096《量子力学》课程教学大纲624132354doc

096《量子力学》课程教学大纲624132354doc
096《量子力学》课程教学大纲624132354doc

《量子力学》课程教学大纲

213

214

215

量子力学课程人学考试主要内容

843量子力学考试大纲 适用于物理学所有学科 Ⅰ考查目标 理论物理、粒子物理与原子核物理、凝聚态物理等专业研究生入学考试《量子力学》课程,重点考查考生掌握量子力学基本概念、基本原理以及运用量子力学基本理论解决具体相关物理问题的能力,为进一步学习其它专业课程或从事科研和教学工作奠定坚实的基础。 Ⅱ考试形式和试卷结构 一、试卷满分及考试时间 本试卷满分为150分,考试时间为180分钟。 二、答题方式 答题方式为闭卷、笔试。 三、试卷内容结构 波粒二象性、波函数和薛定谔方程 45分 量子力学的力学量及其表象 30分 微扰理论、自旋与全同粒子、粒子在电磁场中的运动 75分 四、试卷题型结构 简答题 2小题,每小题10分,共20分 证明题 2小题,每小题15分,共30分 计算题 4小题,每小题25分,共100分 Ⅲ考查范围 一、波粒二象性、波函数和薛定谔方程 考查主要内容: (1)光的波粒二象性的实验事实及其解释。 (2)原子结构的玻尔理论和索末菲的量子化条件。 (3)德布罗意关于微观粒子的波粒二象性的假设。 (4)德布罗意波的实验验证。 (5)波函数的统计假设和量子态的表示形式。 (6)态叠加原理的内容及其物理意义。 (7)薛定谔方程和定态薛定谔方程的一般形式。

(8)粒子流密度的概念及粒子数守恒的物理内容。 (9)一维薛定谔方程求解的基本步骤和方法。 (10)几个典型的一维定态问题: a.一维无限深势阱; b.一维谐振子; c.一维方势垒; d.一维有限方势阱; e. 势。 二、量子力学的力学量及其表象 考查主要内容: (1)动量算符的表示形式及其与坐标算符间的对易关系,动量算符本征函数的归一化。 (2)角动量算符的表示形式及其有关的对易关系,角动量算符2?L和z L?的共同本征函数及所对应的本征值。 (3)电子在固定的正点电荷库仑场中运动的定态薛定谔方程及其求解的基本步骤;定态波函数的表示形式;束缚态的能级及其简并度;并由此讨论氢原子的能级、光谱线的规律、电子在核外的概率分布和电离能等。 (4)量子力学中的力学量与厄米算符相对应;厄米算符的本征函数组成正交完备集。 (5)力学量可能值、平均值的计算方法,两个力学量同时具有确定值的条件。 (6)不确定关系及其应用,守恒量的判断方法。 (7)矩阵的运算。 (8)态的矩阵表示。 (9)算符的矩阵表示。 (10)量子力学公式的矩阵表示。 (11)不同表象间的变换。 三、微扰理论、自旋与全同粒子、粒子在电磁场中的运动 考查主要内容: (1)非简并定态微扰理论。 (2)简并情况下的定态微扰理论。 (3)电子自旋的实验事实。 (4)电子自旋算符和自旋波函数。 (5)全同粒子的不可区分性原理,玻色子和费米子概念。 (6)全同粒子体系的波函数和泡利不相容原理。 (7)两自旋体系的波函数。 (8)电磁场中荷电粒子的运动,两类动量。 (9)正常塞曼效应。 (10)定域电子(考虑自旋)在均匀磁场中的运动。

量子物理课程教学大纲

量子物理课程教学大纲 一、课程说明 (一)课程名称、所属专业、课程性质、学分; 课程名称:量子物理 所属专业:材料物理 课程性质:专业基础课 学分:4 (二)课程简介、目标与任务; 课程简介: 量子理论和相对论是20世纪物理学取得的两个最伟大的进展之一,以研究微观物质运动规律为基本出发点建立的量子理论开辟了人类认识客观 世界运动规律的新途径,开创了物理学的新时代。 本课程着重介绍非相对论量子力学的基本概念、基本原理和基本方法。 首先从量子力学发展简史、黑体辐射实验等出发,讲述量子力学Schrodinger 方程和一维定态问题,着重讲述周期场和Bloch定理、能带结构。在此基础 上讲述量子力学的基本原理,包括波函数统计解释、线性厄米算符、本征值 问题、测不准关系、力学量完全集、Heisenberg方程等。中心力场部分主 要讲电磁场相互作用下氢原子的能级结构。矩阵力学主要讲力学量算符的矩 阵表示和本征值问题。定态微扰论和量子跃迁主要讲原子的几个效应和量子 系统在外场微扰情况下的光的吸收和辐射。最后讲多粒子全同性问题。 课程目标与任务: 1. 掌握微观粒子运动规律、量子力学的基本假设、基本原理和基本方 法。 2.掌握量子力学的基本近似方法及其对相关物理问题的处理。 3.掌握电子在周期势场情况下的运动规律,为学习固体物理打好基础。

(三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接; 本课程需要学生先修《电磁学》、《光学》、《原子物理》、《数学物理方法》和《线性代数》等课程。《电磁学》和《光学》中的麦克斯韦理论最终统一了 光学和电磁学;揭示了任意温度物体都向外辐射电磁波的机制,它是19世纪 末人们研究黑体辐射的基本出发点,对理解本课程中的黑体辐射实验及紫外 灾难由于一定的帮助。《原子物理》中所学习的关于原子结构的经典与半经典 理论及其解释相关实验的困难是导致量子力学发展的主要动机之一。《数学物 理方法》中所学习的复变函数论和微分方程的解法都在量子力学中有广泛的 应用。《线性代数》中的线性空间结构的概念是量子力学希尔伯特空间的理论 基础,对理解本课程中的矩阵力学和表象变换都很有助益。 (四)教材与主要参考书。 [1] 钱伯初, 《理论力学教程》, 高等教育出版社; (教材) [2] 曾谨言,《量子力学》I,第四版,科学出版社, 2006年 [3] L. D. Landau and E. M. Lifshitz, Non-relativistic Quantum Mechanics; [4] P. A. M. Dirac, The Principles of Quantum Mechanics, Oxford University Press 1958; 二、课程内容与安排 第一章绪论 第一节量子论发展简史 第二节黑体辐射实验与Plank常数的量纲分析,原子物理中的量纲结构(一)教学方法与学时分配:课堂讲授;4学时 (二)内容及基本要求 主要内容:主要介绍量子力学的发展简史、研究对象和微观粒子的基本特性及其量纲分析。 【重点掌握】: 1.量子力学的实验基础:黑体辐射;光电效应;康普顿散射实验;电子晶体衍射 实验;

北京大学物理学院量子力学系列教学大纲

北京大学物理学院量子力学系列教学大纲 课程号: 00432214 新课号: PHY-1-044 课程名称:量子力学 开课学期:春、秋季 学分: 3 先修课程:普通物理(PHY-0-04*以上)、理论力学(PHY-1-051)、电动力学(PHY-1-043)基本目的:使得同学掌握量子力学的基本原理和初步的计算方法,适合于非物理类专业的同学选修。 内容提要: 1.量子力学基本原理:实验基础、Hilbert空间、波函数、薛定谔方程、算符、表象变换、对称性与守恒律 2.一维定态问题:一般讨论、自由粒子、一维方势阱、谐振子、一维势垒3.轨道角动量与中心势场定态问题:角动量对易关系、本征函数、中心势、三维方势阱、三维谐振子、氢原子 4. 量子力学中的近似方法:定态微扰论、跃迁、散射。 5.全同粒子与自旋:全同性原理、自旋的表述、自旋与统计的关系、两个自旋的耦合、磁场与自旋的相互作用 教学方式:课堂讲授 教材与参考书: 曾谨言,《量子力学教程》,北京大学出版社, 1999. 学生成绩评定方法:作业10%、笔试90% 课程号: 00432214 新课号: PHY-1-054 课程名称:量子力学I 开课学期:春、秋季 学分: 4 先修课程:普通物理(PHY-0-04*以上)、高等数学、数学物理方法(PHY-1-011或以上)基本目的: 使得同学掌握量子力学的基本理论框架和计算方法。适合物理学院各类型同学以及非物理类的相关专业同学选修。 内容提要: 1.量子力学基本原理:实验基础、Hilbert空间、波函数、薛定谔方程、算符、表象变换、对称性与守恒律 2.一维定态问题:一般讨论、自由粒子、一维方势阱、谐振子、一维势垒3.轨道角动量与中心势场定态问题:角动量对易关系、本征函数、中心势、

《量子力学》课程教学大纲

《量子力学》课程教学大纲 一、课程说明 (一)课程名称、所属专业、课程性质、学分; 课程名称:量子力学 所属专业:物理学专业 课程性质:专业基础课 学分:4 (二)课程简介、目标与任务; 课程简介: 量子理论是20世纪物理学取得的两个(相对论和量子理论)最伟大的进展之一,以研究微观物质运动规律为基本出发点建立的量子理论开辟了人 类认识客观世界运动规律的新途径,开创了物理学的新时代。 本课程着重介绍《量子力学》(非相对论)的基本概念、基本原理和基本方法。课程分为两大部分:第一部分主要是讲述量子力学的基本原理(公 设)及表述形式。在此基础上,逐步深入地让学生认识表述原理的数学结构, 如薛定谔波动力学、海森堡矩阵力学以及抽象表述的希尔伯特空间的代数结 构。本部分的主要内容包括:量子状态的描述、力学量的算符、量子力学中 的测量、运动方程和守恒律、量子力学的表述形式、多粒子体系的全同性原 理。第二部分主要是讲述量子力学的基本方法及其应用。在分析清楚各类基 本应用问题的物理内容基础上,掌握量子力学对一些基本问题的处理方法。 本篇主要内容包括:一维定态问题、氢原子问题、微扰方法对外场中的定态 问题和量子跃迁的处理以及弹性散射问题。 课程目标与任务: 1. 掌握微观粒子运动规律、量子力学的基本假设、基本原理和基本方 法。 2.掌握量子力学的基本近似方法及其对相关物理问题的处理。 3.了解量子力学所揭示的互补性认识论及其对人类认识论的贡献。

(三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接; 本课程需要学生先修《电磁学》、《光学》、《原子物理》、《数学物理方法》和《线性代数》等课程。《电磁学》和《光学》中的麦克斯韦理论最终统一 了光学和电磁学;揭示了任意温度物体都向外辐射电磁波的机制,它是19 世纪末人们研究黑体辐射的基本出发点,对理解本课程中的黑体辐射实验及 紫外灾难由于一定的帮助。《原子物理》中所学习的关于原子结构的经典与 半经典理论及其解释相关实验的困难是导致量子力学发展的主要动机之一。 《数学物理方法》中所学习的复变函数论和微分方程的解法都在量子力学中 有广泛的应用。《线性代数》中的线性空间结构的概念是量子力学希尔伯特 空间的理论基础,对理解本课程中的矩阵力学和表象变换都很有助益。 (四)教材与主要参考书。 [1] 钱伯初, 《理论力学教程》, 高等教育出版社; (教材) [2] 苏汝铿, 《量子力学》, 高等教育出版社; [3] L. D. Landau and E. M. Lifshitz, Non-relativistic Quantum Mechanics; [4] P. A. M. Dirac, The Principles of Quantum Mechanics, Oxford University Press 1958; 二、课程内容与安排 第一章微观粒子状态的描述 第一节光的波粒二象性 第二节原子结构的玻尔理论 第三节微观粒子的波粒二象性 第四节量子力学的第一公设:波函数 (一)教学方法与学时分配:课堂讲授;6学时 (二)内容及基本要求 主要内容:主要介绍量子力学的实验基础、研究对象和微观粒子的基本特性及其状态描述。 【重点掌握】: 1.量子力学的实验基础:黑体辐射;光电效应;康普顿散射实验;电子晶体衍射

兰州大学量子力学教学大纲

量子力学教学大纲 教学基本内容及学时分配(72学时) 第一章绪论(4学时) 1、课程的发展和改革状况;教材评介 2、量子理论发展简史 3、黑体辐射定律与普朗克常数 4、光子 5、玻尔量子论 6、德布罗意“物质波”假设 7、原子物理中的特征量(结合量纲分析法) 第二章波函数和薛定谔方程(8学时) 1、薛定谔方程 2、波函数的统计诠释;连续性方程 3、定态;有关一维束缚态的若干定理 4、一维平底势阱中的粒子(包括无限深势阱,有限深势阱, 势阱) 5、一维谐振子(微分方程解法) 6、势垒贯穿 第三章量子力学基本原理(16学时) 1、波函数和算符 2、态叠加原理 3、线性算符;常用力学量的算符表示 4、波函数的普遍诠释(力学量的取值及概率假设);平均值公式 5、动量(连续谱,箱归一化);连续谱一般的理论 6、力学量算符的对易关系 7、两个力学量算符的共同本征态 8、不确定关系(测不准关系) 9、波函数随时间的变化;演化算符

10、力学量随时间的变化;薛定谔图象和海森伯图象;守恒量;宇称 11、对称性和守恒定律 12、海尔曼—费曼定理和位力定理 第四章表象理论(8学时) 1、狄拉克态矢量概念;矢量空间 2、量子力学公式的矩阵表示 3、坐标表象;波函数 4、动量表象 5、能量表象;求和规则 6、谐振子(升降算符解法);相干态 7、角动量(升降算符解法) 第五章中心力场(7学时) 1、中心力场的一般概念 2、轨道角动量的本征函数 3、自由粒子波函数 4、球形势阱中的粒子;氘核 5、粒子在库仑场中的运动(束缚态);类氢离子;氢原子;与玻尔量子 论的比较 6、三维各向同性谐振子 7、二维中心力场 第六章扰论与变分法(6学时) 1、非简并态微扰论;应用举例 2、简并态微扰论;一级近似 3、氢原子能级在电场中的分裂 4、变分法;应用举例 第七章自旋(9学时)

原子物理学课程教学大纲

原子物理学课程教学大纲 一、课程说明 (一)课程名称、所属专业、课程性质、学分; 课程名称:原子物理学 所属专业:物理学专业 课程性质:基础课 学分:4 (二)课程简介、目标与任务; 原子物理学是物理类专业本科生的专业必修课,以物质结构的第一个微观层次(原子)为研究对象,是联接经典物理和近代物理的一门承上启下的课程。在理论方法上,该课程揭露经典理论在原子这一微观层次遭遇到的困难,并且为了解决这些困难而引入量子力学,学生将在本课程中较为系统地学习到量子力学的基本概念、基本原理、基本思想和方法。在应用实践上,通过本课程的学习,学生将系统性地了解和掌握原子物理学的发展历史,获得有关原子的电子结构、性质及其与外场相互作用的系统性知识,为以后从事相关的科学研究、生产应用和教学工作打下良好的基础。 (三)先修课程要求,与先修课之间的逻辑关系和内容衔接; 先修课程:《高等数学》、《数学物理方法》、《力学》、《理论力学》、《热学》、《电磁学》、《光学》 关系:《高等数学》和《数学物理方法》是学习原子物理学的数学基础。《力学》、《理论力学》、《热学》、《电磁学》和《光学》包含了学生在学习原子物理学之前需要掌握的必要的经典物理知识。有了这些准备知识才能理解为何不能用经典理论来研究原子体系,从而必须引入量子力学。 (四)教材与主要参考书; 选用教材:杨福家, 《原子物理学》第四版, 高等教育出版社, 2010 主要参考书:

1, C. J. Foot,《Atomic Physics》, Oxford University Press, 2005 2, H. Friedrich,《Theoretical Atomic Physics》, Springer, 2006 3, 褚圣麟,《原子物理学》,高等教育出版社, 1987 4, 曾谨言,《量子力学》,科学出版社, 2000 5, 卢希庭,《原子核物理》,原子能出版社, 1981 二、课程内容与安排 绪论原子物理学的发展历史(2学时)【了解】 第一章原子的组成和结构(5学时) 第一节原子的质量和大小【掌握】 第二节电子的发现【了解】 第三节原子结构模型【了解】 第四节原子的核式结构,卢瑟福散理论【重点掌握】【难点】 第五节卢瑟福理论的成功和不足【掌握】 第二章原子的量子态,玻尔理论(8学时) 第一节背景知识:黑体辐射、光电效应和氢原子光谱【掌握】 第二节玻尔的氢原子理论【重点掌握】【难点】 第三节玻尔理论的实验验证【掌握】 第四节玻尔理论的推广:椭圆轨道理论和碱金属原子光谱【重点掌握】 第五节玻尔理论的成功与缺陷【掌握】 第三章量子力学导论(18学时)【重点掌握】【难点】 第一节波粒二象性 第二节不确定关系 第三节波函数及其统计解释 第四节态叠加原理 第五节薛定谔方程 第六节薛定谔方程应用举例 第七节平均值和算符 第八节量子力学总结 第九节氢原子/类氢离子的量子力学解法 第十节爱因斯坦关于辐射和吸收的唯象理论 第十一节量子跃迁理论,含时微扰论

量子力学教学大纲

《量子力学》课程教学大纲 课程代码:090631011 课程英文名称:Quantum Mechanics 课程总学时:48 讲课:48 实验:0 上机:0 适用专业:光电信息科学与工程专业 大纲编写(修订)时间:2017.10 一、大纲使用说明 (一)课程的地位及教学目标 量子力学是近代物理的两大科学之一,是描述微观运动世界的基本理论,是近代光学技术的重要基础,是光信息科学与工程专业一门重要的专业必修基础课。本课程主要讲授量子力学的基本概念,基本原理和数学方法。为后续的专业课程学习打下夯实的量子力学基础。 通过本课程的学习,学生将达到以下要求: 1.掌握量子理论的物理图像,基本概念; 2.获得描述微观物理规律的理论工具--量子力学的基本原理和框架结构,能用这些原理解决常见的,简单的微观物理现象; 3.加深对现代科学理论的形式、特点的认识,提高科学方法论水平; 4.了解量子力学有关的科学发展。 (二)知识、能力及技能方面的基本要求 1.基本知识:掌握量子力学的基本原理和总的理论框架 2.基本理论和方法:掌握用波函数描述微观粒子的状态,用算符描述相应的力学量,以及波函数的演化规律——薛定谔方程。会解简单的一维定态薛定谔方程。掌握用矩阵描述态和算符的方法。掌握简并和非简并的微扰理论,以及含时微扰理论,能用含时微扰理论解释原子的跃迁和发光。掌握电子自旋的基本理论,全同粒子的特性及其描述方法。 3.基本技能: 利用数学手段解决具体物理问题的能力。 (三)实施说明 1.大纲中的重点内容是学习量子力学基本理论所必需掌握的内容,教学中如果学生接受的较好,可适当增加一些在实际中有很广泛应用的问题作为重点内容。 2.教学方法,课堂讲授中要重点对基本概念、基本原理和基本方法进行讲解;要站在学生的角度进行讲解,以使学生能较自然的接受以前没有接触到的新的概念,新的理论框架和思想方法。并在讲解中使学生深入理解现代科学理论的建立过程,反过来促进学生对所学内容的理解和掌握。 3.教学手段,本课程属于理论课,在教学中对基本原理,基本方法的讲解主要采用板书形式;对于具体应用并且数学推导较繁琐的问题可采用课件形式,既能使学生看清解题的思路、过程、特点,又能节省时间。 (四)对先修课的要求 本课程的教学必须在完成先修课程之后进行。本课程的先修课程是《线性代数》,《数学物理方法》,《原子物理》 (五)对习题课、实践环节的要求 1.对重点、难点章节(如:一维问题的计算,力学量平均值和幺正变换的计算,微扰问题的计

数学物理方法 课程教学大纲

数学物理方法课程教学大纲 一、课程说明 (一)课程名称:数学物理方法 所属专业:物理、应用物理专业 课程性质:数学、物理学 学分:5 (二)课程简介、目标与任务 这门课主要讲授物理中常用的数学方法,主要内容包括线性空间和线性算符、复变函数、积分变换和δ-函数、数学物理方程和特殊函数等,适当介绍近年来的新发展、新应用。本门课程是物理系学生建立物理直观的数学基础,其中很多内容是为后续物理课程如量子力学、电动力学等服务,是其必需的数学基础。 这门课中的一些数学手段将在今后的基础研究和工程应用中发挥重要的作用,往往构成了相应领域的数学基础。一般来讲,因为同样的方程有同样的解,掌握和运用这些数学方法所体现的物理内容将更深入,更本质。 (三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接 本课程以普通物理、高等数学和部分线性代数知识为基础,为后继的基础课程和专业课程研究有关的数学问题作准备,也为今后工作中遇到的数学物理问题求解提供基础。 (四)教材:《数学物理方法》杨孔庆编 参考书:1. 《数学物理方法》柯朗、希尔伯特著 2. 《特殊函数概论》王竹溪、郭敦仁编著 3. 《物理中的数学方法》李政道著 4. 《数学物理方法》梁昆淼编 5. 《数学物理方法》郭敦仁编 6. 《数学物理方法》吴崇试编 二、课程内容与安排 第一部分线性空间及线性算子 第一章R3空间的向量分析 第一节向量的概念 第二节R3空间的向量代数

第三节R3空间的向量分析 第四节R3空间的向量分析的一些重要公式 第二章R3空间曲线坐标系中的向量分析 第一节R3空间中的曲线坐标系 第二节曲线坐标系中的度量 第三节曲线坐标系中标量场梯度的表达式 第四节曲线坐标系中向量场散度的表达式 第五节曲线坐标系中向量场旋度的表达式 第六节曲线坐标系中Laplace(拉普拉斯)算符▽2的表达式第三章线性空间 第一节线性空间的定义 第二节线性空间的内积 第三节Hilbert(希尔伯特)空间 第四节线性算符 第五节线性算符的本征值和本征向量 第二部分复变函数 第四章复变函数的概念 第一节映射 第二节复数 第三节复变函数 第五章解析函数 第一节复变函数的导数 第二节复变函数的解析性 第三节复势 第四节解析函数变换 第六章复变函数积分 第一节复变函数的积分 第二节Cauchy(柯西)积分定理 第三节Cauchy(柯西)积分公式 第四节解析函数高阶导数的积分表达式 第七章复变函数的级数展开

《大学物理》课程教学大纲

《大学物理》课程教学大纲 一、课程基本信息 1、课程名称(中文):大学物理(A)课程名称(英文):University Physics(A) 2、学时/学分:128学时/8学分 3、先修课程:高等数学(一元微积分,空间解析几何,无穷级数,常微分方程) 4、面向对象:工科各专业 5、教材、教学参考书: 教材:高景《大学物理教程》,上海交通大学出版社 教学参考书:吴锡珑《大学物理教程》,高等教育出版社 二、课程性质和任务 物理学是研究物质的基本结构、相互作用和物质运动最基本最普遍的形式(包括机械运动、热运动、电磁运动、微观粒子运动等)及其相互转化规律的科学。 物理学的研究对象具有极大的普遍性,它的基本理论渗透在自然科学的一切领域,广泛地应用于生产技术的各个部门,它是自然科学和工程技术的基础。 以物理学的基础知识为内容的《大学物理》课程,它所包括的经典物理、近代物理及它们在科学技术上应用的初步知识等都是一个高级工程技术人员所必备的。因此,《大学物理》课程是我校各专业学生的一门重要必修基础课。 《大学物理》课程的作用,一方面在于为学生较系统地打好必要的物理基础,另一方面,使学生初步学习了科学的思想方法和研究问题的方法。这些都起着开阔思路、激发探求和创新精神、增强适应能力、提高人才素质的重要作用。学好本课程,不仅对学生在校的学习十分重要,而且学生毕业后的工作和进—步

学习新理论、新技术,不断更新知识,都将发生深远的影响。由于本课程是在低年级开设的,因而它在使学生树立正确的学习态度,掌握科学的学习方法,培养独立获取知识的能力,以尽快适应大学阶段的学习规律等方面也起着重要的作用,此外,学习物理知识、物理思想和物理学的研究方法,有助于培养学生建立辩证唯物主义世界观。 通过本课程的教学,应使学生对物理学所研究的各种运动形式以及它们之间联系,有比较全面和系统的认识;对本课程中的基本理论、基本知识和基本技能能够正确地理解,并具有初步应用的能力。在本课程的各个教学环节中,应注意对学生进行严肃的科学态度,严格的科学作风和科学思维方法的培养和训练,应重视对学生能力的培养。 三、教学内容和基本要求 根据《大学物理课程教学基本要求》,将教学内容的基本要求分为掌握、理解、了解三级,本大纲教学内容要求也分成三类,并用符号(1)、(2)和(3)标记在内容标题的右上角,这三类要求是: (1):要求学生对这些内容透彻理解、牢固掌握。(透彻理解其物理内容,掌握其适用条件,对定理一般要求会推导)并能熟练应用。 (2):要求学生对这些内容理解并能掌握,对定理的推导一般不作要求,但要求会用它们分析、计算有关简单问题。 (3):只要求对这些内容有所了解,一般不要求应用。

量子场论 课程教学大纲

量子场论课程教学大纲 一、课程说明 (一)课程名称、所属专业、课程性质、学分; 课程名称:量子场论 所属专业:理论物理 课程性质:专业课 学时:72 学分:4 (二)课程简介、目标与任务; 近一个世纪以来,量子场论一直是了解微观世界的重要工具,是粒子物理的重要理论基础,并已广泛应用于微观物理其他领域。场的量子化解释了场与粒子之间的内在联系,而量子场论合理地描述了粒子的产生、湮灭,及其相互转化现象。上世纪五十年代初建立的体系完整的量子电动力学(QED),是关于带电粒子、光子及其相互作用的量子场论,是U(1)的阿贝尔规范场理论。光子的辐射与吸收、光电效应、Compton散射,特别是氢原子的Lamb移动、电子磁矩的计算与实验的精确符合等,足以说明量子电动力学的正确性。此外,量子电动力学中建立的重整化理论也是成功的。弱电统一理论克服了过去四个费米子直接相互作用理论不能重整化的困难;预言了中性流并得到严格的实验支持;中微子、反中微子与核子和电子碰撞等过程与实验符合得很好。在强相互作用领域,上世纪七十年代发展和建立的量子色动力学(QCD)是SU(3)非阿贝尔规范理论,它是1954年杨振宁建立的SU(2)非阿贝尔规范理论的推广。由量子色动力学探讨核子之间相互作用的严格理论目前尚未解决。基本粒子之间的电磁相互作用、弱相互作用、强相互作用都是由规范理论建立起来的,三种相互作用是由三类规范玻色子传递的。量子场论就是研究以三代轻子和三代夸克作为基本粒子,以强子夸克模型和弱电统一理论与量子色动力学为基础的标准模型。量子场论(一)主要研究量子电动力学。 (三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接; 分析力学、电动力学、量子力学 (四)教材与主要参考书。 量子场论,段一士,高等教育出版社,2015年 二、课程内容与安排 第一章绪论(4学时) 1.1 组成物质的基本粒子,轻子和夸克 1.2 量子场论、规范场论和规范玻色子 1.3 自然单位

《半导体物理与器件》教学大纲

二、教学内容及基本要求 第一章:固体晶格结构(4学时)教学内容: 1.1半导体材料 1.2固体类型 1.3空间晶格 1.4原子价键 1.5固体中的缺陷与杂质 1.6半导体材料的生长 教学要求: 1、了解半导体材料的特性, 掌握固体的基本结构类型; 2、掌握描述空间晶格的物理参量, 了解原子价键类型; 3、了解固体中缺陷与杂质的类型; 4、了解半导体材料的生长过程。 授课方式:讲授 第二章:量子力学初步(4学时)教学内容: 2.1量子力学的基本原理 2.2薛定谔波动方程 2.3薛定谔波动方程的应用 2.4原子波动理论的延伸 教学要求: 1、掌握量子力学的基本原理,掌握波动方程及波函数的意义; 2、掌握薛定谔波动方程在自由电子、无限深势阱、阶跃势函数、矩形势垒 中应用; 3、了解波动理论处理单电子原子模型。 授课方式:讲授 第三章:固体量子理论初步(4学时)教学内容: 3.1允带与禁带格 3.2固体中电的传导 3.3三维扩展 3.4状态密度函数 3.5统计力学 教学要求: 1、掌握能带结构的基本特点,掌握固体中电的传导过程; 2、掌握能带结构的三维扩展,掌握电子的态密度分布; 3、掌握费密-狄拉克分布和玻耳兹曼分布。 授课方式:讲授 第四章:平衡半导体(6学时)教学内容: 4.1半导体中的载流子 4.2掺杂原子与能级 4.3非本征半导体

4.4施主与受主的统计学分布 4.5电中性状态 4.6费密能级的位置 教学要求: 1、掌握本征载流字电子和空穴的平衡分布; 2、掌握掺杂原子的作用,掌握非本征载流字电子和空穴的平衡分布; 3、掌握完全电离和束缚态,掌握补偿半导体平衡电子和空穴浓度; 4、掌握费密能级随掺杂浓度和温度的变化。 授课方式:讲授 第五章:载流子输运现象(4学时)教学内容: 5.1载流子的漂移运动 5.2载流子扩散 5.3杂质梯度分布 5.4霍尔效应 教学要求: 1、掌握载流子漂移运动的规律,掌握载流子漂移扩散的规律; 2、了解杂质梯度分布规律,了解霍尔效应现象。 授课方式:讲授 第六章:非平衡过剩载流子(6学时)教学内容: 6.1载流子的产生与复合 6.2过剩载流子的性质 6.3双极输运 6.4准费密能级 6.5过剩载流子的寿命 6.6表面效应 教学要求: 1、掌握载流子产生与复合的规律,掌握连续性方程与扩散方程; 2、掌握双极输运方程的推导与应用,掌握准费密能级的确定; 3、了解肖克莱-里德-霍尔复合理论及非本征掺杂和小注入的约束条件; 4、了解表面态与表面复合速。 授课方式:讲授 第七章:PN结(2学时)教学内容: 7.1 PN结的基本结构 7.2零偏 7.3反偏 7.4非均匀掺杂PN结 教学要求: 1、掌握PN结的基本结构,掌握内建电势差与空间电荷区宽度; 2、掌握势垒电容与单边突变结,了解线性缓变结与超突变结。 授课方式:讲授 第八章:PN结二极管(4学时)

量子力学数学基础学习知识说明介绍

目录 第1章量子力学简史 (2) 第2章量子力学重要内容简介 (3) 2.1基本假设 (3) 2.2对易力学量完全集 (4) 2.3态矢量、算符 (4) 2.3.1态矢量 (4) 2.3.2算符 (5) 第3章泛函分析简介 (5) 3.1集合与空间 (5) 3.1.1集合 (5) 3.1.2拓扑空间 (6) 3.1.3度量空间 (6) 3.1.4赋范线性空间 (6) 3.1.5内积空间 (7) 3.1.6希尔伯特空间 (7) 3.1.7希尔伯特空间的重要性质 (7) 3.1.8综述 (8) 3.2线性算子 (9) 3.2.1线性算子 (9) 3.2.2线性运算与乘法 (10) 3.2.3伴算子 (10) 3.2.4自伴算子 (11) 第4章量子力学中泛函分析的应用 (12) 4.1量子态的矩阵表示 (12) 4.2算符 (13) 4.3本征方程 (13) 4.4平均值 (14) 第5章后序 (14)

参考文献 (16) 第一章量子力学简史 1900年,普朗克提出辐射量子假说,假定电磁场和物质交换能量是以间断的形式(能量子)实现的,能量子的大小同辐射频率成正比,比例常数称为普朗克常数,从而得出黑体辐射能量分布公式,成功地解释了黑体辐射现象。1905年,爱因斯坦引进光量子(光子)的概念,并给出了光子的能量、动量与辐射的频率和波长的关系,成功地解释了光电效应。其后,他又提出固体的振动能量也是量子化的,从而解释了低温下固体比热问题。1913年,玻尔在卢瑟福原有核原子模型的基础上建立起原子的量子理论。按照这个理论,原子中的电子只能在分立的轨道上运动,在轨道上运动时候电子既不吸收能量,也不放出能量。原子具有确定的能量,它所处的这种状态叫“定态”,而且原子只有从一个定态到另一个定态,才能吸收或辐射能量。这个理论虽然有许多成功之处,但对于进一步解释实验现象还有许多困难。在人们认识到光具有波动和微粒的二象性之后,为了解释一些经典理论无法解释的现象,法国物理学家德布罗意于1923年提出了物质波这一概念。认为一切微观粒子均伴随着一个波,这就是所谓的德布罗意波。由于微观粒子具有波粒二象性,微观粒子所遵循的运动规律就不同于宏观物体的运动规律,描述微观粒子运动规律的量子力学也就不同于描述宏观物体运动规律的经典力学。当粒子的大小由微观过渡到宏观时,它所遵循的规律也由量子力学过渡到经典力学。量子力学与经典力学的差别首先表现在对粒子的状态和力学量的描述及其变化规律上。在量子力学中,粒子的状态用波函数描述,它是坐标和时间的复函数。为了描写微观粒子状态随时间变化的规律,就需要找出波函数所满足的运动方程。这个方程是薛定谔在1926年首先找到的,被称为薛定谔方程。当微观粒子处于某一状态时,它的力学量(如坐标、动量、角动量、能量等)一般不具有确定的数值,而具有一系列可能值,每个可能值以一定的几率出现。当粒子所处的状态确定时,力学量具有某一可能值的几率也就完全确定。这就是1927年,海森伯得出的测不准关系,同时玻尔提出了并协原理,对量子力学给出了进一步的阐释。量子力学和狭义相对论的结合产生了相对论量子力学。经狄拉克、海森伯(又称海森堡,下同)和泡利(pauli)等人的工作发展了量子电动力学。20世纪30年代以后形成了描述各种粒子场的量子化理论——量子场论,它构成了描述基本粒子现象的理论基础。

“大学物理”课程教学大纲

“大学物理”课程教学大纲 英文名称:University Physics 课程编号:PHYS1009 课程类型:必修 学时:128 学分:8 适用对象:理工科各专业学生 先修课程:高等数学高中物理 使用教材及参考书: 教材:大学物理(吴百诗主编)科学出版社 参考书:吴锡珑主编“大学物理教程”高教出版社 程守洙主编“普通物理学”高教出版社 张三慧主编“大学物理学”清华大学出版社 一、课程的性质、目的及任务 物理学是研究物质的基本结构﹑相互作用和物质最基础最普遍运动形式(机械运动,热运动,电磁运动,微观粒子运动等)及其相互转化规律的学科。 物理学的研究对象具有极大普遍性,它的基本理论渗透在自然科学的一切领域、应用于生产技术的各个部门,它是自然科学许多领域和工程技术发展的基础。 以物理学基础知识为内容的大学物理课程,它所包括的经典物理、近代物理和物理学在科学技术上应用的初步知识等都是一个高级工程技术人员必备的。因此,大学物理课是我校理工科各专业学生的一门重要必修基础课。 开设大学物理课程的目的,一方面在于为学生较系统地打好必要的物理基础;另一方面使学生初步学习科学的思想方法和研究问题的方法,这对开阔思路、激发探索和创新精神、增强适应能力、提高人才素质等,都会起到重要作用。学好物理课,不仅对学生在校的学习十分重要,而且对学生毕业后的工作和进一步学习新理论﹑新技术﹑不断更新知识等,都将 发挥深远影响。 二、课程的基本要求 1.使学生对物理学所研究的各种物质运动形式以及它们之间的联系有比较全面和系统的认识;对大学物理课中的基本理论、基本知识能够正确地理解,并且有初步应用的能力。 2.通过教学环节,培养学生严肃的科学态度和求实的科学作风。根据本课程的特点,在传授知识的同时加强对学生进行能力培养,如通过对自然现象和演示实验的观察等途径,培养学生从复杂的现象中抽象出带有物理本质的内容和建立物理模型的能力、运用理想模型和适当的数学工具定性分析研究和定量计算问题的能力以及独立获取知识与进行知识更新的能力,联系工程实际应用的能力等。 3.在理论教学中,要根据学生情况精讲基本内容,有些内容可安排学生自学或讨论,并要安排适当课时的习题课;要充分利用演示实验、录像等形象化教学手段,应尽量发挥计算机多媒体在物理教学中的作用,以提高教学效果。在教学过程中,还要处理好与中学物理的衔接与过渡,一方面要充分利用学生已掌握的物理知识,另一方面要特别注意避免和中学物理不必要的重复。在与后继有关课程的关系上,考虑到本课程的性质,应着重全面系统地讲 授物理学的基本概念、基本规律和分析解决问题的基本方法,不宜过分强调结合专业。

固体物理学 课程教学大纲

固体物理学课程教学大纲 一、课程说明 (一)课程名称、所属专业、课程性质、学分; 课程名称:固体物理学 所属专业:理学专业 课程性质:专业基础课 学分:4 (二)课程简介、目标与任务; 课程简介: 固体物理学是研究固体物质的物理性质、微观结构、构成物质的各种粒子的运动形态,及其相互关系的科学。它是物理学中内容极丰富、应用极广泛的分支学科。本课程以点阵及晶体对称性为主线,以周期结构中的波动问题贯穿固体物理的整个教学内容。 基本目标与任务: 1.掌握包括对点阵及晶体对称性的定义、表征和检测,以及在晶体中物质的 运动规律; 2.在掌握知识架构的同时,对固体物理中处理多体问题的方法及其局限性有 所了解,并了解一些重要概念的实验探测; 3.获得在本门课程领域内分析和处理一些基本问题的初步能力; 4.为学习后续课程和独力解决实际问题打下必要的基础。 (三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接; 先修课程:《理论力学》、《电动力学》、《热力学统计物理》、《量子力学》以及《数学物理方法》 关系:《理论力学》、《电动力学》、《热力学统计物理》、《量子力学》以及《数学物理方法》是固体物理学的数学基础和物理基础,固体物理学在此先修课程的基础上系统研究固体物质的物理性质、微观结构、构成物质的各种粒子的运动形态。 (四)教材与主要参考书。 选用教材:基泰尔,固体物理导论(第八版)。 主要参考书: 1.黄昆、韩汝琦,固体物理学,高等教育出版社 2.Neil W. Ashcroft、N.David Mermin,Solid state Physics 3.刘友之、聂向富、蒋生蕊,固体物理学习题指导

高等量子力学

研究生课程教学大纲 高等量子力学 一、课程编码:21-070200-B01-17 课内学时: 64 学分: 4 二、适用学科专业:理学,工学 三、先修课程:数理方法,理论力学,电动力学,量子力学,热力学统计物理 四、教学目标 通过本课程的学习,使研究生掌握希尔伯特空间,量子力学基本理论框架,了解狄拉克 方程,量子力学中的对称性与守恒定律,二次量子化等理论知识,提升在微观体系中运用量 子力学的基本能力。 五、教学方式:课堂讲授 六、主要内容及学时分配 1 希尔伯特空间10学时 1.1 矢量空间 1.2 算符 1.3 本征矢量和本征值 1.4 表象理论 1.5 矢量空间的直和与直积 2 量子力学基本理论框架20学时 2.1 量子力学基本原理 2.2 位置表象和动量表象 2.3 角动量算符和角动量表象 2.4 运动方程 2.5 谐振子的相干态 2.6 密度算符 3 狄拉克方程 6学时 4 量子力学中的对称性 5学时 5 角动量理论简介 5学时 6 二次量子化方法16学时 6.1 二次量子化 6.2 费米子 6.3 玻色子 复习 2学时七、考核与成绩评定:以百分制衡量。 成绩评定依据: 平时作业成绩占30%,期末笔试成绩占70%。 八、参考书及学生必读参考资料 1. 喀兴林,《高等量子力学》,.[M]北京:高等教育出版社,2001 2. Franz Schwabl,《Advanced Quantum Mechanics》,.[M]北京:世界图书出版公司:2012 3. 曾谨言,《量子力学》,.[M]北京:科学出版社:第五版2014或第四版2007 4. https://www.360docs.net/doc/e8407785.html,ndau, M.E.Lifshitz,《Quantum Mechanics (Non-reativistic Theory)》,.[M]北京:世界 图书出版公司:1999 5. 倪光炯,《高等量子力学》,. [M]上海:复旦大学出版社:2005 九、大纲撰写人:曾天海

量子力学考试大纲

《电动力学》考试大纲 (2007年7月第一次修订,2008年12月第二次修订) 《电动力学》考试大纲是根据我校物理学专业人才培养方案和《电动力学》教学大纲制定的。课程性质、目的和教学内容参考我院物理学专业的《电动力学教学大纲》。 考核内容一般分为四个层次:I -识记、II -理解(或领会)、III -简单应用、IV -综合应用。 考核类型:闭卷考试。 考题类型:试题一般在以下题型中选择4-6种:简答、填空、判断(加“错改正”)、选择(单项、多项)、证明、计算等,题量在20—35小题,考试时间2小时。 注意:黑体字标注的为重点内容。 第一章 电磁现象的普遍规律 考核要求: (一)需要掌握的主要数学公式 1.识记: (1)矢量代数公式 (2)梯度、散度和旋度定义及在直角坐标和球坐标中的表达式 (3)矢量场论公式 (4)积分变换公式 (5)复合函数“三度”公式 (6)有关x x r '-= 的一些常用公式 2.理解:算符▽的矢量性和微分性 3.简单应用:利用算符▽的矢量性和微分性证明矢量场公式 4.所需要数学知识不单独出题考试,融合在课程内容中 (二)麦克斯韦方程组建立的主要实验定律和假定 1.识记: 电磁场理论建立的几个重要实验规律 2.理解: 库仑定律,高斯定理 磁场的实验定律――毕萨定律,安培环路定理 电磁感应定律――涡旋电场假说,位移电流假说 (三)真空中的麦克斯韦方程组

1.识记:真空中的麦克斯韦方程组(微分形式、积分形式) 2.简单应用: 每个方程的物理意义(物理本质) 麦克斯韦方程组在电磁学中的重要意义――电磁场理论的基础,揭示电和磁的内在联系,是应用的理论依据 能够运用真空中的麦克斯韦方程组做简单的证明 (四)介质中的电磁性质方程 1.识记: (1)束缚体电荷、束缚面电荷的表达式 (2)磁化体电流、磁化面电流和极化电流的表达式 (3)电位移矢量和磁场强度的定义 (4)均匀线性介质中电位移矢量、磁场强度和电场、磁感应强度的关系2.理解:公式的适用范围。 3.简单应用:能够简单运用上述公式求束缚体电荷密度、面电荷密度以及磁化体电流、面电流 (五)介质中的麦克斯韦方程组 1.识记:介质中麦克斯韦方程组的微分形式和积分形式 2.简单应用:会利用介质中的麦克斯韦方程组做简单的证明题 (六)洛仑兹力公式 1.识记:单个带电粒子和电荷分布情况的洛仑兹力公式 (七)电磁场的边值关系 1.识记: (1)电磁场的边值关系 (2)其它几个边值关系 2.简单应用:利用边值关系做简单证明和计算 (八)电磁场的能量 1.识记: (1)电磁场能量守恒 (2)电磁场的能量密度和玻印停矢量 2.理解:能量在场中的传输 第二章静电场 考核要求: (一)有关静电场的几个定理和定律 1.理解:库仑定律、静电场的概念、场的叠加原理、高斯定理 (二)电场的基本方程

课程教学大纲

课程教学大纲 课程基本信息(Course Information) 课程代码 (Course Code) PH416 学时 (Credit Hours) 48 学分 (Credits) 3 课程名称 (Course Name) (中文)激光原理与技术 (英文)Principles and Technologies of Lasers 课程性质 (Course Type) 应用物理学专业选修课 授课语言 (Language of Instruction) 中文 开课院系 (School) 物理与天文学院 先修课程 (Prerequisite) 普通物理 授课教师 (Teacher) 钟晓霞 电邮、电话 (email& phone) xxzhong@https://www.360docs.net/doc/e8407785.html, 办公时间 (Office Time) 周一至周五 办公地点 (Office Location) 物理楼703A 课程网址 (Course Webpage) *课程简介(Description) 该课程旨在教授和激光有关的基本概念和技术,包括爱因斯坦关系式、光子简并度、集居数反转、增益饱和、光学谐振腔、纵模和横模、高斯光束、频率牵引、拉姆凹陷、调Q 技术、锁模技术等。授课思路如下:1. 介绍激光产生的历史背景和进程,特别是量子力学的发展对激光产生的影响;2. 介绍光和物质的相互作用,重点介绍基于不同介质的增益线型、增益饱和现象;3. 介绍无源谐振腔,引出纵模和横模、高斯光束、腔损耗的概念;4. 在上述2、3 基础上,探讨有源腔内光和物质相互作用,具体介绍连续激光器和脉冲激光器的工作原理和相关技术。 The purpose of this course is to let students become familiar with some key concepts and technologies in Lasers, including Einstein relation, Photon degeneracy , Population inversion, homogeneous broadening, Inhomogeneous broadening, Gain saturation, Optical resonator, longitudinal and lateral mode, Gaussian beam, Frequency pulling, Lamb dip, Q switching, Mode locking etc.. The class is taught in this way: first of all, a brief history of laser especially its relationship with the development of quantum mechanics is given; Next, the interaction of light with matter especially gain saturation are introduced; Furthermore, the properties of passive optical resonator especially properties and transformation of Gaussian beam are demonstrated; Finally, continuous wave laser behavior and transient laser behavior are presented. 课程教学大纲(course syllabus)

相关文档
最新文档