Ashok V.Kumar,JOURNAL OF MECHANICAL DESIGN,1999,122(3).271.277

Ashok V.Kumar,JOURNAL OF MECHANICAL DESIGN,1999,122(3).271.277
Ashok V.Kumar,JOURNAL OF MECHANICAL DESIGN,1999,122(3).271.277

Ashok V.Kumar

Assistant Professor Department of Mechanical Engineering, University of Florida,Gainesville,FL32611

e-mail:akumar@https://www.360docs.net/doc/e7441169.html, A Sequential Optimization Algorithm Using Logarithmic Barriers:Applications to Structural Optimization

A sequential approximation algorithm is presented here that is particularly suited for problems in engineering design and structural optimization,where the number of vari-ables is very large and function and sensitivity evaluations are computationally expensive.

A sequence of sub-problems are generated using a linear approximation for the objective function and setting move limits on the variables using a barrier method.These sub-problems are strictly convex and computation per iteration is signi?cantly reduced by not solving the sub-problems exactly.Instead a few Newton-steps are taken for each sub-problem generated.A criterion,for setting the move limit,is described that reduces or eliminates step size reduction during line search.The method was found to perform well for unconstrained and linearly constrained optimization problems.It is particularly suit-able for application to design of optimal shape and topology of structures by minimizing their compliance since it requires very few function evaluations,does not require the hessian of the objective function and evaluates its gradient only once for every sub-problem generated.?S1050-0472?00?01603-2

?

1Introduction

Engineering design and structural optimization problems are often stated as non-linear programming problems.Typically these problems have a large number of variables and the evaluation of the objective function and the constraints involve computationally expensive analysis.Due to these reasons Schmit and Farshi?1?proposed sequential approximation methods for structural https://www.360docs.net/doc/e7441169.html,monly used approximations include linear approxima-tion leading to Sequential Linear Programming?SLP?and linear-ization in reciprocal variables as well as many hybrids of these two approximations?1–3?.

Sequential approximation techniques create a sequence of sub-problems that are easier to solve than the original problem.The approximate objective functions and constraints of the sub-problem are much cheaper to evaluate and therefore the sub-problems are relatively inexpensive to solve.The function and gradient evaluations of the original optimization problem are typi-cally performed only once per sub-problem.Unlike non-linear optimization algorithms derived by extending Newton’s method, methods based on sequential linearization do not require the hes-sian matrix of the objective function.The hessian matrix can be very large in applications involving large number of variables, therefore,constructing this matrix and its LU decomposition rep-resents a large overhead.As a result,sequential approximation methods often perform better for applications where the number of variables are very large or the second derivatives of the func-tion are very expensive to evaluate.

An important area for application of sequential programming has been structural optimization,where function evaluation in-volves computationally expensive structural analysis.The evalua-tion of gradient of the objective function and its hessian matrix each represent signi?cant computation.In particular,for shape and topology optimization of structures,the optimization problem involves very large number of variables.The optimal shape and topology of structures is obtained by computing the optimal ma-terial distribution within a given feasible region?see,Bends?e and Kikuchi?4?,Bends?e?5?and Kumar and Gossard?6,7??.Sequen-tial approximation algorithms such as CONLIN and MMA?8,9?have recently been used for this problem.

In Sequential Linear Programming,a solution to the non-linear programming problem is obtained by solving a sequence of linear programs created by linear approximations of the objective and constraints.Schmit and Farshi?1?suggested linearization in the reciprocal of the variables.Svanberg?10?further extended this idea,where he suggests a method of moving asymptotes?MMA?. One interpretation of this method can be that move limits are set on the variables using asymptotes for each sub-problem.These asymptotes are moved to make the method stable and to expedite convergence.Svanberg suggests a set of heuristic rules for mov-ing these asymptotes.The dual of the sub-problem is solved?rst and the solution for the primary problem is computed using the dual solution.The dual problems have concave objective function and hence can be solved easily using conventional gradient meth-ods such as the conjugate gradient method.

In this paper a novel sequential approximation method is de-scribed,in which a sequence of sub-problems are generated by linearizing the objective function and setting move limits on the variables using logarithmic barrier functions.This method can be interpreted as sequential linear programming using primal-dual technique?11,12?to generate a descent direction and step size. Move limits on the variables are?exible and are modi?ed each iteration in such a fashion that the upper and lower limits con-verge towards each other.The resulting algorithm is a non-linear programming technique that is particularly useful for applications involving large number of variables and linear constraints.The reason for using logarithmic barriers to set move limits on the variables is that the resulting sub-problems have a diagonal hes-sian matrix and therefore it is inexpensive to use Newton’s method for solving the sub-problems.The principal advantage of the method is that it does not require the exact solution of the sub-problems and hence requires very little computation per itera-tion.It is insensitive to the scaling of the variables and performs well even for ill-conditioned problems especially when the hes-sian matrix is nearly diagonal.

Contributed by the Design Automation Committee for publication in the J OUR-NAL OF M ECHANICAL D ESIGN.Manuscript received Sept.1999.Associate Techni-cal Editor:A.Diaz.

In section 2,the sub-problem generated at each iteration is de-scribed along with the solution strategy.The criterion of selecting the move limits for each sub-problem is described in section 3.The algorithm requires a feasible starting point.A simple method for ?nding such a point using moving logarithmic barriers is de-scribed in section 4.A few examples are described in section 5,to illustrate the application of this sequential approximation method.

2The Sub-Problem and Solution Strategy

Consider an optimization problem with linear constraints and side constraints as described below,

?P ?:Min f ?x ?,

x ?R n ,f :R n →R subject to,

Ax ?b ,

A ?R m ?n ,

b ?R m

(1)

l i рx i рu i ,

i ?1,...,n

The objective function f is a nonlinear function.The vectors l

and u set the side constraints on the variables,written succinctly as,l рx рu .A sequence of sub-problems is generated for the above optimization problem.At the k th iteration,the sub-problem is de?ned as:

?P k ?:Min F k ?x ?,such that,x ?S k

S k ??x ?Ax ?b ;l ??k ?рx рu ??k ??

(2)

F k ?x ???f ?x ?k ??t

x ??k

?

i ?1

n

ln ?x i ?l ?i ?k ?

???k

?

i ?1

n

ln ?u ?i ?k ?

?x i ?

(3)

The objective function of the sub-problem,F k (x ),is strictly

convex.Assuming that S k is a non-empty and bounded set,there exists a unique global minimum for the above sub-problem.Note that the side constraints for the sub-problem (P k ),are not the same as that of the original problem ?P ?.Instead,l ?(k )and u ?(k )are ?exible move limits that satisfy the condition,

l рl ??k ??x ?u ??k ?рu

(4)

In this paper we refer to the side constraints of the sub-problem

as move limits.These move limits serve to limit the step size taken at each iteration k .Criteria for selecting their value is given later.If the gradient vector c ??f (x (k ))is taken to be a constant,the above sub-problem can be solved as a linear program,using barrier methods to enforce the move limits.The logarithmic bar-rier function has been found to perform well for the primal-dual method ?12?for linear programming.The primal-dual method is an interior point method for linear programming that uses loga-rithmic barriers to impose side constraints.The dual problem for the corresponding linear program,min c t x ,x ?S k can be derived as,

?D k ?:max q ???

(5)

q ????in?mum 1рx рu

?c t x ??t ?Ax ?b ???z t x

???t

b where,??R m and

z t ??c t ??t A ??R n and

x ?i ?k ?

?

?

l i ?k ?

if z i ?0u i

?k ?otherwise

?

(6)

The optimality criteria for the sub-problem (P k )can be derived

as,

?x i ?l ?i ?k ???u ?i ?k ??x i ?z i ??k ?u ?i ?k ??l ?i ?k ??2x i ??0,

i ?1,...,n

Ax ?b z ?A t ??c ,

(7)

where,z ?R n ,c ??f (x k )?R n and ??R m .

The optimality criteria are a set of nonlinear simultaneous equa-tions.Due to the convexity of the sub-problem,we know that the solution of these equations will yield the unique global minimum of the sub-problem.These equations can be therefore solved using Newton’s method.In doing so we treat c ??f (x (k ))as a constant vector,thereby making a linear approximation of the objective https://www.360docs.net/doc/e7441169.html,ing the standard ?rst order Taylor series expansion,we get the following linear simultaneous equations for evaluating the Newton descent direction.

?x i ?k ??l ?i ?k ???u ?i ?k ??x i ?k ???z i ??Z i ?k ???x i ?2?k ?x i ??v i

?k ?

A ?x ?0(8)

?z ?A t ???0

where,

v i ?k ???x i ?k ??l ?i ?k ???u ?i ?k ??x i ?k ??z i ?k ???k ?u ?i ?k ??l ?i ?k ??2x i ?k ?

?

(9)

Z i ?k ???u ?i ?k ??l ?i ?k ??2x i ?k ??z i

?k ?

The above equations can be solved using a linear equation solver.However,since the hessian matrix of the sub-problem is diagonal and we can use this special structure of the equations to solve them more ef?ciently.The solution can be derived in the following form by rearranging Eqs.?8?and ?9?.

?????ADA t ??1AV

?z ?A t ??

(10)

?x ??V ?D ?z ,V ?R n and D ?R n ?n

where,

D ii ?

?x i ?k ??l ?i ?k ???u ?i ?k ??x i ?k ?

???u ?i ?k ??l ?i ?k ??2x i ?k ??z i ?k ?

??2?k

,

D i j ?0,i j ,i ,j ?1,...,n

V i ?

v i

??u ?i ?k ??l ?i ?k ??2x i ?k ??z i ?k ?

??2?k

,i ?1,...,n (11)

This formulation does not require the hessian of the sub-problem to be assembled and hence enables us to use Newton’s

method for the sub-problem even when the number of variables are very large.In Eq.?10?,note that we need to solve only ‘m ’simultaneous equations to calculate ??.Therefore,in applications where the number of variables is very large as compared to the number of constraints this leads to signi?cant reduction in com-putation.Dual methods ?13?also have the same advantage when applied to such problems since the dual problem would have fewer variables than the primary problem.However,unlike in the dual methods we do not completely solve the sub-problem in this algorithm even though the Newton iterations derived above could be used to obtain the global minimum of the sub-problem (P k ).Since the minimum of the sub-problem is not the same as the minimum of the original problem (P ),we need not solve the sub-problem exactly.Fleury ?14?has suggested similar ideas in the context of dual methods.We restrict the number of Newton iterations to the minimum required to generate a descent direction.For unconstrained optimization such a direction is found at the very ?rst iteration.However,for constrained optimization,if our initial guess for the Lagrange multipliers are not close to the real values,more than one iteration may be required.In this case,we use the Eqs.?10?–?11?to compute ??and ?z to update ?,z and ?k but leave x unchanged.In fact,we found no advantage in updating x more than once per iteration ?or sub-problem de?ni-tion ?.Once a descent direction is found,the variables are updated as follows,

x?k?1??x?k???k?x

z?k?1??z?k???k?z(12)

??k?1????k???k??

The step size?k is selected such that the new values of the variables are feasible,i.e.,l?(k)?x?u?(k).The step size may there-fore be computed as follows,

?k?min

i?1,...,n

???i?(13) where,

??i??l?i?k??x i?k??x i?k?if?x i?0

u?i?k??x i?k?

?x i?k?

otherwise?,i?1,...,n(14)

After the variables are updated,the sub-problem is rede?ned by re-evaluating the functions and gradients and by resetting the move limits.Note that only one function and gradient evaluation is required per iteration to de?ne the sub-problem.However,once the descent direction and step size are found it is bene?cial to use Armijo’s rule?12?to check whether further step size reduction is necessary.When Armijo’s rule is used to reduce step size,one additional function evaluation is required per step size reduction. The move limits set by the barrier function usually minimizes the need for step size reduction so that often Armijo’s rule serves merely as a safety check.The Armijo rule used in our implemen-tation is given below.We use?m k?k?instead of?k in Eq.?12??as the step size,where we chose a?xed scalar?such that0???1and m k is the smallest positive integer for which the follow-ing relation holds.

f?x?k???f?x?k???m k?k?x?k??у???m k?k?f?x?k??t?x?k?

(15) In our implementation,we have used??0.5and??0.01.The magnitude of?x from Eq.?10?depends inversely on?k.As the variable approaches the optimal value and the upper and lower move limits converge towards each other,?k should tend towards zero so that step size does not become too small.We have used the following rule to set the value of?k.

?k?g k

2n

,where g k?z t?x?x??k??(16)

z and x?(k)are de?ned in Eq.?6?.Note that g k is the duality gap between the linear program min c t x,x?S k and its dual max q(?),

de?ned in Eq.?5?.At the optimal point,the duality gap vanishes as expected because z i?0if x i?x?i(k) 0.At the optimal solution of the original problem?P?,the duality gap of sub-problem must

be zero,g k?0.We make use of this to de?ne a convergence criterion as follows:

C?x??g?x?

f*nnр?,where,g?x??z

t?x?x??and

x?i??l i if z i?0

u i otherwise?(17) For the examples in this paper,we have used??1?10?6. Notice that the Lagrange Multipliers are also obtained as by-products during the solution process if the side constraints do not become active.

The algorithm presented above can also handle inequality con-straints of the form Cxрd,C?R rxn,d?R r by using slack vari-ables to convert them to equality constraints of the form Cx?s ?d,s?R r,s iу0.We illustrate this through an example in sec-tion5,where we convert an inequality constraint into an equality constraint by using an addition variable x n?1as the slack variable, where n is the number of variable in the problem.The side con-straints for this variable are set such that the lower bound is zero and the upper bound is an arbitrary large value.Notice that even though the objective function of the original problem is indepen-dent of this slack variable,the objective function of the sub-problem would have barriers to ensure that the slack variable re-mains positive.Hence using slack variables is identical to using barrier method to enforce inequality constraint.

3Criteria for Setting Move Limits

The move limits are set for each sub-problem in such a way that the variables stay within the feasible domain of the original opti-mization problem?P?.The upper and lower limits are moved such that they converge towards each other and the feasible region for the sub-problems shrinks progressively.The move limits help to stabilize the algorithm and prevents the step size from being ex-cessive.In addition,the curvature of the sub-problem objective function depends on these move limits.The value of the move limits are initialized to be the same as the side constraints on the original optimization problem?P?,that is,l?i0?l i,and u?i0?u i. The move limits are then updated every iteration using one of the following criteria.

Criteria I:At the k th iteration,the move limits are updated as follows.

if k?1,l i?1??l i,u i?1??u i

if k?1,a i?

z t?xàx??

?n?z i?k??z i?k?1???(18) l?i?k??max?x i?k??a i,l i,x i?k???u i?x i?k???

u?i?k??min?x i?k??a i,u i,x i?k???x i?k??l i??,i?1,...,n(19) Note that the move limits on each variable are set such that the upper and lower limits are equidistant from the current value of the variable.When the move limits are equidistant,the descent direction generated every iteration is not dependent on?k?even though its magnitude does depend on?k?as can be veri?ed from Eqs.?8?–?11?.This update criterion decreases the distance be-tween the bounds,2a i,as the duality gap z t(xàx?)decreases.At the optimal solution,when the duality gap vanishes,the upper and lower move limits converge on to the optimal values of the vari-ables.The inverse relation between a i and z i(k)?z i(k?1)in Eq.?18?ensures that the sub-problem is properly re-scaled during the Newton iterations.If the solution is oscillating during the itera-tions,the value of z i will also oscillate between positive and nega-tive values making the denominator in Eq.?18?larger and there-fore the value of a i smaller.

Another criterion for updating move limits is listed below, which is a modi?ed form of the criterion used by Svanberg?10?for the method of moving asymptotes.The main difference here is that we require the moving limits to be within the side constraints of the original problem.

Criteria II:At the k th iteration,the move limits are updated as follows.

If kр2,

l?i?k??l i

u?i?k??u i

(20)

If k?2,

l?i?k??max?x i?k??s?x i?k?1??1i?k?1??,

l i,x i?k???u i?x i?k??}

u?i?k??min{x i?k??s?u i?k?1??x i?k?1??,

u i,x i?k???x i?k??l i?}

(21)

where,0?s?1if(x i(k)?x i(k?1))(x i(k?1)?x i(k?2))р0,else s ?1.

In our implementation we have used s ?3/4or 4/3depending on the sign of (x i (k )?x i (k ?1))(x i (k ?1)?x i (k ?2)).

4Finding an Initial Feasible Point

The initial starting point should be inside the feasible region so that it satis?es the constraints.During subsequent iterations,the variable stays within the feasible region due to the move limits set by the barrier function.An initial feasible point can be found using a simple modi?cation to the moving barrier technique.An arbitrary starting point x 0can be projected on the hyper-plane Ax ?b by minimizing ?x ?x 0?2subject to Ax ?b .The pro-jected point x ?0is obtained as

x ?

0?x 0?A t ?AA t ??1?Ax 0?b ?(22)

The analytical center of the polyhedra S ??x ?Ax ?b ;1?(k )?x ?u ?(k )?is de?ned as the unique minimum over S of the convex function F b de?ned below.

P b :Min F b ?x ?,x ?S ,

(23)

F b ?x ???

?

i ?1

n

ln ?x i ?l ?i ?k ?

??

?

i ?1

n

ln ?u ?i ?k ?

?x i ?

The analytical center is an interior point of the polyhedra S .If

the point x ?0does not satisfy the feasibility requirement 1?x ?0?u of the original problem ?P ?,then move limits of the problem

(P b )are set such that 1

?(k )?x ?0?u ?(k )using Eq.?21?.The method used in section 2to ?nd a descent direction for the sub-problems (P k )can also be used for the optimization problem (P b ).Indeed,after setting c ?0and ?k ?1,Eqs.?10?and ?11?yield a descent direction for (P b ).In practice,larger values for ?k lead to faster convergence towards the analytical center.After updating the value of x ?0using the descent direction,the move limits may be reset every k th iteration as:

l ?i ?k ??x ?0i ?k ???;u ?i ?k ?

?u i if x i рl i u ?i ?k ??x ?0i ?k ???;

l ?i ?k ??l i if x i уu i

u ?i ?k ?

?u i ;

l ?i ?k ??l i ;

if l i рx i рu i ,

i ?1,...,n (24)

In the above equations,?is a small positive real number.At each iteration,the value of x ?0is changed so that it moves away from the move limits along the hyper-plane Ax ?b .By resetting the move limits using Eq.?24?,the move limits are again moved closer to the variable x ?0.As the iterations continue,the move limits approach the actual bounds on the variables ?l and u ?.The iterations are stopped when the feasibility conditions l ?x ?0?u are satis?ed.

5Examples and Application in Structural Optimiza-tion

In this section a few examples are given to illustrate the appli-cation of the algorithm presented in this paper,which we will refer to as the Moving Barrier Method ?MBM ?.We have com-pared the convergence rate of the Moving Barrier Method with the Method of Moving Asymptotes ?MMA ?for all the examples.In our implementation of MMA algorithm,two criteria suggested by Svanberg ?10?are available for setting the position of the moving asymptotes.These are listed below.Moving asymptote criterion I:

L i ?k ??x i ?k ???u i ?l i ?

U i ?k ??x i ?k ?

??u i ?l i ?

for k р2(25)L i ?k ??x i ?k ??s ?x i ?k ?1??l i

?k ?1??U i ?k ??x i ?k ??s ?u i ?k ?1??x i ?k ?1?

?

for k ?2,(26)

where,i ?1,...,n and s ?3/4if (x i (k )?x i (k ?1))(x i (k ?1)?x i (k ?2))у0,else s ?4/3.

Moving asymptote criterion II:

L i ?k ??tx i ?k ?

,

U i ?k ??x i ?k ?

/t ,where t ?1/3.

(27)

Example 1.Unconstrained Optimization.In this example

we consider a simple unconstrained nonlinear program with two variables.The optimization problem may be stated as:

min f ?x 1,x 2??

?x 2?g 2??x 1g 1

1000.

,

(28)

where,g 1(x 1,x 2)?50000.?5000.x 1?40.x 2?x 1x 2?0.002x 22and

g 2(x 1,x 2)?100000.?2g 1

The initial bounds on the variables were set as 0.?x 1?15.,.0.?x 2?10000.and the initial points were given as (x 1,x 2)?(1.,10.).The contours of the function f (x 1,x 2)are plot-ted in Fig.1.The function has a very ill-conditioned hessian ma-trix.This optimization problem was solved using moving barrier method ?MBM ?,Newton’s method with modi?ed Cholesky fac-torization ?12?and the method of moving asymptotes ?MMA ?.The graph shown in Fig.2presents a comparison of the conver-gence history of the MBM with the other algorithms.As expected,the fastest convergence was obtained using the Newton’s method,which converged within four iterations with an objective function value of ?796.07.However,Newton’s method requires the hes-sian matrix and step size reduction at each iteration leading to approximately 35function evaluations.The MBM algorithm with Armijo’s step size reduction and criteria II ?Eqs.20–21?for set-ting move limits gives very similar rate of convergence.It con-verged to the same value of objective function within eight itera-tions and required 29function evaluations.Criteria I ?equation ?lead to slower convergence and more function evaluations ?

ap-

Fig.1Contours of the function f …x 1,x 2

Fig.2Convergence history for example 1

prox.42?.The method of moving asymptotes ?MMA ?using cri-teria I ?Eqs.25–26?took approximately 30iterations to converge to the same solution but since it uses only one function evaluation per iteration,the computational cost is similar to MBM.Notice that the objective function value does not decrease monotonically during the iterations for MMA https://www.360docs.net/doc/e7441169.html,ing criteria II ?Eq.27?,MMA does not converge within reasonable number of iterations.

Example 2.Cantilever Beam.This example is from Svan-berg ?10?but has been modi?ed by a change of variables to con-vert the non-linear inequality constraint into a linear inequality constraint.It involves weight minimization of a cantilever beam.As illustrated in the Fig.3,the beam consists of ?ve elements whose cross-section is square and hollow with constant thickness.The length of the side of the square cross-section for each element is treated as the design variable.The objective is to minimize the weight of the structure,subject to constraints on the vertical de-?ection at the end of the beam where the load is applied.The problem was stated in Svanberg ?10?as:

Minimize 0.0624?x 1?x 2?x 3?x 4?x 5?,

(29)

subject to:61/x 13?37/x 23?19/x 313?7/x 43?1/x 53

р1and x j ?0,

The non-linear inequality can be converted to linear inequality constraint by restating the problem in terms of a different variable that we de?ne as y i ?1/x i 3.In terms of y i the problem can be stated as:

Minimize 0.0624

??1y 1

?1/3

?

?1y 2

?1/3

?

?1y 3

?1/3

?

?1y 4

?1/3

?

?1y 5

?1/3

?

(30)

subject to 61y 1?37y 2?19y 3?7y 4?y 5р1

This problem was solved using both MBM and MMA algo-rithms.To use MBM,the inequality constraint was converted to an equality constraint by using a slack variable y 6increasing the total number of variables to six.In the Fig.4,the convergence history for MBM and MMA are presented.The problem was solved starting from the initial guess for the variables y i ??0.006,0.006,0.006,0.006,0.006?.The initial value for the slack variable was set as y 6?0.00001.The upper bound for all vari-ables were set as y i ?100,i ?1to 6.The convergence graph

shown in ?gure corresponds to criterion I for MBM ?Eqs.18,19?and criterion II ?Eq.27?for MMA.MBM converged to an objec-tive function value of 1.340within 6iterations requiring 13ob-jective function evaluations while MMA converged to the same value in 8iterations ?and 8function evaluations ?.In this example,MBM with criterion II ?Eqs.20–21?took more iterations to con-verge.MMA had very poor convergence rate using criterion I ?Eqs.25–26?for moving asymptotes.

Minimum Compliance Design.Structural optimization problems are nonlinear programs with a very large number of variables.Both function and gradient evaluations require ?nite element analysis of the structure and hence are computationally expensive.Here we consider an example of compliance minimi-zation where both the shape and topology of the structure are optimized.The structural optimization problem is stated as the minimization of compliance L (u )subject to a constraint on weight.The problem may be stated as,Minimize L (u )

L ?u ?????

?

?

f ?u ???d ??

?

?t

t ?u ???d ?(31)

subject to,

W ????

?

?

?d ?рW O

(32)

?

?0

?t ?u ˉ?D ?????u ?d ?0?L ?u ˉ?,

0р?р1

In the above equations,?(x )is the shape density function and

u ˉ

is the displacement ?eld.We de?ne the shape of the structure to be the region where shape density function has a value above a threshold value ?15,7?.Equation ?32?describes the constraint that the weight ?volume ?W of the component should be less than or equal to W O .The externally applied forces and traction are de-noted as f and t respectively.D is the elasticity matrix whose elements are functions of the material properties.Since our shape is represented using the density function ?,therefore,the material properties and the D matrix depend on the density function.We assume relations between Young’s Modulus and density of the form E ?E 0?n .This type of relation has been used before ?5,16,6?and the corresponding material has been referred to as Solid Isotropic Material with Penalization ?or SIMP ?.

A feasible region is de?ned within which the optimal shape must ?t and this region is divided into a quadrilateral mesh.The density function is represented using piece-wise bilinear interpo-lation over the quadrilateral elements of the mesh.The variables of the design are the density function values at the nodes and therefore the number of variables is equal to the number of nodes in the mesh.

Example 3:Shape and Topology Optimization.Figure 5illustrates a planar shape and topology optimization example.The feasible region,the applied loads,the support boundary conditions and the mesh used to represent the shape are displayed in Fig.5?a ?.The structure being designed is supported at the two lower corners and has to carry the three sets of loads shown in the ?gure.The initial geometry is assumed to be the rectangular

feasible

Fig.3Weight minimization of cantilever

beam

Fig.4Convergence history for example

2

Fig.5Optimal shape and topology design

region.Figure 5?b ?displays the optimal geometry computed under the constraint that the ?nal geometry must have 30percent less mass than the initial geometry.A cubic relation was used between Young’s modulus and density.In this example,the mesh con-sisted of 3200elements and 3333nodes.The number of variables of the optimization problem is equal to the number of nodes in the ?nite element mesh.

The convergence history is shown in Fig.6for MBM using criteria I and II ?labeled as MBM-I and MBM-II respectively ?and MMA.At the ?rst iteration,the value of the compliance is very low because the weight constraint is not yet satis?ed.Even though MBM-I is slow to converge during the early iterations at the end of 25iterations all three curves converge to a objective function value of approximately 4100.MBM algorithms took 15.3minutes to complete 25iterations while MMA took 20.7minutes to com-plete the same number of iterations on the same computer.The number of objective function evaluations required was equal to the number of iterations for all three methods since no step size reduction was required for MBM algorithm at any iteration in this example.For MMA only criterion II ?Eq.27?was used for mov-ing asymptotes because the algorithm did not converge fast using criterion I.

Example 4:Michell’s Frame.In Fig.7,we consider an ex-ample where 70percent of the mass is removed from a rectangu-lar feasible region loaded like a cantilever beam.When large per-centage of mass is removed from the initial feasible geometry,the resultant optimal geometry tends to be frame-like.Therefore,a relatively ?ne mesh is required to represent the geometry.This implies that the optimization problem has a very large number of variables.The optimal geometry obtained is shown superimposed on the mesh used to represent the geometry in Fig.7.The mesh used here contains 9801nodes and 9600elements.Here a qua-dratic Young’s modulus—density relation was used.The optimal solution for this problem was obtained analytically by Michell

?17?.The similarity between the solution obtained here and the analytical solution con?rms that the optimization algorithm did converge to the correct solution.

The convergence history for MBM and MMA for this example is presented in Fig.8.Again MBM-I and MBM-II stands for MBM using criterion I and II respectively,for setting move limits.The MBM algorithm required only one function and gradient evaluation per sub-problem for this example since no step size reductions were necessary.The convergence criterion ?Eq.17?was satis?ed after 35iterations for MBM-II and the objective function value was reduced to 4165.At the end of 35iterations,the objective function value was 4776for MBM-I and 4216for MMA.The MBM algorithm took 78.5minutes to complete 35iterations while MMA took 95.5minutes for the same number of iterations.Even though,in Fig.8,the objective function value appears to have almost converged by the sixth or seventh iteration for MMA and MBM-II,shape and topology change drastically over the next 30iterations.The shape and topology converge and become well de?ned ?with little or no gray areas ?only after about 35iterations.Even though MBM-II converges in 35iterations,the iterations where continued up to 50iterations as shown in Fig.8,to show that eventually all three methods converge to almost the same value for the objective function.

6Conclusions

A sequential approximation technique for nonlinear program-ming is described that locally approximates the objective function linearly and sets move limits on the variables using logarithmic barrier functions.This technique,like other sequential lineariza-tion techniques,does not require the evaluation of the hessian of the objective function.The algorithm can handle inequality con-straints also by converting them into equality constraints by using slack variables.The Lagrange Multipliers are obtained as a by-product of constrained minimization if the side constraints are not active.

Overall the performance of MBM is similar to that of MMA for problems involving only linear constraints.The modest improve-ment in speed over MMA observed for the minimum compliance design examples can be attributed to the fact that computation per iteration is reduced for MBM by not solving the sub-problems completely.Even though there was only one constraint for these examples,evaluation of the dual objective function and its gradi-ent for MMA becomes expensive as the number of variables in the primary problem increases.Furthermore,many iterations are required to completely solve the dual problem.For MBM only one Newton step is taken for the sub-problem if the very ?rst step yields a descent direction.Additional iterations for the sub-problem did not improve the rate of convergence.

The two criteria presented here for setting the move limits for MBM appear to work well for all examples in this paper.Criterion II requires storing the solution from the last two iterations as well as values of the move limits from the previous iteration,whereas criterion I requires storage of only the Kuhn-Tucker vector from the previous iteration.The rate of convergence of these two crite-ria varied from example to example making it dif?cult to

recom-Fig.6Convergence history for example

3

Fig.7Michell’s

frame

Fig.8Convergence history for example 4

mend one over the other.The performance of both MBM and MMA were found to be signi?cantly dependent on the strategy used for setting move limits or asymptotes.

The main limitation of the algorithm presented here is that it is not directly applicable to solve problems involving nonlinear con-straint.Many different approaches for extending the algorithm to handle nonlinear constraints are possible and need to be explored. We are currently studying an approach that involves linearizing the nonlinear constraints using Taylor series expansion at every iteration so that the sub-problem only involves linear constraints. Encouraging results were obtained for some examples but further study is required before the results can be published. References

?1?Schmit,L.A.,and Farshi,B.,1974,‘‘Some Approximation Concepts for Structural Synthesis,’’AIAA J.,12,No.5,pp.692–699.

?2?Fleury,C.,1979,‘‘Structural Weight Optimization by Dual Methods of Con-vex Programming,’’Int.J.Numer.Methods Eng.,14,pp.1761–1783.

?3?Fleury,C.,and Braibant,V.,1986,‘‘Structural Optimization:A New Dual Method Using Mixed Variables,’’Int.J.Numer.Methods Eng.,23,pp.409–428.

?4?Bendso”e,M.P.,and Kikuchi,N.,1988,‘‘Generating Optimal Topologies in Structural Design Using a Homogenization Method,’’Comput.Methods Appl.

Mech.Eng.,71,pp.197–224.

?5?Bendso”e,M.P.,1995,Optimization of Structural Topology,Shape and Mate-rial,Springer Verlag,Berlin.

?6?Kumar,A.V.,and Gossard,D.C.,1993,‘‘Geometric Modeling for Shape and

Topology Optimization,’’Fourth IFIP WG5.2,Geometric and Product Mod-eling,Wilson,P.R.,Wozny,M.J.,Pratt,M.J.,eds.

?7?Kumar,A.V.,and Gossard,D.C.,1996,‘‘Synthesis Of Optimal Shape And Topology of Structures,’’ASME J.Mech.Des.,118,No.1,pp.68–74.

?8?Zhang,W.H.,and Fleury,C.,1997,‘‘A Modi?cation of Convex Approxima-tion Methods for Structural Optimization,’’Comput.Struct.,64,Nos.1–4,pp.

89–95.

?9?Sigmund O.,1997,‘‘On the Design of Compliant Mechanisms Using Topol-ogy Optimization,’’Mech.Struct.Mach.,25,No.4,pp.493–524.

?10?Svanberg,K.,1987,‘‘The Method of Moving Asymptotes—A New Method for Structural Optimization,’’Int.J.Numer.Methods Eng.,24,pp.359–373.?11?Monteiro,R.D.C.,and Adler,I.,1989,‘‘Interior Path Following Primal-Dual Algorithms.Part I:Linear Programming,’’Math.Program.,44,pp.27–41.?12?Bertsekas,D.P.,1999,Nonlinear Programming,2nd ed.,Athena Scienti?c, MA.

?13?Fleury,C.,1993,‘‘Mathematical Programming Methods for Constrained Op-timization:Dual Methods,’’Structure Optimization:Status and Promise,Ka-mat,M.P.,ed.,series on Progress in Astronautics and Aeronautics,AIAA, Chap.7,pp.123–150.

?14?Fleury,C.,1982,‘‘Reconciliation of Mathematical Programming and Optimal-ity Criteria methods,’’Foundations of Structural Optimization,Morris,A.,ed., Chap.10,pp.363–404,Wiley,New York.

?15?Kumar,A.V.,1993,‘‘Shape and Topology Synthesis of Structures Using a Sequential Optimization Algorithm,’’Ph.D.thesis,Massachusetts Institute of Technology,Cambridge,MA.

?16?Zhou,M.,and Rozvany,G.I.N.,1991,‘‘The COC Algorithm,Part II:Topo-logical,Geometrical and Generalized Shape Optimization,’’Comput.Methods Appl.Mech.Eng.,89,pp.309–336.

?17?Michell,A.G.M.,1904,‘‘The limit of Economy of Material in Frame Struc-tures,’’Philos.Mag.,8,No.4.

个人工作失误检讨书范文

个人工作失误检讨书范文 个人工作失误检讨书范文 尊敬的部门领导: 首先我怀着愧疚和懊悔的心情为那天犯下的错误向您表示深刻的悔过。哪天由于自己工作上的失误,给部门造成了严重的影响和不良后果,并造成您工作的困扰。对此,我深感不安。经过您及科长的教导和自己的深刻反省,我知道了自己错误之所在,为自己的行为感到了深深地歉疚和不安。早在你到公司工作的时候,您就已经三令五申,一再强调,在这个小组工作,一定要细心、谨慎、用心工作,避免工作失误。然而现在,我却做错了。在工作上,因为我自己的疏忽对您造成的困扰而向您道歉并进行深刻检讨。 首先,是在日常工作中,由于工作细节考虑不周全的因素,未要求巡检进行日常巡检记录工作的开展,这是我在工作上疏忽了。我深知,这不仅仅是表面上工作失误那么简单,也许由于我的一时疏忽而给生产以及公司带来了不必要的批量隐患事故及不必要的售后麻烦,甚至会直接影响到消费者对我们质控部或者晶弘百年电器企业形象的信心。这是我需要深刻反省并且在以后工作中必须要避免出现的状况! 其次,是在质保工程师指出我工作失误的地方时,自己存在了侥幸心理,未能从正面认识自己这种对于工作”辩解”的严重性。对于此,我真的知错了!历史无法重演,我犹如晴天霹雳、五雷轰顶,因为这时我已发现我思想认知的错误性。虽然在日常工作中,我一再

要求避免因为自己的错误而造成他人工作的困扰,但非常遗憾,虽然我已千般后悔,万般痛苦且痛定思痛深刻反省努力弥补、、、、、但错误已造成,虽然不愿,但事实已摆在眼前。 在科长深刻地训导下,我深刻认识到了自己的错误,并立志从此以后做事要三思而后行,要耐心细心用心及恒心,在你们的督导下用心工作,对所有的工作失误坚决say no.因为,我们质控部是一个精益求精的团队! 我不想找任何的理由来为自己开脱,错了就是错了,找理由来逃避,只会让错误加深。推卸责任容易变成一种习惯,而这种习惯养成了就难以去改变了。我觉得自己的行为辜负了您对我的谆谆教导,浪费了您的精力和时间,我实在是不该。我深刻地反省了自己的错误,我觉得非常愧疚,反省尤为深刻,这使我觉得改正错误是件刻不容缓的事情,为了更好的认识错误,也是为了让部长您能够相信我能够真正的改正自己的错误,保证不再重犯。首先,我作为班组的主要负责人,由于工作不认真,对此工作失职负有不可推卸责任,特向您作出深刻检讨。针对此事,我认真分析,深刻反省,感到事件发生有以下几个原因: 一、是认识不到位,对公司的规章制度还存在着错误的、模糊的认识。所以加强规章管理制度是一项长期而艰巨的任务,要求自己必须以更大的决心,更大的力度,更强硬的举措,进一步提高认识,进一步统一思想,坚定不移地将规章管理制度工作一抓到底,抓出成效。 二、是工作不够扎实。

最新学前教育经验交流材料(精选多篇)

学前教育经验交流材料(精选多篇) 第一篇:学前教育经验交流材料 一、学前教育的重要性 学前教育是为了使学生了解和适应中学阶段的学习生活,更好地完成初中阶段的学习任务,培养良好的道德品质和规范的行为习惯,全面提高学生的综合素质而开展的活动之一。 二、开展学前教育应注意把握的原则 1.早准备,早着手,我每次开展的学前教育都是思考在期末,方案的形成在假期。 2.针对性强才能出实效。学前教育绝不简单地等同于收心教育,一定要根据学生上一学年存在的问题,发生的变化,面对新学年需要具备的生理,心理,思想状况的变化而准备,备课时都应围绕这几个方面精心准备。 3.要有层次性。初中三年的学习生活可大致分为三个大的阶段:初一阶段,确立目标,热爱班集体,迈好中学学习的第一步。初二,防差转差,提出决不拖班级后退,决不让一位学生掉队。初三,创建优秀的班集体,人人争当合格的毕业生。 4.做好形成性评价。学前教育既是常规工作,也是一次极好地开展德育主题活动的机会,学前教育结束后,一定要从工作的角度,班集体建设的角度对整个活动计划,活动过程,全班同学的参与度,积极性等方面进行总结,总结做到三全:一,全过程总结,如目标制定,活动情况,结果分析等。二,全班参与检查

总结,组对总结,个人总结。三,全班总结,总结活动对学生身心,思想等方面的影响。 三、操作策略简介 1.精心设计班主任的第一次亮相。班主任在新生面前的第一次形象犹为重要,关系到学生在心理上是否愿意认同你,接受你,因此,班主任从外表方面,穿着要得体大方,举止端庄,谈吐文明,以平等、谦和、真诚的心态出现在学生面前。如:初一新生报名,我一般会比报名时间早到一小时,当新生出现时,我会主动到教室门口迎接,并亲切地向他们问好,对陆续到来的学生,我会与他们交谈,问他们的姓名,家庭住址,来自哪一个小学,对新学校的印象如何,并从中物色一些孩子,安排他们做一些工作,如:打扫教室、摆放桌椅、帮助我接待后来的学生,这样便能及早打破新生的陌生感,形成一种融洽的氛围。 2.根据学前教育的目标,营造积极向上的学前教育氛围,比如:xx届9班的学前教育,我为本班取名为“阳光之旅”,我在前面的黑板画了一幅画:绿树丛中一条大路,并写下了“希望之路,阳光之旅”八个大字,在画的旁边写了一段话:孩子们,欢迎你加入阳光之旅,预祝你们旅途愉快而充实!在后面的黑板绘了一座险峰,还配了一句诗:无限风光在险峰。学生一进教室就能感受到新集体的温馨,如家庭般的温暖,暗示学生在学习生活中无论有多大的困难,我们都要以阳光的心态去克服它并战胜它。

ProE模具设计教程[1]

ProE模具设计教程 ——裙边面分模方法实例(WildFire版本) 作者:TomLee 本教程将详细讲解在Pro/E中创建标准模具装配的流程,裙边面的创建方法已经常用的技巧,本教程将只讨论正常的使用分型面进行体积块拆分的分模方法,对于各种各样的“暴力”分模方法不加以讨论。 MFG的创建 创建工作目录 新建一个工作目录,因为在分模过程中会产生一系列的文件: ? MOLDNAME.MFG------------------模具设计制造文件 ? MOLDNAME.ASM------------------模具组件 ? FILENAME_WRK.PRT----------------------工件 ? MOLDNAME_REF.PRT------------参考零件 ? FILENAME.PRT---------------------设计零件 ? MOLDNAME.ACC------------------相关零件精度报表(零件间精度不同是产生) 新建模具文件 选择制造“Manufacturing”——模具型腔“Mold Cavity”(铸造型腔“Cast Cavity”界面和方法都跟模具型腔基本相同,只多一个沙芯的功能。)

进入模具界面,现在增加了工具条基本可以完成分模的动作,同时也保留有老的菜单在右侧。不过被PTC干掉是迟早的事情,哈哈! 加入参考模型 不要直接装入零件开始模具设计,因为还需要添加一些零件上不需要的模具特征。选择 模具的装配方法 ?模具模型(Mold Mold)——装配(Assemble)——参考模型(Ref Mold),这样跟组件装配零件的界面和方法相同 ?模具模型(Mold Mold)——定位参照零件(Locate RefPart),这样会有专门的布局窗口提供我们进行更多的设置。也可以 点击图标

员工自我批评总结范文3篇

员工自我批评总结范文3篇 批评与自我批评常态化制度化具有十分丰富的哲学内涵。批评就是主体对客体的属性、本质在科学把握的基础上,将自身需要的内在价值尺度运用于客体,对客体的精神生活、物质生活、社会生活做出符合客观实际的价值评价。本文是小编为大家整理的员工自我批评总结范文,仅供参考。 员工自我批评总结范文一: 一、存在的突出问题 1、工作作风不扎实。一是文字材料不够严谨。这是目前最突出的问题,我所从事的工作主要是文字工作,需要一丝不苟、严肃谨慎、精益求精的态度,但由于自己工作经验不足、大大咧咧的性格以及工作杂事多的原因,所写材料常常有低级错误,领导也多次提出批评。二是有应付过关的思想。***公司发展越来越壮大,反映在办公室中的直接表现就是文件"爆满",比如去年全年收文才件,今年半年收文都已突件,有些文件甚至都装不下,其他需要做的工作更是陡然增加,特别今年又开展群教活动,有时候感觉应接不暇,因此一些自认为不重要的工作往往应付了事,在晚上、周末加班时还有抱怨情绪,没有时刻高标准要求自己;三是工作经验不足。办公室工作千头万绪、纷繁复杂,由于自己工作经验不足,有时候会有急躁情绪,有些事情处理的不够细致,甚至还会迁怒他人。 2、学习主动性不够。常常觉得自己寒窗苦读十二年,拿到了硕士文凭,找到了工作了,就放松了学习。以前读书的时候,一年可以看几十本书,现在一年几本书都看不完,现在工作后,公司为员工订阅了大量报刊杂志,有时工作不忙的时候也不愿意去看,经济学、政治学以及党政知识方面学习不够,作为受过专业训练的研究生,两年来竟然没有在专业期刊上发表论文,这与领导的要求相差甚远。 3、有消极懒惰的心理。工作上,习惯按部就班,听从领导安排多,主动担当少,有时候今天能做完的工作非要拖到第二天。工作进取心不够,跟一些朋友聊天时,常跟别人说:在机关、国企工作,成功需要三分靠学历,七分靠能力,其他九十分靠关系,也经常会有"寒门难出贵子"的消极思想,有时候会对"学好数理化,不如有个好爸爸"、"知识不是力量,编制才是份量"这样的话没有进行思想抵触,这些庸俗的观点会滋长自

幼儿园班主任经验交流材料四篇

幼儿园班主任经验交流材料四篇 幼儿园班主任经验交流材料四篇今天,作为幼儿园班主任老师站在这里与大家进行交流学习,我感到非常的开心,但我深深地知道当一名幼儿教师必须有超人的耐心和博大的胸怀。我是这样想的,也是这样做的。为此,我身感自己在班中的重任。但是,与在座的各位班主任来说,我要向你们学习的地方很多。今天只能是浅谈我的班主任工作中对班级工作的认识和看法。 一、班级教师密切配合,共同促进幼儿健康和谐发展。一个班级就是一个团体,搞好班上老师的团结是非常重要的,只有大家团结协作,各项工作才能得到顺利开展,但要注意与人相处的艺术性。作为班主任,我与班里老师团结合作,我经常给我班里的老师说,既然选择了教育,就要爱孩子,要善于观察孩子各种情况,及时处理,对待孩子,

就像对自己的孩子一样。首先我坚持做到以身作则、勤勤恳恳,做好并检查班级的各项晨检记录、消毒记录工作。如实传达园领导布置的任务和领悟的精神,我班配班老师也能积极的完成任务。 二、重视良好行为习惯培养,形成良好的班风俗话说“榜样的力量是无穷的”,特别对正处在成长期的幼儿,教师的表率作用对他们具有至关重要的意义,家长常常会在家里或幼儿园里听到孩子们说:“我们老师就是这样做的。”或者“老师教我们这样做的。”可见,幼儿观察是何等的细致。这些都对我提出了更高的要求,作为班主任,我在平时一定处处做到模仿带头作用,做好老师的榜样,平时注意自己的言行,做到以园为家,全身投入工作中。讲培养幼儿好习惯故事、儿歌、游戏等形式,强化幼儿的活动常规,加强生活能力的培养,如:整理书包、管理好自己的物品、准时入园、早睡早起、关心别人、节约用水、讲卫生等。幼儿有了良好

PROE模具设计实例教程

7
模具體積塊 與 元件

7-1 7-2 7-3 7-4 模具體積塊 建立體積塊-分割 建立體積塊-聚合 模具元件


7-1 模具體積塊
在分模面完成之後,接下來的工作是準備將工件一分為二。利用分 模 面 可 將 模 具 組 合 中 的 工 件 ( Workpiece ) 分 割 成 兩 塊 , 即 公 模 (Core)和母模(Cavity)。一般而言,利用 Split(分割)的方式來建 立模具體積塊是較為快速的方法,但是在使用分割時卻有一個先決條 件,那就是先前所建立的分模面必須是正確且完整的,否則將會造成分 割的失敗。 此 外 , Pro/E 同 時 也 提 供 了 手 動 的 方 式 來 建 立 模 具 體 積 塊 , 即 Create(建立)。Create(建立)方式主要有兩種,分別是 Gather(聚 合)及 Sketch(草繪)。Gather(聚合)指令是藉由定義曲面邊界及封 閉範圍來產生體積,而 Sketch(草繪)則是透過一些實體特徵的建構方 式來產生。利用手動的方式來建立模具體積塊並不需要事先建立好分模 面,因此,在使用上並不如分割那樣容易、快速,但是卻可以省下建立 分模面的時間。 模 具 體 積 塊 是 3D、 無 質 量 的 封 閉 曲 面 組 , 由 於 它 們 是 閉 合 的 曲 面 組,故在畫面上皆以洋紅色顯示。 建立模塊體積與元件的指令皆包含在 Mold Volume(模具體積塊) 選單中,選單結構如【圖 7-1】所示。
7-2

【圖7-1】
Mold Volume(模具體積塊)選單結構
Mold Volume(模具體積塊) 在 Mold Volume ( 模 具 體 積 塊 ) 選 單 中 有 十 個 指 令 , 分 別 為 Create( 建 立 ) 、 Modify( 修 改 ) 、 Redefine( 重 新 定 義 ) 、 Delete ( 刪 除 ) 、 Rename ( 重 新 命 名 ) 、 Blank ( 遮 蔽 ) 、 Unblank(撤銷遮 蔽)、Shade(著色) 、 Split(分 割) 以及 Attach(連接)。 Create(建立) 建立一個模具元件體積塊。在輸入體積塊名稱後便可進入模具體 積選單中,可利用 Gather(聚合)或是 Sketch(草繪)的方式 來建立模塊體積。使用 Gather(聚合)指令必須定義曲面邊界 及封閉範圍來產生體積,而 Sketch(草繪)則是透過一些實體
7-3

2020年学前教育经验交流材料

学前教育经验交流材料 一、学前教育的重要性 学前教育是为了使学生了解和适应中学阶段的学习生活,更好地完成初中阶段的学习任务,培养良好的道德品质和规范的行为习惯,全面提高学生的综合素质而开展的活动之一。二、开展学前教育应注意把握的原则 1.早准备,早着手,我每次开展的学前教育都是思考在期末,方案的形成在假期。 2.针对性强才能出实效。学前教育绝不简单地等同于收心教育,一定要根据学生上一学年存在的问题,发生的变化,面对新学年需要具备的生理,心理咨询上是否愿意认同你,接受你,因此,班主任从外表方面,穿着要得体大方,举止端庄,谈吐文明,以平等、谦和、真诚的心态出现在学生面前。如:初一新生报名,我一般会比报名时间早到一小时,当新生出现时,我会主动到教室门口迎接,并亲切地向他们问好,对陆续到来的学生,我会与他们交谈,问他们的姓名,家庭住址,哪一个小学,对新学校的印象如何,并从中物色一些孩子,安排他们做一些工作,如:打扫教室、摆放桌椅、帮助我接待后来的学生,这样便能及早打破新生的陌生感,形成一种融洽的氛围。

2.根据学前教育的目标,营造积极向上的学前教育氛围,比如:xx届9班的学前教育,我为本班取名为“阳光之旅”,我在前面的黑板画了一幅画:绿树丛中一条大路,并写下了“希望之路,阳光之旅”八个大字,在画的旁边写了一段话:孩子们,欢迎你加入阳光之旅,预祝你们旅途愉快而充实!在后面的黑板绘了一座险峰,还配了一句诗:无限风光在险峰。学生一进教室就能感受到新集体的温馨,如家庭般的温暖,暗示学生在学习生活中无论有多大的困难,我们都要以阳光的心态去克服它并战胜它。 3.开展学前教育的形式手段及内容 手段:问卷式,座谈式,交流式,讲座式(请家长,往届的学生)等。 内容:我针对初一的学前教育举列,初一的学前教育主要由我主持,一般分三步走:第一步确立本届班级的名称,引导学生正确认识初中学习生活,迈好初中生活第一步,不失时机地有目的地向学生全面介绍初中阶段的各种要求,引导帮助学生确立在初中阶段的学习规划,明确奋斗目标,顺利开始初中阶段的学习生活。第二步,班级文化的传承,由上一届学生代表把班徽,图书,班规传给本届学生代表,并介绍上几届班级的优良传统,然后教唱班歌,与

proe模具设计入门

第1讲Pro/ENGINEER Wildfire 模具设计基础 本讲要点 ?操作界面简介 ?模具设计的一般操作流程 ?Pro/ENGINEER软件的启动 Pro/ENGINEER作为一种最流行的三维设计软件,目前,越来越多的工程技术人员利用它进行产品与模具的设计和开发。本讲主要让读者了解Pro/ ENGINEER软件的模具设计模块和模具设计的一般操作过程。

2 Pro/E Wildfire 4中文版模具设计入门视频教程 1.1 模具设计基础应用示例 对如图1-1所示的零件进行分模、流道系统、冷却系统的设计,初步了解Pro/ENGINEER 模具设计的一般操作过程。 图1-1 示例零件 STEP 1 启动Pro/ENGINEER 选择【开始】/【所有程序】/【PTC】/【Pro ENGINEER】/【Pro ENGINEER】命令,如图1-2所示。启动Pro/ENGINEER软件,界面如图1-3所示。 图1-2 命令菜单 图1-3 启动的Pro/ENGINEER软件界面

3 第1讲 Pro/ENGINEER Wildfire 模具设计基础 → STEP 2 设置工件目录 选择主菜单上的【文件】/【设置工作目录】命令,如图1-4所示,弹出【选取工作目录】对话框,选择用户要保存文件的目录,如图1-5所示,完成后,单击【确定】按钮。 图1-4 选择【设置工作目录】命令 图1-5 【选取工作目录】对话框 → STEP 3 新建文件 单击工具栏上的【新建】按钮。 弹出【新建】对话框,设置选项如图1-6所示,完成后,单击【确定】按钮。 弹出【新文件选项】对话框,设置选项如图1-7所示。完成后,单击【确定】按钮,进入模具设计模块,如图1-8所示。 图1-6 【新建】对话框 图1-7 【新文件选项】对话框 → STEP 4 导入零件 在如图1-9所示的菜单管理器中选择【模具模型】/【装配】/【参照模型】命令。 系统弹出【打开】对话框,如图1-10所示,选择零件E1,再单击【打开】按钮。 系统弹出【装配】面板,如图1-11所示,选择如图1-12所示的零件坐标系PRT_ CSYS_DEF 和模具坐标系MOLD_DEF_CSYS 进行装配,完成后,单击【确定】按钮。

2020年自我工作检讨书范文大全

自我工作检讨书范文篇一 尊敬的领导你好: 通过这件事,我感到这虽然是一件偶然发生的事情,但同时也是长期以来对自己放松要求,工作做风涣散的必然结果,这种不良思潮的最直接表现就是自由散漫!在这件事中,我还感到,自己在工作责任心上仍就非常欠缺。 在自己的思想中,仍就存在得过且过,混日子的应付思想。现在,我深深感到,这是一个非常危险的倾向!如果放任自己继续放纵和发展,那么,后果是极其严重的,甚至都无法想象会发生怎样的工作失误。此外,我也看到了这件事的恶劣影响,如果在工作中,大家都像我一样自由散漫,漫不经心,那怎么能及时把工作落实好.做好呢。 我会以此次的检讨书作为一面镜子,时时检点自己,批评和教育自己,自觉接受监督。要知羞而警醒,知羞而奋进,亡羊补牢、化羞耻为动力,努力做到决不迟到,决不违反公司规章制度,决不做让领导失望的事,同时我也要通过这次事件,提高我的思想认识,强化我的时间观念。 今天,我怀着愧疚和懊悔给写下这份检讨书,表示我对迟到的不良行为,深刻认识改正错误的决心!同事之间本应该互相学习,互相促进,而我这种表现,给同事们开了一个不好的先例,不利于公司的作风建设,刘总是非常的关心我们,爱护我们,所以我今后要听刘总的话,充分领会理解刘总对我们的要求,并保证以后努力要求自己.通过这件事情我深刻的感受到刘总对我这种破坏部门制度的心情,使我心理感到非常的愧疚,感谢刘总对我的这次深刻的教育。 我真诚地接受批评,并愿意接受处理。对于这一切我还将进一步深入总结,深刻反省,我保证以后不再无故迟到,恳请刘总相信我能够记取教训、改正错误。 检讨人:XXX XXXX年XX月XX日 自我工作检讨书范文篇二 尊敬的单位领导: 您好,我怀着十分愧疚和遗憾的心情向您递交这份工作失职的1000字检讨书。关于我在电信机房的管理工作中,因我个人的大意疏忽,态度不端正工作的不到位,我没有能够细致地做完工程的所有检查工作,以至于让现场施工人员将0DB机架的位置安装错误。 首先关于这项大的错误,我要做出深刻地检讨,这是我工作以来的错误、是工作失职。如今的我已是一名电信机房管理员,身处这个岗位我就应该深深意识自己所处岗位的作用,一名电信机房管理员是

幼儿园办园经验交流汇报材料

幼儿园办园经验交流汇报材料 幼儿园办园经验交流汇报材料 县第三幼儿园经验材料汇报县第三幼儿园是我县第一所乡镇中心幼儿园,幼儿园占地总面积为5397平方米,其中建筑面积为2430平方米,绿化面积900平方米,总投资680万元。全园设施设备配套齐全,不仅有符合幼儿健康发展要求的活动室、午睡室、漱洗室;还有功能多样的大型玩具,孩子们最爱嬉戏玩耍的大沙池,充满童真童趣的园所文化墙,色彩斑斓的井盖绘画,以及先进、环保、卫生的厨房设施设。 我园于2014年10月份正式开园办学,目前有教职员工32人。开设六个教学班.在园幼儿为140名.覆盖了全乡十多个自然村。本着服务乡里,普惠乡民的政策,

我们的收费标准为每生每月100元。针对特别贫困的家庭我们还减免其学费,保障每一个适龄幼儿都可以按时入园。开园以来我们本着用心工作、爱心育人、真诚服务的宗旨,赢得了家长们以及社会各界人士的一致好评,下面我就我们幼儿园的办园理念及特色做一简要的总结汇报: 一、明确办园方向,确定办园特色,制定办园目标,了解办园理念。 建园伊始,为把我园办成管理规范、服务到位、质量提升、生员俱增、幼儿快乐、家长满意、社会赞誉的我县第一所农村幼儿园。我们全体教职员工全面贯彻落实党和国家的教育方针及有关教育的法律法规,以幼教“两个法规“和《幼儿园教育指导纲要》为依据,以《十二、五规划纲要》、《中长期规划纲要》为准绳,经过反复开会研究制定了符合我园发展实际的办园方向和办园目标。 我们的办园理念是:绿色,阳光,成长。绿色:蕴含着三幼的教育是激发幼儿与

自然、与社会的协同发展,和谐共进。阳光:寓意着三幼的教育是富有生气,充满阳光,生生不息。成长:是期待着三幼的师友共同成长,三幼的办学蒸蒸日上。 我们的办园目标是:培养阳光的孩子,锻造阳光的老师,打造阳光型的示范幼儿园。 我们的办园特色是:开展符合孩子身心发展特点的丰富多彩的区域活动,搞好家园共育,开设家长学校,邀请家长进园参与幼儿一日活动等一系列的主题活动,帮助家长了解幼儿教育,掌握一定的科学育儿的经验,从而家园合力,用爱养育,用心教育,共促孩子和谐发展。 二、安全工作规范到位安全是幼儿园教育永恒的话题,我园始终坚持以“安全第一,预防为主”的思想指导本园的工作。首先我们为幼儿提供了轻松愉快的安全环境。1、教室、寝室每日通风换气、保持干净,并闭窗消毒半小时;2、保证桌椅的安全、卫生;3、每周清洗、消毒玩具;4、

工作自我检讨书范文

篇一:经典工作失误检讨书范本 工作检讨书范本 尊敬的各位领导: 由于本人的工作失误,导致出现了…………错误,给单位集体和工作秩序带来了一定的不良影响,我对此十分的愧疚。现在,我郑重对自己的错误行为进行深刻反思,深度挖掘犯下此次错误的原因,认真检讨自身思想、行为和作风中存在的各项问题,向组织表明改过自新、努力进步的决心,确保以后绝不会再犯类似错误,以优异成绩回报组织的信任和各位领导的关怀帮助。 (一)出现错误的原因 在承担本单位工作时,我因为疏忽大意,导致出现了………错误。出现该错误的主要原因是我本人工作态度不够端正,业务素质不够优秀,责任心有待加强。虽然存在非财会专业出身、接触工作时间短等客观原因,但自己确实存在学习意识淡薄、缺乏进取精神,思想态度不够端正、责任心有待加强等问题,这才是出现此次错误的最主要原因。我深知作为财会人员,拥有过硬的业务本领和系统的专业知识十分重要,可是因为自身的懒惰,平时不注意系统学习和主动向老同志请教,导致进步较慢、工作较为吃力,现在想来十分的后悔。作为财会人员,理应高度认识到自身工作的重要性、努力恪尽职守、精益求精,工作中不能出现任何的瑕疵,可是自己以前思想觉悟不高、认识不够深刻、态度 - 1 - 不够端正,导致工作作风不够踏实深入,以至于疏忽大意出现了此次错误,辜负了领导和同事们的信任。 (三)整改措施 犯了此次错误,不仅给单位的正常工作带来了不良影响,更辜负了领导和同志们对自己的一片苦心。我现在十分的内疚,深感自责。错误已经铸就,除了自责忏悔,更重要的应是思考如何改正错误。我会努力反省、认真自查,深刻反思自身问题与不足,并积极思考如何努力提高、改进工作,保证不在犯下类似错误。一是认真自省自查,深刻反省自身错误。对自己思想上、作风上的错误根源进行深挖细找,并认清其可能造成的严重后果。结合各位领导同志对自己的批评指正深刻自省自查,真正给自己“洗洗澡、治治病”,切实找出自己的病患所在、症结所在,努力改正克服,主动进步提高。 二是加强学习进步,不断提高业务能力。作为非财会人员出身,自己能力不足、知识不够,要想做好本职工作,必须努力加强学习提高,不断充电加餐。一方面要努力钻研专业知识,主动加强系统学习,通过自主学习提高自身业务能力;另一方面要向老同志虚心学习,多问多学多看,主动向领导咨询、向老同志请教,加强沟通交流,找准自身位臵、尽快融入角色。 三是端正工作态度,虚心接受批评指正。要不断的提高思想 - 2 - 认知,端正工作态度,该进工作作风,切实改掉懒惰、散漫等坏毛病,克服不够专心、马虎大意等缺点。并在工作中认真开展批评和自我批评,主动接受各位领导和同志们的监督指导,正确认识善意的批评指正,努力培养爱岗敬业、尽忠职守的正确观念。 - 3 - 篇二:工作失职的自我检讨书 工作失职的自我检讨书一 尊敬的各位领导以及各位同事: 大家好! 本人xx年2月16日担任安徽省巨龙清洗有限公司总经理一职。几月来,我认真反思,深刻自剖,为自己的行为感到了深深地愧疚和不安,在此,我谨向各位领导同事做出深刻检讨,并将我几月以来的思想反思结果向各级领导、同事汇报如下: 自工作以来一直对自己放松要求,工作作风涣散的必然结果。经过最近的反思,我对自己这些月的工作成长经历进行了详细回忆和分析。记得刚上班的时候,我对自己的要求还是比较高的,时时处处也都能遵守相关规章制度,从而努力完成各项工作。但近几月来,由于工作

幼儿教师经验交流材料3篇

幼儿教师经验交流材料3篇 作为保育工作者,我们努力工作,默默无闻;作为幼儿园中的一员,我们勤于学习,不甘落后;作为同一教研组的同事,我们团结协作,共同进步。我们就是大盈幼儿园保育组全体成员们。 “团结就是力量!”一直以来,我们总是以“建立一支高素质、精业务、讲团结”的保育队伍严格要求着自己,以不为集体拖后腿、而尽所能添光彩,时刻鞭策着自己。我们始终相信:凭着自己执着的追求、凭着自己对事业的热爱、凭着自己的奉献精神,聚集每个人的亮点,一定能使集体发光,一定能为幼儿园添光增彩。 一、努力工作、默默无闻 “没有为师生服务的指导思想,就没有把工作看成事业的热诚,那是无论也做不好幼儿园保育工作的。” 每天,幼儿园中第一个来园的一定是我们的保育组成员,最后离园的也当数他们。教室整理、打扫、消毒、准备幼儿午餐、毛巾……看似简单的活在他们做来就有着诸多的要求,物品的“安全、合理” 放置;地面的卫生、湿性、科学打扫;消毒液的合理配制,幼儿菜谱的科学制定等都一一地渗透在其中。同时,我们还要求保育员每天在做好日常工作的同时,帮助老师一起做好班级幼儿的生活护理工作。在体弱儿的管理上,我们更是特别注意,同时也得到了老师和家长的一致认同。象这学期,幼儿园中来了一位特殊幼儿,大小便在身情况特别多,不能说每天吧,但起码每周总不止一次,我们的扬夫珍保育员总是在第一时间为孩子换上干净的衣裤,有一天一连6、7次,有时

还在刚刚午餐后,但是她总是毫无怨言的服务着……象这样的事在我们其他成员身上也时有发生。可是就是因为他们有着“一切为了孩子”的心,从没有把这种情况当作是自己工作内容的附加,而成了应该,默默地奉献着。 二、勤于学习、不甘落后 “学习对于任何人来说都是永无止境的,同时它也是没有年龄界限的”,在我们的保育组中你就可以得到证实。以往只拿着保育工具做事的他们现在拿起了笔,写起了工作计划、小结;张开嘴,说起了普通话;伸出了手,做起了纸工、画起了图画……这看似小小的举动,但对我们组的成员来说是一次业务能力的飞跃。 就如上学期,我们结合幼儿园园务计划中的人人都说普通话活动,开展“人人都来当一回主持”的教研活动,通过她们自己选择材料、阅读、谈谈感想、主持业务学习、建立个人业务联系体弱儿童等环节,既锻炼了成员之间口头交流的胆量和能力,也使他们的普通话基础整体有了明显的提高。 我们幼儿园90%的教师都参加了高一层次的学历进修,于是我们的保育组成员们也不甘落后参加了双休日大专班、中级保育员、中级厨师等方面的学习。同时我们还开展了“你进步,就要带着集体一起进步”的活动,不管是谁学到了好的知识、经验就毫无保留的教给其他人。我们根据幼儿园工作中“每学期要有一个新的奋斗目标”的要求开展的电脑初级知识学习、保育科研《培养幼儿良好的口腔卫生习惯》

ProE模具设计教程

第8章Pro/ENGINEER Wildfire 3.0 模具设计基础 学习目标: ☆掌握Pro/E模具设计模块的一般操作流程。 ☆掌握分型面创建的一般方法。 随着以Pro/ENGINEER为代表的CAD/CAM软件的飞速发展,计算机辅助设计与制造越来越广泛地应用到各行各业,设计人员可根据零件图及工艺要求,使用CAD模块对零件实体造型,然后利用模具设计模块,对零件进行模具设计。本章主要通过简单的实例操作说明用Pro/ENGINEER软件进行模具设计的一般操作流程,介绍分型面的基本创建方法。 8.1 模具设计的基本流程 利用Pro/E模具设计模块实现塑料模具设计的基本流程,如图8-1所示。 图8-1 Pro/E模具设计基本流程 8.2 模具设计的操作案例 [案例8-1]:用Pro/ENGINEER Wildfire 3.0完成图8-2所示零件的模具设计。 根据此零件的特点,可采用一模一件,并将分型面设在零件的底面,这样既满足分型面应设在零件截面最大的部位,又不影响零件的外观,且塑件包紧动模型芯而留在动模上,模具结构简单。

图8-2 案例8-1零件图(香皂盒上盖) 8.2.1 建立模具模型 步骤1 设置工作目录 启动Pro/ENGINEER Wildfire 3.0后,单击主菜单中【文件】→【设置工作目录】,系统弹出【选取工作目录】对话框。在工具栏上单击图标,弹出新建目录对话框。在【新建目录】编辑框中输入文件夹名称“ex8-1”,单击按钮。在【选取工作目录】对话框中单击按钮。 步骤2 建立参照模型 单击系统工具栏中按钮或单击主菜单中【文件】→【新建】,系统弹出【新建】对话框。在【类型】栏中选取【零件】选项,在【子类型】栏中选取【实体】选项,在【名称】编辑文本框中输入文件名ex8-1,同时取消【使用缺省模板】选项前面的勾选记号,单击按钮,系统弹出【新文件选项】对话框,选用【mmns_mfg_part 】模板;单击按钮,进入Pro/ENGINEER Wildfire 3.0零件设计模块。完成图8-2所示的零件模型的几何造型,保存名称为ex8-1.prt。 步骤3 建立模具模型 单击系统工具栏中按钮或单击主菜单中【文件】→【新建】,系统弹出【新建】对话框,如图8-3所示。在【类型】栏中选取【制造】选项,在【子类型】栏中选取【模具型腔】选项;在【名称】编辑文本框中输入文件名ex8-1,同时取消【使用缺省模板】选项前面的勾选记号,单击按钮。系统弹出【新文件选项】对话框,如图8-4所示,选用【mmns_mfg_mold】模板,单击按钮,进入Pro/ENGINEER Wildfire3.0模具设计模块,如图8-5所示。 注:未注拔模斜度均为1.5°材料:PP收缩率取6‰

因个人工作失误检讨书范文

因个人工作失误检讨书范文 工作失误在我们平常工作中也是很平常的事,大家刚刚工作的时候是不是也是犯了很多的错误呀。下面是由出guo为大家的“因个人工作失误检讨书范文”,仅供参考,欢迎大家阅读。 尊敬的领导: 您好! 首先怀着十分愧疚的心情,对xx领导表示真诚的歉意。对于20××年x月x日我施工单位一施工人员xx做管道刷油漆登高作业时没有按照规定佩戴安全带,对于安环部的处罚,我项目部及时把罚款已交。 针对目前我项目存在的一些安全质量问题,我进行了深刻反思和自我检讨,对此出现的问题我深深意识到自身对工程质量安全的认识没有到位,没有深入实践本工程“安全第一”的管理模式,没有切实履行好作为项目主要负责人对安全把控的义务,在管理过程中,思想松懈,心存侥幸。员工在具体施工中存在的问题进行分析:执行规章制度不坚决、不认真,施工现场管理混乱,工人安全意识不强等问题,对照自己在安全方面存在的问题进行了深入查找和分析,使自己深感自身的安全行为离“安全第一”的要求还有不少差距。安全第一的思想还没有牢固树立,安全责任意识淡薄。主动参加安全教育积极性不高,对事关安全问题不够敏感。对相关安全文件、通知通报、典型事故案例学习不到位,没有结合实际,细致的、有针对性的查找自

身存在的安全隐患。经过我的认真总结,主要是由于以下几个方面导致问题的发生: 片面追求工程进度,没有将施工安全与工程进度牢牢地结合起来,存在一定的侥幸心理,对施工安全管理工作不扎实,由麻痹大意的思想存在。 现场管控不到位。对施工的过程管理缺乏力度,采取措施不得力,未能长期深入一线,没能将现场工作规范化、标准化,没能严格的遵循规章制度、管理上存在一定的随意性,导致施工管理上的执行力下降,导致施工管理中一些容易出现的不良习惯开始冒头,对现场管理抓的不细、对规章制度执行不严。 对此,我在此向xx领导管理部门表示深深的歉意,因为我项目部工作上的失误而给工程带来了诸多隐患,我表示深深的自责,同时给我项目部的全体员工敲响了警钟。 我部将在以后的工作中引以为戒,狠抓现场管理,严谨工作作风,集中精力,务实工作,以高要求、严格标准来规范施工,对时光能够现场存在问题身体力行,时刻牢记肩负的安全责任。 此致 敬礼! 检讨人:xxx 20xx年x月x日 尊敬的领导: 您好!

学前教育经验交流材料(最新篇)

学前教育经验交流材料 学前教育经验交流材料 一、学前教育的重要性 学前教育是为了使学生了解和适应中学阶段的学习生活,更好地完成初中阶段的学习任务,培养良好的道德品质和规范的行为习惯,全面提高学生的综合素质而开展的活动之一。 二、开展学前教育应注意把握的原则 1.早准备,早着手,我每次开展的学前教育都是思考在期末,方案的形成在假期。 2.针对性强才能出实效。学前教育绝不简单地等同于收心教育,一定要根据学生上一学年存在的问题,发生的变化,面对新学年需要具备的生理,心理,思想状况的变化而准备,备课时都应围绕这几个方面精心准备。 3.要有层次性。初中三年的学习生活可大致分为三个大的阶段: 初一阶段,确立目标,热爱班集体,迈好中学学习的第一步。初二,防差转差,提出决不拖班级后退,决不让一位学生掉队。初三,创建优秀的班集体,人人争当合格的毕业生。 4 .做好形成性评价。学前教育既是常规工作,也是一次极好地开展德育主题活动的机会,学前教育结束后,一定要从工作的角度,班集体建设的角度对整个活动计划,活动过程,全班同学的参与度,积极性等方面进行总结,总结做到三全:

一,全过程总结,如目标制定,活动情况,结果分析等。二,全班参与检查总结,组对总结,个人总结。三,全班总结,总结活动对学生身心,思想等方面的影响。 三、操作策略简介 1.精心设计班主任的第一次亮相。班主任在新生面前的第一次形象犹为重要,关系到学生在心理上是否愿意认同你,接受你,因此,班主任从外表方面,穿着要得体大方,举止端庄,谈吐文明,以平等、谦和、真诚的心态出现在学生面前。如: 初一新生报名,我一般会比报名时间早到一小时,当新生出现时,我会主动到教室门口迎接,并亲切地向他们问好,对陆续到来的学生,我会与他们交谈,问他们的姓名,家庭住址,来自哪一个小学,对新学校的印象如何,并从中物色一些孩子,安排他们做一些工作,如: 打扫教室、摆放桌椅、帮助我接待后来的学生,这样便能及早打破新生的陌生感,形成一种融洽的氛围。 2.根据学前教育的目标,营造积极向上的学前教育氛围,比如: 201N届9班的学前教育,我为本班取名为“阳光之旅”,我在前面的黑板画了一幅画: 绿树丛中一条大路,并写下了“希望之路,阳光之旅”八个大字,在画的旁边写了一段话: 孩子们,欢迎你加入阳光之旅,预祝你们旅途愉快而充实!在后面的黑板绘了一座险峰,还配了一句诗:

个人工作书面检讨范文(最新篇)

个人工作书面检讨范文 个人工作书面检讨范文 不管什么理由,犯错了就该承认并改正。下面我为大家精心整理了个人工作书面检讨范文,希望能给你带来帮助。 个人工作书面检讨范文篇一: 尊敬的领导: 在近几天工作中,业务单总是出问题,深刻反思自己是因为一点事情扰乱了工作思绪没有认真投入工作当中,致使出现许多不应该出现的错误,我为自己的行为感到了深深地愧疚,在此,我谨向各位领导做出深刻检讨,并将我几天来的思想反思结果向领导汇报如下:这样的事情我已经发生了好多次了,都是也是长期以来对自己的放松造成的,经过几天的反思,我对自己工作成长经历进行了详细回忆和分析。记得刚上班的时候,我对自己的要求还是比较高的,时时处处也都能遵守相关规章制度,从而努力完成各项工作;从而放松了对自己的要求,认为自己已经做得很好了,便犯了许多不应该出现的错误。 在这件事中,认识到自己在工作责任心上仍有欠缺。众所周知,服务行业一定要有规范的行为准则,工作时间我却不认真下单,这充分说明,我从思想上没有把工作的方式方法重视起来,从而不能将自己的工作做得更好,也没给自己注入走上新台阶的思想动力。现在,我深深感到,这是一个非常危险的倾向,也是一个极其不好的苗头。 此外,我也看到了这件事的恶劣影响,如果在工作中,大家都像我一样自由散漫,漫不经心,那怎么能及时把工作落实好.做好呢。同

时,如果在我们这个集体中形成了这种无组织无纪律观念,不良风气不文明表现,我们工作的提高将无从谈起,服务也只是纸上谈兵。因此,这件事的后果是极其严重,影响极为恶劣。 我知道无论怎样都不足以弥补自己这次犯下的过错,但能够做到亡羊补牢,知错就改就是一个好员工,虚心接受领导的教导与批评,让自己在今后工作当中能够认识自己工作的重要性,同时,我希望领导再给我一次机会,使我可以通过自己的行动来表示自己的觉醒,以加倍努力的工作来为我单位的工作做出积极的贡献,请领导相信我! 检讨人: XXX 201X年XX月XX日 个人工作书面检讨范文 篇二: 尊敬的领导同志: 您好,我怀着无比愧疚和遗憾的心情向您递交这份工作失职的检讨书。关于在杭州下沙物美超市的综合楼建设项目的监督工作中,因我个人的疏忽,我没有能够充分地对工程全部材料的样本可实品做样品检查。没有认真核查账本,也没有在检查之后向您如实汇报。 我可以说是犯了一个最低级,最原则性的错误。我有罪啊,连这么基础的工作都没有做好,没有根据您的要求,把项目的进展情况着实地向了领导汇报。给公司造成了很大的负面影响,也导致了一些损失,同时也愧疚陈总对我的信任和关照。 但此次我通过自我反省,必须找出我工作失误的根本原因,我反思了一下。我犯错的根本原因在于,我自身这个马虎的性格,做事半

学前教育工作经验交流材料

多措并举扎实推进 不断开创学前教育工作新局面 ——山城区学前教育工作经验材料 尊敬的各位领导、同志们: 下面,我代表山城区教育局,就2011年我区学前教育发展推进工作及2012年工作打算做一简单汇报: 山城区地处鹤壁市老城区,曾作为市委、市政府驻地近40年,具有着扎实的教育基础和良好的教育传统。目前,山城区教育行政部门批准的学前教育机构33家,其中公办4家,民办机构29家,教职工480人,学前幼儿5100名。近年来,山城区坚持科学发展观,高度重视学前教育工作,充分发挥教育部门职能作用,积极采取多项措施,推进全区学前教育事业加快发展,取得显着成效,荣获2011年度“鹤壁市幼教优质课优秀组织单位”、“鹤壁市基础教育阶段民办教育先进集体”等荣誉称号。具体做法如下: 一、2011年学前教育工作回顾 一是加强领导。区政府成立了由主管副区长任组长的学前教育改革与发展领导小组,统筹协调全区学前教育工作;建立了由区教育、发改、财政、规划等部门参加的联席会议制度,定期研究解决学前教育改革与发展的重大问题。同时,在区教育局成立了学前教育改革与创新攻坚领导小组和学前教育办公室,具体负责全区学前教育的规划布局、教育教学、日常管理等工作,为推动学前教育的发展奠定了组织基础。 二是制定规划。按照全市的统一要求和安排,结合山城实际,制定了《山城区学前教育三年行动计划》,一方面,立足老区实际,利用棚户区改造政策,在新建和改造小区配套建设高标准幼儿园,采取形式多样、机制灵活的办园模式,宜公则公,宜私则私,宜助则助,宜补则补,突出公

益性和普惠性。另一方面,深挖潜力,充分利用现有教育资源改建附属幼儿园,使公办园占比逐年提高(三年分别达到20%、37%、44%),到2013年,学前一年毛入学率达到90%,学前三年毛入学率达到72%。同时,加大专任幼儿教师培训力度,使其50%达到幼教专科以上学历,10%达到本科以上,专业合格率达到95%以上,公办园园长本科学历达到50%以上。 三是稳步推进。按照我区与市政府签订的《学前教育三年行动计划目标责任书》要求,我们紧紧围绕今年“在每个乡镇至少建设1--2所标准较高的中心幼儿园”的目标,多方协调,多措筹资,强化措施、加快推进,积极探索学前教育发展的新路子并取得明显成效。截至目前,我区规划建设的福盛幼儿园、福祥幼儿园已建设完工,投入使用;石林镇好孩子幼儿园、小太阳幼儿园和鹿楼乡鹿楼中心幼儿园、故县中心幼儿园经改建提升,已具备较好的办园条件。 四是规范管理。一是把幼儿教师培训工作纳入中小学继续教育规划之中,2011年共培训园长45人,教师132人,评选省、市级骨干教师24人,通过培训和评选,全面提高了幼儿教师的整体素质。二是严把学前教育准入关,2011年共审批备案6所幼儿园,其中有好孩子幼儿园等两家农村幼儿园,同时依法取缔了教育质量低劣的非法民办幼儿园,净化民办幼儿园市场秩序,保障学前教育健康发展。三是成立学前教育评估考核小组,坚持每年对所有幼儿园进行年检和复查评估, 督导落实幼儿园教师的各项合法权益,督促各幼儿园与教师签订劳动合同并缴纳社会保险,保证教师的福利待遇,稳定教师队伍,不断推进幼儿园管理走向科学化、规范化、制度化的轨道。 二、2012年工作打算 2012年,是我区加快学前教育发展的攻坚年,也是事关三年行动计划如期完成的关键年。我区将把加快学前教育发展作为夯实教育基础、提升教育形象的重要工作,放在突出位置来抓,着重做好以下六方面工作:(一)加大投入。积极向上争取学前教育建设项目及资金,认真落实

ProE工程建设图创建模具设计教程

ProE工程图+模具设计 1、更换启动画面 教你换个起动画面,让你每天都有一个好心情: 打开PROE的安装目录:例D:\Program Files\proeWildfire 2.0\text\resource RESORCE里面的一个图片换了就可以了 2、工程图尺寸加公差 @++0.1@#@--0.1@# 亦可以ALT键+0177→“±” 3、选取环曲面(Loop Surf) 1.首先选取主曲面; 2.按下shift键,不要放开; 3.将鼠标移动至主曲面的边界上,此时鼠标右下方弹出“边:***”字样; 4.点击鼠标左键确认,放开shift键,OK! 相切链的选取(Tangent) 1.首先选取一段棱边; 2.按下shift键,不要放开; 3.将鼠标移动至与所选棱边相切的任一棱边上,此时鼠标右下方弹出“相切”字样; 4.点击鼠标左键确认,放开shift键,OK Copy 面时如果碎面太多,可以用Boundary选法:先选一个种子面再按shift+鼠标左键选边界

4、工程图标注修改:原数可改为任意数, 只要把@d改为@o后面加你要的数(字母O) 5、如下的倒圆角的方法,现与大家分享: 作图的步骤如下(wildfire版本): 1>在需要倒角的边上创建倒角参考终止点; 2>用做变倒角的方法,先做好变倒角,不要点"完成"; 3>击活"switch to transition" 4>单击"Transitions" 5>在已生成的成灰色的倒角上选取不需要的那部分倒角 6>在"Default (stop case 3 )"下拉菜单中选取"stop at reference" 7>在"stop references"选项栏中选取你创建的倒角终止点.结果如下图所示: 6、裝配模式下的小技巧,可能大家还不知道: 在裝配一個工件時,剛調進來時工件可能位置不好, 可以按CTRL+AlT+鼠標右鍵-----平移; 可以按CTRL+AlT+鼠標中鍵-----旋轉;

相关文档
最新文档