十一、高分子材料热变形温度测定

十一、高分子材料热变形温度测定
十一、高分子材料热变形温度测定

十一、高分子材料热变形温度测定

11.1 实验目的

(1)了解高分子材料弯曲负载热变形温度(简称热变形温度)测定的基本原理。

(2)掌握高分子材料弯曲负载热变形温度(简称热变形温度)的测定方法。

11.2 实验原理

本方法是测定高分子材料试样浸在一种等速升温的合适液体传热介质中,在简支梁式的静弯曲负载作用下,试样弯曲变形达到规定值时的温度,即弯曲负载热变形温度(简称热变形温度)。热变形温度适用于控制质量和作为鉴定新品种热性能的一个指标,但不代表其使用温度。本方法适用于在常温下是硬质的模塑材料和板材。

11.3 原材料与设备

(1)原材料试样试样为截面是矩形的长条,其尺寸规定如下:

①模塑试样长度L=120mm,高度h=15mm,宽度b=10mm;

②板材试样长度L=120mm,高度h=15mm,宽度b=3~13mm(取板材原厚度);

③特殊情况可以用长度L=120mm,高度h=9.8~15mm,宽度b=3~13mm。但中点弯曲变形量必须用表10-1中规定的值。

试样应表面平整光滑,无气泡、无锯切痕迹、凹痕或飞边等缺陷。每组试样最少为两个。

本次实验试样是采用多功能用途模具注塑成型的高密度聚乙烯(HDPE,MFR=1~5g/10min)长条试样。试样尺寸为:长度L=120mm,高度h=10mm,宽度b=4mm。

表10-1 试样高度变化时相应变形量的变化表(mm)

(2)实验设备

实验装置见图10-1。应包括以下各部分:

图10-1 实验装置图

①试样支架用金属制成。两个支座中心间的距离为100mm,在两个支座的中点,能对试样施加垂直的负载。支座及负载杆压头应互相平行,与试样接触部分必须制成半圆形,其半径为3±0.2mm。支架的垂直部件与负载杆必须用线膨胀系数小的材料制成,使在测试温度范围内,由于热膨胀引起的变形测量装置的读数偏差不得超过0.01mm(可用GG-17硅硼玻璃试样代替塑料试样进行校验ii)。

注:(i)两个支座中心间的距离为101.6mm的试样支架同样允许使用。

(ii)如果检验的结果表明这个偏差超过0.01mm时,就必须给出修正值,以便对变形进行修正。

②保温浴槽盛放温度范围合适和对试样无影响的液体传热介质。具有搅拌器、加热器。使实验期间传热介质以(12±1)℃/6min等速升温。

注:液体传热介质一般选用室温时黏度较低的硅油、变压器油、液体石蜡或乙二醇等。

③砝码一组大小合适的砝码,使试样受载后最大弯曲正应力为 1.85MPa 或0.46MPa。负载杆、压头的质量及变形测量装置的附加力应作为负载中的一部分计入总负载中。

应加砝码的质量由式(10-1)计算:

T R l

nh W --=322

σ (10-1) 式中 W ——砝码质量,g ;

σ——试样最大弯曲正应力,N ;

b ——试样的宽度,mm ;

h ——试样的高度,mm ;

l ——两支座中心间距离,mm ;

R ——负载杆、压头的质量,g ;

T ——变形测量装置的附加力,N 。

注:由于仪器结构不同,附加力向下取正直,向上取负值。实际使用的负载与计算的负载相差应在±25%以内。

④测温装置 经校正的温度范围合适的局部浸入式水银温度计(或其他测温仪表),其分度值为1℃。

⑤变形测量装置 具有精度为0.01mm 的百分表或其他测量装置。

⑥冷却装置 将液体传热介质迅速冷却,备及时再次实验。

11.4 实验步骤

(1)试样预处理 可按产品方法规定,产品方法无规定时,可直接进行测定。

(2)测量试样中点附近处的高度(h )和宽度(b )精确至0.05mm ,并按第

(5)条第③计算砝码质量。

(3)把试样对称地放在支座上,高为15mm 的一面垂直放置。

(4)插入温度计,使温度计水银球在试样两支座的中点附近,与试样相距在3mm 以内,但不要触及试样。

(5)保温浴槽内的起始温度与室温相同,如果经实验证明在较高的起始温度下也不会影响实验结果,则可提高其起始温度。

(6)把装好试样的支架小心放入保温浴槽内,试样应位于液面35mm 以下。加上砝码。使试样产生所要求或的最大弯曲正应力为1.85MPa 或0.46MPa 。

(7)加上砝码后,即开动搅拌器,5min 后调节变形测量装置,使之为零(如果材料加载后不发生明显的蠕变,就不需要等待这段时间),然后开始加热升温。

(8)当试样中点弯曲变形量达到0.21mm时,迅速记录此时温度。此温度即为该试样在相应最大弯曲正应力条件下的热变形温度(如实验h=9.5~15mm 时,则中点弯曲变形量应采用表中的数值)。

(9)材料的热变形温度值以同组试样算术平均值表示。

11.5 实验报告与思考题

(1)实验报告实验报告应包括下列内容:

①试样名称、试样的制备方法和预处理条件;

②试样的尺寸和所用的砝码质量;

③实验原理和实验步骤;

④解答思考题。

(2)思考题

①塑料弯曲负载热变形温度(简称热变形温度)与塑料的维卡软化点有何区别?

②塑料弯曲负载热变形温度(简称热变形温度)的测试中有那些步骤可能引入误差?如何克服?

热变形温度测试方法的总结(20130106)

一、外壳测试标准 参考《GB 20641-2006低压成套开关设备和控制设备空壳体的一般要求(GBT)》 9.8绝缘材料性能 9.8.1 热稳定性验证 根据GB/T 2423.2-2001所给出的方法进行试验。 对于没有技术意义,只用于装饰目的的部件不进行此项试验。 用下列试验进行检查: 将一个如同正常使用时一样安装的壳体放在加热箱中进行试验,加热箱带有混合大气和大气压力而且自然通风,如果加热箱的容积与壳体的尺寸不匹配,试验可在一个有代表性的壳体样品上进行。 1、加热箱内部的温度应为(70+2)℃。 2、壳体或样品应在加热箱放置7d(168h)。 3、建议使用电加热箱。 4、在加热箱的壁上留一个自然通风孔。 5、然后,将壳体或样品从加热箱移出,置于环境温度下,相对湿度在45%-55%之间,至少存放4d(96h)。 目测壳体或样品应没有可见的裂缝或无新裂缝,其材料不应变成粘性或油脂性,用下列方法进行。 判断: 在食指上裹一片干粗布,以5N力按压样品。 注:5N力可用下面方法获得:将样品放在天平的一个秤盘上,天平的另一称盘加载的质量等于样品的质量+500g,在食指上裹一片粗糙的干布按在样品上使天平平衡。 样品和壳体材料上应没有布的痕迹或样品和布不相粘连。

二、实验室塑料热稳定性测试方法 1、维卡热变形温度 《GB/T 1633-2000 热塑性塑料维卡软化温度的测定》 当匀速升温时,测定在第1章中给出的某一种负荷条件下标准压针刺人热塑性塑料试样表面1m m深时的温度。 2、马丁耐热温度 《GB 1035-70塑料耐热性(马丁)试验方法》 本方法是试样在等速升温环境中,在一定静弯曲力矩作用下,测定达到一定弯曲变形时的温度,以示耐热性。本方法不适用于耐热性低于60℃的塑料。 3、热变形温度 《GB/T 1634-2004 负荷变形温度的测定》 塑料试样放在跨距为100mm的支座上,将其放在一种合适的液体传热介质中,并在两支座的中点处,对其施加特定的静弯曲负荷,形成三点式简支梁式静弯曲,在等速升温条件下,在负载下试样弯曲变形达到规定值时的温度,为热变形温度。 三、分析:哪种实验室方法更贴近标准要求 马丁耐热,不用介质,不用针刺。

常用高分子材料性能检测标准

1 GB/T 1033-1986 塑料密度和相对密度试验方法 2 GB/T 1034-1998 塑料吸水性试验方法 3 GB/T 1036-1989 塑料线膨胀系数测定方法 4 GB/T 1037-1988 塑料薄膜和片材透水蒸气性试验方法杯式法 5 GB/T 1038-2000 塑料薄膜和薄片气体透过性试验方法压差法 6 GB/T 1039-1992 塑料力学性能试验方法总则 7 GB/T 1040-1992 塑料拉伸性能试验方法 8 GB/T 1041-1992 塑料压缩性能试验方法 9 GB/T 1043-1993 硬质塑料简支梁冲击试验方法 11 GB/T 1408.1-1999 固体绝缘材料电气强度试验方法工频下的试验 13 GB/T 1409-1988 固体绝缘材料在工频、音频、高频(包括米波长在内)下相对介电常数和介质损耗因数的试验方法 14 GB/T 1410-1989 固体绝缘材料体积电阻率和表面电阻率试验方法 15 GB/T 1411-2002 干固体绝缘材料耐高电压、小电流电弧放电的试验 16 GB/T 1446-2005 纤维增强塑料性能试验方法总则 17 GB/T 1447-2005 纤维增强塑料拉伸性能试验方法 18 GB/T 1448-2005 纤维增强塑料压缩性能试验方法 19 GB/T 1449-2005 纤维增强塑料弯曲性能试验方法 20 GB/T 1450.1-2005 纤维增强塑料层间剪切强度试验方法 21 GB/T 1450.2-2005 纤维增强塑料冲压式剪切强度试验方法 22 GB/T 1451-2005 纤维增强塑料简支梁式冲击韧性试验方法 23 GB/T 1458-1988 纤维缠绕增强塑料环形试样拉伸试验方法 24 GB/T 1461-1988 纤维缠绕增强塑料环形试样剪切试验方法 25 GB/T 1462-2005 纤维增强塑料吸水性试验方法 26 GB/T 1463-2005 纤维增强塑料密度和相对密度试验方法 27 GB/T 1633-2000 热塑性塑料维卡软化温度(VST)的测定 28 GB/T 1634.1-2004 塑料负荷变形温度的测定第1部分:通用试验方法 29 GB/T 1634.2-2004 塑料负荷变形温度的测定第2部分:塑料、硬橡胶和长纤维增强复合材料 30 GB/T 1634.3-2004 塑料负荷变形温度的测定第3部分:高强度热固性层压材料 31 GB/T 1636-1979 模塑料表观密度试验方法 32 GB/T 1843-1996 塑料悬臂梁冲击试验方法 33 GB/T 1844.1-1995 塑料及树脂缩写代号第一部分:基础聚合物及其特征性能 34 GB/T 1844.2-1995 塑料及树脂缩写代号第二部分:填充及增强材料 35 GB/T 1844.3-1995 塑料及树脂缩写代号第三部分:增塑剂 36 GB/T 2035-1996 塑料术语及其定义 37 GB/T 2406-1993 塑料燃烧性能试验方法氧指数法 38 GB/T 2407-1980 塑料燃烧性能试验方法炽热棒法 39 GB/T 2408-1996 塑料燃烧性能试验方法水平法和垂直法 40 GB/T 2409-1980 塑料黄色指数试验方法 41 GB/T 2410-1980 透明塑料透光率和雾度试验方法 42 GB/T 2411-1980 塑料邵氏硬度试验方法 43 GB/T 2546.2-2003 塑料聚丙烯(PP)模塑和挤出材料第2部分: 试样制备和性能测定 44 GB/T 2547-1981 塑料树脂取样方法

实验七塑料热变形温度的测定

实验七聚合物耐热性的测定 、实验目的 1.测定塑料热变形温度 2.掌握塑料热变形温度测定仪的使用方法 二、实验原理 负荷热变形温度是衡量塑料耐热性的主要指标之一,现在世界各国的大部分塑料产品的标准中,都有负荷变形温度这一指标作为产品质量控制,但它不是最高使用温度,最高使用温度应根据制品的受力情况及使用要求等因素来确定。 原理塑料试样放在跨距为100mm勺支座上,将其放在一种合适的液体传热介质中, 并在两支座的中点处,对其施加特定的静弯曲负荷,形成三点式简支梁式静弯曲,在等速升温条件下,在负载下试样弯曲变形达到规定值时的温度,为热变形温度。 三、实验设备 热变形温度试验仪RW--3 型 四、实验试样 试样是截面为矩形的长方体。长:L,宽:b,高:h,单位为mm 1)模塑试样:长X宽X高=120mrH lOmmX l5mm 2)板材试样:长X 宽 X 高=120mrX (3-13)mmX l5mm 3)特殊情况:长 X 宽 X 高=120mX (3-13)mmX (9.8-15)mm 试样表面平整、光滑、无气泡、无锯齿切割痕迹、凹痕和飞边等缺陷。 本实验长方体试样尺寸为: LX bX h=120mmX l0mmX l5mm 五、实验条件 1.温度:本实验升温速率为 120C /h(12 ±「C /6min).

2.荷重的选择:本实验加载砝码为负载杆+托盘+ A+ B+ C砝码。 3.试样弯曲变形量:本实验为 0. 21nlm(可参考表4— 1)。 4.每组试样为 2 个,同时测定。 六、实验步骤 1.升温,并开动搅拌器慢速搅拌。起始温度应低于该材料软化点温度 50C。 2.试样的安装:将试样水平放在未加负荷的负载杆压头下,与支架底座接触的试样表面应平整。 3.插入温度计,使温度计水银球与试样相距在3mm以内,但不能接触试样。 4.将支架小心浸入浴糟内,试样位于液面下 35mm以下,但不能接触浴糟底(此时要停止搅拌,待确定放好了支架以后,再进行搅拌。 5.加砝码A+C+D调节变形测量装置,百分表轻轻接触到砝码盘下,记下百分表的初始读数或调为 0。 6.按下升温速度旋钮正 2,以 120C /h(12 C/6min) 升温速度均匀升温,慢慢旋动搅拌 器开关,让搅拌速度加快,以液体不产生剧烈振动为准。 7.当百分表显示弯曲变形量达到 0.21mm时,应迅速记录此时的温度。此温度则为该材料的热变形温度。 七、实验数据处理 1.试样的热变形温度以两个试样的算术平均值表示。如果同组试样测定结果之差大于 2C时,则实验无效,必须重做。 2.试样高度与试样变形量关系,如表 7-1

塑胶热变形温度

常用塑料的耐热性能(未经改性的) 热变形温度----------维卡软化点------------马丁耐热 HDPE 80-------------------120 -----------------------\ LDPE 50--------------------95-------------------------\ EV A \-------------------- 64-------------------------\ PP 102-------------------150------------------------\ PS 85--------------------105----------------------- PMMA 100-------------------120------------------------\ PTFE 260-------------------110------------------------\ ABS 86--------------------160-----------------------75 PSF 185-------------------180----------------------150 POM 98--------------------141----------------------55 PC 134--------------------153----------------------112 PA6 58--------------------180-----------------------48 PA66 60--------------------217-----------------------50 PA1010 55---------------------159-----------------------44 PET 70-----------------------\-------------------------80 PBT 66---------------------177-----------------------49 PPS 240---------------------\-------------------------102 PPO 172---------------------\-------------------------110 PI 360-------------------300-------------------------\ LCP 315--------------------\---------------------------\ ABS塑料 特点: 1、综合性能较好,冲击强度较高,化学稳定性,电性能良好. 2、与372有机玻璃的熔接性良好,制成双色塑件,且可表面镀铬,喷漆处理. 3、有高抗冲、高耐热、阻燃、增强、透明等级别。 4、流动性比HIPS差一点,比PMMA、PC等好,柔韧性好。 ABS工程塑料具有优良的综合性能,有极好的冲击强度、尺寸稳定性好、电性能、耐磨性、抗化学药品性、染色性,成型加工和机械加工较好。ABS树脂耐水、无机盐、碱和酸类,不溶于大部分醇类和烃类溶剂,而容易溶于醛、酮、酯和某些氯代烃中。 ABS工程塑料的缺点:热变形温度较低,可燃,耐候性较差。 用途:适于制作一般机械零件,减磨耐磨零件,传动零件和电讯零件. ABS+PC, 俗称ABS加聚碳。是国内少数几种可能透用的合料之一,不能自燃,外火燃烧时,表面有象聚碳燃烧一样的小颗粒析出,黑色低于ABS,常见于电器件、机械零配件等

常见的塑料检测标准和方法

常见的塑料检测标准和方法 检测产品/类别检测项目/参数 检测标准(方法)名称及编号(含年号)序 号 名称 塑料1 光源暴露试验方 法通则 塑料实验室光源暴露试验方法第1部分:通则ISO 4892-1:1999 2 氙弧灯光老化 汽车外饰材料的氙弧灯加速暴露试验SAE J2527:2004 汽车内饰材料的氙弧灯加速暴露试验SAE J2412:2004 塑料实验室光源暴露试验方法第2部分:氙弧灯ISO 4892-2:2006 /Amd 1:2009 室内用塑料氙弧光暴露试验方法ASTM D4459-06 非金属材料氙弧灯老化的仪器操作方法ASTM G155-05a 塑料暴露试验用有水或无水氙弧型曝光装置的操作ASTM D2565-99(2008) 3 荧光紫外灯老化 塑料实验室光源暴露试验方法第3部分:荧光紫外灯ISO 4892-3:2006 汽车外饰材料UV快速老化测试SAE J2020:2003 塑料紫外光暴露试验方法ASTM D4329-05 非金属材料UV老化的仪器操作方法ASTM G154-06 4 碳弧灯老化 塑料实验室光源暴露试验方法第4部分:开放式碳弧灯 ISO 4892-4:2004/ CORR 1:2005 塑料实验室光源曝露试验方法第4部分:开放式碳弧灯 GB/T16422.4-1996 5 荧光紫外灯老化 机械工业产品用塑料、涂料、橡胶材料人工气候老化试验方法荧 光紫外灯GB/T14522-2008 6 热老化 无负荷塑料制品的热老化 ASTM D3045-92(2010) 塑料热老化试验方法GB/T7141-2008 7 湿热老化 塑料暴露于湿热、水溅和盐雾效应的测定ISO4611:2008 塑料暴露于湿热、水喷雾和盐雾中影响的测定GB/T12000-2003 塑料8 拉伸性能塑料拉伸性能的测定第1部分:总则GB/T1040.1-2006

热变形温度测定

热变形温度测定 实验目的 了解高分子材料弯曲负载热变形温度测定的基本原理。 掌握高分子材料弯曲负载热变形温度的测定方法。 实验原理 测定高分子材料试样浸在一种等速升温的合适液体传热介质中,在简支梁式的弯曲负载作用下,试样弯曲变形达到规定值时的温度,即弯曲负载热变形温度。 液体传热介质在试验过程中与试样相容性好,即不造成溶胀、软化、开裂等影响的液体。通常选用硅油比较合适。温度计及形变测定仪应定期进行校正。 热变形温度适用于控制质量和作为鉴定新材料热性能的一个指标,不代表使用温度。 本方法适用于在常温下是硬质的模塑材料和板材。 实验主要原材料及设备 实验原料PS 666D 样条尺寸 长:120mm 宽:10mm 高:15mm 实验仪器 RW-3塑料热变形温度测试仪 由架、负荷压头、硅码、中点形变测定 仪、温度计及可程序升温的保温浴槽组成,其 基本结构如图所示。 实验条件 在试样高度变化时相对应形变量的变化表中查出本实验的相对变形量为0.21mm 应加砝码质量由下式计算: W=2σbh 3l—R—T W:砝码质量,g σ:试样最大弯曲正应力,N b:试样宽度,mm h:试样高度,mm l:两支座中心距离,mm R:负载杆、压头质量,g T:变形测量的附加力,N 计算的砝码质量为2626g 选择A+C+D三个砝码 实验步骤 1.测量试样中心附近的高度h 和宽度b 精确至0 .05mm 。 2.把试样对称地放在试样支座上,高度方向(h =15mm ) 必须垂直放置,拧紧负载杆和压头的固定螺钉,压头对正试样中心。 3.插入温度计,使水银球在试样中心点附近约3mm 以内、但不能触及试样或压头。 4.把装好试样的支架小心放入保温液槽内,试样应在距液面35mm 以下。加上砝码,

光学高分子材料简述及性能表征

光学高分子材料简述及性能表征

光学高分子材料简述及性能表征 摘要:高分子材料在光学领域得到了广泛的应用,作为大型光学元器件的背投屏幕更是利用先进的高分子材料技术获得了各种优异的性能。简单介绍了背投屏幕的分类、材料和制造工艺,以及光学高分子材料的历史、分类和新的发展,以及主要性能表征。 前言:背投屏幕是背投显示的终端,在很大程度上影响整个光学显示系统的性能。背投屏幕分为背投软质屏幕、背投散射屏幕和背投光学屏幕。背投软质屏幕具备廉价、运输安装方便等优点,但是亮度均匀性比较差、严重的“亮斑效应”、光能利用率低、可视角度小等。分辨率低和对比度低。散射屏幕视角大、增益低、“亮斑效应” 明显。采用不同的工艺制造。有些采用在压克力板材表面进行雾化处理,增加散射。有些应用消眩光玻璃模具复制表面结构,基材内添加光扩散剂及调色剂制造。有些为降低成本直接在透明塑料板材表面粘贴背投软质屏幕制造。现在应用最广泛的就是微结构光学型背投影屏幕。光学型背投影屏幕指的是利用微细光学结构来完成光能 分布、实现屏幕功能的这一类屏幕。主要有FL

型(Fresnel lens-lenticular lenses)、FD型(Frensnel lens-Diffusion cover)、FLD型(Fresnel lens-Lenticular lenses-Diffusion cover)、BS型(Fresnel lens-Lenticular lenses-Black strips)。 微光学结构复制主要采用模压或铸造等复制技术。铸塑又称浇铸,它是参照金属浇铸方法发展而来的。该成型方法是将已准备好的浇铸原料(通常是单体,或经初步聚合或缩聚的浆状聚合物与单体的溶液等)注入一定的模具中,使其发生聚合反应而固化,从而得到与模具型腔相似的制件。这种方法也称为静态铸塑法。静态铸塑技术可用来将电铸镍模具板上的微光学图形转移到塑料表面。铸塑法得到的制件无针眼,无内力应变,无分子取向。重要的是,对于非晶态塑料来说,静态铸塑得到的制件相对于其它工艺一般具有更高的透光率,表现出优越的光学性质。背投光学屏幕属于大尺寸微光学元件,由于体积较大用模压工艺生产存在加工设备复杂、成本高、合格率低的缺点,主要用浇铸工艺来生产。 正文:高分子材料应用于光学领域最早由Arthur Kingston开始,他于1934年取得了注

中文ASTMD648塑料热变形温度

ASTM D 648-07 塑料侧立式弯曲负荷下变形温度的标准测试方法 1 范围 1.1本试验方法适用于测试在特定的条件下试样发生特定变形时的温度。 1.2 本试验方法适用于测试在常温下刚性或者半刚性的,厚度在3mm[1/8in]或以上的模具成型或者薄片的试样。 注1:薄片厚度少于3mm [0.125in]但大于1mm [0.040in]可以用几片薄片复合试样来测试,但最小厚度为3mm。一种制备复合试样的方式是用砂纸把薄片的面打磨平,用胶水粘合。施加载荷的方向需垂直于每个薄片的边缘。 1.3 在SI的单位的评估值将视为标准。给定值仅提供一些信息。 1.4 本标准无意涉及所有使用过程中的安全问题。本标准是帮助用户建立适当的安全标准和卫生管理办法,并且在规定的期限内使用。 注2:这个测试方法描述为本测试办法的B方法,在技术上,方法Ae和Be分别与ISO 75-1 和ISO 75-2,1993,等价。 2 参考文献 2.1 ASTM标准D 618 测试用塑料调质实施规范。 D 883 塑料相关术语。 D 1898 塑料抽样实施规范。 D 5947 固体塑料试样外形尺寸测试方法。 E1 在液体中的玻璃温度计ASTM说明。 E77 温度计的检查和检验测试方法。 E608/E608M 矿物隔热,金属屏蔽的基体金属热电偶。 E691 为测定试验方法精密度开展的实验室间研究的实施规范。 E1137/E1137M 工业用铂阻尼式温度计。 2.2 ISO标准ISO 75-1 塑料-负荷变形温度的测定-第1部分:通用试验方法。 ISO 75-2 塑料-负荷变形温度的测定-第2部分:塑料和硬橡胶。 2.3 NIST文件NBS特别出版250-22。 3 术语 3.1 通常-本测试方法定义的塑料是跟D 883 中标准一样,除非另外说明。 4 检测方法简介 4.1 将矩形截面的试样按侧立式方式,放在载荷作用在中间的简支梁上,载荷的最大压力为0.455Mpa [66psi] 或1.82Mpa [264psi](注3)。将试样在有载荷的作用下,浸入升温速度为2 士0.2℃/min的传

玻璃化转变温度、熔融指数、热变形温度

玻璃化转变温度、熔融指数、热变形温度有什麼区别? 对于高分子量聚合物,玻璃化转变温度就是聚合物材料从玻璃态到高弹态的转变温度:对于低分子量聚合物,玻璃化转变温度就是聚合物从玻璃态到粘流态的转变温度。 熔融指数:热塑性塑料在一定温度和压力下,熔体在十分钟内通过标准毛细管的重量值。热变形温度是指对浸在120℃/h的升温速率升温的导热的液体介质中的一定尺寸的矩形树脂试样施以规定负荷(1.81N/mm2或0.45 N/mm2),试样中点的变形量达到与试样高度相对应的规定值时的温度。 从上述定义可知:熔融指数是重量值;玻璃化转变温度/热变形温度是温度值;玻璃化转变温度是相态完全转化所对应温度,热变形温度是相态转化到一定程度所对应温度。 熔融 常温下是固体的物质在达到一定温度后熔化,成为液态,称为熔融状态。 也是液态,只是在常温下不稳定。 分低共熔与共熔 低共熔——指的在相图中的低共熔点处,具体是指几个相降温到开始共熔的点处的共熔, 而共熔——一起熔融的意思. 熔融:原指纤维的着火点、燃烧热、火焰温度和限氧指数等指标,对易燃程度,火势的蔓延与扩大,有决定作用。有的纤维在燃烧的同时,受热熔化,象蜡烛油一样脱离火源。它对燃烧,起到釜底抽薪的缓解作用,但熔融物若与皮肤接触,会造成难以剥离的严重烫伤。 合成纤维存在熔融问题,与纤维素纤维混纺的织物,在测试中可以做到不滴熔融物,但粘搭烫伤皮肤的问题依然存在,经过阻燃整理,或在合成纤维纺丝液中加入阻燃剂,可以使合纤达到阻燃要求,但融点改变不大。 聚对苯二甲酸乙二醇酯polyethylene terephthalate,简称PET。 PET 是乳白色或浅黄色、高度结晶的聚合物,表面平滑有光泽。在较宽的温度范围内具有优良的物理机械性能,长期使用温度可达120℃,电绝缘性优良,甚至在高温高频下,其电性能仍较好,但耐电晕性较差,抗蠕变性,耐疲劳性,耐摩擦性、尺寸稳定性都很好。PET历史:于1941年首先由英国J.tt.Whinfield与J.T.Dickon研制成功。PET作为纤维原料已有53年的历史,英国帝国化学公司(1.c.I)于1946年以涤纶(Teleron)纤维投入生产,继而美国杜邦公司(Dupent)于1948年以“代春纶”(Dacron)纤维投入生产。 PET分类及用途:PET主要原料对二甲苯和对苯二甲酸(PTA)大量用作纤维,可分为非工程塑料级和工程塑料级两大类。 PET具有优良的特性(耐热性、耐化学药品性。强韧性、电绝缘性、安全性等),价格便宜,所以广泛用做纤维、薄膜、工程塑料、聚酯瓶等。国际上聚酯类热塑性塑料工业化产品有以下6个方面(已形成工业化的有商品出售)。 (1)液晶聚合物(2)聚对苯二甲酸丁二醇酯(PBT) (3)聚萘二甲酸乙二醇酯(PEN) (4)聚对苯二甲酸乙二醇酯工程级PET (5)聚对苯二甲酸乙二醇酯标准级PET (6)聚对苯二甲酸乙二醇酯回收级PET(包括共混物及100%回收料) 非工程塑料级主要用于纤维、瓶、薄膜、片材、耐烘烤食品容器等。 工程塑料级PET 耐有机溶剂、耐候性好。缺点是结晶速率慢,成型加工困难,模塑温度高,生产周期长,冲击性能差。一般通过增强、填充、共混等方法改进其加工性和物性,以玻璃纤维增强效果明显,提高树脂刚性、耐热性、耐药品性、电气性能和耐候性。采取添加成核剂和结晶促进剂等手段,改进结晶速度慢的弊病。加阻燃剂和防燃滴落剂可改进PET阻燃

(完整版)高分子材料的拉伸性能

《高分子材料的拉伸性能测试》实验指导书 一、实验目的 1、测试热塑性塑料拉伸性能。 2、掌握高分子材料的应力—应变曲线的绘制。 4、了解塑料抗张强度的实验操作。 二、实验原理 拉伸试验是材料最基本的一种力学性能试验方法,可以得到材料的各种拉伸性能,包括拉伸强度、弹性模量、泊松比、伸长率、应力-应变曲线等。拉伸试验是指在规定的温度、湿度和试验速度下,在试样上沿纵轴方向施加拉伸载荷使其破坏,此时材料的性能指标如下: 1.拉伸强度为: (1) 式中σ--拉伸强度,MPa; P---破坏载荷(或最大载荷),N; b---试样宽度,cm; h---试样厚度,cm. 2.拉伸破坏(或最大载荷处)的伸长率为: (2) 式中ε---试样拉伸破坏(或最大载荷处)伸长率,%; ΔL0-破坏时标距内伸长量,cm; L0---测量的标距,cm, 3.拉伸弹性模量为: (3) 式中E t---拉伸弹性模量,MPa; ΔP—荷载-变形曲线上初始直线段部分载荷量,N; ΔL0—与载荷增量对应的标距内变形量,cm。 4.拉伸应力-应变曲线 如果材料是理想弹性体,抗张应力与抗张应变之间的关系服从胡克定律,即:σ = Eε 式中: E-杨氏模量或拉伸模量;σ-应力;ε-应变

聚合物材料由干本身长链分子的大分子结构持点,使其具有多重的运动单元,因此不是理想的弹性体,在外力作用下的力学行为是一个松弛过程,具有明显的粘弹性质。拉伸试验时因试验条件的不同,其拉伸行为有很大差别。起始时,应力增加,应变也增加,在A点之前应力与应变成正比关系,符合胡克定律,呈理想弹性体。A点叫做比例极限点。超过A点后的一段,应力增大,应变仍增加,但二者不再成正比关系,比值逐渐减小;当达到Y点时,其比值为零。Y点叫做屈服点。此时弹性模最近似为零,这是一个重要的材料持征点。对塑料来说,它是使用的极限。如果再继续拉伸,应力保持不变甚至还会下降,而应变可以在一个相当大的范围内增加,直至断裂。断裂点的应力可能比屈服点应力小,也可能比它大。断裂点的应力和应变叫做断裂强度和断裂伸长率。 高分子材料是多种多样的,它们的应力—应变曲线也是多样的并且受外界条件的极大影响。 材料的应力—应变曲线下的面积,表示其反抗外力时所做的功,因此根据应力-应变曲线的形状就可以大致判断出该材料的强度和韧性。

塑料硬度检测标准

塑料硬度检测塑料邵氏硬度洛氏硬度巴氏硬度检测:硬度塑料硬度测定第二部分:洛氏硬度GB/T3398.2-2008 热变形温度塑料负荷变形温度的测定第1部分:通用试验方法GB/T1634.1-2004 在挠曲负荷下塑料的挠曲温度的试验方法ASTM D648-07 塑料载荷下挠曲温度的测定第1部分:一般试验方法ISO 75-1:2004 塑料载荷下挠曲温度的测定第2部分:塑料和硬橡胶ISO 75-2:2004 维卡软化温度热塑性塑料维卡软化温度(VST)的测定GB/T1633-2000 塑料维卡(Vicat)软化温度的测试方法ASTM D1525-09 塑料热塑材料维卡软化温度的测定ISO 306:2004 压缩性能塑料压缩性能的测定GB/T1041-2008 塑料压缩性能试验方法ISO 604:2002 硬塑料的压缩特性试验方法ASTM D695-10 撕裂性能塑料直角撕裂性能试验方法QB/T1130-1991 体积电阻率/表面 电阻率固体绝缘材料体积电阻率和表面电阻率试验方法GB/T1410-2006 绝缘材料表面电阻和体积电阻试验方法IEC 60093:1980 绝缘材料直流电阻或电导试验方法ASTM D257-07 大气暴露 塑料大气暴露试验方法GB/T3681-2000 塑料暴露于太阳辐射的方法第一部分:通则ISO877-1:2009 时间—温度极限 塑料长期热暴露后时间—温度极限测定GB/T7142-2002 聚合物长期性能评价简介UL746B-1997 塑料老化评价 塑料在玻璃下日光、自然气候或实验室光源暴露后颜色和性能变化的测定GB/T15596-2009 塑料暴露于玻璃下日光或自然气候或人工光后颜色和性能变化的测定ISO4582:2007 变色评定纺织品色牢度试验评定变色用灰色样卡GB/T250-2008 熔融指数热塑性塑料熔体质量流动速率和熔体体积流动速率的测定GB/T3682-2000 击穿电压绝缘材料电气强度试验方法第一部分:工频下试验GB/T1408.1-2006 热应力开裂电线电缆用黑色聚乙烯塑料GB/T15065-2009附录A 环境应力开裂 聚乙烯环境应力开裂试验方法GB/T1842-2008 聚乙烯环境应力开裂试验方法ASTM D1693-05 垂直与水平燃烧 设备和器具部件用塑料材料易燃性的试验UL 94-1996REV.9:2009 塑料燃烧性能的测定水平法和垂直法GB/T2408-2008

塑料测试方法(中文版)

拉伸强度和拉伸模量 ASTM D 638, ISO R527, DIN 53455, DIN53457 了解材料对负载的响应程度是了解材料性能的基础。通过测试在一定应力下材料的变形程度(应变),设计者可以预测材料在其工作环境下的应用(如图1)。 图1 拉伸应力-应变曲线 A:弹性形变的极限值 B:屈服点 C:最大强度 O-A:屈服区域,发生弹性形变 超过A点:塑性变形 图2:ASTM D 6, 拉伸试样的尺寸 模量:应力/应变 Mpa

屈服应力:开始发生塑性变形的应力 Mpa 断裂应力发生断裂时的应力 Mpa 断裂伸长率材料发生断裂时的应变% 弹性极限开始发生弹性形变的终点 弹性模量发生在塑性变形时的模量 Mpa 测试速度: A速度:1mm/mm 拉伸模量 B速度:5mm/mm 填充材料 的拉伸应力/应变 C速度:50mm/mm 为填充材料的拉伸应力/应变 弯曲强度和弯曲模量 ASTM D 790, ISO 178, DIN 53452 弯曲强度是用来测量材料抵制挠曲变形的能力或者是测试材料的刚性。与拉伸负载不同的是,在测试弯曲时,所有的应力加载在一个方向上。用压头压在试样的中部使其形成一个3点的负载,在标准测试仪上,恒定的压缩速度为2mm/mm. 通过计算机收集的数据,测绘出试样的压缩负荷-变形曲线,来计算压缩模量。在曲线的线性区域至少取5个点的负载和变形。 弯曲模量(应力与应变的比值)是表征材料弯曲性能的重要指标。压缩模量是指在应力-应变的曲线的线性范围内,压缩应力与压缩应变之比。 压缩应力与压缩应变的单位都是Mpa。 图3:弯曲测试示意图 耐磨性能测试

塑料热变形温度测试实验

塑料热变形温度测试实验 一、实验目的 1.掌握塑料热变形温度的测试原理和测试方法; 2.测定热塑性塑料的热变形温度。 二、实验原理 负荷热变形温度是衡量塑料耐热性的主要指标之一,现在世界各国的大部分塑料产品的标准中,都有负荷变形温度这一产品质量控制指标。塑料热变形温度测定的是在规定的载荷大小、施力方式、升温速度下到达规定的变形值的温度,它不是材料的最高使用温度。 1.仪器 图1 负荷变形温度测定典型设备 负荷热变形温度侧定仪由试样支架、负荷压头、砝码、中点形变测定仪、温度计及能恒速升温的加热浴箱组成,其基本结构如图1所示。试样支架两支点的距离即跨度,通常为100±2mm,负荷压头位于支架的中央,支架及负荷压头与试样接触的部位是半径 3.0mm±0.2mm的圆角。加热浴箱中的液体热介质,应选取在试验过程中对试样不造成溶胀、软化、开裂等影响的液体,对于大部分塑料,选用硅油较合适。温度计及形变测定仪应定期进行校正。 2.试样

试样为一矩形样条,可采用两种放置方式:平放式和侧立式。对于平放试验,要求使用尺寸为80mm ×10mm ×4mm 的试样,对侧立试样没有严格的规定。使用80mm ×10mm ×4mm 的ISO 样条具有以下优点:试样的热膨胀对试验结果的影响较小;斜角不会影响试验结果,不会以侧棱为底立住试样;可以更严格地规定模塑参数和试样尺寸。平放方式是实验优选。实验跨度设定为:平放64±1mm ,侧立100±2mm 。 3. 测定 这个试验方法的最大特点是试样尺寸可以在一定范围内变化,因此在侧定之前,先要精确侧量试样的尺寸,再根据试样实际的尺寸计算出负荷力的大小,计算公式为: 2 23bd F L σ= 式1 式中:F ——负荷,N ; σ——试样表面承受的弯曲正应力,MPa ; b ——试样宽度,mm ; d ——实验厚度,mm ; L ——支座间距离(跨度),mm 。 施加的弯曲正应力σ应为下列三者之一:1.80MPa (A 法),0.45MPa (B 法),8.00MPa (C 法)。测量b 和d 时,应精确到0.1mm ;测量L 时,应精确到0.5mm 。根据计算出来的负荷力,调节试样的负荷,实验设备中的负载杆及变形测量装置的附加力都应计入总负荷之中。因此,应加砝码重量W : 12/W F g m m =-- 式2 式中:W ——应加砝码重量,g ; F ——由式1计算所得的负荷力,N ; g ——重力加速度,9.8N/g ; m 1——负载杆、压头和托盘等的质量,g ; m 2——变形测量装置的附加重量,g 。 其后按规定进行升温,当试样中点的变形量达到规定值时,选取的温度即为

高分子材料检测

高分子材料分析检测 高分子材料是指以高分子化合物为基础的材料。高分子材料是由相对分子质量较高的化合物构成的材料,包括橡胶、塑料、纤维、涂料、胶粘剂和高分子基复合材料。高分子材料独特的结构和易改性、易加工特点,使其具有其他材料不可比拟、不可取代的优异性能,从而广泛用于科学技术、国防建设和国民经济各个领域。 精美检测中心拥有多年的高分子检验经验,专业从事高分子材料性能评估、老化测试、成分分析、配方还原等。中心通过国家权威认可,可出具权威检测报告。 【涉及产品检测领域】 橡胶检测:橡胶是一类线型柔性高分子聚合物。有天然橡胶和合成橡胶两种。精美检测中心可提供一站式橡胶制品及材料分析检测服务。 塑料检测:塑料材料是以合成树脂或化学改性的天然高分子为主要成分,再加入填料、增塑剂和其他添加剂制得。精美检测中心可提供一站式塑料制品及材料分析检测服务。 复合材料检测:复合材料是以高分子化合物为基体,添加各种增强材料制得的一种复合材料。精美检测中心提供复合材料权威检测。 胶粘剂检测:胶黏剂是以合成天然高分子化合物为主体制成的胶粘材料。精美检测中心专业提供胶黏剂检测检验服务,出具权威检测报告! 油墨检测:油墨是用于包装材料印刷的重要材料,它通过印刷将图案、文字表现在承印物上油墨中包括主要成分和辅助成分。精美检测中心专业提供油墨分析化验服务,出具权威检测报告! 涂料检测:高分子涂料是以聚合物为主要成膜物质,添加溶剂和各种添加剂制得。精美检测中心专业提供涂料检测检验服务,出具权威检测报告! 颜料检测:精美检测中心以颜料及染料技术需求和发展为导向,以资源整合、技术共享为基础,提供性能检测、配方分析、含量对比分析等我。 纸质品检测:精美检测中心可提供纸张、纸箱等相关纸制品检测各项质量和性能指标检测,项目包括:抗张强度向吸液高度、pH值、渗漏性能、微生物等。 胶粘带检测:胶粘带是以纸、布、薄膜为基材,再把胶水均匀涂布在上述基材上制成纸质胶粘带、布质胶粘带或薄膜质胶粘带。精美检测中心专业提供胶粘带检测检验服务,出具权威检测报告! 化工助剂检测:化工助剂是作为某一种行业所使用的化工添加剂,其种类繁多。精美检测中心专业提供各种助剂分析化验服务,出具权威检测报告! 高分子材料是指以高分子化合物为基础的材料。高分子材料是由相对分子质量较高的化合物构成的材料,包括橡胶、塑料、纤维、涂料、胶粘剂和高分子基复合材料。高分子

实验七塑料热变形温度的测定

精心整理 实验七聚合物耐热性的测定 一、实验目的 1.测定塑料热变形温度 2.掌握塑料热变形温度测定仪的使用方法 二、实验原理 负荷热变形温度是衡量塑料耐热性的主要指标之一,现在世界各国的大部分塑料产品的标准中,都有负荷变形温度这一指标作为产品质量控制,但它不是最高使用温度,最高使用温度应根据制品在负1)2)3)123412整。 3.插入温度计,使温度计水银球与试样相距在3mm 以内,但不能接触试样。 4.将支架小心浸入浴糟内,试样位于液面下35mm 以下,但不能接触浴糟底(此时要停止搅拌,待确定放好了支架以后,再进行搅拌。 5.加砝码A+C+D ,调节变形测量装置,百分表轻轻接触到砝码盘下,记下百分表的初始读数或调为0。 6.按下升温速度旋钮正2,以120℃/h(12℃/6min)升温速度均匀升温,慢慢旋动搅拌器开关,让搅拌速度加快,以液体不产生剧烈振动为准。 7.当百分表显示弯曲变形量达到0.21mm 时,应迅速记录此时的温度。此温度则为该材料的

热变形温度。 七、实验数据处理 1.试样的热变形温度以两个试样的算术平均值表示。如果同组试样测定结果之差大于2℃时,则实验无效,必须重做。 2.试样高度与试样变形量关系,如表7-1 反 对于某 3.实验设备 4.实验试样 5.原始记录及实验结果 6.现象分析、讨论

实验六PVC及PP的热老化试验 一、实验目的 1.掌握塑料热空气老化试验方法的基本要求 2.学会热空气老化试验的一般方法 二、实验原理 塑料(材料)在加工成型、贮存、运输和使用过程中都不可避免地要在空气环境中受到热与氧的作用,致使发生热氧老化,导致其性能降低,以致完全丧失使用价值。热空气曝露试验是用于评定材料耐热老化性能的一种简便的人工模似加速环境试验方法,目的是在较短时间内评定材料对高温的适应性以及材料高温适应性的相互比较。 1 2 3 4 5 6 (1) (2) 1.调节试验箱根据有关标准对试样的要求调节试验温度、均匀性,平均风速及换气率等参数。 2.在老化试验前,需对试样统一编号、按性能测试方法标准中的规定测量尺寸。 3.安置试样将试样挂置于试验箱的网板或试样架上,试样间距不小于l0mm。 4,升温计时老化箱温度逐渐升至试验温度后开始计时。若已知温度突变对试样无有害影响及对试验结果无明显影响者,亦可将热老化箱的温度升至老化试验温度并恒温后,再把已挂好试样的旋转架放入试验箱中,待温度恢复至规定值时开始计时。 5.周期取样按规定或预定的试验周期依次从试验箱中取样、直至试验结束.取样要快。并暂停通风,尽可能减少箱内温度变化。 6.性能检测根据所选定的项目,按有关塑料性能测试方法,检测暴露前、后试样性能的变化。如:拉伸强度,断裂伸长率,冲击强度等性能的变化。

高分子材料成型加工及性能测试综合实验指导书

高分子材料成型加工及性能测试 一、实验目的 应用《高分子物理》、《高分子材料工艺学》、《高分子材料成型与加工》所学的理论知识,进行高分子材料压制成型和注射成型实验,制得的高分子材料试样进行性能测试与分析。通过本实验,掌握常用塑料的压制成型和注射成型工艺流程,了解影响塑料制品性能的因素,初步锻炼学生对高分子材料成型加工方法的实践能力以及对实验数据的综合分析能力。 二、实验内容 1、塑料压制成型: (1)熟练操作开炼机、高速混合机、平板硫化仪成型设备,操作步骤见附录1; (2)制备出塑料试样。 2、塑料注射成型: (1)了解实验设备的基本结构,工作原理和操作要点,操作步骤见附录2; (2)了解注射成型设备对制品性质的影响; (3)掌握如何根据聚合物的性质,确定注射成型机料筒温度和模具温度; (4)制备出塑料试样。 3、塑料制品拉伸性能测试: (1)掌握电子拉力机测定塑料拉伸试样的基本操作,操作步骤见附录3; (2)依据应力-应变曲线,计算出各种力学参数(拉伸强度、断裂伸长率、断裂强度)。 4、塑料制品硬度测试:利用邵氏A型硬度计测定试样的硬度,操作步骤见附录4; 5、塑料制品导电性测试:利用高阻仪测定试样的表面电阻。测试时,将充分放电后的试样,接入仪器测量端,调整仪器,加上实验电压一分钟,读取电阻的指示值。 三、实验原理 大多数高分子材料(尤其是热塑性塑料)可以通过压制和注射成型。 压制是板材成型的重要方法,其工艺过程包括下列工序:(1)混合:按照一定配方称量各组分,按照一定的加料顺序,将各组分加入到高速分散机中进行几何分散;(2)双辊塑炼拉片:用双辊开炼机使混合物料熔融混合塑化,得到片材;(3)压制:把片材放入恒温压制模具中预热、加温、加压,使片材熔融塑化,然后冷却定型成板材。正确选择和调节压制温度、压力、时间以及制品的冷却程度是控制板材性能的工艺措施。通常在不影响制品性能的前提下,适当提高压制温度,降低成型压力,缩短成型周期对提高生产效率是行之有效的;但过高的温度、过长的加热时间会加剧树脂降解和熔料外溢,致使制品的各方面性能变劣。 注射成型亦称注射模塑或注塑,是热塑性塑料的一种重要成型方法。注射成型是将塑料(一般为粒料)在注射成型机的料筒内加热溶化,当呈流动状态时,熔融塑料在柱塞或螺杆的加压下被压缩并向前移动,进而通过塑料筒前端的喷嘴以很快的速度注入温度较低的闭合

材料负荷下热变形温度测试

热变形温度 一、定义 热变形温度,英文Heat deflection temperature(简称HDT),热变形温度是衡量材料耐热性能的的重要指标之一,是表达被测物的受热与变形之间关系的参数。对高分子材料或聚合物施加一定的负荷,以一定的速度升温,当达到规定形变时所对应的温度。热变形温度的测试是记录在规定负荷和形变量下的温度。 二、实验原理 聚合物材料的耐热温度是指在一定负荷下,其到达某一规定形变值时的温度。发生形变时的温度通常称为塑料的软化点。。常用维卡耐热和马丁耐热以及热变形温度测试方法测试塑料耐热性能。不同方法的测试结果相互之间无定量关系,它们可用来对不同塑料做相对比较。 维卡软化点是测定热塑性塑料于特定液体传热介质中,在一定的负荷,一定的等速升温条件下,试样被1mm2针头压入1mm时的温度。本方法仅适用于大多数热塑性塑料。 实验测得的热变形温度和维卡软化点仅适用于控制质量和作为鉴定新品种热性能的一个指标,不代表材料的使用温度。 三、实验仪器及试样 1.仪器 本实验采用热变形温度-维卡软化点测定仪。热变形温度测试装置原理如图1所示。加热浴槽选择对试样无影响的传热介质-甲基硅油,室温时粘度较低。可调等速升温速度为(120±10)℃/h。两个试样支架的中心距离为100mm,在支架的中点能对试样施加垂直负载,负载杆的压头与试样接触部分为半圆形,其半径为(3±0.2)mm。实验时必须选用一组大小适合的砝码,使试样受载后的最大弯曲正应力为18.5kg/cm2或4.6 kg/cm2。应加砝码的质量由下式计算:W=(2σbh2/3L)-R-T 式中σ:试样最大弯曲正应力(18.5kg/cm2或4.6 kg/cm2); b:试样宽度,若为标准试样,则试样宽度为10mm;

(中文)ASTM D648 塑料热变形温度试验方法

在边缘位置,负荷的情况下塑料温度偏差的标准检测方法1摘要: 1.1本种试验方法覆盖了,在任何人为的测试条件下和任意的变形发生基础上,决定性的温度。 1.2本办法适用于测试材料厚度3毫米或以上,在常温下钢性或者半钢性的铸造成型或者薄片的材料。 1.3在SI的单位下的评估值将视为标准,在插入中间的值只是视为一种信息。 1.4本标准无意涉及所有的安全问题,是否涉及,要视具体使用情况。这个标准是帮助用户建立适当的安全标准和卫生管理办法。并且在规定的时期中的使用。 2参考文献 2.1 ASTM 标准: D 618, D 883, D 1898, D 1999, D 5947, E1, E77, E220, E608, E664, E691, E879, E1137 2.2 ISO 标准 ISO 75-1 ISO 75-2 2.3 NIST 标准 3术语 3.1这里指的塑料是跟D 883 标准下一样。 4.检测方法简介 4.1在边缘的位置,由于简单的横梁在前卫最大的压强下0.455 MPs 或者是1.82 MPa. 这个范例会在中等热传输的压力下,当温度提高俩提高两度,偏差值在0.2度。这个偏差值有0.25的偏差的时候。测试条会有0.25mm的偏差。这个温度的取得是在测试条在变形压力下和温度偏差是取得的。 5这种情况和重要性 5.1 这种测试最适合控制和改进工艺。本测试所获得的数据可能不适合用来衡量塑料在高温下的形状的预测。除非时间,温度,负载和压力等因素跟本测试所要求的条件接近。否则这种数据不可以用在预见塑料在高温下会有这种效果。 6测试矛盾性 6.1 本测试方法一定程度上很决定于流体,测试体和流体传导性的热传输率。

相关文档
最新文档