24.1.4 圆周角同步练习(含答案)

24.1.4 圆周角同步练习(含答案)
24.1.4 圆周角同步练习(含答案)

24.1.4 圆周角同步练习

一、选择题

1.下列说法正确的是( ) A .相等的圆周角所对的弧相等 B .直径所对的角是直角 C .顶点在圆上的角叫圆周角

D .如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形

2.如图1,量角器外缘上有A 、B 两点,它们的读数分别为70°,0

30,则∠1的度数应为( ) A .15°

B .20°

C .35°

D .40°

图1 图2 图3

3.正三角形ABC 内接于圆0,动点P 在圆周上运动,且不与A ,B ,C 重合,则∠BPC 等于( ) A .60o

B .120

o

C .60o

或120° D .不确定

4.(2008年湖州市)如图2,已知圆心角78BOC ∠=

,则圆周角BAC ∠的度数是( )

A .156

B .78

C .39

D .12

5.(2009年南充)如图3,AB 是O ⊙的直径,点C 、D 在O ⊙上,

110BOC ∠=°,AD OC ∥,则AOD ∠=( ) A .70° B .60° C .50° D .40°

二、填空题

6.如图4所示,AB 是半圆O 的直径,C ,D 是半圆上两点,∠BAC=20°, AD CD

=,则∠BAD 的度数是_______________.

7. 如图5,正方形ABCD 内接于⊙O ,点E 在劣弧AD 上,则∠BEC 等于

图4 图5 图6

8.如图6, 已知,如图:AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,

∠BAC=450。给出以下五个结论:①∠EBC=22.50,;②BD=DC;③AE=2EC;④劣

?

AE是劣弧

?

DE的2倍;⑤AE=BC其中正确结论的序号是。;

三、解答题

9.如图,在ABC

△中,90

ACB=

∠,D是AB的中点,以DC为直径的⊙O交ABC

△的边于G F E

,,点.

求证:(1)F是BC的中点;(2)A GEF

=

∠∠.

10.(2008年沈阳市)如图,在ABC

△中,90

ACB=

∠,D是AB的中点,以DC为直径的⊙O交ABC

△的边于G F E

,,点.

求证:(1)F是BC的中点;(2)A GEF

=

∠∠.

△内接于⊙O,点P是劣弧⌒BC上的一点(端点除外),延长BP至D,11.已知:如图等边ABC

,连结CD.

使BD AP

△是什么三角形?并说明理由.(1)若AP过圆心O,如图①,请你判断PDC

△又是什么三角形?为什么?

(2)若AP不过圆心O,如图②,PDC

参考答案

一、选择题

1.D 2.B

3.C 4.C 5. D

二、填空题

6.55° 7.45° 8.①②④

三、解答题

9.(1)连结DF ,

90ACB = ∠,D 是AB 的中点

1

2

BD DC AB ∴==

DC 是⊙O 的直径,DF BC ∴⊥ BF FC ∴=,即F 是BC 的中点.

(2)D F ,分别是AB BC ,的中点, DF AC ∴∥

A BDF ∴=∠∠,BDF GEF ∴=∠∠,A GEF ∴=∠∠

10. (1)OD AB ⊥ , AD DB

∴= 11

522622

DEB AOD ∴∠=

∠=?= (2)OD AB ⊥ ,AC BC ∴=,AOC △为直角三角形,

3OC = ,5OA =,

由勾股定理可得4AC ==

28AB AC ∴==

11.答:(1)PDC △为等边三角形.

理由:ABC ∵△为等边三角形,AC BC =∴,又∵在⊙O 中PAC DBC ∠=∠ 又AP BD =∵,APC BDC ∴△≌△.PC DC =∴ 又AP ∵过圆心O ,AB AC =,60BAC ∠=° 1

302

BAP PAC BAC ∠=∠=∠=∴°

A

B

C

D

E

F

G

O

∠=∠=°

30

PBC PAC

∴°,30

BAP BCP

∠=∠=

∴△为等边三角形.∴°°°,PDC

∠=∠+∠=+=

303060

CPD PBC BCP

(2)PDC

△仍为等边三角形

理由:先证APC BDC

△≌△(过程同上),

∠+∠=

∵°

BAP PAC

=

∴,60

PC DC

又BAP BCP

∠=∠

∵,PAC PBC

∠=∠

=

∴°,又PC DC

60

∠=∠+∠=∠+∠=

CPD BCP PBC BAP PAC

∴△为等边三角形.

PDC

华东师大版九年级数学下册 圆周角教案

《圆周角》教案 教学目标: 一.知识技能 1.理解圆周角概念,理解圆周用与圆心角的异同; 2.掌握圆周角的性质和直径所对圆周角的特征; 3.能灵活运用圆周角的性质解决问题; 4.使学生掌握圆内接四边形的概念,掌握圆内接四边形的性质定理; 5.使学生初步会运用圆的内接四边形的性质定理证明和计算一些问题. 教学重点: 1.圆周角与圆心角的关系,圆周角的性质和直径所对圆周角的特征. 2.圆内接四边形的性质定理. 教学难点: 1.发现并证明圆周角定理. 2.理解“内对角”这一重点词语的意思. 教学过程: 一.创设情景 如图是一个圆柱形的海洋馆,在这个海洋馆里,人们可以通过其中的圆弧形玻璃窗⌒ AB观看窗内的海洋动物.大家请看海洋馆的横截面的示意图,想想看:同学甲站在圆心O的位置,同学乙站在正对着下班窗的靠墙的位置C,他们的视角(∠AOB和∠ACB)有什么关系?如果同学丙、丁分别站在其他靠墙的位置D和E,他们的视角(∠ADB和∠AEB)和同学乙的视角相同吗? 二.认识圆周角. 1.观察∠ACB、∠ADB、∠AEB,这样的角有什么特点? 2.给出定义,顶点在圆上,并且两边都与圆相交的角叫做圆周角.(注意两点:1.角的顶点在圆上;2.角的两边都与圆相交,二者缺一不可.) 3.辩一辩,图中的∠CDE是圆周角吗?引导学生识别,加深对圆周角的了解.

4.圆周角与圆心角的联系和区别是什么? 三.探究圆周角的性质. 1.如图所示图中,∠AOB=180°,则∠C等于多少度呢?从中你发现了什么?(推论2:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.可用圆周角定理说明.) B 如图,AB为⊙O的直径,弦CD交AB于点P,∠ACD=60°,∠ADC=70°,求∠APC的度数. 解:连接BC,则∠ACB=90°, ∠DCB=∠ACB-∠ACD=90°-60°=30°. 又∵∠BAD=∠DCB=30°,∴∠APC=∠BAD+∠ADC=30°+70°=100°. 2.在下图中,同弧⌒ AB所对的圆周角有哪几个?观察并测量这几个角,你有什么发现?大胆说出你的猜想.同弧⌒ AB所对的圆心角是哪个角?观察并测量这个角,比较同弧所对的圆周角你有什么发现呢?大胆说出你的猜出想. 3.由学生总结发现规律:同弧所对的圆周角的度数没有变化,并且它的度数恰好等于这条弧所对的圆心角的度数的一半,教师再利用几何画板从动态的角度进行演示,验证学生的发现. 四.证明圆周角定理及推论. 1.问题:在圆上任取一个圆周角,观察圆心角顶点与圆周角的位置关系有几种情况? 2.学生自己画出同一条弧的圆心角和圆周角,将他们画的图归纳起来,共有三种情况:①圆心在圆周角的一边上;②圆心在圆周角的内部;③圆心在圆周角的外部.如下图

圆周角练习题

圆周角练习题 (一)选择 1.圆周角是24°,则它所对的弧是 [ ] A.12°;B.24°;C.36°;D.48°. 2.在⊙O中,∠AOB=84°,则弦AB所对的圆周角是 [ ] A.42°;B.138°;C.84°;D.42°或138°. 3.如图7-45,圆内接四边形ABCD的对角线AC,BD把四边形的四个角分成八个角,这八个角中相等的角的对数至少有 [ ] A.1对;B.2对;C.3对;D.4对. 4.如图7-46,AC是⊙O的直径,AB,CD是⊙O的两条弦,且AB∥CD.如果∠BAC=32°,则∠AOD= [ ]

A.16°;B.32°;C.48°;D.64°. (二)计算 角形外接圆半径长及各锐角的正切值. 6.如图7-47,AD是△ABC外接圆的直径,AD=6cm,∠DAC=∠ABC.求AC 的长. 7.已知:△DBC和等边△ABC都内接于⊙O,BC=a,∠BCD=75°(见图7-48).求BD的长. 8.如图7-49,半圆的直径AB=13cm,C是半圆上一点,CD⊥AB于D,并且CD=6cm.求AD的长.

9.如图7-50,圆内接△ABC的外角∠MAB的平分线交圆于E,EC=8cm.求BE的长. 10.已知:如图7-51,AD平分∠BAC,DE∥AC,且AB=a.求DE的长. 11.如图7-52,在⊙O中,F,G是直径AB上的两点,C, ∠CFA=∠DFB,∠DGA=∠EGB.求∠FDG的大小. 12.如图7-53,⊙O的内接正方形ABCD边长为1,P为圆周上与A,B,C,D不重合的任意点.求PA2+PB2+PC2+PD2的值.

人教版九年级数学上册教案《圆周角》

《圆周角》 《圆周角》这节内容是在学生学习了圆心角、弧、弦之间关系的基础上的延续,圆周角 定理在圆的有关证明、作图、计算中应用十分广泛。本节内容既可以巩固圆心角与弧、弦之间的关系,又为后面研究圆与其它几何图形的关系提供了条件。 圆周角定理及其推论是本章的重点内容之一,圆周角定理的分情况证明是本章的教学难点。教材一开始先给出圆周角的概念,紧接着安排了一个探究活动,从介绍圆周角概念的图形出发,让学生探究同弧所对的圆周角和圆心角的数量关系,然后分三种情况证明定理。通过对圆周角定理的探讨,达到培养学生严谨的思维品质的目的。同时,还可以让学生掌握从特殊到一般以及分类讨论的思维方法。 圆内接四边形的四个内角都是圆周角,利用圆周角定理可以把圆的内接四边形的四个内角和相应的圆心角联系起来,得到圆内接四边形的性质,圆内接四边形的性质在圆中探索相关角相等或互补时常常用到。 【知识与能力目标】

1、理解圆周角的概念; 2、掌握圆周角定理及其推论; 3、能运用圆周角定理及其推论进行简单计算和证明; 4、掌握圆内接四边形的相关概念以及圆内接四边形的性质定理。 【过程与方法目标】 在探索圆周角和圆心角的关系的过程中,让学生学会运用分类讨论的数学思想、转化的数学思想来解决问题。 【情感态度价值观目标】 在探索圆周角定理过程中,帮助学生树立运动变化和对立统一的辩证唯物主义观点,增强学好数学的信心。 【教学重点】 圆周角定理及其推论。 【教学难点】 圆周角定理证明方法的探讨。 多媒体课件、教具等。 一、创设情境,引入新课 问题1 在圆中,满足什么条件的角是圆心角? 顶点在圆心的角叫做圆心角。 问题2 在同圆或等圆中,弧、弦、圆心角之间有什么关系? 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等; 在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦也相等; 在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等。 问题3 足球训练场上教练在球门前划了一个圆圈,进行无人防守的射门训练。如图,甲、乙两名运动员分别在C、D两地,他们争论不休,都说自己所在位置对球门AB的张角大。如果请你来评判,你知道他们的位置对球门AB的张角大小吗?

最新圆心角圆周角练习题

知识点三:弧、弦、圆心角与圆周角 1、圆心角定义:顶点在的角叫做圆心角 2. 在同圆或等圆中,弧、弦、圆心角之间的关系: 两个圆心角相等圆心角所对的弧(都是优弧或都是劣弧)相等圆心角所对的弦相等3、一个角是圆周角必须满足两个条件: (1)角的顶点在________;(2)角的两边都是与圆有除顶点外的交点。 4. 同一条弧所对的圆周角有__________个 5.圆周角定理: 1 = 2 圆周角圆心角 6.圆周角定理推论: (1)同弧或等弧所对的圆周角相等 (2)半圆或直径所对的圆周角相等 (3)90°的圆周角所对的弦是直径。 注意:“同弧或等弧”改为“同弦或等弦”结论就不一定成立了,因为一条弦所对的圆周角有两类,它们是相等或互补关系。 7. 圆内接四边形: 定义:如果一个多边形的所有顶点都在圆上,这个多边形叫做,这个圆叫做。 性质:圆内接四边形的对角

夯实基础 1.如果两个圆心角相等,那么( ) A .这两个圆心角所对的弦相等; B .这两个圆心角所对的弧相等 C .这两个圆心角所对的弦的弦心距相等; D .以上说法都不对 2.下列语句中不正确的有( ) ①相等的圆心角所对的弧相等 ②平分弦的直径垂直于弦 ③圆是轴对称图形,任何一条直径所在直线都是它的对称轴 ④长度相等的两条弧是等弧 A.3个 B.2个 C.1个 D.以上都不对 3. 在同圆或等圆中,下列说法错误的是( ) A .相等弦所对的弧相等 B .相等弦所对的圆心角相等 C .相等圆心角所对的弧相等 D .相等圆心角所对的弦相等 4、如图,在⊙O 中,AB AC ,∠B =70°,则∠A 等于 . 5、如图,在⊙O 中,若C 是BD 的中点,则图中与∠BAC 相等的角有( ) A.1个 B.2 个 C.3个 D.4个 6、如图,若AB 是⊙O 的直径,AB=10cm ,∠CAB=30°,则BC= cm . 7、如图,已知OA ,OB 均为⊙O 上一点,若∠AOB=80°,则∠ACB=( )

最新《圆周角》典型例题

《圆周角》典型例题 第一部分 题一: 题面:如图,A、B、C、D是⊙O上的四点.找出图中相等的圆周角. 题一: 题面:已知:如图,AB,BC,AC是⊙O的三条弦,∠OBC=50°,则 ∠A=() A.25° B.40° C.80° D.100° 题二: 题面:如图,若AB为⊙O的直径,CD是⊙O的弦,∠ABD=55o,则∠BCD的度数为() A、35o B、45o C、55o D、75o 题一: 答案:∠BAC=∠BDC,∠ABD=∠ACD. 详解:根据圆周角的性质判断,相等的圆周角为∠BAC=∠BDC,∠ABD=∠ACD 题一: 答案:B 详解:因为∠OBC=50°,所以∠OCB=50°,可求∠BOC=80°,则∠A=40°. 题二: 答案:A

详解:连接AD,AB为⊙O的直径,∴∠ADB=90°,∵∠ABD=55o,∴∠BAD=35o,∴∠BCD=35o. 第二部分 例1 题面:顶点在__ _,并且两边_____________的角叫做圆周角. 金题精讲 题一: 题面:如图,∠AOB是⊙O的圆心角,∠AOB=80°,则弧 AB所对圆周角∠ACB的度数是( ) A.30°B.40°C.50°D.80° 题二: 题面:如图,已知∠OCB=20°,则∠A= 度 例1 答案:顶点在圆上、两边分别和圆相交. 详解:注意两点:①顶点在圆上,②两边分别和圆相交. 金题精讲 题一: 答案:B. 详解:根据一条弧所对的圆周角等于它所对的圆心角的一半,所以由∠AOB=80°

得∠ACB=40°. 题二: 答案:70. 详解:因为∠OCB=20°,所以∠OBC=20°,可求∠BOC=140°,则∠A=70°. (六)化学工业有毒有害作业工种范围表

最新浙教版九年级数学上册《圆周角1》教学设计(精品教案).docx

3.5圆周角 教学目标: 1.经历探索圆周角定理的另一个推论的过程. 2.掌握圆周角定理的推论”在同圆或等圆中,同弧或等弧所对的 圆周角相等,相等的圆周角所对的弧也相等” 3.会运用上述圆周角定理的推论解决简单几何问题. 重点: 圆周角定理的推论”在同圆或等圆中,同弧或等弧所对的圆周角相等,相等的圆周角所对的弧也相等” 难点:例3涉及圆内角与圆外角与圆周角的关系,思路较难形成,表述也有一定的困难 例4的辅助线的添法. 教学过程: 一、旧知回放: 1、圆周角定义: 顶点在圆上,并且两边都和圆相交的角叫圆周角. 特征:①角的顶点在圆上. ②角的两边都与圆相交. 2、圆心角与所对的弧的关系 3、圆周角与所对的弧的关系 4、同弧所对的圆心角与圆周角的关系 圆周角定理: 一条弧所对的圆周角等于它所对的圆心角的一半.

二. 课前测验 1.100o的弧所对的圆心角等于_______,所对的圆周角等于_______。 2、一弦分圆周角成两部分,其中一部分是另一部分的4倍,则这弦所对的圆周角度数为________________。 3、如图,在⊙O 中,∠BAC=32o,则∠BOC=________。 4、如图,⊙O 中,∠ACB = 130o,则∠AOB=______。 5、下列命题中是真命题的是( ) (A )顶点在圆周上的角叫做圆周角。 (B )60o的圆周角所对的弧的度数是30o (C )一弧所对的圆周角等于它所对的圆心角。 (D )120o的弧所对的圆周角是60o 三, 问题讨论 问题1、如图1,在⊙O 中,∠B,∠D,∠E 的大小有什么关系?为什么? 问题2、如图2,AB 是⊙O 的直径,C 是⊙O 上任一点,你能确定∠BAC 的度数吗? 问题3、如图3,圆周角∠BAC =90o,弦BC 经过圆心O 吗?为什么? A O C B A O C ● O B A C D E ● O B C A 图3

九年级数学圆周角定理

圆周角定理及其运用 1、如图,抛物线过点A(2,0)、B(6,0)、C(1,3),平行于x轴的直线CD交抛物线于C、D,以AB为直径的圆交直线CD于点E、F,则CE+FD的值是。 2、如图,AB为⊙O的直径,点C为半圆上一点,AD平分∠CAB交⊙O于点D。 (1)求证:OD∥AC;(2)若AC=8,AB=10,求AD。 知识点一圆周角定理及其推论 【知识梳理】 1、圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。 (1)定理有三个方面的意义:A、圆心角和圆周角在同圆或等圆中;B、它们对着同一条弧或所对的弧是等弧; C、具备A、B两个条件的圆周角都是相等的,且等于圆心角的一半。 (2)因为圆心角的度数与它所对的弧的度数相等,所以圆周角的度数等于它所对的弧的度数的一半。

(3)定理中的“同弧或等弧”改为“同弦或等弦”结论就不成立。因为一条弦所对的弧有两段。 2、圆周角定理的推论: 推论①:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧。 推论②:半圆或直径所对的圆周角是直角;圆周角是直角(90°的圆周角)所对的弧是半圆,所对的弦是直径。 推论③:若三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。 【例题精讲一】 例1.1、如图,已知A (32 ,0)、B (0,2),点P 为△AOB 外接圆上的一点,且∠AOP =45°,则P 点坐标 为 。 (第1题) (第2题) 2、如图,点A 、B 、C 在⊙O 上,∠A =36°,∠C =28°,则∠B =( ) A .46° B .72° C .64° D .36° 3、如图,A 、B 、C 、D 四个点均在⊙O 上,∠AOD =70°,AO ∥DC ,则∠B 的度数为 。 (第3 题) (第4 题) 4、如图,∠A 是⊙O 的圆周角,则∠A +∠OCB = 。 O E D A B C O A B C C B A O

九年级数学圆弧、弦、圆心角间的关系圆周角定理及其推论精选例题和练习..

圆周角定理及其推论 一、知识点总结 1.圆心角:顶点在圆心的角. 注意:圆心角的底数等于它所对弧的度数. 2.在同圆或等圆中,圆心角、弧、弦、弦心距中,只要有一组量相等,那么另外三组量也分别相等 考点一:圆心角,弧,弦的位置关系 二、弧、弦、圆心角、弦心距间的关系举例 例1 如图,AB 为⊙O 的弦,点C 、D 为弦AB 上两点,且OC=OD ,延长OC 、OD 分别交⊙O 于点E 、F ,试证明弧AE= 弧BF . 分析:“弧AE=弧BF”←“∠______=∠______” 把证弧相等转化为证________________. 证明: 例2 如图,点O 是∠BPD 的平分线上的一点,以O 为圆心的圆和角的两边分别 交于点A 、B 和C 、D . 求证:AB=CD . 分析:把证明弦相等转化为证明_弦心距_相等. 例3如图所示,已知AB 为⊙O 的直径,CD 是弦,且AB ⊥CD 于点E ,连接AC 、 OC 、BC . (1)求证:∠ACO=∠BCD . (2)若EB=8cm ,CD=24cm ,求⊙O 的直径. 分析: (1)∠ACO=∠______, 而∠______=∠______. (2)在Rt ⊿______中,利用勾股定理列方程求 例4 已知,如图,在⊿ABC 中,AD ,BD 分别平分∠BAC 和∠ABC ,延长AD 交⊿ABC 的外接圆于E ,连接BE .求证:BE=DE . 分析:把证BE=DE 转化为证∠____=∠____.

1.如图1,在⊙O中,P是弦AB的中点,CD是过点P的直径,则下列结论中不正确的是() 2.如图2,BE是半径为6的圆D的14圆周,C点是BE上的任意一点,△ABD 是等边三角形,则四边形ABCD的周长P的取值范围是() 2、已知AB^、CD^是同圆的两段弧,且AB^=2CD^,则弦AB与2CD之间的关系为() A、AB=2CD B、AB<2CD C、AB>2CD D、不能确定 4、下列语句中正确的是() A、相等的圆心角所对的弧相等 B、平分弦的直径垂直于弦 C、长度相等的两条弧是等弧 D、经过圆心的每一条直线都是圆的对称轴 5、在一扇形统计图中,有一扇形的圆心角为60°,则此扇形占整个圆的() 6、有下列说法:①等弧的长度相等;②直径是圆中最长的弦;③相等的圆心角对的弧相等;④圆中90°角所对的弦是直径;⑤同圆中等弦所对的圆周角相等.其中正确的有() 7、如图3,AB是⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°,给出下列五个结论:①∠EBC=22.5°;②BD=DC;③AE=2EC; ④劣弧AE是劣孤DE的2倍;⑤AE=BC.其中正确结论的序号是() 图1图2图3 8.如图所示,⊙O半径为2,弦,A为弧BD的中点,E为弦AC的中点,且在BD上,则四边形ABCD的面积为 9.如图,在⊙O中,AB是直径,CD是弦,AB⊥CD. (1)P是CAD^上一点(不与C、D重合),求证:∠CPD=∠COB; (2)点P′在劣弧CD上(不与C、D重合)时,∠CP′D与∠COB有什么数量关系?请证明你的结论.

垂径定理,圆周角定理练习题

C A P O D C E O A D B 九年级 垂径定理、弦、弧、圆心角、圆周角练习 一,填空题 1. 如图所示,OA 是圆O 的半径,弦CD ⊥OA 于点P ,已知OC=5,OP=3,则弦CD=____________________。 2.. 如图所示,在圆O 中,AB 、AC 为互相垂直且相等的两条弦,OD ⊥AB ,OE ⊥AC ,垂足分别为D 、E ,若AC=2cm ,则圆O 的半径为____________cm 。 3. 如图所示,AB 是圆O 的直径,弦CD ⊥AB ,E 为垂足,若AB=9,BE=1,则CD=_________________。 (2题图 ) ( 1题图 ) (3题图) 4. 如图所示,在△ABC 中,∠C =90°,AB =10,AC =8,以AC 为直径作圆与斜边交于点P ,则BP 的长为________________。 5. 如图所示,四边形ABCD 内接于圆O ,∠BCD=120°,则∠BOD=____________度。 6. 如图所示,圆O 的直径为10,弦AB 的长为6,M 是弦AB 上的一动点,则线段的OM 的长的取值范围是( ) (4题图) (5题图) (6题图) (9题图) 7. 若圆的一条弦把圆分成度数的比为1:3的两条弧,则劣弧所对的圆周角等于( ) 8. 如图所示,A 、B 、C 三点在圆O 上,∠AOC=100°,则∠ABC 等于( ) 9. △ABC 中,∠C=90°,AB=cm 4,BC=cm 2,以点A 为圆心,以cm 5.3长为半径画圆,则点C 在圆A___________,点B 在圆A_________; 10. 圆的半径等于cm 2,圆内一条弦长 23cm ,则弦的中点与弦所对弧的中点的距离等于_____________; 11. 在△ABC 中,∠C=90°,AC=BC=4cm ,D 是AB 边的中点,以点C 为圆心,4cm 为半径作圆。则A 、B 、C 、D 四点在圆内有_____________。

九年级数学上册 圆周角

1.定义:叫做圆周角。 练习:(1 )下列各图中,哪一个角是圆周角?( ) (2)图3中有几个圆周角?()(A)2个,(B)3个,(C)4个,(D)5个 (3)写出图4中的圆周角:________________________ 2.思考 猜想:圆周角的度数与什么有关系? 一条弧所对的圆周角等于它所对的圆心角的一半 定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半。 3.典型例题 例1、如图,点A、B、C在⊙O上,点D在圆外, CD、BD分别交⊙O于点E、F,比较∠BAC与∠BDC的大小,并说明理由。 例2:如图,OA、OB、OC都是圆O的半径,∠AOB = 2∠BOC. 求证:∠ACB = 2∠BAC. 4.巩固练习 1.如图6,已知∠ACB = 20o,则∠AOB = _____,∠OAB =. 2.如图,在⊙O中,弦AB、CD相交于点E,∠BAC=40°,∠AED=75°,求∠ABD的度数. 3.如图,AB是⊙O的直径,∠BOC=120°,CD⊥AB,则∠ABD=___________。 4.如图,△ABC的3个顶点都在⊙O上,∠BAC的平分线交BC于点D,交⊙O于点E,则与△ABD相似的三角形有______________________。 第1题第2题第3题第4题第5题图 5.如图,点A、B、C、D在⊙O上,∠ADC=∠BDC=60°.判断△ABC的形状,并说明理由. A B C D F O D A B C E 图3图4 B A C D B C A

F E O D C B A A B E C D O E O D C B A 1.直径所对的圆周角是 角,900的圆周角所对的弦是 。 2.典型例题 例1.AB 是☉O 直径,弦CD 与AB 相交于点E ,∠ACD=600,∠ADC=500,求∠CEB 的度数. 例2.如图AB 是⊙O 的直径,弦CD 与AB 相交于点E ,∠ACD=60°,∠ADC=50°,求∠CEB 的度数. 例3.在ΔABC 的3个顶点都在☉O 上,AD 是ΔABC 的高,AE 是☉O 的直径,求证:ΔABE ∽ΔACD 。 巩固练习 1.如左图,△ABC 的顶点都在⊙O 上,AD 是△ABC 的高,AE 是⊙O 的直径. △ABF 与△ACB 相似吗? 2. 如图, A 、B 、E 、C 四点都在⊙O 上,AD 是△ABC 的高,∠CAD=∠EAB,AE 是⊙O 的直径吗? 为什么? 3.如图,AB 、CD 是⊙O 的直径,弦CE ∥AB. 弧BD 与弧BE 相等吗?为什么? 第6题 第7题 4.如图,AB 是⊙O 的直径,AC 是⊙O 的弦,以OA 为直径的⊙D 与AC 相交于点E ,AC=10,求AE 的长. 5.如图,点A 、B 、C 、D 在圆上,AB=8,BC=6,AC=10,CD=4.求AD 的长. 6.如图,△ABC 的3个顶点都在⊙O 上,直径AD=4,∠ABC=∠DAC ,求AC 的长。 7.如图,AB 是⊙O 的直径,CD 是⊙O 的弦,AB=6, ∠DCB=30°,求弦BD 的长。 E O D C A 第3题 C D A B 第5题 A B C D O E 第4题

圆周角例题讲解

圆周角例题 第1课时圆周角定理及推论 教学内容 1.圆周角的概念. 2.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,?都等于这条弦所对的圆心角的一半. 推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径及其它们的应用. 教学目标 1.了解圆周角的概念. 2.理解圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,?都等于这条弧所对的圆心角的一半. 3.理解圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90?°的圆周角所对的弦是直径. 4.熟练掌握圆周角的定理及其推理的灵活运用. 设置情景,给出圆周角概念,探究这些圆周角与圆心角的关系,运用数学分类思想给予逻辑证明定理,得出推导,让学生活动证明定理推论的正确性,最后运用定理及其推导解决一些实际问题. 重难点、关键 1.重点:圆周角的定理、圆周角的定理的推导及运用它们解题. 2.难点:运用数学分类思想证明圆周角的定理. 3.关键:探究圆周角的定理的存在.

A https://www.360docs.net/doc/e91194099.html, 教学过程 一、复习引入 (学生活动)请同学们口答下面两个问题. 1.什么叫圆心角? 2.圆心角、弦、弧之间有什么内在联系呢? 老师点评:(1)我们把顶点在圆心的角叫圆心角. (2)在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,?那么它们所对的其余各组量都分别相等. 刚才讲的,顶点在圆心上的角,有一组等量的关系,如果顶点不在圆心上,它在其它的位置上?如在圆周上,是否还存在一些等量关系呢?这就是我们今天要探讨,要研究,要解决的问题. 二、探索新知 问题:如图所示的⊙O ,我们在射门游戏中,设E 、F 是球门,?设球员们只能在?EF 所在的⊙O 其它位置射门,如图所示的A 、B 、C 点.通过观察,我们可以发现像∠EAF 、∠EBF 、∠ECF 这样的角,它们的顶点在圆上,?并且两边都与圆相交的角叫做圆周角. 现在通过圆周角的概念和度量的方法回答下面的问题. 1.一个弧上所对的圆周角的个数有多少个? 2.同弧所对的圆周角的度数是否发生变化? 3.同弧上的圆周角与圆心角有什么关系? (学生分组讨论)提问二、三位同学代表发言. 老师点评: 1.一个弧上所对的圆周角的个数有无数多个.

圆周角练习题

圆周角 【知识要点】 1.圆周角的概念:顶点在圆上,两边和圆相交的角叫圆周角,两个条件缺一不可. 2.定理:一条弧所对的圆周角等于它所对弧所对的圆心角的一半. 推论:①同弧或等弧所对的圆周角相等,同圆或等圆中,相等的圆周角所对的弧也相等. ②半圆(或直径)所对的圆周角是一直角,? 90的圆周角所对的弦是直径. ③如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形. 圆周角的概念、定理及其推论在推理论证和计算中应用比较广泛,这是本章的重点内容.【经典例题】 例1.如图,AD为△ABC的外接圆O的直径,AE⊥BC于E,求证:∠BAD=∠EAC。 例2.已知:如图所示,ABC ?是⊙O的内接三角形,⊙O的直径BD交AC于E,AF⊥BD于F,延长AF交BC于G.求证:BC BG AB? = 2 此题不做 例3.如图,已知⊙O中,AB是直径,弧CB=弧CF,弦CD⊥AB于D,交BF于E,求证:BE=EC。 A ·O B D C G F 1 E

例4 如图所示,已知ABC ?为⊙O 的内接三角形,它的高AD 、BE 相交于点H ,延长AD 交⊙O 于G . 求证:HD=GD . A 一、填空题 1.圆周角有两个特征① ,② ,二者缺一不可. 2.若直角三角形的两条直角边的长分别为8cm 和6cm ,则这个直角三角形外接圆的直径为 . 3.一条弦将圆分成两条弧,其中一条弧是另一条弧的4倍,则此弦所对的圆心角的度数 是 ,所对的圆周角的度数是 。 4.ABC ?中,已知∠A=?55,O 是它的外心,则∠BOC= . 5.在ABC ?中,AB=AC ,以AB 为直径的圆交BC 、AC 于D 、E ,已知∠A=?50,则 BE 的度数= .DE 的度数= ,AE 的度数= . 6.已知3cm 长的一条弦所对的圆周角是?135,那么圆的直径是 . 7.如图1,在⊙O 中,∠A=?25,则=∠α 。 二、选择题 1.下列说法正确的是( ) A 、顶点在圆上的角是圆周角 B 、两边都和圆相交的角是圆周角 C 、圆周角的度数等于它所对弧的度数的一半 D 、圆心角是圆周角的2倍 图1 E G D · A B O C H

人教版九年级数学上册教案-24.1.4 圆周角2带教学反思

24.1.4 圆周角 第1课时圆周角定理及推论 教学内容 1.圆周角的概念. 2.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,?都等于这条弦所对的圆心角的一半. 推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径及其它们的应用. 教学目标 1.了解圆周角的概念. 2.理解圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,?都等于这条弧所对的圆心角的一半. 3.理解圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90?°的圆周角所对的弦是直径. 4.熟练掌握圆周角的定理及其推理的灵活运用. 设置情景,给出圆周角概念,探究这些圆周角与圆心角的关系,运用数学分类思想给予逻辑证明定理,得出推导,让学生活动证明定理推论的正确性,最后运用定理及其推导解决一些实际问题. 重难点、关键 1.重点:圆周角的定理、圆周角的定理的推导及运用它们解题. 2.难点:运用数学分类思想证明圆周角的定理. 3.关键:探究圆周角的定理的存在. 教学过程 一、复习引入 (学生活动)请同学们口答下面两个问题. 1.什么叫圆心角? 2.圆心角、弦、弧之间有什么内在联系呢? 老师点评:(1)我们把顶点在圆心的角叫圆心角. (2)在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,?那么它们

A https://www.360docs.net/doc/e91194099.html, 所对的其余各组量都分别相等. 刚才讲的,顶点在圆心上的角,有一组等量的关系,如果顶点不在圆心上,它在其它的位置上?如在圆周上,是否还存在一些等量关系呢?这就是我们今天要探讨,要研究,要解决的问题. 二、探索新知 问题:如图所示的⊙O ,我们在射门游戏中,设E 、F 是球门,?设球员们只能在EF 所在的⊙O 其它位置射门,如图所示的A 、B 、C 点.通过观察,我们可以发现像∠EAF 、∠EBF 、∠ECF 这样的角,它们的顶点在圆上,?并且两边都与圆相交的角叫做圆周角. 现在通过圆周角的概念和度量的方法回答下面的问题. 1.一个弧上所对的圆周角的个数有多少个? 2.同弧所对的圆周角的度数是否发生变化? 3.同弧上的圆周角与圆心角有什么关系? (学生分组讨论)提问二、三位同学代表发言. 老师点评: 1.一个弧上所对的圆周角的个数有无数多个. 2.通过度量,我们可以发现,同弧所对的圆周角是没有变化的. 3.通过度量,我们可以得出,同弧上的圆周角是圆心角的一半. 下面,我们通过逻辑证明来说明“同弧所对的圆周角的度数没有变化,?并且它的度数恰好等于这条弧所对的圆心角的度数的一半.” (1)设圆周角∠ABC 的一边BC 是⊙O 的直径,如图所示 ∵∠AOC 是△ABO 的外角 ∴∠AOC=∠ABO+∠BAO ∵OA=OB ∴∠ABO=∠BAO ∴∠AOC=∠ABO ∴∠ABC= 1 2 ∠AOC (2)如图,圆周角∠ABC 的两边AB 、AC 在一条直径OD 的两侧,那么∠ABC=1 2 ∠AOC 吗?请同学们独立完成这道题的说明过程. C

人教版九年级数学上册24.1.4 圆周角精品教案

课 题24.1.4圆周角课时1课时上课时间 教学目标1.知识与技能 (1)了解圆周角的概念. (2)掌握圆周角的定理及其推论. (3)知道圆内接多边形和多边形的外接圆的意义. (4)知道圆内接四边形的对角互补,会简单运用这个结论. 2.过程与方法 在探索过程中,体会观察、猜想的思维方法,在定理的证明过程中,体会化归和分类讨论的数学思想和归纳的方法. 3.情感、态度与价值观 在解决问题过程中使学生体会数学知识在生活中的普遍性. 教 学重难点重点:圆周角的定理、圆周角的定理的推导、圆内接四边形的对角互补及运用它们解题. 难点:运用数学分类思想证明圆周角的定理. 教学活动设计 二次设 计 课堂导入在如图中,当球员在B,D,E处射门时.他所处的位置对球门,AC分别形成三个张角∠ABC,∠ADC,∠AEC.这三个角的大小有什么关系? 探索新知合作探究 活动1:认识圆周角 1.观察∠ABC、∠ADC、∠AEC,这样的角有什么特点? 2.给出定义,顶点在圆上,并且两边都与圆相交的角叫做圆周角.(注意两点:(1)角的顶点在圆上;(2)角的两边都与圆相交,两者缺一不可) 3.辨一辨,图中的∠CDE是圆周角吗?引导学生识别,加深对圆周角的了解. 4.圆周角与圆心角的联系和区别是什么? 活动2:探究圆周角的性质 如图,所对的圆周角有哪几个?观察并测量这几个角,你有什么发现? 大胆说出你的猜想.所对的圆心角是哪个角?观察并测量这个角,比较

同弧所对的圆周角你有什么发现呢?大胆说出你的猜想. 由学生总结发现规律:同弧所对的圆周角的度数没有变化,并且它的度数恰好等于这条弧所对的圆心角的度数的一半,教师再利用几何画板从动态的角度进行演示,验证学生的发现. 活动3:证明圆周角定理及推论 1.问题:在圆上任取一个圆周角,观察圆心角顶点与圆周角的位置关系有几种情况? 续表 探索新知合作探究2.学生自己画出同一条弧的圆心角和圆周角,将他们画的图归纳起来,共有三种情况: ①圆心在圆周角的一边上;②圆心在圆周角的内部;③圆心在圆周角的外部.如图. 3.问题:在第一种情况中,如何证明上面探究中所发现的结论呢?另外两种情况如何证明呢? 4.怎样证明我们的第一个猜想:同弧所对的圆周角相等?(利用同弧所对的圆心角相等) 5.以上结论同圆改成等圆,同弧改成等弧结论还成立吗?为什么? 6.总结出圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半. 7.将上面定理中的“同弧或等弧”改成“同弦或等弦”,结论还成立吗? 8.在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等吗?为什么? 总结:同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等.(要通过圆心角来转换) 当堂训练1.如图,已知CD是☉O的直径,过点D的弦DE平行于半径OA,若∠D的度数是50°,则∠C的度数是( ) (A)25°(B)30°(C)40°(D)50° 2.如图,在☉O的内接四边形ABCD中,∠BOD=120°,那么∠BCD是( ) (A)120°(B)100°(C)80°(D)60° 3.如图,AB为☉O的直径,CF⊥AB于E,交☉O于D,AF交☉O于G.求证:∠FGD=∠ADC. 第1题图第2题图第3题图

圆周角与圆心角练习题

、计算题: 1、直角三角形的斜边长是17,斜边上的咼 120 为,①求三角形外接圆的半径; 17 ②求各锐角的正切值.4、如图,O O 的半径为R,弦AB=a,弦 BC// OA,求AC 的长. 2、如图,在O O中,F、G是直径AB上的两 点,C、D、E是半圆上的点,如果弧AC 的度数为60°,弧BE的度数为20°,且/ CFA= / DFB,/ DGA= / EGB . 5、如图,在△ ABC 中,/ BAC、/ ABC、 / BCA的平分线交△ ABC的外接圆于D , E和F,如果DE,应,町分别为m°、n °、 p。,求△ ABC的三个内角. 3、如图,在梯形ABCD中,AD // BC, / BAD=135。,以A为圆心,AB为半径 作O A交AD、BC于E、F两点,交BA的延长线于点G,求弧BF的度数. 6、如图,在O O中,BC, DF为直径,A, 1 E 为O O 上的点,AB=AC , EF=—D F . 2 圆周角与圆心角(2) 求:/ ABD+ / CBE 的值.

7、如图,等腰△ ABC的顶角为50° AB=AC,以AB为直径作半圆交BC于点 D,交AC于点E.求弧BD、弧DE 和弧AE 的度数. 10、如图,以厶ABC的BC边为直径的半圆, 交AB于D,交AC于E, EF丄BC于F, AB=8cm , AE=2cm , BF : FC=5 : 1, 求CE的长. 8、如图,AB是O O的直径,AB=2cm,点C 在圆周上,且/ BAC=30。,/ ABD=120 ° , CD 丄BD 于 D .求BD 的 长. 11、已知等腰三角形的腰长为13cm,底边 长为10cm,求它的外接圆半径. 12、如图,△ ABC中,AD是/ BAC的平分 线,延长AD交厶ABC的外接圆于E, 已知 AB=a , BD=b , BE=c ,求AE 的长. 9、如图,△ ABC 中,/ B=60 ° , AC=3cm , O O ABC的外接圆.求O O的半径. 13、如图,△ ABC中,AD是/ BAC的平分 线,延长AD交厶ABC的外接圆于 E , C

人教版九年级数学上册《圆周角》教案

《圆周角》教案 教学目标 理解圆周角概念,理解圆周用与圆心角的异同; 掌握圆周角的性质和直径所对圆周角的特征; 能灵活运用圆周角的性质解决问题; 发现和证明圆周角定理; 会用圆周角定理及推论解决问题. 教学重点 圆周角与圆心角的关系,圆周角的性质和直径所对圆周角的特征. 教学难点 发现并证明圆周角定理. 教学过程 一.创设情景 如图是一个圆柱形的海洋馆,在这个海洋馆里,人们可以通过其中的圆弧形玻璃窗⌒AB 观看窗内的海洋动物.大家请看海洋馆的横截面的示意图,想想看:同学甲站在圆心O 的位置,同学乙站在正对着下班窗的靠墙的位置C ,他们的视角(∠AOB 和∠ACB )有什么关系?如果同学丙、丁分别站在其他靠墙的位置D 和E ,他们的视角(∠ADB 和∠AEB )和同学乙的视角相同吗? 二、认识圆周角. 1.观察∠ACB 、∠ADB 、∠AEB ,这样的角有什么特点? 2.给出定义,顶点在圆上,并且两边都与圆相交的角叫做圆周角.(注意两点:1.角的顶点在圆上;2.角的两边都与圆相交,二者缺一不可.) 3.辩一辩,图中的∠CDE 是圆周角吗?引导学生识别,加深对圆周角的了解 . 4.圆周角与圆心角的联系和区别是什么?

三、探究圆周角的性质. 1.在下图中,同弧AB所对的圆周角有哪几个?观察并测量这几个角,你有什么发现?大胆说出你的猜想. 同弧AB所对的圆心角是哪个角?观察并测量这个角,比较同弧所对的圆周角你有什么发现呢?大胆说出你的猜出想. 2.由学生总结发现规律:同弧所对的圆周角的度数没有变化,并且它的度数恰好等于这条弧所对的圆心角的度数的一半,教师再利用几何画板从动态的角度进行演示,验证学生的发现. 四、证明圆周角定理及推论. 1.问题:在圆上任取一个圆周角,观察圆心角顶点与圆周角的位置关系有几种情况? 2.学生自己画出同一条弧的圆心角和圆周角,将他们画的图归纳起来,共有三种情况: ①圆心在圆周角的一边上;②圆心在圆周角的内部;③圆心在圆周角的外部.如下图 3.问题:在第一种情况中,如何证明上面探究中所发现的结论呢?另外两种情况如何证明呢? 4.怎样利用有上结论证明我们的第一个猜想:圆弧所对的圆周角相等?(利用圆弧所对的圆心角相等) 5.以上结论同圆改成等圆,同弧改成等弧结论还成立吗?为什么? 6.总结出圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半. 7.将上面定理中的“同弧或等弧”改成“同弦或等弦”,结论还成立吗? 8.在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等吗?为什么? 总结推论1:同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等.(也是圆周角定理的逆定理,要通过圆心角来转换) 9.如图所示图中,∠AOB=180°则∠C等于多少度呢?从中你发现了什么?(推论2:半圆(或直径)所对的圆周角是直角,90的圆周角所对的弦是直径.可用圆周角定理说明.)

《圆周角定理》练习题(A)

《圆周角定理》练习题 一.选择题(共16小题) 1.如图,A、B、C三点在⊙O上,若∠BOC=76°,则∠BAC的度数是()A.152°B.76°C.38°D.14° 2.如图,⊙O是△ABC的外接圆,∠ACO=45°,则∠B的度数为()A.30°B.35°C.40°D.45° 第1题图第2题图第3题图 3.如图,在图中标出的4个角中,圆周角有()个. A.1 B.2 C.3 D.4 4.如图,在⊙O中,直径CD垂直于弦AB,若∠C=25°,则∠BOD的度数是()A.25°B.30°C.40°D.50° 5.如图,已知在⊙O中,点A,B,C均在圆上,∠AOB=80°,则∠ACB等于()A.130°B.140°C.145°D.150° 第4题图第5题图第6题图 6.如图,MN是⊙O的直径,∠PBN=50°,则∠MAP等于() A.50°B.40°C.30°D.20° 7.如图,CD是⊙O的直径,A、B是⊙O上的两点,若∠ABD=20°,则∠ADC的度数为)A.40°B.50°C.60°D.70° 8.如图,AB是半圆的直径,点D是的中点,∠ABC=50°,则∠DAB等于()A.55°B.60°C.65°D.70° 第7题图第8题图第9题图

9.如图,AB是⊙O的直径,C,D为圆上两点,∠AOC=130°,则∠D等于()A.25°B.30°C.35°D.50° 10.如图,∠1、∠2、∠3、∠4的大小关系是() A.∠4<∠1<∠2<∠3 B.∠4<∠1=∠3<∠2 C.∠4<∠1<∠3∠2 D.∠4<∠1<∠3=∠2 11.如图,AB是半圆O的直径,∠BAC=60°,D是半圆上任意一点,那么∠D的度数是()A.30°B.45°C.60°D.90° 第10题图第11题图第12题图 12.如图,在⊙O中,OA⊥BC,∠AOC=50°,则∠ADB的度数为()A.15°B.20°C.25°D.50° 13.在⊙O中,点A、B在⊙O上,且∠AOB=84°,则弦AB所对的圆周角是()A.42°B.84°C.42°或138°D.84°或96° 14.如图所示,在⊙O中,AB是⊙O的直径,∠ACB的角平分线CD交⊙O于D,则∠ABD 的度数等于() A.90°B.60°C.45°D.30° 15.已知如图,AB是⊙O的直径,CD是⊙O的弦,∠CDB=40°,则∠CBA的度数为()A.60°B.50°C.40°D.30° 第10题图第11题图第12题图 16.如图,AB是圆的直径,AB⊥CD,∠BAD=30°,则∠AEC的度数等于()A.30°B.50°C.60°D.70° 二.填空题(共8小题) 17.如图,⊙O的直径CD经过弦EF的中点G,∠DCF=20°,则∠EOD等于.

初中数学圆周角例题讲解

初中数学圆周角例题讲解 第1课时圆周角定理及推论 教学内容 1.圆周角的概念. 2.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,?都等于这条弦所对的圆心角的一半. 推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径及其它们的应用. 教学目标 1.了解圆周角的概念. 2.理解圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,?都等于这条弧所对的圆心角的一半. 3.理解圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90?°的圆周角所对的弦是直径. 4.熟练掌握圆周角的定理及其推理的灵活运用. 设置情景,给出圆周角概念,探究这些圆周角与圆心角的关系,运用数学分类思想给予逻辑证明定理,得出推导,让学生活动证明定理推论的正确性,最后运用定理及其推导解决一些实际问题. 重难点、关键 1.重点:圆周角的定理、圆周角的定理的推导及运用它们解题. 2.难点:运用数学分类思想证明圆周角的定理. 3.关键:探究圆周角的定理的存在.

A https://www.360docs.net/doc/e91194099.html, 教学过程 一、复习引入 (学生活动)请同学们口答下面两个问题. 1.什么叫圆心角? 2.圆心角、弦、弧之间有什么内在联系呢? 老师点评:(1)我们把顶点在圆心的角叫圆心角. (2)在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,?那么它们所对的其余各组量都分别相等. 刚才讲的,顶点在圆心上的角,有一组等量的关系,如果顶点不在圆心上,它在其它的位置上?如在圆周上,是否还存在一些等量关系呢?这就是我们今天要探讨,要研究,要解决的问题. 二、探索新知 问题:如图所示的⊙O ,我们在射门游戏中,设E 、F 是球门,?设球员们只能在?EF 所在的⊙O 其它位置射门,如图所示的A 、B 、C 点.通过观察,我们可以发现像∠EAF 、∠EBF 、∠ECF 这样的角,它们的顶点在圆上,?并且两边都与圆相交的角叫做圆周角. 现在通过圆周角的概念和度量的方法回答下面的问题. 1.一个弧上所对的圆周角的个数有多少个? 2.同弧所对的圆周角的度数是否发生变化? 3.同弧上的圆周角与圆心角有什么关系? (学生分组讨论)提问二、三位同学代表发言. 老师点评: 1.一个弧上所对的圆周角的个数有无数多个.

相关文档
最新文档