cos a (sin k k 21211F ααα ?+=,以正格子基矢21a ,a 表示(其文没有任何几何插图和物理说明),使我决定必须 在六方格子中选择矩形单胞作为周期单元,以使计算机程序能够运行我的几何方案。 3.几何建模 图1作为试探选择的几何模型,圆形柱代表以GaAs 作为格点材料,在空气介质中周期性排列,形成二维六方结构人造晶体。a 是晶格常数。 z ? 是z 方向的单位矢量

以上根据倒格子基矢定义计算出1b ,2b 及其分量。由倒格子基矢1b ,2b ,构建长方格子的布里渊区也是长方结构如图2: 4.二维光子晶体主方程 COMSOL 在“模型开发器”[电磁波,频域]写出方程形式如下: 0)()(0 201=--????-E j k E r r ωεσεμ, 在中,下面目录[波方程,电]中直接简化为, 电磁波在光子晶体中的传播遵从麦克斯韦方程,上述方程可由麦克斯韦方程组出发导出 介质中的麦克斯韦方程组 E D ε=,H B μ=,E J σ= 在电介质中一般认为自由电荷,自由电流密度(电导率)为零。本文档不考虑 磁性质,0=ρ,0=J ,1=r μ 传播模态电场函数COMSOL 表达为: )(t i e z z ik e )y ,x (E )t ,z ,y ,x (E 5ω-= , 在周期结构中,它应具有Bloch 波的性质,不考虑衰减损耗。注意这里次上标的符号与我们习惯的教科书里正负符号相反。 由(2)两端取旋度,将(4)代入得: 22t E )E (??-=???? με,μεω22=k 绝缘介质,22020 20022n k c k r r r r ===μεωμμεεω,

纯介质光子晶体非线性效应研究进展

纯介质光子晶体非线性效应研究进展 石建平1,2,纪艳平1,2,李子旻1,2,金涛1,2,赵小童1,2, 黄万霞1,2,孙逸哲3,王玉杰3,董可秀3* 1 光电材料科学与技术安徽省重点实验室,安徽芜湖 241000; 2 安徽师范大学物理与电子信息学院,安徽芜湖 241000; 3 滁州学院电子与电气学院,安徽滁州 239000 摘要:如何在低阈值小尺度(毫瓦或皮焦量级、微米以下)情况下激发非线性光学效应是近年来光学领域研究的重要课题。 该研究最直接的应用需求就是光子集成芯片,这是未来实现超高速、大容量信息网络体系的基础。光子晶体具有类似于半导体能带的光子禁带(PBG),被誉为“光子半导体”,为人们提供了一种新颖而又实用的操纵光子的物理手段,使低阈值、可集成非线性效应产生成为可能。越来越多的非线性效应在光子晶体中已经被发现,例如光子晶体慢光、带隙孤子、电磁感应透明、二次谐波产生、光学双稳态等,本文将着重对可用于光子集成器件开发的光子晶体非线性效应研究领域的一些主要成果和进展进行总结,介绍其相关应用并对光子晶体非线性效应研究作出展望。 关键词:光子晶体;非线性光学效应;低阈值集成光学非线性;光子集成器件 中图分类号:O734 文献标志码:A Research progress of nonlinear optical effect in all-dielectric photonic crystals Jianping Shi1,2, Yanping Ji1,2, Zimin Li1,2, Tao Jin1,2, Xiaotong Zhao1,2, Wanxia Huang1,2, Yizhe Sun3, Yujie Wang3 and Kexiu Dong3* 1 Anhui Province Key Laboratory of Photo-electronic Materials Science and Technology, Wuhu 241000, China; 2 College of Physics and Electronic Information, Anhui Normal University, Wuhu 241000, China; 3 School of Electronic and Electrical Engineering, Chuzhou University, Chuzhou 239000, China Abstract: How to excite the nonlinear optical effect in the case of low threshold (mW or pJ order) and small scale (μm or less) is a topic field of optical research in recent years. The most direct application requirement is photonic integrated circuit, which is the foundation to realize the ultra-high speed and large capacity information network in the future. Photonic crystals (PCs) have the photonic band gap (PBG) just like the semiconductor band for electronics, so it is known as "photonic semiconductors". PCs provide a novel and practical means of manipulating photons, therefore the possibility of photonic integrated circuit with low threshold arises. More and more nonlinear effects have been found in PCs, such as photonic crystal slow light, the band gap soliton, electromagnetic induction transparency, second harmonic generation and optical bistability. This paper will focus on the summaries of some major achieve-ments and advances about PCs that would promote the nonlinear photonic integrated devices. Certainly the related applications will be introduced and the future outlook of the nonlinear PCs will be discussed. Keywords: photonic crystals; nonlinear optical effect; nonlinear integrated optics with low thresholds; photonic in-tegrated devices DOl:10.3969/j.issn.1003-501X.2017.03.004 Citation: Opto-Elec Eng, 2017, 44(3): 297-312 收稿日期:2016-12-04;收到修改稿日期:2017-01-20 *E-mail:kexiudong@https://www.360docs.net/doc/d417209228.html, 297 万方数据

简单六方结构二维光子晶体能带的COMSOL模拟

简单六方结构二维光子晶体能带的COMSOL 模拟 北京东之星应用物理研究所 伍勇 1.引言 COMSOL 携带的案例库里,其中一篇(以下简称)对砷化镓简单正方格子2D 光子能带进行了完整计算和研究。本文将程序用于简单六方结构,并将结果在此做一介绍。 2.关于Floquet(弗洛盖)波矢F k 这是入门COMSOL 光子晶体能带模拟的重要概念,在另一案例中,在Floquet 周期性边界条件一段写明: )d k (i e )d x (p )x (p 由此我判断Floquet 波矢就是Bloch (布 洛赫)波矢,但“帮助”文档中有:)sin a n cos a (sin k k 21211F ,以正格子基矢21a ,a 表示(其文没有任何几何插图和物理说明),使我决定必须在六方格子中选择矩形单胞作为周期单元,以使计算机程序能够运行我的几何方案。 3.几何建模 图1作为试探选择的几何模型,圆形柱代表以GaAs 作为格点材料,在空气介质中周期性排列,形成二维六方结构人造晶体。a 是晶格常数。

z ? 是z 方向的单位矢量 以上根据倒格子基矢定义计算出1b ,2b 及其分量。由倒格子基矢1b ,2b ,构建长方格子的布里渊区也是长方结构如图2: 4.二维光子晶体主方程 COMSOL 在“模型开发器”[电磁波,频域]写出方程形式如下: 0)()(0 201 E j k E r r , 在中,下面目录[波方程,电]中直接简化为, 电磁波在光子晶体中的传播遵从麦克斯韦方程,上述方程可由麦克斯韦方程组出发导出 介质中的麦克斯韦方程组 E D ,H B ,E J 在电介质中一般认为自由电荷,自由电流密度(电导率)为零。本文档不考虑磁性质,0 ,0 J ,1 r 传播模态电场函数COMSOL 表达为:)(t i e z z ik e )y ,x (E )t ,z ,y ,x (E 5 , 在周期结构中,它应具有Bloch 波的性质,不考虑衰减损耗。注意这里次上标的符号与我们习惯的教科书里正负符号相反。 由(2)两端取旋度,将(4)代入得: 22t E )E ( , 22 k 绝缘介质,

光子晶体发展及种类

光子晶体及光子晶体光纤的研究现状与发展趋势 摘要:光子晶体光纤(PCF)由于具有传统光纤无法比拟的奇异特性,吸引了学术界和产业界的广泛关注,在短短的十年内PCF的研究取得了很大的进展。本文阐述了PCF的一些独特光学性质、制作技术及其理论研究方法,介绍了PCF的发展以及最新成果。 关键词:光子晶体光子晶体光纤光子晶体光纤激光器 1、前言 光子晶体光纤(photoniccrystalfiber,PCF),又称多孔光纤或微结构光纤,以其独特的光学特性和灵活的设计成为近年来的热门研究课题。这类光纤是由在纤芯周围沿着轴向规则排列微小空气孔构成,通过这些微小空气孔对光的约束,实现光的传导。独特的波导结构,灵活的制作方法,使得PCF与常规光纤相比具有许多奇异的特性,有效地扩展和增加了光纤的应用领域[1]。在光纤激光器这一领域内,PCF经专门设计可具有大模面积且保持无限单模的特性,有效地克服了常规光纤的设计缺陷。以这种具有新颖波导结构和特性的光纤作为有源掺杂的载体,并把双包层概念引入到光子晶体光纤中,将使光纤激光器的某些性能有显著改善。近年来,国内外的很多大学和科研单位都在积极开展光子晶体光纤激光器的研究工作[2]。目前,国外输出功率达到几百瓦的光子晶体光纤激光器已有报道。本文阐述了PCF的一些独特光学性质、制作技术及其理论研究方法,介绍了PCF的发展以及最新成果。 2、光子晶体光纤的导光原理 按导光机理来说,PCF可以分为两类:折射率导光机理和光子能隙导光机理。 2.1折射率导光机理 周期性缺陷的纤芯折射率(石英玻璃)和周期性包层折射率(空气)之间有一定差别,从而使光能够在纤芯中传播,这种结构的PCF导光机理依然是全内反射,但与常规G.652光纤有所不同,由于包层包含空气,所以这种机理称为改进的全内反射,这是因为空芯PCF 中的小孔尺寸比传导光的波长还小的缘故[3]。 2.2光子能隙导光机理 理论上求解光波在光子晶体中的本征方程即可导出实芯和空芯PCF的传导条件,即光子能隙导光理论。如图2所示,光纤中心为空芯,虽然空芯折射率比包层石英玻璃低,但仍能保证光不折射出去,这是因为包层中的小孔点阵构成光子晶体。当小孔间距和小孔直径满足一定条件时,其光子能隙范围内就能阻止相应光传播,光被限制在中心空芯之内传输。最近有研究表明,这种PCF可传输99%以上的光能,而空间光衰减极低,光纤衰减只有标准光纤的1/2~1/4[4]。 空芯PCF光子能隙传光机理具体解释为:在空芯PCF中形成周期性的缺陷是空气,传光

基于光子晶体的全光开关

基于非线性光子晶体的全光开关 摘要: 通过利用一维和二维非线性光子晶体来实现全光开关,首先对光子晶体的概念和物理特性进行了介绍,其次介绍了一种利用一维非线性光子晶体实现全光开关的方法,该方法在光子晶体的所有高折射率层掺入Kerr介质,依赖于光子与非线性光子晶体的相互作用,根据非线性效应导致的缺陷态迁移实现光子晶体全光开关。最后介绍了一种在二维光子晶体内部加入克尔型非线性介质柱,实现非线性光子晶体全光开关结构的方法,通过时域有限差分(FDTD)理论分析,该结构还可以实现基本的逻辑功能。 关键字:光子晶体;全光开关;非线性;FDTD理论 Abstract:To obtain all-optical switching, one dimensional and two dimensional nonlinear photonic crystal are used. First of all, the concept and physical characteristics of photonic crystal are introduced. Then, a implementation method of all-optical switching is present, which based on one dimensional nonlinear photonic crystal. In all photonic crystal high refractive index layers Kerr medium is mixed, based on the Kerr nonlinear effect caused by the whole band moving principle, all-optical switching can be realized. Finally, a two dimensional photonic crystal structure with kerr nonlinear dielectric rods is introduced. By means of finite difference time domain (FDTD), it can implement fundamental logical function. Keywords:photonic crystal; all-optical switching; nonlinearity; FDTD 1、前言 全光开关是一种重要的集成光子学器件,完全利用光子与介质的相互作用来实现对光传输状态的控制,在光通信等领域具有广阔的应用前景。光子晶体是一种折射率在空间周期性变化的新型光子学材料,具有独特的光子禁带和光子局域特性[1-3],能有效地控制光的传输状态,这是实现全光开关的重要基础。利用光子晶体实现全光开关的思想最早由Scalora在1994年提出[4],该思想提出后人们进行了大量的理论探索[5-7]。龚旗煌、胡小永[8]介绍了基于光子晶体的全光开关的各种实现方法,并详细论述了超快速光子晶体全光开关的实验研究状况。宋健、孟凡玉等[9]基于Kerr非线性效应导致的禁带整体移动原理,设计了两种一维光子晶体全光开关结构,并应用时域有限差分对对全光开关进行数值特性分析,并讨论了频率混合效应对全光开关的影响。据美国物理学家组织网2012年5月3日的报道,美国联合量子研究所的科学家最新研制出迄今能耗最低的一款全光开关,该开关能引导光束从一个方向到达另一个方向,整个过程只需耗费120ps(120万亿分之一秒),而且能耗仅为1*10-18J,是目前能耗最低的全光开关。科学家们使用置于共振光腔内的一个量子点( 相当于一个门) 制造出了该全光开关该共振光腔是一个拥有很多小洞的光子晶体,只允许少数光波通过晶体。 本文首先对光子晶体的概念和物理特性进行了介绍,其次介绍了一种利用一维非线性光子晶体实现全光开关的方法,该方法依赖于光子与非线性光子晶体的相互作用,由非线性效应导致的缺陷态迁移是实现光子晶体全光开关。最后介绍了一种在二维光子晶体内部加入克尔型非线性介质柱,实现非线性光子晶体全光开关结构的方法。

四种晶体类型的比较

物质的熔沸点的高低与构成该物质的晶体类型及晶体内部粒子间的作用力有关,其规律如下: 1、在相同条件下,不同状态的物质的熔、沸点的高低是不同的,一般有:固体>液体>气体。例如:NaBr(固)>Br2>HBr(气)。 2、不同类型晶体的比较规律 一般来说,不同类型晶体的熔沸点的高低顺序为:原子晶体>离子晶体>分子晶体,而金属晶体的熔沸点有高有低。这是由于不同类型晶体的微粒间作用不同,其熔、沸点也不相同。原子晶体间靠共价键结合,一般熔、沸点最高;离子晶体阴、阳离子间靠离子键结合,一般熔、沸点较高;分子晶体分子间靠范德华力结合,一般熔、沸点较低;金属晶体中金属键的键能有大有小,因而金属晶体熔、沸点有高(如W)有低(如Hg)。例如:金刚石>食盐>干冰 3、同种类型晶体的比较规律 A、原子晶体:熔、沸点的高低,取决于共价键的键长和键能,键长越短,键能越大共价键越稳定,物质熔沸点越高,反之越低。如:晶体硅、金刚石和碳化硅三种晶体中,因键长C—C碳化硅>晶体硅。

B 、离子晶体:熔、沸点的高低,取决于离子键的强弱。一般来说,离子半径越小,离子所带电荷越多,离子键就越强,熔、沸点就越高,反之越低。 例如:MgO>CaO ,NaF>NaCl>NaBr>NaI 。 KF >KCl >KBr >KI ,CaO >KCl 。 C 、金属晶体:金属晶体中金属阳离子所带电荷越多,半径越小,金属阳离子与自由电子静电作用越强,金属键越强,熔沸点越高,反之越低。如:Na <Mg <Al ,Li>Na>K 。 合金的熔沸点一般说比它各组份纯金属的熔沸点低。如铝硅合金<纯铝(或纯硅)。 D 、分子晶体:熔、沸点的高低,取决于分子间作用力的大小。分子晶体分子间作用力越大物质的熔沸点越高,反之越低。(具有氢键的分子晶体,熔沸点反常地高) 如:H 2O >H 2Te >H 2Se >H 2S ,C 2H 5OH >CH 3—O —CH 3。 (1)组成和结构相似的分子晶体,相对分子质量越大,分子间作用力越强,物质的熔沸点越高。如:CH 4<SiH 4<GeH 4<SnH 4。 (2)组成和结构不相似的物质(相对分子质量相近),分子极性越大,其熔沸点就越高。如熔沸点 CO >N 2,CH 3OH >CH 3—CH 3。 (3)在高级脂肪酸形成的油脂中,不饱和程度越大,熔沸点越低。 如:C 17H 35COOH >C 17H 33COOH ;硬脂酸 > 油酸 (4)烃、卤代烃、醇、醛、羧酸等有机物一般随着分子里碳原子数增加,熔沸 点升高,如C 2H 6>CH 4, C 2H 5Cl >CH 3Cl ,CH 3COOH >HCOOH 。 (5)同分异构体:链烃及其衍生物的同分异构体随着支链增多,熔沸点降低。如: CH 3(CH 2)3CH 3 (正)>CH 3CH 2CH(CH 3)2(异)>(CH 3)4C(新)。 芳香烃的异构体有两个取代基时,熔点按对、邻、间位降低沸点按邻、间、对位降低) 针对性训练 一、选择题 1.下列性质中,可以证明某化合物内一定存在离子键的是( ) (A )溶于水 (B )有较高的熔点 (C )水溶液能导电 (D )熔融状态能导电 2.下列物质中,含有极性键的离子化合是( ) (A )CaCl 2 (B )Na 2O 2 (C )NaOH (D )K 2S 3.Cs 是IA 族元素,F 是VIIA 族元素,估计Cs 和F 形成的化合物可能是( ) (A )离子化合物 (B )化学式为CsF 2 (C )室温为固体 (D )室温为气体 4.某物质的晶体中含A 、B 、C 三种元素,其排列方式如图所示(其中前后两面心上的 B 原子未能画出),晶体中A 、B 、 C 的中原子个数之比依次为( ) (A )1:3:1 (B )2:3:1 (C )2:2:1 (D )1:3:3 6.在NaCl 晶体中与每个Na +距离等同且最近的几个Cl -所围成的空间几何构型为( ) (A )正四面体 (B )正六面体 (C )正八面体 (D )正十二面体 7.如图是氯化铯晶体的晶胞(晶体中最小的重复单元),已知晶体中2个最近的Cs +离子核间距为a cm ,氯化铯的式量为M ,NA 为阿伏加德罗常数,则氯化铯晶体的密度为( ) (A )3 8a N m A ?g·cm -3 (B )A N Ma 83g·cm -3 (C )3 a N M A ?g·cm -3 (D )A N Ma 3g·cm -3

光子晶体简介论文

光子晶体简述 吉林师范大学欧天吉 0908211 摘要:光子晶体是指具有光子带隙的周期性介电结构材料,按其空间分布分为一维、二维、 三维光子晶体,一维光于晶体已得到实际应用,三维光于晶体仍处于实验室实验阶段,由于其优良的性能,未来光子晶体材料必将得到大力开发,应用前景更广泛。本文简要的论述了光子晶体的原理,理论研究,材料制备以及相关的应用。光子晶体材料是本世纪最具潜力的材料之一,至从上世间八十年代后期提出这一概念后。光于材料的研究和应用得到了很太的发展,目前在光纤和半导体激光器中已得到应用,本文就光子材料的基本概念和研究现状综合评述并对其未来发展趋势作出相应预测。 关键字:光子晶体材料制备前景应用 光子晶体的原理 1、什么是光子晶体 光子晶体是指具有光子带隙的周期性介电结构材料,所谓光子带隙是由于介电常数不同的材料在空间周期性排列导致介电常数的空间周期性,使得光折射率产生周期性分布,光在其中传播时产生能带结构,在带隙中的光子频率被禁止传播,因此称光子禁带,具有光子禁带特征的材料称光子晶体。因其具有光子局域、抑制自发辐射等特性,故光子晶体也被认为是控制光子的光半导体。 1987年,E.Yallonovitch和S.John在研究抑制自发辐射和光子局域时分别,提出了光子晶体这一新概念1990年,Ho.K.M,等人从理论上计算了一种三维金刚石结构光子晶体的色散关系。 光子晶体即光子禁带材料,从材料结构上看,光子晶体是一类在光学尺度上具有周期性介电结构的人工设计和制造的晶体。与半导体晶格对电子波函数的调制相类似,光子带隙材料能够调制具有相应波长的电磁波---当电磁波在光子带隙材料中传播时,由于存在布拉格散射而受到调制,电磁波能量形成能带结构。能带与能带之间出现带隙,即光子带隙。所具能量处在光子带隙内的光子,不能进入该晶体。光子晶体和半导体在基本模型和研究思路上有许多相似之处,原则上人们可以通过设计和制造光子晶体及其器件,达到控制光子运动的目的。光子晶体(又称光子禁带材料)的出现,使人们操纵和控制光子的梦想成为可能。 2、光子晶体的性质 光子晶体的最根本性质是具有光子禁带,落在禁带中的光是被禁止传播的。Yablonovitch指出:光子晶体可以抑制自发辐射。因自发辐射的几率与光子所在频率的态的数目成正比,当原子被放在一个光子晶体里面,而它的自发辐射光的频率正好 落在光子禁带中时,由于该频率光子的态的数目为零,因此自发辐射几率为零,自发辐射被抑制。反之,光子晶体也可以增强自发辐射,只要增加该频率光子的态的数目便可以实现,如光子晶体中混有杂质时,光子禁带中会出现品质因子很高的杂质态,具有很大的态密度,这样就可以实现辐射增强。

四种晶体类型的比较

四种晶体类型的比较

物质熔沸点高低的比较方法

物质的熔沸点的高低与构成该物质的晶体类型及晶体内部粒子间的作用力有关,其规律如下: 1、在相同条件下,不同状态的物质的熔、沸点的高低是不同的,一般有:固体> >HBr(气)。 液体>气体。例如:NaBr(固)>Br 2 2、不同类型晶体的比较规律 一般来说,不同类型晶体的熔沸点的高低顺序为:原子晶体>离子晶体>分子晶体,而金属晶体的熔沸点有高有低。这是由于不同类型晶体的微粒间作用不同,其熔、沸点也不相同。原子晶体间靠共价键结合,一般熔、沸点最高;离子晶体阴、阳离子间靠离子键结合,一般熔、沸点较高;分子晶体分子间靠范德华力结合,一般熔、沸点较低;金属晶体中金属键的键能有大有小,因而金属晶体熔、沸点有高(如W)有低(如Hg)。例如:金刚石>食盐>干冰 3、同种类型晶体的比较规律 A、原子晶体:熔、沸点的高低,取决于共价键的键长和键能,键长越短,键能越大共价键越稳定,物质熔沸点越高,反之越低。如:晶体硅、金刚石和碳化硅三种晶体中,因键长C—C碳化硅>晶体硅。 B、离子晶体:熔、沸点的高低,取决于离子键的强弱。一般来说,离子半径越小,离子所带电荷越多,离子键就越强,熔、沸点就越高,反之越低。 例如:MgO>CaO,NaF>NaCl>NaBr>NaI。KF>KCl>KBr>KI,CaO>KCl。

C 、金属晶体:金属晶体中金属阳离子所带电荷越多,半径越小,金属阳离子与自由电子静电作用越强,金属键越强,熔沸点越高,反之越低。如:Na <Mg <Al ,Li>Na>K 。 合金的熔沸点一般说比它各组份纯金属的熔沸点低。如铝硅合金<纯铝(或纯硅)。 D 、分子晶体:熔、沸点的高低,取决于分子间作用力的大小。分子晶体分子间作用力越大物质的熔沸点越高,反之越低。(具有氢键的分子晶体,熔沸点反常地高) 如:H 2O >H 2Te >H 2Se >H 2S ,C 2H 5OH >CH 3—O —CH 3。 (1)组成和结构相似的分子晶体,相对分子质量越大,分子间作用力越强,物质的熔沸点越高。如:CH 4<SiH 4<GeH 4<SnH 4。 (2)组成和结构不相似的物质(相对分子质量相近),分子极性越大,其熔沸点就越高。如熔沸点 CO >N 2,CH 3OH >CH 3—CH 3。 (3)在高级脂肪酸形成的油脂中,不饱和程度越大,熔沸点越低。 如:C 17H 35COOH >C 17H 33COOH ;硬脂酸 > 油酸 (4)烃、卤代烃、醇、醛、羧酸等有机物一般随着分子里碳原子数增加, 熔沸点升高,如C 2H 6>CH 4, C 2H 5Cl >CH 3Cl ,CH 3COOH >HCOOH 。

晶体结构分类

晶体结构试题分类解析 有关晶体结构的推断和计算是高中化学中的一个难点,这些题目能很好地考察学生的观察能力和三维想象能力,而且又很容易与数学、物理特别是立体几何知识相结合,自然也就成为近年高考的热点之一。此类题目的解答,要求学生在熟练掌握NaCl、CsCl、CO2、SiO2、金刚石等晶体结构的基础上,进一步理解和掌握一些重要的分析方法与原则。 一、教材中重要的晶体结构示意图 图1 NaCl的晶体结构图2 CsCl的晶体结构图3 干冰的晶体结构 图4 SiO2的晶体结构图5 金刚石的晶体结构图6石墨的晶体结构俯视图练习图 [练习题] 1、请将上面练习图中NaCl晶体结构中代表Na+的圆圈涂黑(不考虑体积大小),以完成NaCl 晶体的结构示意图。在该晶体中每个Na+周围与之最接近且距离相等的Na+共有个;与每个Na+等距离且最近的Cl-所围成的空间几何构型为。 2、在CsCl晶体中,每个Cs+周围与之最接近的且距离相等的Cs+有个。 3、在干冰晶体中,每个CO2分子周围与之最接近的且距离相等的CO2分子有个。 4、在金刚石的网状结构中,含有由共价键形成的碳原子环,其中最小的环上有个碳原子,每个碳原子上的任意两个C—C键的夹角都是。 5、石墨是层状结构,每一层内,碳原子排列成而成平面网状结构。每一个碳原子跟其它个碳原子相连。 二、根据晶体结构或晶胞结构示意图推断晶体的化学式 解答这类试题,通常采用分摊法。因为在一个晶胞结构中出现的多个原子,并不是只为这一个晶胞所独立占有,而是为多个晶胞共用,所以每一个晶胞只能按比例分摊。 分摊的根本原则是:晶胞任意位置上的原子如果是被n个晶胞所共有,则每个晶胞只能分得这个原子的1/n。 具体地,根据晶胞(晶体中最小重复单位)求晶体中粒子个数比的方法是:①处于顶点的粒子,同时为8个晶胞共有,每个粒子有1/8属于晶胞;②处于棱上的粒子,同时为4个晶胞共有,每个粒子有1/4属于晶胞;③处于面上的粒子,同时为两个晶胞共有,每个粒子有1/2属于晶胞。 例⒈现在四种晶体,其离子排列方式如图所示,其中化学式正确的是()

晶体的类型和性质

高三化学教案:晶体的类型和性质 1.四种基本晶体类型 分类 晶体质点间作用力 物理性质 熔化时的变化 代表物 离子晶体 原子晶体 分子晶体 金属晶体 混合型晶体 要求: 物理性质应从熔、沸点、硬度、导电性等方面展开并回答。 熔化时的变化应从化学键或分子间作用力的破坏,以及破坏后成为的粒子来回答。 代表物应从物质的分类来回答,不能回答一些具体的物质。 2.四种基本晶体类型的判断方法 (1)从概念,物质分类上看,由__________组成,通过_________和_________强烈相互作用而形成的晶体为金属晶体。

构成晶体质点为_________,这些质点间通过_________间作用力,而形成的晶体为分子晶体。共价化合物一般为_________晶体,但SiO2、SiC为_________晶体;离子化合物一定为 _________晶体 (2)由晶体的物理性质来看 ①根据导电性,一般地:熔融或固态时都不导电的是_________晶体或_________晶体,熔融或固态都能导电的为_________晶体;固态时不导电,熔化或溶于水时能导电的一般为 _________晶体;液态、固态、熔融都不能导电,但溶于水后能导电的晶体是_________晶体。一种称为过渡型或混合型晶体是_________,该晶体_________导电 ②根据机械性能:具有高硬度,质脆的为_________晶体,较硬且脆的为_________晶体,硬度较差但较脆的为 _________晶体,有延展性的为_________晶体。 ③根据熔、沸点:_________晶体与_________晶体高于 _________晶体。_________晶体熔沸点有的高,有的低。 3.典型晶体的粒子数 物质 晶型 重复单位几何形状 粒子数 NaCl 每个Cl- 周围与它最近等距的Na+有______个 CsCl 立方体 每个Cs+(Cl-)等距的Cl-(Cs+)有______个 金刚石

光子晶体光纤简介及原理

光子晶体光纤简介及原理 中文摘要: 光子晶体光纤又被称为微结构光纤,近年来引起广泛关注,它的横截面上有较复杂的折射率分布,通常含有不同排列形式的气孔,这些气孔的尺度与光波波长大致在同一量级且贯穿器件的整个长度,光波可以被限制在光纤芯区传播。光子晶体光纤有很多奇特的性质。例如,可以在很宽的带宽范围内只支持一个模式传输;包层区气孔的排列方式能够极大地影响模式性质;排列不对称的气孔也可以产生很大的双折射效应,这为我们设计高性能的偏振器件提供了可能。 中文关键字:光子晶体光纤 PCF导光机理 PCF的特性 英文摘要: In 1991, the emerging field of photonic crystals led to the development of photonic-crystal fiber which guides light by means of diffraction from a periodic structure, rather than total internal reflection. The first photonic crystal fibers became commercially available in 2000.[8] Photonic crystal fibers can be designed to carry higher power than conventional fiber, and their wavelength dependent properties can be manipulated to improve their performance in certain applications. 英文关键字: photonic-crystal fiber 光子晶体(PC)是一种介电常数随空间周期性变化的新型光学微结构材料,其 概念是1987年分别由S. Jo n和E. Yablonovitch提出来的,就是将不同介电常数的介质材料在一维、二维或者三维空间组成具有光波长量级的折射率周期性变化的 结构材料。 光子晶体的发现,可以说是光和电磁波传播与控制技术方面的一次革命。与电 子晶体不同,光子晶体是折射率周期性变化产生光子能带和能隙,频率(波长、能量)处在禁带范围内的光子禁止在光子晶体中传播。当在光子晶体中引入缺陷使其 周期性结构遭到破坏时,光子能隙就形成了具有一定频率宽度的缺陷区。我们知道,现代信息技术爆炸之发端是人类能以极为精巧复杂的方法控制半导体中电子流的能力,光子晶体则可以让人们同样地控制光子,甚至控制得更为灵活多样。可以预见,

晶体的类型与性质知识总结

晶体的类型与性质知识规律总结 晶体类型离子晶体分子晶体原子晶体金属晶体 定义离子间通过离子 键相结合而成的 晶体 分子间以分子间作用 力相结合的晶体 相邻原子间以共价 键相结合而形成的 空间网状结构的晶 体 金属阳离子和自 由电子之间的较 强作用形成的单 质晶体 构成粒子阴、阳离子分子原子金属离子、自由电 子 粒子间作用力 离子间肯定有离 子键,可能有原子 间的共价键 分子间:分子间作用 力。可能有分子内共 价键(稀有气体例外) 共价键 金属离子和自由 电子之间较强的 相互作用 代表物NaCl,NaOH,MgSO4干冰,I2,P4,H2O 金刚石,SiC,晶体 硅,SiO2 镁、铁、金、钠 熔、沸点熔点、沸点较高熔点、沸点低熔点、沸点高熔点、沸点差异较大(金属晶体熔沸点一般较高,少部 分低) 导热性不良不良不良良好 导电性固态不导电,熔化 或溶于水导电 固态和液态不导电, 溶于水可能导电 不导电。有的能导 电,如晶体硅,但金 刚石不导电。 晶体、熔化时都导 电 硬度硬度较大硬度很小硬度很大硬度差异较大 溶解性多数易溶于水等 极性溶剂 相似相溶难溶解 难溶于水(钠、钙 等与水反应) 决定熔点、 沸点高主要 因素 离子键强弱分子间作用力大小共价键强弱金属键强弱 二、几种典型的晶体结构 ①、NaCl晶体 1)在NaCl晶体的每个晶胞中,Na+占据的位置有 2 种。顶点8个,面 心6个

2)Cl-占据的位置有 2 种。棱上12个,体心1个 3)在NaCl晶体中,每个Na+周围与之等距离且最近的Na+有 12 个;每个Cl-周围与之等距离且最近的Cl-有12 个。 4)在NaCl晶体中每个Na+同时吸引着6个Cl-,每个Cl-同时也吸引着 6个Na+,向空间延伸,形成NaCl晶体。 5)每个晶胞平均占有 4 个Na+和 4 个Cl-。1molNaCl能构成这样的晶胞个。 6) Na+与其等距紧邻的6个Cl-围成的空间构型为_____正八面体_________ ②、CsCl晶体 1)每个Cs+同时吸引着 8 个Cl-,每个Cl-同时吸引着 8 个Cs+; 2)在CsCl晶体中,每个Cs+周围与它等距离且最近的Cs+有6个,每个Cl-周围与它等距离且最近的Cl-有 6 个; 3)一个CsCl晶胞有 1 个Cs+和 1 个Cl-组成;4)在CsCl晶体中,Cs+与Cl-的个数比为 1:1 。 ③、金刚石(如图3):每个碳原子都被相邻的四个碳原子包围,以共价键结合成为正四面体结构并向空间发展,键角都是109o28',最小的碳环上有六个碳原子,但六个碳原子不在同一平面上。 ④石墨(如图4、5):层状结构,每一层内,碳原子以正六边形排列成平面的网状结构,碳原子之间存在很强的共价键(大π键),故熔沸点很高。每个正六边形平均拥有两个碳原子、3个C-C。片层间存在范德华力,是混合型晶体。熔点比金刚石高。石墨为层状结构,各层之间以范德华力结合,容易滑动,所以石墨很软。在金刚石中每个碳原子与相邻的四个碳原子经共价键结合形成正四面体结构,碳原子所有外层电子均参与成键,无自由电子,所以不导电。而石墨晶体中,每个碳原子以三个共价键与另外三个碳原子相连,在同一平面内形成正六边形的环。这样每个碳原子上仍有一个电子未参与成键,电子比较自由,相当于金属中的自由电子,所以石墨能导电。 ⑤干冰(如图6):分子晶体,每个CO2分子周围紧邻其他12个CO2分子。平均每个CO2晶胞中含4个CO2分子。

相关文档
最新文档