矿井采区供电设计

矿井采区供电设计
矿井采区供电设计

xxx学院

毕业论文(设计)

题目:

专业:矿山机电

作者:

指导教师(职称):

年月日xxx学院毕业论文(设计)开题报告

2011年12月29日论文(设计)题目:煤矿309采区供电设计

姓名年级所在院系

专业矿山机电指导教师郭晓娥

开展本课题的意义及工作内容:

针对XX煤矿供电的实际情况,进行改进设计解决矿山实际问题,学会查阅技术资料和各种文献的方法,掌握采区供电设计的基本方法。主要内容包括采区供电系统中各电气设备及电缆的选择、校验。

总体安排及进度:

XX年X月份收集原始资料及拟定设计初稿;X月份完成1-5章; X月份完成6-10章;X月份在老师的指导下对设计内容进行检查、修改,并完成图纸; X月份上交论文。

课题预期达到的效果:

通过采区供电设计对矿井供电系统有了更加深入的了解,且保质保量完成设计任务,学会应用煤矿井下供电的理论知识,具体解决矿井供电的实际技术问题,做到理论与实践较好的结合。

指导教师意见:

签名:

xxx学院毕业论文(设计)中期报告

2011年12月29日

论文(设计)题目:XX煤矿309采区供电设计

姓名年级所在院系

专业矿山机电指导教师郭晓娥

1、简述毕业设计开始以来所做的具体工作和取得的进展或成果

毕业设计以来,我在收集好采区各种技术资料和有关设计的参考文献之后,开始拟定初稿,到现在按照开题报告的进度,已经初步完成了毕业设计该完成的任务即初步完成了采区电气设备电缆的选型、整定和校验,以及采区供电设计的基本轮廓。

2、目前存在问题,下一步的主要研究任务,具体设想与安排

目前存在的主要问题是:对设计的图形及设计内容进一步修改和补充;下一步的具体设想与安排是:4月30日前完成图形的修改;5月25日前完成对内容的修改;

5月30日前设计结束。

3、指导教师对该学生前期研究工作的评价

指导教师签字:年月日4、中期检查意见

毕业设计工作指导小组:年月日备注:本表由学生填写,指导教师、院毕业设计工作指导小组签署意见

煤矿309采区供电设计

[摘要]:随着生产规模的扩大和新煤层的勘探,为了满足生产发展的需要,根据新采区的实际情况,对其所需设备及供电线路等进行设计,本设计阐述了采区供电系统

中各用电设备的选型及其计算过程,如变压器、电缆、开关的选择等,并对其进行整定和校验,设计中比较详细地叙述了矿用电缆及电气设备的选定原则以及井下各种保护装置的选择和整定。

目录

前言---------------------------------------------------------------------------------7

第一章采区变电所变压器的选择-----------------------------------------------------8

一采区负荷计算----------------------------------------------------------------8二变压器容量计算-------------------------------------------------------------9三变压器的型号、容量、台数的确定--------------------------------------9

第二章采区变电所及工作面配电点位置的确定---------------------------------------10 一采区变电所位置--------------------------------------------------------------10二工作面配电点的位置---------------------------------------------------------10

第三章采区供电系统的确定---------------------------------------------------------11一供电系统的拟定原则---------------------------------------------------------11二按照采区供电系统的拟定原则确定供电系统图--------------------------------11

第四章采区低压电缆的选择---------------------------------------------------------14一电缆长度的确定--------------------------------------------------------------14二电缆型号的确定--------------------------------------------------------------14三电缆选择原则----------------------------------------------------------------14四电缆截面的选择--------------------------------------------------------------14 五采区电缆热稳定校验---------------------------------------------------------19

第五章采区高压电缆的选择----------------------------------------------------------22一选择原则---------------------------------------------------------------------22二选择步骤---------------------------------------------------------------------22

第六章采区低压控制电器的选择-----------------------------------------------------24一低压控制电器的选择---------------------------------------------------------24二开关选择结果----------------------------------------------------------------24

第七章低压保护装置选择与整定---------------------------------------------------- 26 一保护装置整定细则-----------------------------------------------------------26 二保护装置的整定与校验-------------------------------------------------------26

第八章高压配电箱的选择与整定---------------------------------------------------31一高压配电箱的选择原则----------------------------------------------------31二高压配电箱的选择----------------------------------------------------------31三高压配电箱的整定与灵敏度校验--------------------------------------------32

第九章静下漏电保护装置的选择与整定--------------------------------------------33 一井下漏电保护装置的作用---------------------------------------------------33二漏电保护装置的选择--------------------------------------------------------33

三井下漏电保护装置的要求---------------------------------------------------33四井下漏电保护装置的整定---------------------------------------------------33

第十章井下保护接地系统----------------------------------------------------------35

设计总结---------------------------------------------------------------------------37 设计参考资料-----------------------------------------------------------------------37

前言

按照实习的需要,我到阳煤集团五矿进行毕业实习,收集采区供电设计所需的原始资料,并根据采区的实际情况进行采区供电设计。

本设计是以阳煤集团五矿井下采区供电为对象在遵照《煤矿安全规程》、《矿山供电》、《煤矿井下供电设计指导》、《矿井供电》的前提下进行的,根据新采区的实际情况,在老师和单位技术员的指导下,并深入生产现场,查阅了有关设计资料、规程、规定、规范,听取并收录了现场许多技术员的意见及经验,对采区所需设备的型号及供电线路等进行设计计算。设计时充分考虑到技术经济的合理,安全的可靠,采用新技术、新产品,积极采取相应措施减少电能损耗,提高生产效率。

第一章采区变电所的变压器选择

一、采区负荷计算:

根据巷道、生产机械的布置情况,查《煤矿井下供电设计指导书》和《矿井供电》,查找有关技术数据,列出采区电气设备技术特征如表1-1、表1-2所示。

表1-1 采区电气设备技术特征

采区设备

额定 容量 P e (KW)

额定 电压 U c (V)

额定 电流 I e (A)

额定起动 电流 I Qe (A)

功率因数 cos φ

效率 ηj

设备名称

设备型号

上山绞车 JT1600/1224 110 660 121 242 0.86 0.93 电动翻车器 J02-5.5-6

5.5 660

6.6 39.6 照明 1.2 127 煤电钻 MZ2-12 1.2 127 9 54 0.79 0.795 回柱绞车 JB3160M-8 11 660 14.5 87 0.84 0.885 喷浆机 YB112M-4 5.5 660

7.1 46 0.8 0.85 局部扇风机 BKY60-5.5 5.5 660 6.3 44 0.8 0.85 耙斗装岩机

P-15B Ⅱ

11

660

12.1

73.6

0.82

0.84

表1-2 采区机械设备配备表

二、变压器容量计算:

1.+50水平绞车变电所变压器容量:

序号

名称

型号规格

单位

使 用 数 量 回采

掘进 合计 1 煤电钻 MSZ-12 台 4 ------ 4 2 电动翻 车器 FDZ-1 1T 台 2 ------ 2 3 回柱绞车 JH-8 台 2 ------ 2 4 耙斗装 岩机 P-15BII

台 ------ 2 2 5 喷浆机 FHP-20A 台 ------ 2 2 6 局部 扇风机 JBT51-2 台 4 4 8 7

电瓶车

CDXA1-2.5

2

2

4

S T1 =∑P e1×K x×K c /cosφpj

=111.2×0.4×1/0.6

=74.13KVA

式中:cosφpj——加权平均功率因素,根据《煤矿井下供电设计指导》P5表1-2

查倾斜炮采工作面,取cosφpj=0.6;

K x——需要系数,参见《设指》表1-2,取K x=0.4;

K c——采区重合系数,取值参照《教材》P216,分别取K c1=1,K c2=0.9;

∑P e1——由+50水平变电所供电的所有电动机额定容量之和;

∑P e1=110+1.2=111.2kw

2.-130水平采区变电所变压器容量:

S T2 =∑P e2×K x×K c/cosφpj

=143.8×0.5×0.9/0.6

=107.848KVA

式中: cosφpj——加权平均功率因素,根据《煤矿井下供电设计指导》P5

表1-2查倾斜炮采工作面,取cosφpj=0.6;

K x——需要系数,参见《设指》表1-2,取K x=0.4;

∑P e2——由-130水平采区变电所供电的所有电动机额定容量之和;

∑P e2=(5.5+5.5×2+11+4+8+5.5×2+11+1.2×2+8)×2=143.8kw

三、变压器的型号、容量、台数的确定:

根据S te>S t原则,查《设指》P22表2-2选T1型号为 KSJ2-75/6 变压器一台,T2选型号为KSJ2-135/6变压器一台,其技术特征如表1-3所示。

表1-3(变压器技术数据)

型号额定容

量Se

(KVA)

阻抗电压(%)损耗(W)线圈阻抗(Ω)重量

(KG)

参考价

格(元)Ud Ur Ux 空载短路R X

KSJ2-

75/6

75 4.5 2.50 3.74 490 1875 0.159 0.236 815 2800 KSJ2-

135/6

135 4.5 2.27 3.88 830 3070 0.0801 0.137 **** ****

备注:动力变压器T1选KSJ2-75/6,T2选KSJ2-135/6,上表数据查《设指》表2-2,表2-3;

第二章采区变电所及工作面配电所位置的确定

一、采区变电所位置:

根据采区变电所位置确定原则,采区变电所位置选择要依靠低压供电电压,供电距离,采煤方法,采区巷道布置方式,采煤机械化程度和机械组容量大小等因素确定。

二、工作面配电点的位置:

在工作面附近巷道中设置控制开关和起动器,由这些装置构成的整体就是工作面配电点。它随工作面的推进定期移动。

根据掘进配电点至掘进设备的电缆长度,设立:

P1配电点:+50中央变电所——﹥人行下山——﹥-130采区变电所——﹥

+50水平绞车峒室;

P2配电点:-130采区变电所——﹥-130水平中间运输巷掘进配电点;

P3配电点:-130采区变电所——﹥-150水平运输巷掘进配电点;

P4配电点:-130采区变电所——﹥-130米水平采区配电点;

P5配电点:-130采区变电所——﹥-160米水平采区配电点;

第三章采区供电电缆的确定

一、拟定原则:

采区供电电缆是根据采区机械设备配置图拟定,应符合安全、经济、操作灵活、系统简单、保护完善、便于检修等项要求。

原则如下:

1)保证供电可靠,力求减少使用开关、起动器、使用电缆的数量应最少。

原则上一台起动器控制一台设备。

2)采区变电所动力变压器多于一台时,应合理分配变压器负荷,通常一台变压器担负一个工作面用电设备。

3)变压器最好不并联运行。

4)采煤机宜采用单独电缆供电,工作面配电点到各用电设备宜采用辐射式供电上山及顺槽输送机宜采用干线式供电。

5)配电点起动器在三台以下,一般不设配电点进线自动馈电开关。

6)工作面配电点最大容量电动机用的起动器应靠近配电点进线,以减少起动器间连接电缆的截面。

7)供电系统尽量减少回头供电。

8)低沼气矿井、掘进工作面与回采工作面的电气设备应分开供电,局部扇风机实行风电沼气闭锁,沼气喷出区域、高压沼气矿井、煤与沼气突出矿井中,所有掘进工作面的局扇机械装设三专(专用变压器、专用开关、专用线路)二闭锁设施即风、电、沼气闭锁。

二、按照采区供电系统的拟定原则确定供电系统图

采区变电所供电系统拟定图如图1所示。

采区供电系统图(图1)

来自-130井下中央变电所

来自+50井下中央变电所

充电机

煤电钻煤电钻回柱绞车 局扇

局扇充电机喷浆机耙矸机 局扇 局扇充电机

煤电钻煤电钻回柱绞车 局扇 局扇

充电机

喷浆机耙矸机 局扇 局扇翻车器翻车器

照明上山绞车

ΩΩ

第四章采区低压电缆的选择

一、电缆长度的确定:

根据采区平面布置图和采区剖面图可知:人行上山倾角为25°。

以计算上山绞车的电缆长度为例:

从剖面图可知+50中央变电所到+50水平上山绞车硐室的距离为280m。

考虑实际施工电缆垂度,取其长度为理论长度的1.05倍,则实际长度为:

Ls=L×1.05=294m,取300 m.

同理其他电缆长度亦可计算出来

如图2、图3所示。

二、电缆型号的确定:

矿用电缆型号应符合《煤矿安全规程》规定,电钻用UZ型,上山绞车用ZQP20型,装岩机和回柱绞车用UP型,固定支线电缆和移动支线均采用U型。

三、电缆选择原则:

1)、在正常工作时电缆芯线的实际温升不得超过绝缘所允许的温升,否则电缆将因过热而缩短其使用寿命或迅速损坏。橡套电缆允许温升是65°,铠装电缆允许温升是80°,电缆芯线的时间温升决定它所流过的负荷电流,因此,为保证电缆的正常运行,必须保证实际流过电缆的最大长时工作电流不得超过它所允许的负荷电流。

2)、正常运行时,电缆网路的实际电压损失必须不大于网路所允许的电压损失。为保证电动机的正常运行,其端电压不得低于额定电压的95%,否则电动机等电气设备将因电压过低而烧毁。所以被选定的电缆必须保证其电压损失不超过允许值。

3)、距离电源最远,容量最大的电动机起动时,因起动电流过大而造成电压损失也最大。因此,必须校验大容量电动机起动大,是否能保证其他用电设备所必须的最低电压。即进行起动条件校验。

4)、电缆的机械强度应满足要求,特别是对移动设备供电的电缆。采区常移动的橡套电缆支线的截面选择一般按机械强度要求的最小截面选取时即可,不必进行其他项目的校验。对于干线电缆,则必须首先按允许电流及起动条件进行校验。

5)、对于低压电缆,由于低压网路短路电流较小,按上述方法选择的电缆截面的热

稳定性均能满足其要求,因此可不必再进行短路时的热稳定校验。

四、低压电缆截面的选择:

1.移动支线电缆截面

采区常移动的电缆支线的截面选择时考虑有足够的机械强度,根据经验按《设指》表2-23初选支线电缆截面即可.具体如图2所示。

2.干线电缆截面的选择:

由于干线线路长,电流大,电压损失是主要矛盾,所以干线电缆截面按电压损失计算。

采区变电所供电拟定图如图2所示。

矿井采区供电设计

5.5k w 翻车器

5.5k w 局扇

11k w 耙斗机

4k w 喷浆机

8k w 充电机

5.5k w 局扇

5.5k w 局扇

5.5k w 局扇

11k w 回柱绞车

1.2k w 煤电钻

1.2k w 煤电钻

8k w 充电机

8k w 充电机

1.2k w 煤电钻

k w 煤电钻

11k w 回柱绞车

5.5k w 局扇

5.5k w 局扇

5.5k w 局扇

8k w 充电机

4k w 喷浆机

11k w 耙斗机

5.5k w 局扇

5.5k w 翻车器采区变电所供电计算图(图2)

(1) -130水平岩巷掘进配电点

根据△U Z 值的取值原则,选取配电点中线路最长,容量最大的支线来计算。 1) .根据表2-23,11KW 耙斗装岩机初选电缆为U-1000 3×16+1×6 100m,用负荷矩电压损失计算支线电缆电压损失:

△U Z % = K f ×∑Pe ×L Z ×K%

=1×11×100×10-3

×0.327 =0.36 式中: △U Z %——支线电缆中电压损失百分比;

K f ——负荷系数,取K f =1;

∑P e ——电动机额定功率,KW ;

L Z ——支线电缆实际长度,KM ;

K%——千瓦公里负荷电压损失百分数, 查《设指》表2-28,取K%=0.327 △ U Z =△U Z %×U e /100

=0.036×660/100 =2.4V 式中: △U Z ——支线电缆中电压损失,V ;

2) .变压器电压损失为:

△U B % =β×(U r %×cos φpj +U x %×sin φpj )

= 0.80×(2.27×0.6+3.88×0.8) =3.57 式中: △U B %——变压器电压损失百分比;

β——变压器的负荷系数, β=S tj1/S e =107.848/135=0.80; S e ——变压器额定容量,KVA ;

S tj1——变压器二次侧实际负荷容量之和,KVA. S tj1=107.848 KVA ; S e ——变压器额定容量,KVA ;

U r %——变压器额定负荷时电阻压降百分数, 查《设指》表2-2,取U r %=2.27; U x %——变压器额定负荷时电抗压降百分数, 查《设指》表2-2,取U r %=3.88; cos φpj ——加权平均功率因数, 查《设指》表1-2,取cos φpj =0.6,

sin φpj =0.8; △U B =△U B %×U e /100=3.57×660/100=23.56V

3) .干线电缆允许电压损失为:

△U gy =△U Y -△U Z -△U B

=63-2.4-23.56 =37.04V

式中:△U gy ——干线电缆中允许电压损失,V ;

△U Y ——允许电压损失,V, 查《设指》表2-33, U e =660V 时, △U Y =63V ; △U Z ——支线电缆中电压损失,V ; △U B ——变压器中电压损失,V ;

4) .干线电缆截面确定

A gy = K x ×∑P e ×L gy /(U e ×r ×△Ugy ×η

pj )

=0.7×34×0.6/(660×42.5×37.04×0.8) =17mm

2

式中: A gy ——干线电缆截面积, mm 2

∑Pe ——干线电缆所带负荷额定功率之和,KW, ∑Pe=5.5×2+11+4+8=34KW ;

L gy ——干线电缆实际长度,Km ;

r ——电缆导体芯线的电导率, m/(Ω·mm 2

)取r=42.5Ω·mm 2

∑P e ——允许电压损失,V, 查《设指》表2-33, U e =660V 时, △U Y =63V ;

△Ugy ——干线电缆中最大允许电压损失,V ; η

pj ——加权平均效率,V,取ηpj =0.8;

根据计算选择干线电缆为U-1000 3×25 +1×10 600m (2)-130水平向采区配电点的干线电缆: 1) .支线电缆电压损失:

△U Z % = K f ×∑P e ×L Z ×K%

=1×11×150×10-3

×0.327 =0.54

△U Z=△U Z%×U e/100

=0.054×660/100

=3.564V

2) .干线电缆允许电压损失为:

△U gy =△U Y-△U Z-△U B

=63-3.564-23.56

=35.876V

3) .干线电缆截面确定:

A gy = K

x

×∑P

e

×L

gy

/(U

e

×r×△U

gy

×η

pj

)

=0.7×32.4×0.7/(660×42.5×35.876×0.8) =19.7mm2

式中:∑P

e

——干线电缆所带负荷额定功率之和,KW,

∑P

e

=5.5×2+11+1.2×2+8=32.4KW;

根据计算选择干线电缆为U-1000 3×25+1×10 700m

(3) +50绞车房供电计算图如图3 所示。

绞车房供电计算简图(图3)上山绞车照明

向110KW绞车供电的电缆截面的选择:

根据所选用KSJ

2-75/6 型变压器, 查《设指》表2-2得, U

r

%=2.5,U

x

%=3.74;

变压器的电压损失为:

△U

T %=(S

T

/S

e

)×(U

r

%×cosφ

pj+U x%×sinφpj)

=(74.13/75)×(2.5×0.6+3.74×0.8) =4.44

△U

T =△U

T

%×U

2e

/100

=4.44×400/100 =17.76V

支线电缆允许电压损失:

△U

gy =△U

Y

-△U

B

=39-17.76=21.24V

支线电缆截面确定:

A gy = K

x

×∑P

e

×L

gy

/(U

e

×r×△U

gy

×η

pj

)

=0.7×110×0.08/(380×42.5×21.24×0.8) =10.5mm2

根据计算选用ZQP

20

-1000 3×25 80m 型电缆.

五. 采区电缆热稳定校验

按起动条件校验电缆截面:

11KW提升绞车是较大负荷起动,也是采区中容量最大、供电距离较远的用电设备,选择的电缆截面需要按起动条件进行校验。

1) 电动机最小起动电压:

U Qmin =

K

Q

a

Q

×U

e

= 1.2

2.5

×660

=457.26V

错误!未找到引用源。式中: U

e

——电动机额定电压,V;

K

Q ——电动机最小允许起动转矩M

Qmin

与额定转矩M

e

之比值. 查《设指》表

2-38,取K

Q

=1.2;

a Q ——电动机额定电压下的起动转矩M

eQ

与额定转矩M

e

之比值,由电动机技术

数据表查得,矿用隔爆电动机a

Q

=错误!未指定书签。 2.5。

2) . 起动时工作机械支路电缆中的电压损失:

△U

ZQ =(3×I

Q

×L

Z

×cosφ

Q

×103)/(r×A

Z

=(3×60.3×0.55×103)/(42.5×25)

=54V

式中: r——支线电缆芯线导体的电导率,m/(Ω·mm2);

L

Z

——支线电缆实际长度.KM;

I

Q

——电动机实际起动电流,A;

I Q =I

eQ

×U

Qmin

/U

e

=87×457.26/660=60.3A;

式中: I

eQ

——电动机在额定电压下的起动电流,A;

U Qmin ——电动机最小起动电流,V;查表1-1,取U

Qmin

=87V;

U

e

——电动机额定电压,V;

A

Z

——支线电缆的芯线截面, mm2;

cosφ

Q

——电动机起动时的功率因数,估取cosφ=0.55,sinφ=0.84 3)、起动时电缆中的电压损失:

△U

gQ =(3×I

gQ

×L

Z

×cosφ

gQ

×103)/(r×A

Z

=(3×101.1×700×0.57)/(42.5×25)

=65V

式中: r——干线电缆芯线导体的电导率,m/(Ω·mm2);

L

Z

——干线电缆实际长度,Km;

A

Z

——支线电缆的芯线截面, mm2;

I

gQ

——干线电缆中实际实际起动电流,A;

I

gQ =(I

Q

×cosφ

Q

×∑I

i

×cosφ

pj

)2+(I

Q

×sinφ

Q

+∑I

i

×sinφ

pj

)2

=(60.3×0.55+40.6×0.6)2+(60.3×0.84+40.6×0.8)2 =101.1A

中: ∑I

i

——其余电动机正常工作电流,A;

∑I

i =∑Pe/(3×U

e

×η

pj

×cosφ

pj

=(22×103)/(3×660×0.79×0.6) =40.6A

cosφ

gQ

——干线电缆在起动条件下的功率因数,

cosφ

gQ =(I

Q

×cosφ

Q+∑I i×cosφpj)/I gQ

=(60.3×0.55+40.6×0.6)/101.1 =0.57

4) . 起动时变压器的电压损失:

△U

BQ % = (I

BQ

/I

Be

)×( U

r

% ×cosφ

BQ+U x%×sinφBQ )

=(101.1/113)×(2.27×0.57+3.88×0.82) =4.004

U BQ =△U

BQ

%×U

Be

/100 =690×4.004/100 =27.63V

式中: I

BQ

——起动时变压器的负荷电流,A;

I

Be

——变压器负荷额定电流,A;

U

Be

——变压器负荷侧额定电压,V;

cosφ

BQ

——起动时变压器负荷功率因数;

cosφ

BQ =(I

Q

×cosφ

Q+∑I i×cosφpj)/I gQ

=(60.3×0.55+40.6×0.6)/101.1 =0.57

5) . 起动状态下供电系统中总的电压损失:

∑△U

Q =△U

ZQ+ △U gQ

+ △U BQ

=54+65+27.63 =146.63V

6) .检验条件:

U 2e -∑△U

Q

=690-146.63=543.37V>457.26V

又因为543.5V相对于额定电压的百分数为543.5/660×100%=82.3%,超过磁力起动器吸合线圈要求的电压。所以检验结果可以认为选用25mm2的橡套电缆满足了起动条件。

相关文档
最新文档