Identification of an NTPase motif in classical swine fever virus NS4B protein

Identification of an NTPase motif in classical swine fever virus NS4B protein
Identification of an NTPase motif in classical swine fever virus NS4B protein

Identi ?cation of an NTPase motif in classical swine fever virus NS4B protein

Douglas P.Gladue a ,1,Boris K.Gavrilov b ,1,Lauren G.Holinka a ,Ignacio J.Fernandez-Sainz b ,

N.G.Vepkhvadze a ,Kara Rogers b ,Vivian O'Donnell a ,b ,Guillermo R.Risatti b ,Manuel V.Borca a ,?

a Plum Island Animal Disease Center,ARS,USDA,Greenport,NY 11944,USA

b

Department of Pathobiology and Veterinary Science,University of Connecticut,Storrs,CT 06269,USA

a b s t r a c t

a r t i c l e i n f o Article history:

Received 8October 2010

Returned to author for revision 15November 2010

Accepted 16December 2010

Available online 13January 2011Keywords:

Classical swine fever virus NS4B protein

Nucleotide binding domain NTPase activity Replication Virulence

Classical swine fever (CSF)is a highly contagious and often fatal disease of swine caused by CSF virus (CSFV),a positive-sense single-stranded RNA virus within the Pestivirus genus of the Flaviviridae family.Here,we have identi ?ed conserved sequence elements observed in nucleotide-binding motifs (NBM)that hydrolyze NTPs within the CSFV non-structural (NS)protein NS4B.Expressed NS4B protein hydrolyzes both ATP and GTP.Substitutions of critical residues within the identi ?ed NS4B NBM Walker A and B motifs signi ?cantly impair the ATPase and GTPase activities of expressed proteins.Similar mutations introduced into the genetic backbone of a full-length cDNA copy of CSFV strain Brescia rendered no infectious viruses or viruses with impaired replication capabilities,suggesting that this NTPase activity is critical for the CSFV cycle.Recovered mutant viruses retained a virulent phenotype,as parental strain Brescia,in infected swine.These results have important implications for developing novel antiviral strategies against CSFV infection.

Published by Elsevier Inc.

Introduction

CSF is a highly contagious and often fatal disease that affects swine throughout various regions of the world.The etiological agent,CSFV,is an enveloped virus that belongs to the genus Pestivirus within the family Flaviviridae (Fauquet et al.,2005).The CSFV genome is a positive-sense single-stranded RNA that encodes a single polyprotein precursor that is co-and post-translationally processed by cellular and virus-encoded proteases to produce four structural (C,E rns ,E1,and E2)and 8non-structural (NS)proteins (N pro ,p7,NS2,NS3,NS4A,NS4B,NS5A,and NS5B)(Rumenapf et al.,1993;Lindenbach et al.,2007;Thiel et al.,1996).Replication of Pestivirus viral genome is suggested to occur in close association with cytoplasmic membranes through the synthesis of a negative-stranded full-length genome (Gong et al.,1996;Lindenbach et al.,2007).This function is mediated by the activity of NS proteins.NS5B is a viral RNA-dependant RNA polymerase (Steffens et al.,1999;Xiao et al.,2002,2006);its activity in vitro is enhanced by the presence of NS3protein (Wang et al.,2010).NS3has multiple functions and is essential for virus replication

(Xu et al.,1997).The serine proteinase activity of NS3is responsible for cleavage of NS4A,4B,5A,and 5B and requires the 64amino acid NS4A protein as a cofactor (Xu et al.,1997;Tautz et al.,1997;Moulin et al.,2007).Additionally,NS3possesses both nucleoside tripho-sphatase (NTPase)and RNA helicase activities (Suzich et al.,1993;Tamura et al.,1993;Wen et al.,2007,2009).The RNA helicase-active portion of NS3contains a nucleotide-binding motif (NBM)charac-teristic of all helicases and numerous NTPases (Walker et al.,1982;Gorbalenya and Koonin,1989).The role of NS2and NS5A in CSFV replication is less understood.In vitro studies using CSFV RNA replicons showed that NS2is not essential for replication although its presence increased the persistence of RNA replicons in transfected cells (Moser et al.,1999).The role of NS5A in replication may involve at least two different activities:the stimulation of virus replication via formation of multisubunit replication complexes and the inhibition of virus translation (Xiao et al.,2009;Sheng et al.,2010).

The role of NS4B in CSFV replication remains unclear.In Hepatitis C Virus (HCV)and other related ?aviviruses,NS4B was found to be an integral hydrophobic membrane protein required for the assembly of “membranous webs ”that are derived from endoplasmic reticulum (ER)or the Golgi apparatus and are important for RNA replication (Hugle et al.,2001;Egger et al.,2002;Kim et al.,2004;Miller et al.,2006;Weiskircher et al.,2009).Einav et al.(2004)have shown that HCV NS4B contains a NBM which is conserved among HCV genotypes.This structural motif binds and hydrolyzes ATP,GTP and GDP and also possesses adenylate kinase activity (Einav et al.,2004;Thompson et al.,2009).Amino acid substitutions in the NBM of HCV NS4B impaired NTP binding and hydrolysis and resulted in decreased NTPase and adenylate

Virology 411(2011)41–49

?Corresponding author.Plum Island Animal Disease Center,USDA/ARS/NAA,P.O.Box 848,Greenport,NY 11944-0848,USA.Fax:+16313233006.

E-mail addresses:douglas.gladue@https://www.360docs.net/doc/e11224361.html, (D.P.Gladue),

boris.gavrilov@https://www.360docs.net/doc/e11224361.html, (B.K.Gavrilov),lauren.holinka@https://www.360docs.net/doc/e11224361.html, (L.G.Holinka),ignacio.fernandez-sainz@https://www.360docs.net/doc/e11224361.html, (I.J.Fernandez-Sainz),

nino.vepkhvadze@https://www.360docs.net/doc/e11224361.html, (N.G.Vepkhvadze),kara.rogers@https://www.360docs.net/doc/e11224361.html, (K.Rogers),vivian.odonnell@https://www.360docs.net/doc/e11224361.html, (V.O'Donnell),guillermo.risatti@https://www.360docs.net/doc/e11224361.html, (G.R.Risatti),manuel.borca@https://www.360docs.net/doc/e11224361.html, (M.V.Borca).1

These authors contributed equally to this

manuscript.0042-6822/$–see front matter.Published by Elsevier Inc.doi:

10.1016/j.virol.2010.12.028

Contents lists available at ScienceDirect

Virology

j o u r n a l ho m e p a g e :w w w.e l s ev i e r.c o m /l o c a t e /y v i r o

kinase activity(Einav et al.,2004;Thompson et al.,2009).Furthermore, the NBM was shown to be critical for the role of NS4B during in vitro HCV replication(Einav et al.,2004;Lindstrom et al.,2006)and in cellular transformation and tumor formation(Einav et al.,2008).

Conserved sequence elements in NBM-containing proteins that possess NTPase activity harbor characteristic Walker A and Walker B motifs.The Walker A motif consists of a G-rich phosphate-binding loop with a consensus sequence G/AXXXXGKS/T(where X could be any residue)that is involved in binding ofβ-andγ-phosphates of NTPs.The Walker B motif consists of an Asp residue preceded by a stretch of hydrophobic amino acids(h)hhhhD or hhhhDD/E,that chelates the Mg2+of the Mg–NTP complex(Walker et al.,1982; Gorbalenya and Koonin,1989;Mimura et al.,1991;la Cour et al., 1985;Pai et al.,1989).In this study,data is presented demonstrating that CSFV NS4B has NTPase activity.E.coli expressed His-tagged CSFV NS4B puri?ed protein hydrolyzes both ATP and GTP.Conserved Walker A and B motifs,characteristic of NBMs in CSFV NS4B(residues 209–216and335–342,respectively),are shown to be highly conserved in NS4B proteins of the other pestiviruses,Bovine Viral Diarrhea Virus(BVDV)and Border Disease Virus(BDV).It is also demonstrated that the enzymatic activity of the protein is affected by speci?c residue substitutions within identi?ed Walker A and B motifs. Additionally,we have observed that NS4B of pestiviruses lacks the universally conserved K residue in the GKS/T signature of A motifs,but a highly conserved K206residue is located at the N-terminal end of the canonical motif that has an effect on the NTPase activity of the protein. Additional results suggest that speci?c substitutions within the canonical Walker A and/or Walker B motifs in NS4B are deleterious for CSFV,while a CSFV Walker A revertant virus or viruses harboring mutations at K206were viable and retained a virulent phenotype in infected swine.

Results

Identi?cation of a nucleotide-binding motif in NS4B

Conserved sequence elements in NBM-containing viral proteins include both Walker A and Walker B motifs(Walker et al.,1982;Gorbalenya and Koonin,1989)(Fig.1).Amino acid sequence analysis of NS4B proteins showed that pestiviruses possess sequences resembling canonical Walker A(G/AXXXXGKS/T)and Walker B (hhhhD or hhhhDD/E)motifs(Figs.2and3A).These sequences are located towards the C-terminal portion of CSFV NS4B,encompassing amino acid residues209–216and335–342of the protein,for A and B motifs respectively.Furthermore it was observed that the putative Walker A motif in pestivirus NS4B lacks the universally conserved K residue in the GKS/T signature sequence,where K has been substituted to V or I(Figs.2and3A).Instead,NS4B of these viruses has a conserved K residue(K206in CSFV)at the N-terminal end of the Walker A motif,resembling the position of the K residue in deviant Walker A motifs found in ATPase catalytic centers of phage terminases (Mitchell and Rao,2004)and some prokaryotic and yeast DNA-dependent ATPases or GTPases(Koonin,1993a,1993b)(Fig.3B).The putative Walker B motif in CSFV NS4B,LLGVDSEG335–342,concurs with the consensus hhhhD(Fig.3A).The motif is also conserved among other pestiviruses(Fig.3A).The sequence DSEG339–342within the B motif matches the consensus DXXG found in highly conserved GTP-binding protein families including elongation factors,ras p21, phosphoenolpyruvate carboxykinase and guanine nucleotide-binding proteins of adenylate cyclase(G proteins)(Dever et al.,1987)(data not shown).

CSFV NS4B has NTPase activity

His-tagged CSFV strain Brescia NS4B protein was expressed in E.coli (Fig.4A),and puri?ed to near homogeneity using cobalt immobilized af?nity chromatography(IMAC)resins.Protein purity was veri?ed by Coomassie blue staining(Fig.4B)and Western blot using an anti-poly-His monoclonal antibody(data not shown).Assessment of the ATPase and GTPase activities of wild-type puri?ed CSFV NS4B was performed by evaluating the release of inorganic phosphate using a colorimetric assay as described in Materials and Methods.Consistent with the sequence analysis,puri?ed wild-type NS4B catalyzed the hydrolysis of ATP and GTP(Fig.4C).Time course analysis of ATP and GTP hydrolysis by wild-type NS4B revealed that the enzymatic activity achieved maximum kinetics after2h of incubation with ATP or GTP(Fig.4C).Data suggest

a

Fig.1.Schematic representation of NS4B protein from CSFV,BVDV types I and II,BDV,and HCV genotype1b showing predicted membrane-spanning regions(TM)according to Hofmann and Stoffel,1993(TMpred program).Arrowheads indicate locations of Walker A and B motifs.For HCV F211is the nucleotide binding motif G(Thompson et al.,2009). Numbers indicate amino acid residues.

42 D.P.Gladue et al./Virology411(2011)41–49

higher rate of ATP hydrolysis over GTP hydrolysis (30μM Pi vs.20μM Pi,respectively)(Fig.4C).

Mutations in Walker A and B motifs affect NS4B NTPase activity To further con ?rm CSFV NS4B NTPase activity,speci ?c residue substitutions were introduced into the identi ?ed Walker A (GLLGTGVS 209–216)and Walker B (DSEG 339–342)motifs (Fig.5),and mutant proteins were tested for their ability to hydrolyze ATP and GTP.Walker A (G209A,L211N,and G214A),Walker B (D339A and G342A),and Walker A/B (G209A,L211N,G214A,D339A,and G342A)mutant proteins demonstrated decreased ATPase and GTPase activ-ities relative to wild-type NS4B (Figs.6A and B).Overall,mutations in the A motif seem to have a more signi ?cant effect on NS4B NTPase activity than mutations introduced in the B motif.To further assess the role of speci ?c residues in the NTPase activity of CSFV NS4B protein,we constructed a Walker A revertant protein harboring an N211L substitution (X 2position in the canonical A motif)within the backbone of the Walker A mutant (Fig.5).Interestingly,both ATPase and GTPase activity were partially restored when N211was reverted back to L in CSFV NS4B protein (Figs.6C and D).Similar mutations have been shown to affect the NTPase activities of HCV NS4B or Poliovirus 2C proteins (Mirzayan and Wimmer,1992;Einav et al.,2004).Overall,data con ?rmed the ATPase and GTPase function of the NS4B protein.

A deviant Walker A motif in CSFV NS4B

Since the identi ?ed Walker A motif in CSFV NS4B (GLLGxGVS)deviates from the canonical P-loop sequence (GxxxxGKS/T)by lacking the important phosphate-binding K residue (Figs.2and 3B),we substituted conserved K 206residues,K206A or K206R,at the N-

terminal end of the motif (Fig.5)and assessed the NTPase activity of the modi ?ed proteins.An R residue instead of a K residue is observed at analogous position in NS4B of some BDV isolates (Fig.3B).Both mutant proteins showed signi ?cantly reduced ATPase and GTPase activities relative to wild-type protein (t-test,P b 0.01).Only K206R mutant protein retained both ATPase and GTPase activities (Figs.6E and F).These results suggest that in CSFV NS4B the highly conserved K 206in the Walker A motif plays a role in NTP hydrolysis.Similar deviations from canonical Walker A motifs have been observed in bacteriophage terminases (Mitchell and Rao,2004;Tsay et al.,2009)(Fig.3B).

Effects of NS4B Walker A and Walker B motif disruption on CSFV replication

To assess the role of the Walker A and B motifs in the replication of CSFV a set of mutant viruses was constructed containing amino acid substitutions within the NS4B protein of the CSFV strain Brescia full-length cDNA clone,pBIC.In vitro transcribed RNA derived from wild-type and mutant cDNA clones was used to transfect CSFV permissive SK6cells.Supernatants were harvested and used to infect naive SK6cell monolayers.CSFV was detected only in cells infected with supernatants derived from wild-type,Walker A revertant,Walker A deviant K206R,and Walker A deviant K206A transfected cells.SK6cells transfected with RNA transcribed from Walker A mutant,Walker B mutant,and Walker A/B mutant DNA constructs did not yield infectious viruses in three independent attempts (data not shown).Mutations introduced into NS4B were maintained in rescued viruses.

To assess the ability of rescued mutant viruses to replicate in vitro ,their growth characteristics were evaluated in a multistep growth curve

Accession #CSFV Strain Walker A motif Walker B motif AY578687BICv KSDGLLGTGVS

206-216

LLGVDSEG

335-342

X96550CAP ...................X87939Alfort/187...................AY578688CSICv ...................AY55439796TD

...........

........AY5685690406/CH/01/TWN ...................AY775178Shimen/HVRI ...................AY805221C/HVRI ...................AY259122Riems ...................AF326963Eystrup ...................AY367767GXWZ02...................AF531433HC LV ...................AF40733939...................AF333000cF114...................J04358HCV ...................AF091507HCLV .......M...........U90951Alfort A19.......I...........U45478

Glentorf

.......I...

........

Fig.2.Sequence alignment of identi ?ed Walker A (amino acid positions 206to 216)and Walker B (amino acid positions 335to 342)within CSFV NS4B protein.The Walker A motif

consists of a Gly-rich phosphate-binding loop with consensus sequence G/AXXXXGKS/T (where X is any residue).The Walker B motif consists of Asp preceded by a stretch of hydrophobic amino acids hhhhD or hhhhDD/E (where h is a hydrophobic residue)(Walker et al.,1982;Gorbalenya and Koonin,1989;Mimura et al.,1991;la Cour et al.,1985and Pai et al.,1989).Notice that the putative Walker A motif indenti ?ed within CSFV NS4B lacks the universally conserved Lys residue in the GKS/T signature sequence,where K has been substituted to V.

43

D.P.Gladue et al./Virology 411(2011)41–49

and compared with parental BICv.All mutant viruses demonstrated growth kinetics similar to BICv although virus titers were at least0.5to1 log lower than the parental virus(Fig.7).A single substitution(N211L) in a Walker A mutant full-length cDNA clone yielded a Walker A revertant virus,restoring the production of CSFV progeny in SK6cells. Similarly,substitutions of K206to A or R,although reducing the NS4B NTPase activity(Figs.6E and F),do not appear to signi?cantly alter the ability of these viruses to replicate in vitro.

Interestingly,these viruses retained a virulent phenotype in infected swine.Animals intramuscularly(IM)inoculated with105 TCID50of any of the mutant viruses(Walker A revertant,Walker A deviant K206R,and Walker A deviant K206A)progressed at the same rate as animals infected with parental BICv in terms of time of death, onset and duration of fever(Table2),and viremia(Table3).Viruses isolated from infected pigs retained mutations introduced into NS4B.

Discussion

CSFV non-structural proteins regulate virus replication(Linden-bach et al.,2007;Xu et al.,1997;Moser et al.,1999;Steffens et al., 1999;Xiao et al.,2002,2006,2009;Moulin et al.,2007;Sheng et al.,2010).The function of CSFV NS4B protein in viral replication and pathogenesis is poorly understood.Previously,it was found that CSFV NS4B is involved in virulence by modulating the host immune response(Fernandez-Sainz et al.,2010).Here we have shown that CSFV NS4B has ATPase and GTPase activities,and that this activity is mediated by conserved Walker A and Walker B motifs found in the NBM of NTPases(Walker et al.,1982;Gorbalenya and Koonin,1989). Furthermore,since the identi?ed Walker A motif lacks the universally conserved K residue in the GKS/T signature sequence,we have shown that a highly conserved K206in CSFV NS4B plays in vitro a role in ATP and GTP hydrolysis.In that regard,the CSFV NS4B Walker A motif resembles the previously described deviant I Walker A motifs (Mitchell and Rao,2004).

CSFV NS4B readily hydrolyzes ATP over GTP.Incubation of puri?ed CSFV NS4B with GTP resulted in lower concentrations of Pi relative to the incubation with ATP(Fig.4C).Similarly,it has been observed that puri?ed His-tagged HCV NS4B hydrolyzes both ATP and GTP,but the protein displayed a higher af?nity for ATP and25-fold faster conversion to ADP than conversion of GTP to GDP(Thompson et al.,2009).

To con?rm that ATP and GTP hydrolysis was associated with recombinant CSFV NS4B,a set of mutant proteins was constructed by

A

Virus/Protein Walker A motif(n)Walker B motif

Consensus G X1X2X3X4G K S/T X H H H H D X X G

CSFV/NS4B G L L G X G V S(119)L L G V D S E G

BVDV/NS4B G L L G X G I S(123)L L G M D S E G

BDV/NS4B G L L G T G V S(119)L L G V D S E G

HCV1b/NS4B G S I G L G K V(95)V P E S D A A A

HCV3/NS4B G S I G L G R V(88)V P E S D A A A

HAV/2C G K R G G G K S(41)V C I I D D I G

Polio/2C G S P G T G K S(34)V V I M D D L N

FMDV/2C G K S G Q G K S(39)V V V M D D L G

B

Virus/Protein Deviant Walker A motifs

VHML/gp22K S M R V G Y T

Lambda/gpA K S A R V G Y S

RM_378/gpPhiN315_66K P R Q M G V T

CSFV/NS4B K S D G L L G X G V S

BVDV/NS4B K S D G L L G X G I S

BDV/NS4B R/K S D G L L G T G V S

Fig.3.(A)Identi?ed Walker A and B motifs within CSFV NS4B are highly conserved among Pestiviruses.Consensus indicates a set of conserved amino acids found in both the GTP-binding members of the G protein superfamily,as well as several viral proteins with nucleotide binding domains.CSFV:classical swine fever virus;BVDV:Bovine Viral Diarrhea Virus;BDV:Border Disease Virus;HCV:Hepatitis C Virus;Polio/2C:Poliovirus2C protein;HAV2C:Hepatitis A Virus2C protein;FMDV2C:Foot and Mouth Disease Virus2C protein.In parenthesis(n)is the number of omitted residues.(B)Alignment of Pestiviruses'Walker A motif with Walker A deviant I motifs(Mitchell and Rao,2004)found in some bacteriophage proteins where the conserved Lys residue in the GKS/T signature sequence is absent(shaded)and shifted to the beginning of the motif(shaded).VHML:Vibrio harveyi bacteriophage;Lambda/gpA:E.coli Lambda phage;RM_378gpPhiN315_66:R RM_378R.marinus phage.

44 D.P.Gladue et al./Virology411(2011)41–49

introducing amino acid substitutions into the identi ?ed A and B motifs.These motifs are involved with binding of phosphate and purine rings of NTP substrates.A signi ?cant decrease in NS4B enzymatic activity was observed with Walker A,Walker B,and Walker A/B mutants,demonstrating the NTPase function of the protein (Figs.6A and B).Further con ?rmation of the NTPase

activity

Fig.4.Puri ?cation of E.coli -expressed wild-type and mutant CSFV NS4B proteins by immobilized metal ion af ?nity chromatography (IMAC).(A)Coomassie blue staining of 10%SDS-PAGE showing puri ?cation of E.coli -expressed wild-type NS4B using HisPur Cobalt Spin https://www.360docs.net/doc/e11224361.html,nes:M,molecular weight marker (in kDa);1,cell lysate of BL21(DE3)pLysS transformed with pRSETA vector;2,cell lysate of BL21(DE3)pLysS transformed with pRSETA encoding wild-type NS4B;3–6,wash fractions;7–9,elution fractions containing puri ?ed protein.(B)Coomassie blue staining of 10%SDS-PAGE showing puri ?ed E.coli -expressed wild-type (lane 1)and mutant (lanes 2–7)https://www.360docs.net/doc/e11224361.html,nes:M,molecular weight marker (in kDa);1,wild-type NS4B;2,Walker A;3,Walker A revertant;4,Walker B;5,Walker A/B;6,K206R;7,K206A mutant.(C)ATPase and GTPase activity of wild-type NS4B protein relative to bovine serum albumin (BSA).Proteins were incubated at 30°C in the presence of Pi-free ATP or GTP and release of Pi (means ±standard deviations from 3independent experiments)was detected at indicated time points.

Virus/Protein Walker A motif

Walker B motif CSFV Brescia 206

K S D G L L G T G V S 216

335

L L G V D S E G 342

Walker A mutant

K S D A L N G T A V S

L L G V D S E G Walker A revertant K S D A L L G T A V S L L G V D S E G Walker B mutant

K S D G L L G T G V S

L L G V A S E A Walker A/B mutant K S D A L N G T A V S L L G V A S E A Walker A deviant K206R

R S D G L L G T G V S L L G V D S E G Walker A deviant K206A

A S D G L L G T G V S

L L G V D S E G

Fig.5.Set of CSFV NS4B Walker A and Walker B mutant proteins and viruses produced in this study.Underlined are amino acid substitutions.

45

D.P.Gladue et al./Virology 411(2011)41–49

of NS4B was derived from the Walker A revertant mutant protein.Reversion of N 211to wild-type L 211,while preserving G209A and G214A mutations,partially restored hydrolysis of ATP and GTP (Figs.6C and D).The hydrophobic residue at the X 2position of the A motif appears to have an important effect on NTPase activity,since its mutation in HCV NS4B nearly abolishes GTP hydrolysis (Einav et al.,2004).Furthermore,mutation at an analogous position in poliovirus 2C protein NBM rendered a non-infectious virus (Mirza-yan and Wimmer,1992).The observed changes in CSFV NS4B NTPase activity could be the result of decreased binding and/or decreased hydrolysis of ATP or GTP.In that regard,a double Walker A and B mutant of HCV NS4B was shown to bind both ATP and GTP but with signi ?cantly lower af ?nity while a quintuple mutant was unable to bind either ATP or GTP (Thompson et al.,2009).In the same study,K cat measurements for this double HCV NS4B mutant displayed insigni ?cant changes relative to wild-type,suggesting that these mutations had a strong effect on binding of NTP but little or no effect on the turnover rate.

A

B

C

D

E

F

51015202530

35403060

90

120P h o s p h a t e [u M ]

51015202530

3540P h o s p h a t e [u M ]

51015202530

3540P h o s p h a t e [u M ]

51015202530

3540P h o s p h a t e [u M ]

51015202530

3540P h o s p h a t e [u M ]

51015202530

3540P h o s p h a t e [u M ]

Minutes

Walker A

BSA

3060

90

120Minutes

Walker A

BSA

3060

90

120Minutes

Walker A

BSA

3060

90

120Minutes

Walker A

BSA

30

60

90

120Minutes

Walker A

K206A

BSA

30

60

90

120Minutes

Walker A

K206A

BSA

Fig.6.ATPase (A,C,and E)and GTPase (B,D,and F)activities of wild-type and mutant CSFV NS4B proteins.ATP and GTP hydrolysis of wild-type NS4B relative to Walker A,Walker B,Walker A/B mutants,and BSA (A and B);Walker A revertant NS4B protein (C and D),and Walker A K206A and K206R NS4B mutant proteins (E and F).Assays were performed at 30°C in the presence of Pi-free ATP or GTP and release of Pi (means ±standard deviations from 3independent experiments)was detected at 30,60,90,and 120min of incubation.

46 D.P.Gladue et al./Virology 411(2011)41–49

The Walker A motif is one of the most common and highly conserved motifs found in genomes (Koonin,1993a ).The identi ?ed A motif in CSFV NS4B as well as in other pestiviruses lacks the universally conserved K residue in the GKS/T signature.In the signature sequence,the K residue interacts with the negatively charged β-and γ-phosphates of NTP (la Cour et al.,1985;Pai et al.,1989,1990).Large terminase proteins (subunits of DNA packing machines in large DNA viruses),including the well-characterized λphage gpA and SPP1G2P,lack a canonical Walker A motif.However,a conserved K is consistently located at the N-terminal end of the putative Walker A motifs of all these phage terminases (Mitchell and Rao,2004).These non-canonical Walker A motifs are known as deviant I Walker A motifs.Here we con ?rmed that K 206is important for NS4B hydrolysis of NTPs,suggesting that pestiviruses may harbor a deviant I Walker A motif in NS4B.However,viruses harboring substitutions of the conserved K 206were able to replicate in swine macrophages and retained their virulent phenotype in infected swine,suggesting that in the context of the virus infection this residue is not critical for replication.Nonetheless,this ?nding may have important implications for developing novel antiviral compounds against CSFV.

We have observed that disruption of predicted Walker A and B motifs in CSFV NS4B signi ?cantly affected virus replication.However,replication of the mutant Walker A virus was rescued by introducing

an N211L substitution.This virus retained the capability to cause disease in swine,suggesting that L 211is critical for the NTPase activity of the virus,and that the NTPase activity of NS4B plays a key role in virus viability and virulence.Binding and hydrolysis of nucleotides by viral proteins mediates a variety of events involved with virus replication including signaling,membrane traf ?cking,and membrane fusion.For instance,Poliovirus nonstructural 2C protein is an ATPase found in abundance in the membranous replication complex where viral RNA synthesis occurs (Cho et al.,1994;Teterina et al.,1992).Analogous to picornaviral 2C proteins,HCV NS4B possesses NTPase activity and is involved in the reorganization of intracellular membranes and virus replication (P ?ster and Wimmer,1999;Samuilova et al.,2006;Thompson et al.,2009).Furthermore,mutations in the NBM of poliovirus 2C and HCV NS4B impaired viral replication (Teterina et al.,1992;Mirzayan and Wimmer,1992;Einav et al.,2004).

In summary,we predicted,detected,and mapped residues that confer NTPase activity to CSFV NS4B protein.Furthermore,we showed that residues outside the canonical Walker A motif are important for the in vitro enzymatic activity of NS4B,as in described deviant type I Walker A motifs.The NTPase activity of this protein is required for CSFV replication.The de ?ned motifs may represent speci ?c targets for anti-CSFV compounds.Materials and methods

Cloning,expression,puri ?cation,and detection of wild-type and mutant NS4B proteins

The gene encoding for CSFV strain Brescia NS4B protein (1041bp)was ampli ?ed by polymerase chain reaction (PCR)using speci ?c primers (Table 1).The resulting PCR fragment was cloned into pCR2.1TOPO vector (Invitrogen,Carlsbad,CA).The plasmid was subsequent-ly digested with BamH I and Nco I and the expected 1041bp NS4B fragment was directionally cloned into the pRSETA expression plasmid (Invitrogen).Site-directed mutagenesis (QuikChange II Site-Directed Mutagenesis Kit,Agilent Technologies,Santa Clara,CA)was utilized to generate mutant NS4B genes using primers described in Table https://www.360docs.net/doc/e11224361.html,plete sequences of all DNA constructs were veri ?ed by automated sequencing.

One Shot BL21(DE3)pLysS E.coli (Invitrogen)cells were transformed with 10ng of pRSETA plasmid encoding wild-type or mutant NS4B,cultured in MagicMedia (Invitrogen)for 21h at 37°C with shaking,and harvested by centrifugation at 3200×g for 15min.Cell pellets were then treated with CelLytic buffer (Sigma Aldrich,St.Louis,MO)according to the manufacturer's large scale extraction protocol.For His-tagged protein puri ?cation,cell lysates were applied to HisPur Cobalt Spin Columns (Thermo Fisher Scienti ?c,Rockford,IL)and the collected fractions were analyzed on a 10%NuPage Novex Bis –Tris gel (Invitrogen)using a discontinuous SDS-PAGE system.Western blots were performed using polyvinylidene ?uoride (PVDF)membranes (Invitrogen)and a His-Tag antibody (Novagen,EMD Biosciences,Madison,WI).Reactions were developed using alkaline phosphatase labeled goat anti-mouse IgG antibody with the Wester-nBreeze Chemiluminescent Detection Kit (Invitrogen).The puri ?ed proteins were desalted twice using 7K MWCO Zebra Spin Desalting Columns (Thermo Fisher Scienti ?c).Protein concentration was determined by BCA Protein Assay (Thermo Fisher Scienti ?c)against known standards at OD of 595nm using a NanoDrop instrument (Thermo Scienti ?c NanoDrop Products,Wilmington,DE).NTPase assays

The ATPase and GTPase activities of recombinant wild-type and mutant CSFV NS4B proteins were determined using the Bioassay Systems colorimetric ATPase/GTPase assay system according to

the

123456

72

24

48

72

L o g 10 T C I D 50/m l

Hours post-infection

Fig.7.In vitro growth characteristics of NS4B mutants and parental BICv.SK6cell cultures were infected (MOI =0.01)with each of the mutants or BICv and virus yield titrated at times post infection in SK6cells.Data represent means and standard deviations from two independent experiments.Sensitivity of virus detection:≥log 101.8TCID50/ml.

Table 1

Sequences of oligonucleotide primers used for generation of wild-type (wt)and mutant CSFV NS4B protein and mutant viruses.Primer Sequence (5′→3′)

wt NS4B for GGATCCGCTCAGGGGGATGTGCAGAGATGT wt NS4B rev CCATGGTTATAGCTGGCGGATCTTTCCTTC

Walker A for GAAAAAGCGATGCTTTGAACGGCACAGCGGTTAGTGCGGCTATGG Walker A rev CCATAGCCGCACTAACCGCTGTGCCGTTCAAAGCATCGCTTTTTC Walker A

revertant for GAAAAAGCGATGCTTTGCTAGGCACAGCGGTTAGTGCGGCTATGG Walker A

revertant rev CCATAGCCGCACTAACCGCTGTGCCTAGCAAAGCATCGCTTTTTC Walker B for GAACTACTGGGAGTAGCTAGCGAAGCAAAGATCCGCCAGCTA Walker B rev TAGCTGGCGGATCTTTGCTTCGCTAGCTACTCCCAGTAGTTC K206R for TCAATCAGGCGCGGAAGAAGCGATGCTTTG K206R rev CAAAGCATCGCTTCTTCCGCGCCTGATTGA K206A for TCAATCAGGCGCGGAGCAAGCGATGCTTTG K206A rev

CAAAGCATCGCTTGCTCCGCGCCTGATTGA

Codon changes are underlined;for,forward primer;rev,reverse primer.

47

D.P.Gladue et al./Virology 411(2011)41–49

manufacturer's recommendations(QuantiChrom ATPase/GTPase Assay Kit,BioAssay Systems,Hayward,CA).Brie?y,NTPase assays were performed with1.5μg of protein in20μl of Assay Buffer(40mM Tris,80mM NaCl,8mM MgAc2,and1mM EDTA,pH7.5).Forty mM of ATP or GTP was added to each well and the reaction was incubated for 30,60,90,or120min at30°C.The assay contained puri?ed inorganic phosphate(Pi)-free NTP substrate to ensure lowest possible back-ground signals.Following incubation with ATP or GTP,200μl of BioAssay Systems Reagent were added and the reaction mixtures were developed for30min.Samples were read at635nm on a Synergy HT Microplate reader(BioTek,Winooski,VT).Phosphate standards provided with the kit were used to generate a standard curve and to calculate the enzymatic activity of wild-type and mutant NS4B proteins.Puri?ed Pi-free Bovine Serum Albumin(Sigma,St. Louis,MO)was used in the assays as a negative control.The results were determined by calculating the amount of Pi produced by the enzyme after incubation with the substrate for the indicated period of time.

Construction of CSFV mutants

A full-length cDNA infectious clone(IC)of virulent CSFV strain Brescia(pBIC)(Risatti et al.,2005)was used as a template in which putative NBM sites in the NS4

B gene were mutated.Mutations were introduced by site-directed mutagenesis using the QuickChange XL Site-Directed Mutagenesis kit(Stratagene,Cedar Creek,TX)per-formed per manufacturer's instructions and using the primers described in Table1.Full-length genomic clones were linearized with Srf I and in vitro transcribed using the T7Megascript system (Ambion,Austin,TX).RNA was precipitated with LiCl and transfected into SK6cells(Terpstra et al.,1990)by electroporation at500V,720Ω,and100W with a BTX630electroporator(BTX,San Diego,CA). Cells were cultured in Dulbecco's minimal essential media(DMEM) (Gibco,Grand Island,NY)with10%fetal calf serum(FCS)(Atlas Biologicals,Fort Collins,CO),seeded in6-well plates and incubated for 4days at37°

C and5%CO2.Effectiveness of the transfection was assessed by immunoperoxidase staining using CSFV E2monoclonal antibody WH303(Edwards et al.,1991)and the Vectastain ABC kit (Vector Laboratories,Burlingame,CA).Transfected cultures were harvested at day4post-transfection and the presence of infectious virus in the supernatant was detected by seeding the material on fresh SK6cell cultures.After4days,cells were?xed and the presence of E2 expression was assessed by immunoperoxidase staining as described above.Virus growth characteristics were evaluated in multistep growth curves.SK6cells were infected at a MOI=0.01TCID50and virus adsorbed for1h(time zero).Samples were then collected at times post-infection through72h,and virus yields titrated on SK6 cells.Virus titers were calculated using the method of Reed and Muench(1938)and expressed as TCID50/ml.As performed,test sensitivity was≥1.8TCID50/ml.

DNA sequencing and analysis

All DNA clones were completely sequenced with CSFV-speci?c primers by the dideoxynucleotide chain-termination method(Sanger et al.,1977)using the Dye Terminator Cycle Sequencing Kit(Applied Biosystems,Foster City,CA).Reaction products were sequenced on a PRISM3730xl automated DNA sequencer(Applied Biosystems).The ?nal DNA consensus sequence represented an average?ve-fold redundancy at each base position.Sequence comparisons were conducted using BioEdit software(https://www.360docs.net/doc/e11224361.html,/BioE-dit/bioedit.html).Mutant viruses isolated from infected animals were sequenced in the region where changes were introduced.

Animal experiments

Mutant viruses recovered from transfected SK6cells were screened for their virulence phenotype in swine relative to the virulent Brescia strain.Swine used in these studies were10to 12week old,forty-pound commercial breed pigs inoculated intra-muscularly(IM)with105TCID50of mutant viruses or wild-type parental virus(BICv).Clinical signs(anorexia,depression,purple skin discoloration,staggering gait,diarrhea and cough)and changes in body temperature were recorded daily throughout the21-day experiment.

Acknowledgments

BKG was supported by USDA-NRI grant2006-01614.This work was partially supported by USDA,ARS,PIADC,SCA#58-1940-8-853. We wish to particularly thank Ms.Melanie V.Prarat for editing the manuscript and the Plum Island Animal Disease Center Animal Care Unit staff for excellent technical assistance.

References

Cho,M.W.,Teterina,N.,Egger, D.,Bienz,K.,Ehrenfeld, E.,1994.Membrane rearrangement and vesicle induction by recombinant poliovirus2C and2BC in human cells.Virology202(1),129–145.

Table2

Swine survival and fever response following infection with CSFV NS4B mutants and parental BICv.

Fever

Virus No.of

survivors/

total no.Mean time to death No.of days to onset Duration no.of days Max daily temperature (days±SD)(days±SD)(days±SD)(°F±SD)

Walker A revertant0/37.7(0.6) 3.7(0.6) 4.7(0.6)105.2(0.8) Walker A deviant K206A0/39(1) 3.5(0.6) 5.7(1.2)106.5(1.2) Walker A deviant K206R0/38.7(0.6)3(0) 4.7(0.6)105.9(0.8) BICv0/39(1)3(0)6(1)107.0(0.8)

Table3

Viremia in pigs inoculated with parental BICv and NS4B mutant viruses.

Days post infection

4689

Walker A rev virus

Pig1 3.97 5.637.1D

Pig2 3.80 5.80 6.80D

K206R virus

Pig1 3.80 5.97 6.97D

Pig2 3.63 5.63 6.63D

K206A virus

Pig1 3.63 5.80 6.97D

Pig2 3.80 5.977.10D

BICv

Pig1 3.80 5.807.10D

Pig2 4.00 5.97 6.97D

Values expressed as log10TCID50/ml.D:deceased.

48 D.P.Gladue et al./Virology411(2011)41–49

Dever,T.E.,Glynias,M.J.,Merrick,W.C.,1987.GTP-binding domain:three consensus sequence elements with distinct spacing.Proc.Natl https://www.360docs.net/doc/e11224361.html,A84(7), 1814–1818.

Edwards,S.,Moennig,V.,Wensvoort,G.,1991.The development of an international reference panel of monoclonal antibodies for the differentiation of hog cholera virus from other pestiviruses.Vet.Microbiol.29(2),101–108.

Egger,D.,Wolk,B.,Gosert,R.,Bianchi,L.,Blum,H.E.,Moradpour,D.,Bienz,K.,2002.

Expression of hepatitis C virus proteins induces distinct membrane alterations including a candidate viral replication complex.J.Virol.76(12),5974–5984. Einav,S.,Elazar,M.,Danieli,T.,Glenn,J.S.,2004.A nucleotide binding motif in hepatitis

C virus(HCV)NS4B mediates HCV RNA replication.J.Virol.78(20),11288–11295. Einav,S.,Sklan,E.H.,Moon,H.M.,Gehrig,E.,Liu,P.,Hao,Y.,Lowe,A.W.,Glenn,J.S.,2008.

The nucleotide binding motif of hepatitis C virus NS4B can mediate cellular transformation and tumor formation without Ha-ras co-transfection.Hepatology 47(3),827–835.

Fauquet,C.M.,Mayo,M.A.,Maniloff,J.,Desselberger,U.,Ball,L.A.,Ed.2005.Virus Taxonomy:VIIIth Report of the International Committee on Taxonomy of Viruses.

Edited by M.A.M.C.M.Fauquet,J.Maniloff,U.Desselberger,and L.A.Ball(Elsevier Academic Press):ICTV.

Fernandez-Sainz,I.,Gladue,D.P.,Holinka,L.G.,O'Donnell,V.,Gudmundsdottir,I.,Prarat, M.V.,Patch,J.R.,Golde,W.T.,Lu,Z.,Zhu,J.,Carrillo,C.,Risatti,G.R.,Borca,M.V.,2010.

Mutations in classical swine fever virus NS4B affect virulence in swine.J.Virol.84

(3),1536–1549.

Gong,Y.,Trowbridge,R.,Macnaughton,T.B.,Westaway,E.G.,Shannon,A.D.,Gowans,E.J., 1996.Characterization of RNA synthesis during a one-step growth curve and of the replication mechanism of bovine viral diarrhoea virus.J.Gen.Virol.77(Pt11), 2729–2736.

Gorbalenya,A.E.,Koonin,E.V.,1989.Viral proteins containing the purine NTP-binding sequence pattern.Nucleic Acids Res.17(21),8413–8440.

Hofmann,K.,Stoffel,W.,1993.TMbase—a database of membrane spanning proteins segments.Biol.Chem.Hoppe Seyler374,166.

Hugle,T.,Fehrmann,F.,Bieck,E.,Kohara,M.,Krausslich,H.G.,Rice,C.M.,Blum,H.E., Moradpour,D.,2001.The hepatitis C virus nonstructural protein4B is an integral endoplasmic reticulum membrane protein.Virology284(1),70–81.

Kim,M.,Mackenzie,J.M.,Westaway,E.G.,https://www.360docs.net/doc/e11224361.html,parisons of physical separation methods of Kunjin virus-induced membranes.J.Virol.Meth.120(2),179–187. Koonin,E.V.,1993a.A common set of conserved motifs in a vast variety of putative nucleic acid-dependent ATPases including MCM proteins involved in the initiation of eukaryotic DNA replication.Nucleic Acids Res.21(11),2541–2547.

Koonin,E.V.,1993b.A superfamily of ATPases with diverse functions containing either classical or deviant ATP-binding motif.J.Mol.Biol.229(4),1165–1174.

la Cour,T.F.,Nyborg,J.,Thirup,S.,Clark,B.F.,1985.Structural details of the binding of guanosine diphosphate to elongation factor Tu from E.coli as studied by X-ray crystallography.EMBO J.4(9),2385–2388.

Lindenbach, B.D.,Thiel,H.-J.,Rice, C.M.,2007.Flaviviridae:the viruses and their replication,In:Knipe,David M.,Howley,Peter M.,Grif?n,Diane E.,Lamb,Robert A., Martin,Malcolm A.,Bernard,Roizman,Straus,Stephen E.(Eds.),Fundamental Virology,Fifth ed.Lippincott Williams&Wilkins,pp.1001–1152.

Lindstrom,H.,Lundin,M.,Haggstrom,S.,Persson,M.A.,2006.Mutations of the hepatitis

C virus protein NS4B on either side of the ER membrane affect the ef?ciency of

subgenomic replicons.Virus Res.121(2),169–178.

Miller,S.,Sparacio,S.,Bartenschlager,R.,2006.Subcellular localization and membrane topology of the Dengue virus type2Non-structural protein4B.J.Biol.Chem.281

(13),8854–8863.

Mimura,C.S.,Holbrook,S.R.,Ames,G.F.,1991.Structural model of the nucleotide-binding conserved component of periplasmic permeases.Proc.Natl https://www.360docs.net/doc/e11224361.html,A 88(1),84–88.

Mirzayan,C.,Wimmer,E.,1992.Genetic analysis of an NTP-binding motif in poliovirus polypeptide2C.Virology189(2),547–555.

Mitchell,M.S.,Rao,V.B.,2004.Novel and deviant Walker A ATP-binding motifs in bacteriophage large terminase-DNA packaging proteins.Virology321(2),217–221. Moser, C.,Stettler,P.,Tratschin,J.D.,Hofmann,M.A.,1999.Cytopathogenic and noncytopathogenic RNA replicons of classical swine fever virus.J.Virol.73(9), 7787–7794.

Moulin,H.R.,Seuberlich,T.,Bauhofer,O.,Bennett,L.C.,Tratschin,J.D.,Hofmann,M.A., Ruggli,N.,2007.Nonstructural proteins NS2-3and NS4A of classical swine fever virus: essential features for infectious particle formation.Virology365(2),376–389.

Pai,E.F.,Kabsch,W.,Krengel,U.,Holmes,K.C.,John,J.,Wittinghofer,A.,1989.Structure of the guanine-nucleotide-binding domain of the Ha-ras oncogene product p21in the triphosphate conformation.Nature341(6239),209–214.

Pai,E.F.,Krengel,U.,Petsko,G.A.,Goody,R.S.,Kabsch,W.,Wittinghofer,A.,1990.

Re?ned crystal structure of the triphosphate conformation of H-ras p21at1.35A resolution:implications for the mechanism of GTP hydrolysis.EMBO J.9(8), 2351–2359.P?ster,T.,Wimmer,E.,1999.Characterization of the nucleoside triphosphatase activity of poliovirus protein2C reveals a mechanism by which guanidine inhibits poliovirus replication.J.Biol.Chem.274(11),6992–7001.

Reed,L.J.,Muench,H.A.,1938.A simple method of estimating?fty per cent endpoints.

Am.J.Hyg.27,493–497.

Risatti,G.R.,Borca,M.V.,Kutish,G.F.,Lu,Z.,Holinka,L.G.,French,R.A.,Tulman,E.R.,Rock,

D.L.,2005.The E2glycoprotein of classical swine fever virus is a virulence

determinant in swine.J.Virol.79(6),3787–3796.

Rumenapf,T.,Unger,G.,Strauss,J.H.,Thiel,H.J.,1993.Processing of the envelope glycoproteins of pestiviruses.J.Virol.67(6),3288–3294.

Samuilova,O.,Krogerus,C.,Fabrichniy,I.,Hyypia,T.,2006.ATP hydrolysis and AMP kinase activities of nonstructural protein2C of human parechovirus1.J.Virol.80

(2),1053–1058.

Sanger,F.,Nicklen,S.,Coulson,A.R.,1977.DNA sequencing with chain-terminating inhibitors.Proc.Natl https://www.360docs.net/doc/e11224361.html,A74(12),5463–5467.

Sheng,C.,Zhu,Z.,Yu,J.,Wan,L.,Wang,Y.,Chen,J.,Gu,F.,Xiao,M,2010.Characterization of NS3,NS5A and NS5B of classical swine fever virus through mutation and complementation analysis.Vet.Microbiol.140(1–2),72–80.

Steffens,S.,Thiel,H.J.,Behrens,S.E.,1999.The RNA-dependent RNA polymerases of different members of the family Flaviviridae exhibit similar properties in vitro.J.Gen.

Virol.80(Pt10),2583–2590.

Suzich,J.A.,Tamura,J.K.,Palmer-Hill,F.,Warrener,P.,Grakoui,A.,Rice,C.M.,Feinstone, S.M.,Collett,M.S.,1993.Hepatitis C virus NS3protein polynucleotide-stimulated nucleoside triphosphatase and comparison with the related pestivirus and ?avivirus enzymes.J.Virol.67(10),6152–6158.

Tamura,J.K.,Warrener,P.,Collett,M.S.,1993.RNA-stimulated NTPase activity associated with the p80protein of the pestivirus bovine viral diarrhea virus.

Virology193(1),1–10.

Tautz,N.,Elbers,K.,Stoll,D.,Meyers,G.,Thiel,H.J.,1997.Serine protease of pestiviruses: determination of cleavage sites.J.Virol.71(7),5415–5422.

Terpstra,C.,Woortmeyer,R.,Barteling,S.J.,1990.Development and properties of a cell culture produced vaccine for hog cholera based on the Chinese strain.Dtsch Tier?rztl.Wochenschr.97(2),77–79.

Teterina,N.L.,Kean,K.M.,Gorbalenya,A.E.,Agol,V.I.,Girard,M.,1992.Analysis of the functional signi?cance of amino acid residues in the putative NTP-binding pattern of the poliovirus2C protein.J.Gen.Virol.73(Pt8),1977–1986.

Thiel,H.J.,Plagemann,P.G.W.,Moennig,V.,1996.Pestiviruses,In:Fields,B.N.,Knipe,

D.M.,Howley,P.M.(Eds.),Fundamental Virology,3rd ed.Lippincott-Raven,

Philadelphia,pp.1059–1073.

Thompson,A.A.,Zou,A.,Yan,J.,Duggal,R.,Hao,W.,Molina,D.,Cronin,C.N.,Wells,P.A., 2009.Biochemical characterization of recombinant hepatitis C virus nonstructural protein4B:evidence for ATP/GTP hydrolysis and adenylate kinase activity.

Biochemistry48(5),906–916.

Tsay,J.M.,Sippy,J.,Feiss,M.,Smith,D.E.,2009.The Q motif of a viral packaging motor governs its force generation and communicates ATP recognition to DNA interaction.Proc.Natl https://www.360docs.net/doc/e11224361.html,A106(34),14355–14360.

Walker,J.E.,Saraste,M.,Runswick,M.J.,Gay,N.J.,1982.Distantly related sequences in the alpha-and beta-subunits of ATP synthase,myosin,kinases and other ATP-requiring enzymes and a common nucleotide binding fold.EMBO J.1(8),945–951. Wang,P.,Wang,Y.,Zhao,Y.,Zhu,Z.,Yu,J.,Wan,L.,Chen,J.,Xiao,M.,2010.Classical swine fever virus NS3enhances RNA-dependent RNA polymerase activity by binding to NS5B.Virus Res.148(1–2),17–23.

Weiskircher,E.,Aligo,J.,Ning,G.,Konan,K.V.,2009.Bovine viral diarrhea virus NS4B protein is an integral membrane protein associated with Golgi markers and rearranged host membranes.Virol.J.6,185.

Wen,G.,Chen, C.,Luo,X.,Wang,Y.,Zhang, C.,Pan,Z.,2007.Identi?cation and characterization of the NTPase activity of classical swine fever virus(CSFV) nonstructural protein3(NS3)expressed in bacteria.Arch.Virol.152(8),1565–1573. Wen,G.,Xue,J.,Shen,Y.,Zhang,C.,Pan,Z.,2009.Characterization of classical swine fever virus(CSFV)nonstructural protein3(NS3)helicase activity and its modulation by CSFV RNA-dependent RNA polymerase.Virus Res.141(1),63–70. Xiao,M.,Zhang,C.Y.,Pan,Z.S.,Wu,H.X.,Guo,J.Q.,2002.Classical swine fever virus NS5B-GFP fusion protein possesses an RNA-dependent RNA polymerase activity.

Arch.Virol.147(9),1779–1787.

Xiao,M.,Li,H.,Wang,Y.,Wang,X.,Wang,W.,Peng,J.,Chen,J.,Li, B.,2006.

Characterization of the N-terminal domain of classical swine fever virus RNA-dependent RNA polymerase.J.Gen.Virol.87(Pt2),347–356.

Xiao,M.,Wang,Y.,Zhu,Z.,Yu,J.,Wan,L.,Chen,J.,2009.In?uence of NS5A protein of classical swine fever virus(CSFV)on CSFV internal ribosome entry site-dependent translation.J.Gen.Virol.90(Pt12),2923–2928.

Xu,J.,Mendez,E.,Caron,P.R.,Lin,C.,Murcko,M.A.,Collett,M.S.,Rice,C.M.,1997.Bovine viral diarrhea virus NS3serine proteinase:polyprotein cleavage sites,cofactor requirements,and molecular model of an enzyme essential for pestivirus replication.J.Virol.71(7),5312–5322.

49

D.P.Gladue et al./Virology411(2011)41–49

loadrunner学习总结

Loadrunner学习总结 LoadRunner,是一种预测系统行为和性能的负载测试工具。通过以模拟上千万用户实施并发负载及实时性能监测的方式来确认和查找问题,LoadRunner 能够对整个企业架构进行测试。企业使用LoadRunner能最大限度地缩短测试时间,优化性能和加速应用系统的发布周期。 LoadRunner可适用于各种体架构的自动负载测试,能预测系统行为并评估系统性能。操作流程如下: 1.录制脚本: 选择适当的协议,web服务器一般选择http协议。 录制方式一般选择HTML-based Script,但有下列情况选择URL-based Script:不是基于浏览器的应用程序,应用程序中包含javaScript脚本且产生了请求,基于浏览器的应用程序使用了https协议

默认设置记录的浏览器为IE,不要使用其他浏览器 在录制过程中不要后退页面 2.录制结束后点绿色方块按钮结束录制,系统会自动生成录制脚本。

3.录制完之后就是对脚本的回放处理,可以在运行时设置界面设置回放的设置, 如:迭代(重复次数)、步(开始新迭代时候的时间设置)、思考时间(录制时间的停留时间)等,设置好之后就开始回放。 4.回放结束后,回放的情况会显示出来,没有错误表示录制的进程没有问题。 5.负载测试运行

选择录制的脚本添加,然后确认。

可以在场景计划 可以在场景计划这里设置要测试的参数,比如开始用户数,持续时间,停止方式等。 如果想测定某个操作的响应时间,可以在脚本中插入事务,使用事务把该操作包装起来。分析执行结果的时候可以查看到该事务的响应时间。 插入集合点,可以使多个用户并发进行同一操作,提高操作的并发程度,以对服务器增加负载,测试并发能力。 在Run-Time Setting设置中,设置网络带宽以模拟不同带宽的网络;设置block、action的迭代次数。 对脚本进行参数化,设置参数变更方式

利用loadrunner分析场景、监视图表

7 分析以及监视场景 在运行过程中,可以监视各个服务器的运行情况(DataBase Server、Web Server 等)。 监视场景通过添加性能计数器来实现。这一章非常的重要,确定系统瓶颈全靠它了。 下面重点讲讲需要添加那些计数器,以及那些计数器代表什么意思。 由于Win2000 Professional、Server 以及Advanced Server 提供的计数器不完全相同,这 里我们讨论将以Server 为基准。 监视场景需要在Run 视图中设置 然后,出现添加计数器的对话框 其他的操作就和控制面板“性能”中添加性能计数器的操作一样,这里不再详细说明。本章主要说明一下各个系统计数器的含义(数据库的计数器不做重点,只是拿SQL Server2000 作为例子进行说明。因为数据库各个版本之间差异比较大,请参考您使用的数据

库系统的帮助)。 8 分析实时监视图表 这一章仅仅介绍几个最重要的图表。 Q1 事务响应时间是否在可接受的时间内?哪个事务用的时间最长? 看Transaction Response Time 图,可以判断每个事务完成用的时间,从而可以判断出那个事 务用的时间最长,那些事务用的时间超出预定的可接受时间。 下图可以看出,随着用户数的不断增加,login 事务的响应时间增长的最快! Q2 网络带宽是否足够? “Throughput”图显示在场景运行期间的每一秒钟,从Web Server 上接受到的数据量的值。拿这个值和网络带宽比较,可以确定目前的网络带宽是否是瓶颈。 如果该图的曲线随着用户数的增加,没有随着增加,而是呈比较平的直线,说明目前的 网络速度不能够满足目前的系统流量。 Q3 硬件和操作系统能否处理高负载? “Windows Resources”图实时地显示了Web Server 系统资源的使用情况。利用该图提供的数据,可以把瓶颈定位到特定机器的某个部件。

loadrunner结果分析论文(标准版)

Loadrunner 结果分析论文 指导老师:高小雷 作者:闵光辉 学校:东莞理工学院 班级:08计算机科学与技术2班 邮箱:mingh168@https://www.360docs.net/doc/e11224361.html, Loadrunner性能测试的目的: 自动性能测试是一项规范,它利用有关产品、人员和过程的信息来减少应用程 序、升级程序或修补程序部署中的风险。自动性能测试的核心原理是通过将生产 时的工作量应用于预部署系统来衡量系统性能和最终用户体验。构造严密的性能 测试可回答如下问题: ?应用程序是否能够很快地响应用户的要求? ?应用程序是否能处理预期的用户负载并具有盈余能力? ?应用程序是否能处理业务所需的事务数量? ?在预期和非预期的用户负载下,应用程序是否稳定? ?是否能确保用户在真正使用软件时获得积极的体验? 通过回答以上问题,自动性能测试可以量化更改业务指标所产生的影响。进而可 以说明部署的风险。有效的自动性能测试过程将有助于您做出更明智的发行决 策,并防止系统出现故障和解决可用性问题。 LoadRunner 包含下列组件: ?虚拟用户生成器用于捕获最终用户业务流程和创建自动性能测试脚本(也称为虚拟用户脚本)。 ?Controller 用于组织、驱动、管理和监控负载测试。 ?负载生成器用于通过运行虚拟用户生成负载。 ?Analysis 有助于您查看、分析和比较性能结果。 ?Launcher 为访问所有LoadRunner 组件的统一界面。 负载测试流程: 负载测试通常由五个阶段组成:计划、脚本创建、场景定义、场景执行和结果 分析。 计划负载测试:定义性能测试要求,例如并发用户的数量、典型业务流程和所需 响应时间。 创建Vuser 脚本:将最终用户活动捕获到自动脚本中。 定义场景:使用LoadRunner Controller 设置负载测试环境。 运行场景:通过LoadRunner Controller 驱动、管理和监控负载测试。 分析结果:使用LoadRunner Analysis 创建图和报告并评估性能。Loadrunner测试结果分析如下:

LoadRunner压力测试结果分析探讨

LoadRunner 压力测试结果分析探讨 分析原则: 1.具体问题具体分析(这是由于不同的应用系统,不同的 测试目的,不同 的性能关注点) 2. 查找瓶颈时按以下顺序,由易到难。 服务器硬件瓶颈 网络瓶颈(对局域网,可以不考虑) 服务器操作系统 瓶颈(参数配置) 中间件瓶颈(参数配置,数据库,web 服务器等) 瓶颈(SQL 语句、数据库设计、业务逻辑、算法等) 分析的信息来源: 1.根据场景运行过程中的错误提示信息 2.根据测试结果收集到的监控指标数据 .错误提示分析 分析实例: 1. Error: Failed to connect to server Connection 分析: A 应用服务死掉。 (小用户时:程序上的问题。程序上处理数据库的问题,实际测试中多半是 服务器链接的配置问题) B 、应用服务没有死 (应用服务参数设置问题) 应用 “172.17.7.230 〃 : [10060] Error: timed out Error: Server conn ecti on p rematurely “172.17.7.230 〃 has shut down the

对应的Apache 和tomcat 的最大链接数需要修改,如果连接时收到 connection refused 消息,说明应提高相应的服务器最大连接的设置,增加幅 度要根据实际情况和服务器硬件的情况来定,建议每次增加 25%! C 数据库的连接 (数据库启动的最大连接数(跟硬件的内存有关) ) D 我们的应用程序spring 控制的最大链接数太低 2. Error: Page download timeout (120 seconds) has expired 分析: 实际测试时有些资源需要请求外网,而我们的测试环境是局域网环境 3. Error “http://172.17.7.230/Home.do 分析: A 脚本设计错误,造成页面异常。服务器有响应! B 、并发数过大,造成服务器响应延迟。 4. Error page “text=xxxxx ” 分析: A 脚本设计问题,例如,前一脚本修改了某些内容,造成后面的脚本访问 异常。 B 、不确定因素,有时候回放正常的脚本,一放到场景中就出现这样的错误。 只能反复修改脚本! .监控指标数据分析 1.Vusers 数 A 、 应用服务参数设置太大导致服务器的瓶颈 B 、 页面中图片太多 C 、 在程序处理表的时候检查字段太大多 D 、

具体实例教你如何做LoadRunner结果分析

具体实例教你如何做LoadRunner结果分析 文本Tag:测试工具性能测试LoadRunner 【IT168 技术文档】1.前言: LoadRunner 最重要也是最难理解的地方--测试结果的分析.其余的录制和加压测试等设置对于我们来讲通过几次操作就可以轻松掌握了.针对Results Analysis 我用图片加文字做了一个例子,希望通过例子能给大家更多的帮助.这个例子主要讲述的是多个用户同时接管任务,测试系统的响应能力,确定系统瓶颈所在.客户要求响应时间是1 个人接管的时间在5S 内. 2.系统资源: 2.1 硬件环境: CPU:奔四2.8E 硬盘:100G 网络环境:100Mbps 2.2 软件环境: 操作系统:英文windowsXP 服务器:tomcat 服务 浏览器:IE6.0 系统结构:B/S 结构 3.添加监视资源

下面要讲述的例子添加了我们平常测试中最常用到的 一些资源参数.另外有些特殊的资源暂时在这里不做讲解了.我会在以后相继补充进来。 Mercury Loadrunner Analysis 中最常用的5 种资源. 1. Vuser 2. Transactions 3. Web Resources 4. Web Page Breakdown 5. System Resources 在Analysis 中选择“Add graph”或“New graph”就可以看到这几个资源了.还有其他没有数据的资源,我们没有让它显示. 如果想查看更多的资源,可以将左下角的display only graphs containing data 置为不选.然后选中相应的点“open graph”即可. 打开Analysis 首先可以看的是Summary Report.这里显示了测试的分析摘要.应有尽有.但是我们并不需要每个都要仔细去看.下面介绍一下部分的含义: Duration(持续时间):了解该测试过程持续时间.测试人员本身要对这个时期内系统一共做了多少的事有大致的熟 悉了解.以确定下次增加更多的任务条件下测试的持续时间。

LoadRunner测试结果分析

LoadRunner测试结果分析LoadRunner测试结果分析之我见一 LoadRunner生成测试结果并不代表着这次测试结果的结束,相反,这次测试结果的重头戏才刚刚开始。如何对测试结果进行分析,关系着这次测试的成功与否。网上关于LoadRunner测试结果如何分析的介绍相当匮乏,在总结他人的观点和自己的实验体会基础上来介绍如何进行LoadRunner测试结果分析。 1. LoadRunner测试结果分析的第一步应该是查看分析综述(Analysis Summary),其包括统计综述(Statistics Summary)、事务综述(Transaction Summary)、HTTP响应综述(HTTP Responses Summary)三部分。在统计综述中查看Total Errors的数量,HTTP响应综述中查看HTTP 404数量,若数值相对较大(HTTP 404则相对于HTTP 200),则说明系统测试中出错较多,系统系能有问题;另外查看事务的平均响应时间和其90%的事务平均响应时间,若时间过长,超过测试计划中的要求值,则说明系统的性能不满足我们的要求。 2.第二步对LoadRunner测试结果图进行分析,首先对事务综述(Transaction Summary)进行分析,该图可以直观地看出在测试时间内事务的成功与失败情况,所以比第一步更容易判断出被测系统运行是否正常。 3.接着分析事务平均响应时间(Average Transaciton Response Time),若事务平均响应时间曲线趋高,则说明被测系统处理事务的速度开始逐渐变慢,即被测系统随着运行时间的变化,整体性能不断下降。当系统性能存在问题时,该曲线的走向一般表现为开始缓慢上升,然后趋于平稳,最后缓慢下降。原因是:被测系统处理事务能力下降,事务平均响应时间变长,在曲线上表现为缓慢上升;而并发事务达到一定数量时,被测系统无法处理多余的事务,此时曲线变现为趋于平稳;当一段时间后,事务不断被处理,其数量减少,在曲线上表现为下降。如果被测系统没有等待机制,那么事务响应时间会越来越长,最后系统崩溃。

Loadrunner分析结果图说明

Loadrunner分析结果图说明 1、Running Vusers图 使用Vuser 图可以确定方案,执行期间Vuser 的整体行为。 X 轴表示从方案开始运行以来已用的时间。Y 轴表示方案中的Vuser 数。 Vuser-Rendezvous 图主要反映Vuser 是在什么时候集合在这个点上,又是怎样的一个被释放的过程. 图中可以看到在1分4秒的地方50个用户全部集中到达集合点,持续了5分48秒开始释放用户,整个过程持续了6分钟。 2、Hits per Second图 “每秒点击次数”,即使运行场景过程中虚拟用户每秒向Web服务器提交的HTTP请求数。 通过它可以评估虚拟用户产生的负载量,如将其和“平均事务响应时间”图比较,

可以查看点击次数对事务性能产生的影响。通过对查看“每秒点击次数”,可以判断系统是否稳定。系统点击率下降通常表明服务器的响应速度在变慢,需进一步分析,发现系统瓶颈所在。 3、Throughput图 “吞吐率”显示的是场景运行过程中服务器的每秒的吞吐量。其度量单位是字节,表示虚拟用在任何给定的每一秒从服务器获得的数据量。 可以依据服务器的吞吐量来评估虚拟用户产生的负载量,以及看出服务器在流量方面的处理能力以及是否存在瓶颈。 X 轴表示从方案开始运行以来已用的时间。Y 轴表示服务器的吞吐量(以字节为单位)。 “吞吐率”图和“点击率”图的区别: “吞吐率”图,是每秒服务器处理的HTTP申请数。 “点击率”图,是客户端每秒从服务器获得的总数据量。

4、Transaction Summary图 对事务进行综合分析是性能分析的第一步,通过分析测试时间内用户事务的成功与失败情况,可以直接判断出系统是否运行正常。 5、Average Transaction Response Time图 “事务平均响应时间”显示的是测试场景运行期间的每一秒内事务执行所用的平均时间,通过它可以分析测试场景运行期间应用系统的性能走向。 例:随着测试时间的变化,系统处理事务的速度开始逐渐变慢,这说明应用系统随着投产时间的变化,整体性能将会有下降的趋势。 可以将事务平均响应时间图与“正在运行的Vuser”图进行比较,了解正在运行的Vuser 的数目对事务执行时间产生的影响。例如:如果平均事务响应时间图显示执行时间逐渐改善,则 可以将其与“正在运行的Vuser”图进行对比,看执行时间是否因为Vuser 负载减少而得到改

07c语言程序设计教案程序的控制结构—选择结构if

《C语言程序设计》课程教案表 授课题目 第三章程序的控制结构(3)——选择结构if 课时安排 1 授课时间 教学目的和要求 1.掌握:条件表达式、if语句 2.熟悉:关系运算符和关系表达式、逻辑运算符和逻辑表达式 教学内容 1.基本内容:(1)关系运算符和关系表达式(2)逻辑运算符和逻辑表达式(3)条件语句2.重点:条件语句 讲课进程和时间分配 引子(15分钟) 关系运算就是比较运算,即将两个数据进行比较,判定两个数据是否符合给定的关系。 a > b a = = b a != b 1、关系运算符和关系表达式 (1)关系运算符及其优先次序 1)关系运算符 C语言中关系运算符为二目运算符,共有6种: < 小于关系运算符 <= 小于等于 > 大于 >= 大于等于 = = 等于) != 不等于 关系操作数可以是数值类型数据和字符型数据。 2)关系运算符的优先级 ①<、<=、> 和>= 为同一级,== 和!= 为同一级。且前4个高于后2个;结合方向 均为自左至右。 ②关系运算符的优先级低于算术运算符,但高于赋值运算符。 例如: a+b > b+c 等效于(a+b)>(b+c)。 (2+a)==(b-a) 等效于2+a == b-a。 (2)关系表达式 1)关系表达式的概念 是指用关系运算符将两个表达式连接起来进行关系运算的式子。 例如: a + b > b + c 比较两个算术表达式的值 a <= 2 * b 比较变量和算术表达式的值 'a' < 'b' 比较两个字符的ASCII码值 2)关系表达式的值—逻辑值(“真”或“假”) 由于C语言没有逻辑型数据,所以,用整数“1”表示“逻辑真”,用整数“0”表示“逻辑假”。 例如,假设a=3,b=4,c=5则: a>b的值为0(假)。 (a>b)!=c的值为1(真)。 (a

Loadrunner《Web项目测试实战》性能测试结果分析样章

5.4.2测试结果分析 LoadRunner性能测试结果分析是个复杂的过程,通常可以从结果摘要、并发数、平均事务响应时间、每秒点击数、业务成功率、系统资源、网页细分图、Web服务器资源、数据库服务器资源等几个方面分析,如图5- 1所示。性能测试结果分析的一个重要的原则是以性能测试的需求指标为导向。我们回顾一下本次性能测试的目的,正如错误!未找到引用源。所列的指标,本次测试的要求是验证在30分钟内完成2000次用户登录系统,然后进行考勤业务,最后退出,在业务操作过程中页面的响应时间不超过3秒,并且服务器的CPU 使用率、内存使用率分别不超过75%、70%,那么按照所示的流程,我们开始分析,看看本次测试是否达到了预期的性能指标,其中又有哪些性能隐患,该如何解决。 图5- 1性能测试结果分析流程图 结果摘要 LoadRunner进行场景测试结果收集后,首先显示的该结果的一个摘要信息,如图5- 2所示。概要中列出了场景执行情况、“Statistics Summary(统计信息摘要)”、“Transaction Summary(事务摘要)”以及“HTTP Responses Summary(HTTP响应摘要)”等。以简要的信息列出本次测试结果。 图5- 2性能测试结果摘要图

场景执行情况 该部分给出了本次测试场景的名称、结果存放路径及场景的持续时间,如图5- 3所示。从该图我们知道,本次测试从15:58:40开始,到16:29:42结束,共历时31分2秒。与我们场景执行计划中设计的时间基本吻合。 图5- 3场景执行情况描述图 Statistics Summary(统计信息摘要) 该部分给出了场景执行结束后并发数、总吞吐量、平均每秒吞吐量、总请求数、平均每秒请求数的统计值,如图5- 4所示。从该图我们得知,本次测试运行的最大并发数为7,总吞吐量为842,037,409字节,平均每秒的吞吐量为451,979字节,总的请求数为211,974,平均每秒的请求为113.781,对于吞吐量,单位时间内吞吐量越大,说明服务器的处理能越好,而请求数仅表示客户端向服务器发出的请求数,与吞吐量一般是成正比关系。 图5- 4统计信息摘要图 Transaction Summary(事务摘要) 该部分给出了场景执行结束后相关Action的平均响应时间、通过率等情况,如图5- 5所示。从该图我们得到每个Action的平均响应时间与业务成功率。 图5- 5事务摘要图

Loadrunner_PTS_Jmeter性能结果分析

PTS、Jmeter、LoadRunner压测对比(简单web压测) 阿里云性能测试(Performance Testing)是全球领先的SaaS性能测试平台,具有强大的分布式压测能力,可模拟海量用户真实的业务场景,让应用性能问题无所遁形。 性能测试包含两个版本,Lite版适合于业务场景简单的系统,免费使用;企业版适合于承受大规模压力的系统,同时每月提供免费额度,可以满足大部分企业客户。 主要优势有: 专业:分布式并发压测,施压能力无上限;模拟业务场景,性能缺陷暴露无疑;阿里性能专家在线,测试无忧。 易用:平台提供压测机,无需安装软件;脚本场景监控简单化,省时省力;1分钟上手,轻轻松松做性能测试。 经济:提供企业版免费额度,零成本使用;提前容量评估,促进业务快速发展;提升用户体验,快速扩大市场份额。 可靠:服务高质量容灾,可用性高达99.99%;测试结果真实准确;多种安全防护措施,保障数据安全。 用淘宝帐号/1688账号登陆,没有可以注册一个阿里云账号 PTS Lite(简易版): https://https://www.360docs.net/doc/e11224361.html,/lite/index.htm PTS (企业版): https://https://www.360docs.net/doc/e11224361.html,/aliyun/ 性能测试学习中心: https://https://www.360docs.net/doc/e11224361.html,/#/pub/pts BBS论坛:https://www.360docs.net/doc/e11224361.html,/thread/243.html 旺旺技术支持群:1473075831 一、简单Web压测场景: 场景:10个并发(立即启动),运行时间为10min,关闭(立即关闭) 压测:简单web压测,http GET请求压测 二、PTS、Jmeter、LoadRunner压测对比

1 利用LoadRunner进行性能测试和结果分析(系列)

1利用LoadRunner进行性能测试和结果分 析(系列) HP Mercury LoadRunner 是一款功能相当强大的性能测试工具,由三个部分构成, VUGen, Controller 以及Analysis. 其中VUGen负责进行脚本录制, Controller是一个总控中心,负责场景的配置,监控器的选取和监控,并选择合适的负载生成器进行执行, Analysis是一个分析模块,主要负责所有执行数据的分析以及报告的生成. 之所以说LoadRunner是强大的性能测试工具,主要是因为VUGen支持大概好几十种主流的协议. 因此支持的被测对象相当广泛,另外Analysis也有超强的功能,提供非常丰富的图表,供测试结束之后分 析和定位问题. 我使用Mercury LoadRunner有一年多时间,2006年6月通过了LoadRunner的SP考试,并于12月底参加了CPC考试,以2分之差失败. 在这一年之内对Controller和Analysis的使用有一些心得和体会,自己认为对LoadRunner有了入门的了解,大概能看懂一些主要的分析图表,包括事务相关的一些图表,所以希望作一个总结,也希望对渴望学习和了解LoadRunner的朋友有一些帮助. 因为时间有限,所以初步打算以两个系列的形式写出来,分别是Controller和Analysis. 首先会介绍Analysis. 下次开始介绍Analysis提供图表的概述. 欢迎访问Ricky的专业个人测试博客 https://www.360docs.net/doc/e11224361.html, 专注于测试自动化,性能测试以及测试工具 的研究 引用报告回复 TOP 专访:测试工具栏目版主 ---songfun 2#大中小发表于 2007-2-28

用If语句实现简单选择结构

程序设计基础 ——用If语句实现简单选择结构 教材模块:信息技术选修(1)算法与程序设计 年级:高一高二年级 建议教学时数:1学时 【教学目标】 1.知识与技能: (1)掌握If语句结构的格式、功能、用法及执行的基本过程和流程图的画法。 (2)能够运用If语句的双分支结构来解决问题。 (3)培养学生的逻辑思维能力,促进学生对问题解决方法的理解。 2.过程与方法: 通过教师讲解和演示,以具体的任务为驱动,通过学生相互协作,自主控究,提高学生用算法解决问题的综合应用能力。 3.情感、态度和价值观: 通过完成探究活动,感受程序设计的魅力,增强学生对信息技术学习的兴趣,体验成功的喜悦,激发对信息技术的求知欲。 【教学重难点】 重点:if语句的格式、功能、使用方法。 难点:对解决问题的方法和步骤的理解,并能根据实际问题写出代码。 【教学环境】 安装有VB程序的多媒体网络教室(一人一机),多媒体课件。 【教学过程】 课前准备: 1.先编写出关于某书城促销活动购书送购书卡的程序。 2.准备课堂用到的课件

教师讲解双分支结构的语法规则: Then

【布置作业】 1.复习If语句的相关内容 2.预习If语句的嵌套实现多重选择结构 3.完成教材P73页,第1题。 【教学反思】 通过对整个教学过程的认真回顾,学生都能够完全理解选择结构的基本语法特点,绝大部分学生也能够利用所学的知识编写程序解决实际生活中的问题,而且在整个课时量上也并不算少。之所以没有把其他选择结构在本节课上讲,是因为如果设计内容过多,学生反而不能够很清晰,深刻的理解。因此,为了让学生能够有更多的时间去体验、去操作、去发现问题,解决问题,只是在本节课中讲解了分支结构。事实证明,如此设计是可行而且也是必要的,只有给学生多一点操作实践的时间,学生才能真正的理解本课的内容。

Loadrunner分析功能介绍

Transactions(用户事务分析) 用户事务分析是站在用户角度进行的基础性能分析。 1、Transation Sunmmary(事务综述)对事务进行综合分析是性能分析的第一步,通过分析测试时间内用户事务的成功与失败情况,可以直接判断出系统是否运行正常。 2、Average Transaciton Response Time(事务平均响应时间)“事务平均响应时间”显示的是测试场景运行期间的每一秒内事务执行所用的平均时间,通过它可以分析测试场景运行期间应用系统的性能走向。例:随着测试时间的变化,系统处理事务的速度开始逐渐变慢,这说明应用系统随着投产时间的变化,整体性能将会有下降的趋势。 3、Transactions per Second(每秒通过事务数/TPS)“每秒通过事务数/TPS”显示在场景运行的每一秒钟,每个事务通过、失败以及停止的数量,使考查系统性能的一个重要参数。通过它可以确定系统在任何给定时刻的时间事务负载。分析TPS主要是看曲线的性能走向。将它与平均事务响应时间进行对比,可以分析事务数目对执行时间的影响。例:当压力加大时,点击率/TPS曲线如果变化缓慢或者有平坦的趋势,很有可能是服务器开始出现瓶颈。 4、Total Transactions per Second(每秒通过事务总数)“每秒通过事务总数”显示在场景运行时,在每一秒内通过的事务总数、失败的事务总署以及停止的事务总数。 5、Transaction Performance Sunmmary(事务性能摘要)“事务性能摘要”显示方案中所有事务的最小、最大和平均执行时间,可以直接

判断响应时间是否符合用户的要求。重点关注事务的平均和最大执行时间,如果其范围不在用户可以接受的时间范围内,需要进行原因分析。 6、Transaction Response Time Under Load(事务响应时间与负载)“事务响应时间与负载”是“正在运行的虚拟用户”图和“平均响应事务时间”图的组合,通过它可以看出在任一时间点事务响应时间与用户数目的关系,从而掌握系统在用户并发方面的性能数据,为扩展用户系统提供参考。此图可以查看虚拟用户负载对执行时间的总体影响,对分析具有渐变负载的测试场景比较有用。 7、Transaction Response Time(Percentile)(事务响应时间(百分比))“事务响应时间(百分比)”是根据测试结果进行分析而得到的综合分析图,也就是工具通过一些统计分析方法间接得到的图表。通过它可以分析在给定事务响应时间范围内能执行的事务百分比。 8、Transaction Response Time(Distribution)(事务响应时间( 分布))“事务响应时间(分布)”显示在场景运行过程中,事务执行所用时间的分布,通过它可以了解测试过程中不同响应时间的事务数量。如果系统预先定义了相关事务可以接受的最小和最大事务响应时间,则可以使用此图确定服务器性能是否在可以接受的范围内。Web Resources(Web资源分析) Web资源分析是从服务器入手对Web服务器的性能分析。 1、Hits per Second(每秒点击次数)

if选择结构

2、在XSDB.DBF数据表中查找学生王迪,如果找到,则显示学号、姓名、英语、生年月日,否则提示"查无此人!"。 ***********SPACE********** 【?】 XM="王迪" ***********SPACE********** 【?】姓名=XM IF FOUN() ***********SPACE********** 【?】学号, 姓名, 英语, 生年月日 ELSE ? "查无此人!" ENDIF USE RETURN 『答案』: 1 USE★XSDB 或 USE★XSDB★.DBF 2 LOCATE★FOR 或 LOCATE★ALL★FOR 3 DISPLAY 或 ? 或 DISPLAY ★OFF 或 DISP 3、在数据表学生.DBF中,将"姜冰"同学的名字修改成"江冰" SET TALK OFF CLEAR USE 学生 ***********SPACE********** LOCATE FOR 姓名=【?】 IF FOUND() ***********SPACE********** 【?】姓名 WITH "江冰" DISPLAY ***********SPACE********** 【?】 ?"对不起,没有姜冰这个人" ENDIF CLOSE ALL SET TALK ON RETURN 『答案』: 1 "姜冰" 或 '姜冰' 或 [姜冰] 2 REPLACE 3 ELSE 4、从键盘输入一个表的文件名,查找"姓名"为"刘洪"的记录。如果有该记录,则将该表结构及"姓名"为"刘洪"的记录一起复制成一个新表(表名为"A1");否则,仅复制表结构。 (设,表中有固定字段"姓名")。 SET TALK OFF ACCEPT TO A USE &A ***********SPACE********** 【?】 FOR 姓名="刘洪" IF NOT EOF( )

一个真实项目的LoadRunner软件性能测试的数据分析

一个真实项目的LoadRunner软件性能测试的数据分析 摘要: ezFAS消防监控软件是同方股份公司开发的一个功能强大的城市火灾远程监控管理平台,主要面向大型火灾监控管理中心如省市、大型厂矿企业、石油、各类区域和行业内部的消防管理部门,为主管部门提供实时报警、视频监听、故障检测、统计分析等功能。 ezFAS消防监控软件是同方股份公司开发的一个功能强大的城市火灾远程监控管理平台,主要面向大型火灾监控管理中心如省市、大型厂矿企业、石油、各类区域和行业内部的消防管理部门,为主管部门提供实时报警、视频监听、故障检测、统计分析等功能。 该系统包括报警受理系统,用户服务系统,信息查询系统,火警信息终端四部分组成。报警受理系统主要为监控中心提供实时报警,用户管理,视频查看,人员考勤,报表生成等各大主要功能。下面就对这套主要的报警受理系统的性能数据进行分析。 2 测试环境 服务器: CPU 型号:Inter(R) Core(TM)2 Duo T5450 主频:1.66GHZ 内存容量:1.00GB 操作系统:Microsoft Windows Server 2003 Enterprise Edition SP2 客户端: CPU 型号:Intel Pentium III 主频:930MHZ

内存容量:640MB 操作系统:Microsoft Windows XP Professional SP2 网络环境: 在测试网络中有且仅有两台测试计算机,测试机之间通过1个Hub连接。 3 测试场景 用户进入登陆模块,总共登陆500个用户,每分钟登陆10个用户。用户点击“ASE管理”,用户在查询的区县里面选择“石河子市”然后点击查找。查找结束后点击“退出”按钮,退出系统。 4 性能数据分析 我们对500个用户的同时登陆进程,进行每5分钟增加10个用户的加压测试。此次测试在250分钟后结束。 4.1 Transactions Sunmmary(事务综述) 用户事务分析是站在用户角度进行的基础性能分析。此次测试一共运行的事务数为9690145,成功 968750,失败250。 观察发现随着用户数量的不断增加,失败的事务开始出现,并且出现的频率逐步升高。 当程序运行到200个用户同时登陆时,失败事务开始出现。由此可以直接判断出当200个用户同步登陆时系统运行出现异常。此系统最大承受压力为200个用户同步登陆。

选择结构--IF条件语句

选择结构—IF条件语句 一:教材与学情分析 本课选自宁夏电子工业出版社版《信息技术》第五课,主要针对于初三年级学生。这一阶段的学生具备一定的数学基础和具有一定的比较、归纳能力,是一个正处在抽象逻辑思维已初步形成并继续发展的阶段。学习选择 结构程序设计就是要在这些基础上,借助具体事务为载体,了解程序解决问题的条件与办法。在学习本课之前,学生已经掌握关系逻辑表达式,了解顺序程序结构的执行流程。 二:教学目标 1、通过实例,让学生会IF条件语句的基本格式 2、通过实例,让学生明白程序的执行过程及运行顺序 3、体验选择结构的实例后,让学生能够编写IF选择结构程序 4、强化选择结构的编程思想,强化学生的意识 三:教学重难点 重点:IF条件语句的基本格式 难点:IF条件语句的应用 四:教学方法 讲授法练习法 五:教学环境 普通教室 六:教学过程

选择结构—IF条件语句 1.导入: 回顾之前学习过的顺序结构,顺序结构的核心是:依次执行。下面利用之前所学的内容,来解决一个问题: 问题1:输入a,b的值,并输出a,b的值 a=InputBox(“a=” , ”输入”) b=InputBox(“b=” , ”输入”) print “a=”; a print “b=”; b end 在这要强调程序的顺序结构,强化学生的意识,接着提出新的问题: 问题2:输入a,b的值,并输出a,b的较大值 通过分析,我们利用之前的内容是无法完成的,下面我们就来学习选择结构的IF条件语句 2.教学过程 一:格式 (1).格式一 if 条件表达式 then 语句组 End if

(2).格式二 if 条件表达式 then 语句组1 else 语句组2 End if 注意:1. If End If 须成对出现 2. 条件是指关系、逻辑表达式 二:执行过程 格式一 格式二 格式一执行过程:当条件满足时执行then 后语句组,否则跳过此 行执行下一行。 格式二执行过程:当条件满足时执行语句组1,否则执行语句组2。 三:练习

LoadRunner场景运行结果分析方法

本文对LoadRunner的场景运行结果进行分析的方法,总结成指导手册,以指导测试人员进行结果分析。结果分析工作的遵循如下过程: 1. 结果文件是以那种形式保存 每个系统测试结果保存方式均为一些文件夹,例如下图: 对每个结果的文件夹,我们打开进行同样操作。 2. 如何打开结果文件 点击文件夹中的图标的文件,如下图 LoadRunner Analysis工具会将结果文件打开 最终打开的界面如下

3. 如何设置全局过滤器 在LoadRunner Analysis工具中,点击File->Set Global Filter…,或者【Ctrl+B】快捷键 弹出设置过滤的页面: 选择过滤器,将Transaction Name定位我们所需要分析的事务名称,将Think Time定为不包含Think Time;

4. 如何获取关联图 在一幅图,比如平均事务响应时间图上,点击鼠标右键,选择Merger Graphs…,或【Ctrl+M】快捷键 点击后弹出如下页面

我们可以在下拉列表中选择,资源监控图越多,下拉列表中的选择项也就越多,例如我们选择Running Vusers,点击OK,(关联类型选择只是图形的显示方式不同而已,可以根据实际需求选择),得到如下的【平均事务响应时间——运行用户数】关联分析图: 5. 如何增加一张资源分析图 在结果文件打开后,点击左上角区域的 按钮,会弹出增加图形对话框 我们可以选择我们所要分析的资源图,蓝色特殊标识的部分是本结果文件中可以进行分析的数据,黑色标识,该图形数据没有数据,不能分析。 如下图选择Web Page Diagnostics节点下的Time to First Buffer Breakdown,点击Open Graph按钮

利用LoadRunner进行性能测试和结果分析报告材料

在场景执行的时候,虚拟用户的事务执行生成了结果数据,为了在执行测试期间监控场景的执行情况,我们可以用loadrunner的在线监测工具.为了观察执行结束后的总结情况, 你可以用下列工具: ?虚拟用户的执行日志文件包含了每个虚拟用户在场景中运行的所有记录,这些文件位于场景结果文件的目录中.(在单个用户的执行模式下,这些文件位于脚本目录中) ?控制器的输出窗口显示了场景执行的过程,如果场景执行失败,可以在这个输出窗口中找到有用的调试信息. ?分析图表帮助你定位系统的性能表现,并且提供有关事务和虚拟用户的有用信息,你也可以通过关联不同运行场景的结果到一个图表中来比较不同的图表,从而更加准确的定位性能问题 ?图表数据和原始数据视图用Excel格式显示了生成图表数据的真实原始数据, 为了更深入的分析,你也可以把这些文件存储起来. ?分析模块提供的报告功能让你可以从整体上浏览整个性能的报告,包括每个图表的数据,你也可以创建一个Word格式的文件,其中会自动创建用户需要的各种格式. 分析模块提供的常用图表可以分为以下一些主要类别: ?虚拟用户图表 提供了虚拟用户的状态和统计信息 ?错误信息图表 提供了场景中错误发生的信息 ?事务图表 提供事务的性能和响应时间信息 ?Web资源图表 提供了吞吐量,每秒点击,HTTP每秒响应,每秒重试次数和web用户每秒下载页面的信息等 ?Web页面细分图 提供每个Web页面组件的大小和下载时间图等 ?用户自定义数据点图 提供用户自定义数据点的信息图等 ?系统资源图表 提供场景执行期间我们通过计数器添加的系统的资源统计信息 ?网络监控图表 提供网络延迟的图表信息 ?防火墙服务器监控图表 提供防火墙服务器的资源图表 ?Web 服务器资源图表 提供Web服务器比如Apache, IIS服务器等的资源使用信息 ?Web 应用服务器图表 提供各种web应用服务器的资源使用情况 ?数据库服务器资源图表 提供数据库服务器的资源使用情况 此外,还提供了其他一些不太常用的图表信息,图表信息的多少取决于你的被测对象和场景中监控器以及计数器的选择情况. 下次我们会重点分析虚拟用户图表. 今天主要介绍虚拟用户类型和错误类型两种图表 虚拟用户类型的图表可以提供三个图,分别是: * 运行虚拟用户图 * 虚拟用户汇总图 * 集合点图 其中虚拟用户图显示的是执行负载测试的每一秒执行脚本的虚拟用户个数,以及他们的状态。虚拟用户图

LoadRunner分析结果英文翻译

1.执行的摘要 1.1.目标 Add text here 1.2.会议概要分析 概要分析时期: 15/06/2012 11:19:22 - 15/06/2012 11:20:38 设定名称: Scenario1 会议结果:C:\Documents and Settings\Administrator\Local Settings\Temp\res\res.lrr 持续时间: 1 minute and 16 seconds. 统计表摘要 最大运行数: 6 总的生产量(字节):9,095,876 平均生产量(字节/秒):118,128 总采样数:1,110 每秒平均采样数:14.416 观察HTTP响应的概要 整体错误:10 Scenario Behavior Over Time The SLA status of the following measurements displayed over time. You can select a specific time range for each transaction in order to analyze the time range. 测量法名称时间范围 0 0 0 0 0 0 0 0 0.8 0.4 0 0 0.4 0 0 1 运行在测试错误的情况下

00:00:00 00:00:05 00:00:10 00:00:15 00:00:20 00:00:25 00:00:30 00:00:35 00:00:40 00:00:45 00:00:50 00:00:55 00:01:00 00:01:05 00:01:10 00:01:15 2.Scenario Configuration方案配置 2.1.Files文件 Name:名字Scenario1方案1 Results in Session会议结果: C:\Documents and Settings\Administrator\Local Sett ings\Temp\res\res.lrr Session Name会议名字: Session1.lra会议1.1ra 2.2.Scheduler Information调度程序信息 Started On开始时间: 15/06/2012 11:19:22 Ended On结束时间: 15/06/2012 11:20:39 Duration:持续时间Until Completion直到结束 Load Behavior:负载反应Load all Vusers simultaneously同时加载所有场景 2.3.Scripts脚本 Script脚 本 Type类型File文件 yunwangOA Multi+QTWeb E:\HP\LoadRunner\scripts\yunwangOA\https://www.360docs.net/doc/e11224361.html, r 2.4.Run Time Settings运行时间设置

IF实现选择结构

IF实现选择结构 [1]教学目的:掌握块语句的格式和块语句的使用 [2]教学重点:块语句的格式的掌握 [3]教学难点:块语句的使用 [4]教学方法:循序渐进和讲演法 [5]教学工具:多媒体 [6]教学内容: 教师活动学生活动复习导入 1、选择结构程序中当有多个输出时需要用到循环的嵌套,请问其格式是怎么样的? 2、IF THEN ELSE对应关系是怎么样的。 3、编程:例4.3 通过上面的情况我们可以看出当有嵌套时一个程序显得很长,除了不便于书写外还不便于阅读,所以现在我们来学习:块IF语句结构。学生回答:(中等学生能回答)学生回答(能回答) 学生回答(中等学生能勉强写出) 板书: 4.5用块IF实现选择结构 一、块IF语句的一般格式 IF 条件THEN 语句组1 ELSE 语句组2 END IF 1、功能 实现选择结构。 2、说明 1)注意格式中“语句定义符”的书形式。THEN ELSE不再任何内容,在IF的结束要对应一个END IF

2)注意书写的层次感,以便于阅读。 例1:书上例4。4(上课时讲) 例2:书上例4.4(上课时讲) 练习1:输入三个正数,判断是否是三角形 程序: INPUT “ENTER A,B,C”;A,B,C IF A+B>C AND B+C>A AND A+C>B THEN PRINT “能组成一个三角形” ELSE PRINT “不能组成一个三角形” END IF 二、多个输出结果的块语句格式 IF 条件THEN 语句组1 ELSE IF 条件THEN 语句组2 ELSE 。。。 END END IF 即块语句的嵌套。 例3:书上例4.6

相关文档
最新文档