铝硅合金加锶变质的研究与实践_柳秉毅

铝硅合金加锶变质的研究与实践_柳秉毅
铝硅合金加锶变质的研究与实践_柳秉毅

铝硅合金加锶变质的研究与实践

柳秉毅

摘 要 对Sr变质铝硅合金中的S i相在不同变质程度下的形态进行了考察与分析,提出了Sr变质共晶S i的一种生长方式及其机理,并且对工业用铝硅共晶合金Sr变质的处理工艺及效果进行了研究。

关键词 铝硅合金 Sr变质 变质机理 变质效果

Sr是继Na之后被发现的又一种变质效果优良的铝硅合金变质剂,近十几年来在生产中已得到应用。而且,人们对于Sr的变质机理及其与Na变质的异同所进行的研究,也取得了不少进展。本文在这方面有关研究成果的基础上并结合作者的工作,对Sr的变质机理进行了探讨。同时,在生产条件下对铝硅共晶合金进行了Sr变质的工艺试验,并考察了Sr变质对该合金组织与性能的影响。

1 铝硅合金Sr变质机理的研究

111 实验方法

以铸造铝硅合金Z AlSi12Cu1Mg1Ni1为实验材料,在750℃的合金液中加入0104wt-%的变质剂Sr(以Al-Sr中间合金加入),变质后于720℃将合金液分别浇入保温砖铸型(预热250℃)、干砂型和金属型中,获得具有不同冷却速度(大致为50℃/min、120℃/min和260℃/ min)的合金试块,对这些试块分别取样后制成电镜样品,经盐酸酒精溶液深腐蚀后在扫描电镜(带电子探针)下进行观察。

112 实验结果分析

铝硅合金中的Si相一般以小平面方式生长,其生长面为{111}面。未变质的共晶Si如图1所示,呈板片状,Si片表面有一些无规则的层台。研究表明,未变质Si相内部含有少量的{111}系孪晶,此时共晶Si可通过孪晶面凹角(TPRE)形成的生长台阶或Si晶表面作为外缺陷存在的固有原子台阶而侧向铺开生长成为片状。

合金中加入Sr后,共晶Si的形态开始了由片状向枝条状的转变,即向变质结构的转变,而这种变质结构的形成将主要受变质剂含量和冷却速度的影响。在对变质程度很低(Sr量过少或冷却速度很慢)的合金试样考察后发现,尽管共晶Si仍主要为片状,但部分Si片宽度减小,分枝增多。这一现象来自于Si相中孪晶密度的增加。如图2所示,在慢速冷却下形成的变质不足的Si片上可观察到一些脊状结构,这些脊线是该晶体以另一些{111}面为生长面作分枝生长时的枝晶端部的初期凸起(它们与原来的{111}生长面的交线是〈110〉晶向),其中有些脊上已长出短片晶。这表明图2所示的这个晶粒中已发生了多个{111}系统的孪晶生长。图3中的共晶硅由于冷速的提高,变质程度明显改善,但仍不够充分,表现为Si晶体出现较多的侧向枝条状生长,分枝细密程度增加,但枝晶还不很发达,较少高次分枝,且尚有局部片状晶存在。另外,从图3中还可发现,Si枝晶主干的轴向生长方向多为两个{111}面的交线,即〈110〉向,主干一侧的分枝往往在同一平面(某一{111}平面)上作平行生

长。图4则显示了合金组织达到充分变质时的共晶Si形态,即高度细密分枝的纤维状结构。此时Si枝条的外形仍保持着棱角,表明变质后共晶Si依然保持小平面生长的特点。

图1 未变质的片状共晶S i 图2 变质程度很低(50℃/min)的形态 SE M 1000× 共晶S i SE M 3500× 

图3 变质程度不足(120℃/min) 图4 充分变质(260℃/min)的的共晶S i SE M 1000× 共晶S i SE M 3500×

113 Sr变质共晶Si的一种生长方式及其机理

从以上分析可见,随着变质充分程度的提高,Si相中孪晶密度显著增加,可引起两个或更多个{111}孪晶系统同时作用而形成Si枝晶,从而使共晶Si的分枝形态呈现多样化。然而,从考察结果中也发现,在{111}平面上以〈110〉族晶向作轴向分枝生长是Sr变质共晶Si 的一种较普遍的生长形态。Si相的孪晶方向是〈112〉,但当在同一{111}面上的两个互为60°夹角的〈112〉孪晶系共同作用的结果,却是使得Si晶体孪晶分枝的实际生长方向成为〈110〉向。图5显示了这种以〈110〉向生长的共晶Si枝条生长端部的形貌。

另一方面,在变质后的共晶转变中,与共晶Si密切协同生长的α(Al)相对Si枝晶侧向铺开生长的抑制作用以及Sr对这种抑制作用的的促进,则是导致Si相变质结构形成的又一重要因素。有关研究证实,Sr的加入提高了合金中α相的化学位,增强了共晶凝固时α相的形核和生长能力。从而,在结晶时将出现共晶领先相Si晶体长大并不断分枝,与α(Al)相不断在Si枝晶间迅速形核生长交替进行的局面,处在Si枝晶间的α相将阻止Si分枝晶体的侧向

生长而迫使其沿轴向生长而成为枝条状,如图6所示。在Si 相分枝的根部是Al 和Sr 原子最富集处,必然最有利于α相的析出生长,α相既可以以Si 晶表面(如{111}Si 或{100}Si )为基底直接形核生长,也可以通过搭桥机制而长入Si 相的枝晶间。如果含Sr 量少或冷却速度较慢,都将降低Sr 原子在固液界面上的浓度,因而削弱α相在Si 枝晶间的析出能力,此时将发生共晶Si 枝晶根部因侧向长大而发宽,甚至连结成片的情况(如在图3中部分地区所看到的),即出现变质不良

图5 带有孪晶凹角的变质共晶 图6 共晶S i 变质结构形成示意图

S i 枝晶生长端部 SE M 15000×

114 Sr 和Na 变质行为的若干比较

作为变质剂,Sr 和Na 对铝硅合金结晶的影响有许多相似之处。它们都能消除合金中的AlP 对初晶Si 的异质生核作用,促进α(Al )相的形核生长,以及促进Si 相的孪晶分枝生长,从而使共晶Si 变质成为纤维状。据推算,能够使Si 晶体{111}面产生孪晶的元素的原子半径有一定的范围,它们与Si 原子半径之比应在1155~1185之间,Na 为1158,而Sr 为1184,均在此范围内。Na 的原子半径比Sr 小,因此Na 在Si 相中有更高的富集程度,并导致Na 与Sr 对Si 相生长方式的影响略有差别。由于Na 变质可极大地增加Si 相中孪晶密度,在构成

四面锥顶的四个{111}面上的〈112〉孪晶系都频繁作用,产生大量生长台阶,而Si 原子在这些{111}面上的堆砌推动着晶体实际上沿着〈100〉向生长。因此Na 变质时,尽管共晶Si 分枝方

向是〈112〉或〈110〉,但多数枝晶却可再转而沿〈100〉向生长,各次分枝形成空间交错分布而呈簇状。Sr 变质时,Si 相中孪晶密度比Na 变质时要低,共晶Si 分枝多以〈110〉或〈112〉向生长,各次分枝往往处于相交的不同{111}平面上而呈交叉状(参见图6,每两个{111}面间的夹角为7015°,其补角为10915°

)。当然,上述变质共晶Si 枝条生长结构上的差异,并不致于引起合金性能的明显变化。2 铝硅合金锶变质的实践211 试验条件和方法

所用合金材料为Z AlSi12Cu2Mg1(Z L108合金),合金液的熔炼和保温采用30千瓦电阻坩锅炉,750℃下加入1%以混合Sr 盐和Na 盐为主的精炼变质熔剂处理合金液。处理合格后浇注,浇注温度720~750℃。铸造方法包括砂型铸造(干型)、金属型铸造和挤压铸造,金属

9

4第2期 柳秉毅:铝硅合金锶变质的研究与实践

型铸造和挤压铸造的试样由活塞毛坯铸件上取得。试样T6处理规范为510℃保温5小时后水淬,190℃时效8小时。对所取试样进行了拉伸试验,对变质和T6处理后的合金组织进行了金相和扫描电镜观察。

212 变质效果分析

Sr虽为长效变质剂,但有较长的潜伏期,在Sr变质的同时加入一定量的Na,是为了实现快速变质的要求。当Na的变质能力消失(变质时间>1小时)后,Sr仍处于变质有效期中。

表1给出了合金经历不同变质时间后的力学性能情况,可看出变质效果是稳定的。金相及扫描电镜观察显示,合金中初晶α相分布均匀,共晶组织变质状况良好。在铸件的浇注过程中,合金的流动性良好。对铸件厚壁部位的剖面检查未发现有明显的缩松、针孔缺陷存在。由于Sr具有提高合金流动性的作用,因而有利于合金铸造性能的改善。

表1 Z AlSi12Cu2Mg1合金Sr变质后的力学性能

变质时间/h

砂型铸造(干型)金属型铸造挤压铸造

试样号

铸态T6处理

σ

b

MPa

δ×100

σ

b

MPa

δ×100

试样号

铸态T6处理

σ

b

MPa

δ×100

σ

b

MPa

δ×100

试样号

T6处理

σ

b

/MPaδ×100

0.5S-021580.4236 2.0J-02227 1.7249 1.6Y-02298 1.6

1S-03

S-04

166

160

1.0

1.5

260

227

1.8

1.2

J-03

J-04

245

261

1.6

2.0

311

283

2.3

1.3

Y-03

Y-04

324

331

2.0

1.8

2S-05

S-06

170

161

1.6

2.2

237

233

1.2

2.0

J-05

J-06

252

254

1.7

1.8

323

284

1.7

1.3

Y-05

Y-06

328

352

1.6

2.0

213 变质合金重熔后的组织与性能

经Sr变质处理的铝硅合金,在重新熔化后依然能保持其变质效果,无须再次变质。而且,由于Sr变质时的潜伏期主要决定于Sr原子在合金液中的扩散速度,而重熔时Sr已固溶在合金中且分布均匀,因此重熔后合金的变质不表现出潜伏期,亦无需再补加Sr。本试验中合金每次重熔后均保持2小时。图7显示了经两次重熔后砂型试样的显微组织。表2给出了重熔后砂型铸造和挤压铸造试样的力学性能。这些试验结果表明,重熔后的合金不仅仍然具有合格的变质组织,而且其力学性能也并不降低。

表2 Sr变质Z AlSi12Cu2Mg1合金重熔后的力学性能

砂型铸造(干型)挤压铸造

重熔次数状态试样号σb/MPaδ×100

重熔

次数

状态试样号σb/MPaδ×100

二次

铸态

SC-21

SC-22

160

146

110

017

一次T6处理

Y C-11

Y C-12

357

369

211

110 T6处理

SC-24

SC-25

230

248

016

019

二次T6处理

Y C-21

Y C-22

338

326

210

110

05 南京机械高等专科学校学报 2000年6月

214 热处理对合金组织与性能的影响

经Sr 变质后的共晶Si ,由于分枝增多且晶内存在较高密度的晶体缺陷,因而处于较高的能态,在其后的热处理过程中容易发生枝晶的熔断和粒化。本试验中,变质后的共晶Si 在铸件T 6处理时的固溶保温阶段的数小时内即已充分粒化(如图8所示),从而有利于合金强度和塑性的提高。但对于Z L108这类合金来说,T 6处理在粒化共晶Si 的同时,也对α相产生沉淀强化,降低了其塑性。由表1和表2中数据可见,T 6处理后合金的强度有显著增加,但塑性的变化却不明确。这是因为热处理对合金力学性能的影响是对Si 相和α相两方面影响的综合结果

图7 Sr 变质铝硅合金第二次重熔 图8 Sr 变质铝硅合金T 6处理后

后的显微组织

共晶S i 的粒化

3 结论

(1)Sr 变质铝硅合金共晶结晶时,Si 是领先相。Sr 在促使共晶Si 产生孪晶分枝的同时,

也促进α相在Si 枝晶间的析出生长,从而使共晶Si 枝晶在α相的包围下长成纤维状结构。

(2)Sr 变质共晶Si 的分枝形态呈现出一定的多样性,其中,在{111}平面上以〈110〉族晶向进行分枝生长是Sr 变质共晶Si 的一种较普遍的生长方式。

(3)Sr 的变质效果良好并具有长效性和可重熔性。Sr 与适量Na 合加则可消除Sr 变质的潜伏期。

(4)Sr 变质共晶Si 在热处理过程中易于实现粒化,从而有利于增加合金的强度和塑性。

参考文献

11黄良余1铝硅合金变质机理的新发展和新观点1特种铸造及有色合金,1995(4)(5)21康积行等1铝硅合金钠锶合加变质的研究1特种铸造及有色合金,1988(5)

(柳秉毅 本校动力工程系副教授)

1

5第2期 柳秉毅:铝硅合金锶变质的研究与实践

利用煤矸石生产硅铝合金的工艺研究

利用煤矸石生产硅铝合金的工艺研究 李晓波殷建华 山西丰喜肥业股份有限公司闻喜公司北京安泰科信息有限公司 摘要:本文论述了利用电热法加工煤矸石生产硅铝合金的基本原理及产品的主要用途,这为充分开发利用废弃的煤矸石找到了一条极好的途径。 关键词:煤矸石;硅铝合金;结壳带;吸附精炼法 1、概述 随着我国煤炭产量的增长,煤矸石的排除量不断增加。据全国性调查统计,截止1991 年底,我国煤矸石排出总量已达22亿吨以上,占地约17万亩。现在每年排出的煤矸石量为 1.3亿吨,占地约1万亩。煤矸石是夹在煤层中的矸石,由于储存在不同年代的地层中,故 其各种性能有所不同。但总的来说,煤矸石的主要矿物成分为粘土矿物、非粘土矿物。常见 的有磁铁矿、金红石、云母、有机物等,其有机物的发热量一般在3350~6280大卡/kg,硫 含量大部分为1%,少数为4%以上。煤矸石的化学成分,见表1。工业分析结果,见表2。 表1 煤矸石化学成分分析 项目 SiO2 Al2O3TiO2 CaO MgO K2O Na2O SO3P2O5 Fe2O3烧失 量 含量 (%)50.13 22.571.00 2.01 0.80 1.41 0.51 0.69 0.03 2.03 17.88 表2 煤矸石工业分析结果单位:% 项目水份灰份挥发份全硫固定碳发热量(KJ/kg)坩埚粘结性 数值1.42 83.62 11.35 0.98 5.94 5268 2 由表1、表2可以看出,煤矸石的化学成分与粘土的化学成分大致相似,主要为SiO2 和Al2O3这两种有用成分,其余均为次要成分。煤矸石的发热量一般在5268kJ/kg左右。因此,可利用其化学成分生产硅铝合金。该产品可作复合脱氧剂用于炼钢脱氧;用于制取共晶 硅铝合金;提取纯铝;制成锌铝合金用于钢材镀层;用作处理废水的絮凝剂;用作生产某些 金属的还原剂等。采用含铝35~60%的硅铝合金作还原剂与采用75%(含硅)的硅铁相比, 还原温度可降低50~100℃,生产能力可提高5%以上。 2、电热法制取硅铝合金的方法与原理 2.1.方法及特点 目前,电热法生产硅铝合金一般以含有氧化铝和氧化硅的矿物为原料,用碳质材料为还 原剂,经电炉熔炼直接制得。 在自然界中含有氧化铝和氧化硅的矿物广泛存在,如铝土矿、高岭土、粘土、蓝晶石、 硅线石和煤矸石等。矿物种类繁多,不仅大大扩展了原料来源,还可以解决一些废物的综合 利用问题。电热法硅铝合金是在矿热炉内熔炼的。矿热炉的有效功率可达80%以上。可使 用交流电源,电热法制取硅铝合金需在2000~2200℃的高温下进行,熔炼过程对炉料质量、

不同变质处理对铝合金组织性能的影响

不同变质处理对铝合金组织性能的影响 摘要:在铸造Al-15%Si合金熔炼过程中分别加入变质剂P盐、P盐+Al-Sr中间合金对其进行变质处理,分析不同变质剂及它们的复合形式对合金力学性能和显微组织的影响。实验结果表明,P盐和Al-Sr 中间合金都对合金组织有一定的细化作用,其中P盐主要细化初晶硅,P盐+Al-Sr中间合金的复合变质剂能同时细化初晶硅和共晶硅。实验证明加入复合变质剂后合金的显微组织细化程度最高,力学性能最为优越。 关键词:铸造Al-Si合金、变质处理、显微组织、性能 引言 铝合金是目前采用最多的轻金属合金材料,而铸造Al-Si系列合金是铝合金系中应用最早、最广泛的铝合金,它是重要的合金之一,具有优异的铸造性能,良好的力学性能与物理化学性能。它是目前研究和应用最为广泛的铸造铝合金,其产量占铸铝总产量的80%~90%,适用于各种铸造方法。因此,研究Al-Si系列合金的组织性能特点,进一步探寻在普通生产工艺中强化铝硅合金性能的方法,具有重要的理论意义和工程应用价值。 铸造Al-Si合金具有良好的力学性能、铸造性能和切削性能,广泛应用于航空航天和你汽车工业。Al-Si未变质处理时,共晶Si以粗大的针、片状存在,严重割裂了合金基体,降低了合金的强度和塑性。Sr对共晶硅起到很好的变质作用,同时却促进了粗大的柱状和树枝状

Al晶粒的形核生长,这说明对铸造Al-Si合金仅变质处理是不够的,还有必要对枝晶进行等轴化和细化,消除这种组织对合金力学性能的不利影响。 本文采用了不同的变质剂对Al-15%Si合金进行变质处理,研究了变质处理对合金组织的影响规律,同时初步探讨变质剂对Al-Si合金的细化变质机理。 1、实验方案设计 1.1材料的选择 本实验的目的在于研究不同变质剂对于铝合金组织及其性能的影响,为了实验的顺利进行以及实验过程之中出现较少的干扰因素,选择二元Al-Si合金作为本次实验的研究对象,由于变质处理作用的主要机制在于改变铸态下的Si的形态、数量及其分布,再加之合金液体要具有相对较好的流动性,最终确定Al-15Si作为实验材料。 1.2实验设备 1)锭模的选择 由于实验的需要和操作过程的顺利进行,选择金属型模具。 2)熔炼设备 坩埚电阻炉、温度控制器、其它工具、石墨坩埚、石墨搅拌棒、配套的热电偶、天平、钟罩、撇渣勺、浇勺、夹钳等。 3)金像显微设备 金相显微镜,型号:ZEISS-Imager

铝硅合金的熔炼

铝硅合金的熔炼 冶金1班:郑伟1143081004 前言:从20世纪韧铝合金用于铸造工业以来,合金的成分有了很大的发展,合金的品种越来越丰富。早期使用的铸造铝台金含t3%2n和3%cu。这种合金在第一次世界大战前后用量很大,后来由于金屑型铸造的发展而被铝铜合金取代。同时,铝硅台金开始得到应用.铝镁合金也随之推出。 1919年,美国生产的铝合金铸件,97%以上由含8%cu的铝合金铸造。1933年,用这种合金生产的铸件仍占铝合金铸件的50%左右。除了在铸态下使用的合金外,后来又开发出可以热处理的铝锅台金,含大约4%cu o 随着金屑型铸造和压铸工艺的发展,铝硅合金得到广泛应用。近年来,在铸造领域应用的铝合金,除了铝硅系列合金之外,还有铝锅系列、铝镁系列、铝锌系列和其他系列的铝合金。在这些系列的合金中,除了少数的二元合金外,大多数都是添加多种合金元素的多元合金。 摘要:铝硅合金熔炼性质工艺流程 正文: 铝硅系列合金具有良好的铸造性能,较小的线胀系数,耐磨性能好,气密性也很好。这种合金被广泛地应用于铸造复杂的铸件,如汽车发动机铸件等。 铝的国家标准 铸造铝合金生产中所用的铝包括电解原铝重熔用铝锭和一定数量的再生铝。有些牌号的铸造铝合金要以电解原铝为原料,有些牌号则可以用大部分再生铝和小部分电解原铝作原料.有些牌号甚至可以完全用再生铝作原料。 电解原铝是用冰品石—氧化铝熔融盐电解法生产的。自中华人民共和国成立以来,我国的电解铝工业从无到有p生产技术和铝产量都有很大发展。1999年我国铝的总产量已达265万吨,跃居世界第三位,仅次于美国和俄罗斯。2003年我国铝的总产量达到542万吨,居世界首位。但是.我国铝的人均占有量还很少。 硅的国家标准 我国工业硅必须符合国家标憋哪288l一91,工业硅厂工业硅的内控标准如表2.4,2.5所示。

铝合金熔炼工艺流程和操作工艺

铝合金熔炼工艺流程和操作工艺(一) 装料 熔炼时,装入炉料的顺序和方法不仅关系到熔炼的时间、金属的烧损、热能消耗,还会影响到金属熔体的质量和炉子的使用寿命。装料的原则有: 1、装炉料顺序应合理。正确的装料要根据所加入炉料性质与状态而定,而且还应考虑到最快的熔化速度,最少的烧损以及准确的化学成分控制。 装料时,先装小块或薄片废料,铝锭和大块料装在中间,最后装中间合金。熔点易氧化的中间合金装在中下层。所装入的炉料应当在熔池中均匀分布,防止偏重。 小块或薄板料装在熔池下层,这样可减少烧损,同时还可以保护炉体免受大块料的直接冲击而损坏。中间合金有的熔点高,如AL-NI和AL-MN合金的熔点为750-800℃,装在上层,由于炉内上部温度高容易熔化,也有充分的时间扩散;使中间合金分布均匀,则有利于熔体的成分控制。 炉料装平,各处熔化速度相差不多这样可以防止偏重时造成的局部金属过热。 炉料应进量一次入炉,二次或多次加料会增加非金属夹杂物及含气量。 2、对于质量要求高的产品(包括锻件、模锻件、空心大梁和大梁型材等)的炉料除上述的装料要求外,在装料前必须向熔池内撒20-30kg粉状熔剂,在装炉过程中对炉料要分层撒粉状熔剂,这样可提高炉体的纯洁度,也可以减少损耗。 3、电炉装料时,应注意炉料最高点距电阻丝的距离不得少于100mm,否则容易引起短路。 熔化 炉料装完后即可升温。熔化是从固态转变为液态的过程。这一过程的好坏,对产品质量有决定性的影响。 A、覆盖 熔化过程中随着炉料温度的升高,特别是当炉料开始熔化后,金属外层表面所覆盖的氧化膜很容易破裂,将逐渐失去保护作用。气体在这时候很容易侵入,造成内部金属的进一步氧化。并且已熔化的液体或液流要向炉底流动,当液滴或液流进入底部汇集起来时,其表面的氧化膜就会混入熔体中。所以为了防止金属进一步氧化和减少进入熔体的氧化膜,在炉料软化下塌时,应适当向金属表面撒上一层粉状熔剂覆盖,其用量见表。这样也可以减少熔化过程中的金属吸气。 覆盖剂种类及用量 炉型及制品电气熔炼煤气炉熔炼 覆盖剂用量普通制品特殊制品普通制品特殊制品 (占投量) /% 0.4-0.5 0.5-0.6 1-2 2-4 覆盖剂种类粉状熔剂 Kcl:Nacl按1:1混合 B、加铜、加锌 当炉料熔化一部分后,即可向液体中均匀加入锌锭或铜板,以熔池中的熔体刚好能淹没住锌锭和铜板为宜。 这时应强调的是,铜板的熔点为1083℃,在铝合金熔炼温度范围内,铜是溶解在铝合金熔体中。因此,铜板如果加得过早,熔体未能将其盖住,这样将增加铜板的烧损;反之如果加得过晚,铜板来不及溶解和扩散,将延长熔化时间,影响合金的化学成分控制。 电炉熔炼时,应尽量避免更换电阻丝带,以防脏物落入熔体中,污染金属。 C、搅动熔体 熔化过程中应注意防止熔体过热,特别是天然气炉(或煤气炉)熔炼时炉膛温度高达1200℃,在这样高的温度下容易产生局部过热。为此当炉料熔化之后,应适当搅动熔体,以使熔池里各处温度均匀一致,同时也利于加速熔化.

6班-铝硅合金的细化和变质处理实验报告

1.实验目的 1)熟悉铸造铝硅合金的熔炼、精炼、细化和变质处理的过程; 2)掌握铸造铝硅合金精炼、细化和编制处理的基本原理及方法; 3)掌握细化剂和变质剂对铸造铝硅合金的影响。 2.实验内容 1)对熔融的Al-7Si合金进行细化处理; 2)对熔融的Al-7Si合金进行变质处理; 3)在光学显微镜下观察,评价合金的细化和变质处理效果。 3.实验原理 3.1 铝硅合金晶粒细化技术及其机理 铸造铝合金铸态时通常呈现三种不同的晶粒状态:等轴晶、柱状晶和枝状晶。有目的地一直柱状晶和枝状晶生长,促进细小等轴晶形成,这种工艺过程就叫做晶粒细化处理。 晶粒细化是通过控制晶体的形核和长大来实现的。细化处理的最基本原理是促进形核,抑制长大。而形核质点主要有两种来源:一是包括快速凝固法、动力学方法和成分过冷法等的内生形核质点,二是向熔体中添加晶粒细化剂的外来形核质点。目前,添加细化剂成为生产过程中最有效、最实用的方法。对于铝硅合金,通常将细化元素Ti、B以中间合金的形式加入熔体来实现晶粒的细化。 3.2 铝硅合金变质处理技术及其机理 铝硅合金中,由于Si相在自然生长条件下会长成块状或片状的脆性相,严重的割裂基体,降低合金的强度和塑性,因而必须采用变质处理工艺,使共晶硅形貌发生变化,提高合金性能。 4.实验步骤 1)在两个Al2O3坩埚中分别加入1000g的铝硅合金原料,在电阻炉中升温至720℃,溶化 后保温1小时以促进成分的均匀化; 2)对精炼处理后的Al-7Si合金教主一组试样; 3)向一个坩埚中加入0.03%的B进行晶粒细化处理; 4)向另一个坩埚中加入0.03%的Sr进行变质处理; 5)1-2人为一组,每个20-30分钟以组为单位浇注试样,为充分观察细化和变质处理的孕

铝合金精炼

典型铝合金熔炼工艺 ?2013-11-19 11:18:57 ?来源:中铝网 ?我要评论 随着科学技术的发展,汽车、造船、航空、航天及其他制造业对铝合金铸件的品质要求也愈来愈高,除了保证化学成分、力学性能和尺寸精度外,不允许铸件有气孔、缩孔等缺陷。而铝合金的熔炼则是铸件生产过程中的一个很重要的工序。多年来的生产经验证明,熔炼工艺过程控制不严,铸件很容易产生针孔、氧化夹渣、缩松等缺陷,直接影响铸件质量。因此,要想获得优质铝合金铸件,必须严格控制熔炼工艺。 一、熔炼前的准备 1.严格控制炉料质量。炉料质量是铸造生产的源头,直接影响到最终铸件的质量,成分不合格导致产品成批性报废。因此,要高度重视。 必须做到: ①严格控制炉料中新旧炉料的比例,回炉料所占炉料质量百分比应小于等于70%; ②保证炉料干净,炉料需经吹砂后使用;

③三等回炉料枷浇冒口匀使用前应经重熔精炼处理; ④炉料应充分预热,去除水分、油污等杂质; ⑤由于铭合金有铝硅类、铝铜类、铝镁类等合金,合金牌号较多,使用的元素也比较多,且互相影响,要求严格管理,不可混料; ⑥配料、称量要准确,比如ZL104合金,考虑到除气、排渣及变质过程中的损耗,Mg元素应在实际配料时多加炉料质量的 0.02%-0.03%,才能保证铸件的化学成分。 2.熔炼工具。熔炼使用的址涓及熔炼工具须清理干净且涂上涂料,以保证使用时与铝合金有效隔离,减少合金液受到杂质污染,并且需要充分预热,址涓要烘烤至暗红色再加入炉料熔炼,以防水蒸气带入合金中使合金的气体增加、针孔度增加。 3.其他工作。严格按已制订好的工艺规范作好覆盖剂、精炼剂及变质剂的准备工作。 二、熔炼操作 熔炼步骤如下。 ①装料。在预热后的柑A中装入预制合金锭、优质回炉料,再加中fol合金,最后加合金元素。 ②温度控制。严格控制铝合金熔炼的温度,只有合适的温度才能获得高质量的合金液,避免过热。若温度过高,会加大合金中各种元

ZL101A铝合金变质效果研究

ZL101A铝合金变质效果研究 铝硅合金在消失模铸造铝合金运用中占有重要位置。而消失模铸造铝合金中,由于初晶硅相、共晶硅相大量存在,以及铝元素的吸氢特性,导致铝合金铸件多种铸造缺陷及铸件机械强度不够。本文通过实验并经过金相检验及力学性能测试证明,在铸造过程中添加变质剂能有效的改善这些问题。 标签:铝合金变质;消失模铸造;金相检验 1 变质处理 铝合金变质处理就是,在铝合金熔铸过程中,加入别的元素,通过这些元素作用于合金中的金属相,使其凝结过程发生一定变化,从而达到细化晶粒或者改变晶粒的形态的作用。现在铸造工业中,选用的变质剂种类比较多,主要有Na 盐、K盐、Be盐、稀土类、还有Sr元素等。变质方式主要有以下三种:a.改变、细化初晶硅;b.细化、改变共晶硅;c.改变杂质相。本文所研究的是钠盐和锶合金(含锶10%)对ZL 101A的变质效果。 2 实验 2.1 实验方案 2.1.1 按照日常生产配料熔炼铝水,待铝锭、配料完全溶解,熔炼结束后按照生产工艺继续铝水精炼,精炼结束后将铝水自熔炼炉导入保温炉(在铝水流入保温炉的过程中加入变质剂)待温度达到720℃后保温1小时,在特定的磨具中浇铸检测试样,并浇铸2组(每组3根)拉力试棒。未变质的标注a,钠盐变质为b,锶变质为c。拉力试棒也依次标注a,b,c。 2.1.2 在相同的冷却条件下,待试样完全凝结冷却后,在试样相同部位截取相同长度的试块,并做好标识。拉力试棒的加工按铝合金拉力试棒标准加工车制。 2.1.3 对试样a,b,c进行加磨制,抛光,腐蚀加工,进行金相检测,硬度检测,拉力试棒进行抗拉测试。 2.1.4 对检测结果进行分析研究。 2.2 实验过程及结果 3结束语 金相图片显示,通过钠盐或者锶变质共晶硅的形态基本都被细化了,铝合金的机械性能和硬度得到良好的改善提高。另外该次实验的生产条件下锶合金的变质效果要比钠盐的变质效果好一点,钠盐的变质效果比较缓慢一点,金相图片显

变质剂的用图学习资料

变质剂的用图

精品资料 铝合金变质剂的变质效果和特点 1)钠盐变质剂变质方法 Na可使共晶硅的结晶由短圆针状变为细粒状,并降低共晶温度,增加过冷度,细化晶粒。其细化效果,对冷的慢的砂型、石膏型铸件而言比较好,还有分散铸件(铸锭)缩窝的作用,这对要求气密性好的铸件有重要的作用。钠盐变质法的成本低,制备也比较简单,适合批量小、要求不很高的产品,其缺点是:钠是化学活泼性元素,在变质处理中氧化、烧损激烈、冒白色烟雾,对人体和环境都有危害,操作也不太安全,特别是易使坩埚腐蚀损坏,它的充分变质有效时间短,一般不超过1h。钠还使Al-Mg系合金的粘性增加,恶化铸造性能,当钠量多时,还会使合金的晶粒催化,所以Al-Mg系合金和含Mg 量高于2%的Al-Si合金,一般都不用钠盐变质剂来进行变质处理,以免出现所谓“钠脆”现象 2)铝锶中间合金变质法这是国外使用的较多的一种长效变质方法。加入量为炉料总重量的0.04-0.05%的Sr。其优点是变质效果比钠盐好,氧化烧损也比钠盐小,有效变质持续时间长,对坩埚的腐蚀性也比钠盐小,因而可使坩埚的使用寿命延长。这种变质法操作也比使用钠盐安全卫生,不产生对人体和环境有害的气体,变质效果也比钠盐好,一般有80-90%的良好变质合格率。其缺点是:成本比钠盐高,要预先配制成中间合金(否则就要采用锶盐变质剂),没有钠盐那样的有分散铸件缩窝的作用。 3)铝锑中间合金变质法这种方法也是用的较多的一种长效变质方法。加入量为炉料总重量的0.2-0.3%的Sb,可获得长效变质效果,即使到铝合金重熔,此变质效果仍起作用。其变质效果与合金的冷却速度有关,冷却速度快(如在金属型中铸造),变质效果好;冷却速度慢(如在石膏型、砂型中铸造),则变质效果差。但应注意,已经过钠盐或锶盐或铝锶中间合金变质过的铝合金不能再加Sb来变质,因为这样会形成Na3Sb化合物而使合金的晶粒粗大、性能变坏,从而反使钠、锶的变质效果降低。 4)SR813磷复合细化剂和SR814磷盐复合细化剂孕育法这是近年开发的一种适合过共晶型铝硅合金的初晶Si的细化剂。因为P在铝合金液中形成AlP的微细结晶核种,细化晶粒的效果很好,有效持续孕育时间也长,但它会与Na、Sr、Sb形成化合物,降低它们对共晶硅结晶的细化效果,所以,已经使用Na、Sr、Sb作过变质处理的铝合金,不要再加P来作变质处理。 5)铝钛中间合金变质法其中含有4%左右的钛,钛是细化晶粒效果很好的元素,形成的TiAl3成为初晶α枝晶的异质结晶核种,能有效地细化晶粒和防止铸造裂纹,对易产生铸造裂纹的Al-Cu-Mg合金(如ZL207)很合适。由于钛量太多,又是通过与炉料一起熔化、扩散、融合来细化晶粒的,故其细化效果虽没有钛硼熔剂好,但仍可达到一级晶粒的效果。其次是TiAl3的密度比铝合金液大,如合金保温时间过长,就有可能沉降,凝聚成夹杂物,要严格注意。 6)钛硼熔剂细化法由于钛硼熔剂中同时含有Ti和B两种细化晶粒作用很强的元素,它们在铝合金液中形成TiAl3和TiB2,未熔化的TiAl3和不熔化的TiB2(其相对密度4.4,熔点 仅供学习与交流,如有侵权请联系网站删除谢谢2

铝合金的变质

铝合金的变质 铝合金 1)钠盐变质剂变质方法 Na可使共晶硅的结晶由短圆针状变为细粒状,并降低共晶温度,增加过冷度,细化晶粒。其细化效果,对冷的慢的砂型、石膏型铸件而言比较好,还有分散铸件(铸锭)缩窝的作用,这对要求气密性好的铸件有重要的作用。钠盐变质法的成本低,制备也比较简单,适合批量小、要求不很高的产品,其缺点是:钠是化学活泼性元素,在变质处理中氧化、烧损激烈、冒白色烟雾,对人体和环境都有危害,操作也不太安全,特别是易使坩埚腐蚀损坏,它的充分变质有效时间短,一般不超过1h。钠还使Al-Mg系合金的粘性增加,恶化铸造性能,当钠量多时,还会使合金的晶粒催化,所以Al-Mg系合金和含Mg量高于2%的Al-Si 合金,一般都不用钠盐变质剂来进行变质处理,以免出现所谓“钠脆”现象 2)铝锶中间合金变质法 这是国外使用的较多的一种长效变质方法。加入量为炉料总重量的0.04-0.05%的Sr。其优点是变质效果比钠盐好,氧化烧损也比钠盐小,有效变质持续时间长,对坩埚的腐蚀性也比钠盐小,因而可使坩埚的使用寿命延长。这种变质法操作也比使用钠盐安全卫生,不产生对人体和环境有害的气体,变质效果也比钠盐好,一般有80-90%的良好变质合格率。其缺点是:成本比钠盐高,要预先配制成中间合金(否则就要采用锶盐变质剂),没有钠 盐那样的有分散铸件缩窝的作用。 3)铝锑中间合金变质法 这种方法也是用的较多的一种长效变质方法。加入量为炉料总重量的0.2-0.3%的Sb,可获得长效变质效果,即使到铝合金重熔,此变质效果仍起作用。其变质效果与合金的冷却速度有关,冷却速度快(如在金属型中铸造),变质效果好;冷却速度慢(如在石膏型、砂型中铸造),则变质效果差。但应注意,已经过钠盐或锶盐或铝锶中间合金变质过的铝合金不能再加Sb来变质,因为这样会形成Na3Sb化合物而使合金的晶粒粗大、性能变坏, 从而反使钠、锶的变质效果降低。 4)SR813磷复合细化剂和SR814磷盐复合细化剂孕育法 这是近年开发的一种适合过共晶型铝硅合金的初晶Si的细化剂。因为P在铝合金液中形成AlP的微细结晶核种,细化晶粒的效果很好,有效持续孕育时间也长,但它会与Na、Sr、Sb形成化合物,降低它们对共晶硅结晶的细化效果,所以,已经使用Na、Sr、Sb作过变质 处理的铝合金,不要再加P来作变质处理。 5)铝钛中间合金变质法 其中含有4%左右的钛,钛是细化晶粒效果很好的元素,形成的TiAl3成为初晶α枝晶的异质结晶核种,能有效地细化晶粒和防止铸造裂纹,对易产生铸造裂纹的Al-Cu-Mg合金(如ZL207)很合适。由于钛量太多,又是通过与炉料一起熔化、扩散、融合来细化晶粒的,故其细化效果虽没有钛硼熔剂好,但仍可达到一级晶粒的效果。其次是TiAl3的密度比铝合

铸造铝合金熔炼工艺

铸造铝合金熔炼工艺 1工艺适用范围本熔炼工艺适用于砂型和金属型铸造ZL101A 合金的熔炼,可针对于重力铸造、低压铸造、倾转浇注、调压铸造等成型工艺使用。 本工艺可作为ZL101A 合金熔炼的母工艺,针对某一特定的成型工艺,如需特殊指出,可在此工艺基础上形成相应熔炼工艺,但不允许与母工艺相互冲突。 2工艺文件的抄报与保存工艺文件抄报、抄送范围:总师、副总师、技术部、质量部。工艺文件保存范围:电子文件备份和纸质文件送档案室保存,技术部、质量部各存一份使用文件。 3工艺详细内容 3.1熔炼设备、工具的选择及对后续熔炼质量的影响 3.1.1铝合金料熔化设备规定使用熔炼设备范围为:坩埚电阻炉,燃气连续熔化炉。对于金属型铸造可采用两种熔炼设备,使用燃气连续熔化炉熔化铝液,然后转包到坩埚电阻炉进行后续处理(精炼及变质);也可使用坩埚电阻炉熔化铝液及进行后续处理(精炼及变质)。 如采用金属型低压铸造、调压铸造成型工艺,可使用侧面开口注入铝液的机下炉进行连续生产。 采用坩埚电阻炉熔化铝液,铝液温度控制750℃以下,熔化过程的铝液吸气较少;采用燃气连续熔化炉熔化铝液,铝液温度控制容易超750℃,熔化过程的铝液吸气倾向较大。

3.1.2熔炼工具的选择及准备 熔炼前熔炼工具的准备对铝液熔炼质量影响较大,坩埚采用石墨及SiC 材质,使用前需进行预热烘干,烘干工艺如图1;如采用金属材质坩埚,最好选用不锈钢材质,如选用铸铁材质坩埚,以合金球墨铸铁为好。常用的浇包、浇勺等多采用不锈钢制作。 及工具进行喷砂处理,去除表面的铁锈及污物,然后预热到120~180 ℃,逐层喷涂,浇包、浇勺的涂料厚度0.3~0.8mm 为宜,坩埚涂料可稍厚一些。涂料最好选用专用的金属型非水基涂料,也可自行配制,基本配方如表1 所示,使用前涂料需预热到50~90 ℃。 表1 涂料配方 3.1.3炉料的存放与处理, 熔炼所使用的炉料需存放在干燥、不易混淆和污染的地方,铝

铝合金的变质处理

铝合金的变质处理 铸锭组织的不均匀性集中的影响到铸锭的性能,用于锻造、轧制和挤压的铸锭特别不希望降低合金工艺塑性的柱状组织。通常,具有细小晶粒组织、细微的晶粒内部结构和过剩相均匀分布的合金具有最好的铸态性能和最高的压力加工塑性。采用增大冷却速度、低温浇注、超声波振荡铸造、电磁铸造等措施均有利于获得上述理想组织,但这些办法均有局限性,只有对合金采取变质处理才是调整铸锭组织的根本手段。 一、变质处理概述 所谓变质处理就是在少量的专门添加剂(变质剂)的作用下改变铸态合金组织,使金属或合金的组织分散度提高的过程。目前,这种处理方法的技术术语很不统一,有的叫细化处理,还有的叫孕育处理。变质处理的分类也各不一样。有人根据金属及合金的最终组织变化特征将变质处理分为三类:把改变初生树枝晶和其他初生晶尺寸的处理叫第一类变质处理,把改变初生树枝晶内部结构的处理叫第二类变质处理,把改变共晶组织的处理叫第三类变质处理。也有人根据变质剂的作用特性,把变质处理分为三类四组(见表2—5—3)。还有人按对结晶着的合金的物理作用和冶金作用来分类。显然,这些概念之间的界限是很难区分的。本手册把变质处理理解为金属及合金铸锭组织弥散度的提高。 表2—5—3变质剂的类别及其作用特性 类别

变质剂 组别 作用性质 可能的变质机构 I 晶核变质剂 l 不起化学作用,但结构上具有共格性 起晶核或生核基底作用,如铝中的TiC及其他高熔点夹杂物 2 起化学作用且有结构上的共格性 包晶反应产生晶核质点,并改变周围液相的成分浓度,如钛和铝作用生成的TiAl, Ⅱ 吸附变质剂 3 活性吸附或物理吸附 吸附在晶面上,阻碍晶粒成长,促使过冷增核,如铝硅合金中加钠 Ⅲ 改变结构不 匀性变质剂

6063铝合金铸锭的生产工艺及详细流程

6063铝合金铸锭的生产工艺及详细流程 一.Al-Mg-Si系合金的基本特点: 6063铝合金的化学成份在GB/T5237-93标准中为0.2-0.6%的硅、 0.45-0.9%的镁、铁的最高限量为0. 35%,其余杂质元素(Cu、Mn、 Zr、Cr等)均小于0.1%。这个成份范围很宽,它还有很大选择余地。 6063铝合金是属铝-镁-硅系列可热处理强化型铝合金,在AL-Mg-Si 组成的三元系中,没有三元化合物,只有两个二元化合物Mg2Si和M g2Al3,以α(Al)-Mg2Si伪二元截面为分界,构成两个三元系,α(Al)- Mg2Si-(Si)和α(Al)-Mg2Si-Mg2Al3,如图一、田二所示: 在Al-Mg-Si系合金中,主要强化相是Mg2Si,合金在淬火时,固溶 于基体中的Mg2Si越多,时效后的合金强度就越高,反之,则越低, 如图2所示,在α(Al)-Mg2Si伪二元相图上,共晶温度为595℃,Mg 2Si的最大溶解度是1.85%,在500℃时为1. 05%,由此可见,温 度对Mg2Si在Al中的固溶度影响很大,淬火温度越高,时效后的强 度越高,反之,淬火温度越低,时效后的强度就越低。有些铝型材厂 生产的型材化学成份合格,强度却达不到要求,原因就是铝捧加热温 度不够或外热内冷,造成型材淬火温度太低所致。 在Al-Mg-Si合金系列中,强化相Mg2Si的镁硅重量比为1.73,如 果合金中有过剩的镁(即Mg:Si>1. 73),镁会降低Mg2Si在铝中的 固溶度,从而降低Mg2Si在合金中的强化效果。如果合金中存在过剩 的硅,即Mg:Si<1.73,则硅对Mg2Si在铝中的固溶度没有影响, 由此可见,要得到较高强度的合金,必须Mg:Si<1.73。 二.合金成份的选择 1.合金元素含量的选择 6063合金成份有一个很宽的范围,具体成份除了要考虑机械性能、加 工性能外,还要考虑表面处理性能,即型材如何进行表面处理和要得 到什么样的表面。例如,要生产磨砂料,Mg/Si应小一些为好,一般 选择在Mg/Si=1-1.3范围,这是因为有较多相对过剩的Si,有利于 型材得到砂状表面;若生产光亮材、着色材和电泳涂漆材,Mg/Si在 1.5-1.7范围为好,这是因为有较少过剩硅,型材抗蚀性好,容易 得到光亮的表面。 另外,铝型材的挤压温度一般选在480℃左右,因此,合金元素镁硅 总量应在1.0%左右,因为在500℃时,Mg2Si在铝中的固溶度只有 1.05%,过高的合金元素含量会导致在淬火时Mg2Si不能全部溶入 基体,有较多的末溶解Mg2Si相,这些Mg2Si相对合金的强度没有 多少作用,反而会影响型材表面处理性能,给型材的氧化、着色(或涂

ADC12铝合金的细化变质处理

ADC12铝合金的细化变质处理 一、实验目的 1)熟练ADC12铝合金的熔炼、精炼、细化和变质处理过程。 2)了解ADC12铝合金的组织变质处理的基本原理和方法。 3)分析晶粒细化剂(Al-5Ti-B\Al-5Ti-C)对ADC12合金的组织的细化效果及其影响。 4)分析变质剂(Mn\Sr) 对ADC12合金的组织的变质效果及其影响。 5)分析RE元素对ADC12合金的组织的细化变质效果及其影响。 6)了解各种变质的的单因素影响及正交实验的效果。 二、原理概述 由于Al-Si共晶合金(ADC12)有很好的铸造性能,且铸件轻、比强度高、热膨胀系数小、耐腐蚀性能高及切屑性能好, 故被广泛用于航天航空、汽车等工业。在再生铝合金ADC12铸件中,α-Al相是最主要的组织。在铸态时,α-Al相呈树枝状,并且比较粗大,其取向没有一定的规律,较为杂乱,这使得其性能不是很好。Fe在A l合金中通常被认为是最有害的杂质元素, 常见的Fe相为α-Fe 相( A l8 S iFe2 )和β-Fe 相( Al5 SiFe) 两种。硬而脆的针状的β-Fe相会破坏金属基体的连接强度, 大幅降低合金的力学性能(如抗拉强度)。Fe在A l合金中作为有害元素会显著降低合金的力学性能, 影响断裂粗糙程度等。 1.铝硅合金的细化处理 铝硅合金细化处理的目的主要是细化合金基体α-Al的晶粒。晶粒细化是通过控制晶粒和形核和长大来实现的。细化处理的基本原理是促进形核,抑制长大。对晶粒细化的基本要求是: 1)含有稳定的异质固相形核颗粒、不易溶解。 2)异质形核颗粒与固相α-Al间存在良好的晶格匹配关系。 3)异质形核颗粒应非常细小,并在铝熔体中呈高度弥散分布。 4)加入细化剂不能带入任何影响铝合金性能的有害元素或杂质。 晶粒细化剂的加入一般采用中间合金的方式。常用晶粒细化剂有以下几种类型:二元Al-Ti合金、三元Al-Ti-B合金、Al-Ti-C合金以及含稀土的中间合金。它们是工业上广泛应用的最经济、最有效的铝合金晶粒细化剂。这些合金元素加入到铝熔体中后,会与Al发生化学反应,生成 TiAl3、TiC、B4C等金属间化合物。这些金属间化合物相在铝熔体中以高度弥散分布的细小异质固相颗粒存在,可以作为α-Al形核的核心,从而增加反应界面和晶核数量,减小晶体生长的线速度,起到晶粒细化的作用。 晶粒细化剂的加入量与合金种类、化学成分、加入方法、熔炼温度以及浇注时间等有关。若加入量过大,则形成的异质形核颗粒会逐渐聚集,当其密度比铝

铝硅合金的熔铸及变质

铝硅合金熔铸及组织分析(一、二) 一、实验目的: 1、了解及学习合金的熔铸全过程; 2、掌握铝硅合金的变质处理; 3、学会分析铝硅合金变质前后显微组织特征及性能; 二、实验说明: 在铸造合金中,以Ai—Si共晶为基的合金是最常用的,这主要是因为铸造性能好,硅在结晶时象石墨一样体积是膨胀的,收缩小,降低了铸件的热裂倾向,此外线膨胀系数很低,导热性好,广泛用于制造内燃机和压缩机的活塞。并且经过变质处理以后,可以提高强度和韧性。 三、实验内容: 铝硅合金是应用最广泛的一种铸造合金,常称为硅铝明,典型牌号为ZL102、含硅11—13%,从Ai—Si合金相图可知,其成分在共晶点附近,而具有良好的铸造性能。当硅含量大于共晶成分时,铸造后得到的组织为粗大的针状硅和α固溶体所组成的共晶体及少量呈多面体的初生硅晶体组成。粗大的硅晶体极脆,严重地降低了合金的塑性,为了改善合金的性能,可采用变质处理。即在浇注前加入占合金总量2—3%变质剂(常用的变质剂为2∕3NaF+1∕3NaCl的混合物)。由于钠能促进硅晶体的形核,并能吸附在硅的周围阻碍硅晶体的长大,使合金组织细化。同时使合金的共晶点右移,而使原成分合金变为亚共晶,使变质后的合金组织成为初生α固溶体和细密共晶体(α+Si)组成。由于共晶体中硅的细化,而使合金的强度与塑性显著改变。 四、实验程序 加入金属硅 ↘ 1、配料→熔化金属铝→700—750℃→待硅熔化后进行搅拌→静置5分钟后→进行浇注。 加入金属硅加入变质剂 ↘↘ 2、配料→熔化金属铝→700—750℃→待硅熔化后→进行搅拌→静置5分钟后→进行浇注。 3、磨制金相试样,观察及分析金相组织; (1)、未经变质处理的组织:粗大的针状硅和α固溶体所组成的共晶体及少量呈多面体的初生硅晶体。即(α+Si针状)共晶体+Si块。 (2)、经变质处理的组织:初生α固溶体和细密共晶体,即α+(α+Si点状)共晶体 (3)分别测定变质前后两种合金的布氏硬度值。 在本实验中,熔铸部分为前半部分(一),金相样品的制备和组织分析为后半部分(二) 五、实验任务与要求: 1、说明合金实验方案及成分设计的要求。 2、绘出铝硅合金变质前后的金相组织。绘在一个直径30mm的圆内并注明材料、状态、 组织、放大倍数、浸蚀剂。 3、测定变质前后的试样的硬度,分析组织及性能之间的关系。

铸造铝合金熔炼工艺

铸造铝合金熔炼工艺 1工艺适用范围 本熔炼工艺适用于砂型和金属型铸造ZL101A合金的熔炼,可针对于重力铸造、低压铸造、倾转浇注、调压铸造等成型工艺使用。 本工艺可作为ZL101A合金熔炼的母工艺,针对某一特定的成型工艺,如需特殊指出,可在此工艺基础上形成相应熔炼工艺,但不允许与母工艺相互冲突。 2工艺文件的抄报与保存 工艺文件抄报、抄送范围:总师、副总师、技术部、质量部。 工艺文件保存范围:电子文件备份和纸质文件送档案室保存,技术部、质量部各存一份使用文件。 3 工艺详细内容 3.1熔炼设备、工具的选择及对后续熔炼质量的影响 3.1.1 铝合金料熔化设备 规定使用熔炼设备范围为:坩埚电阻炉,燃气连续熔化炉。 对于金属型铸造可采用两种熔炼设备,使用燃气连续熔化炉熔化铝液,然后转包到坩埚电阻炉进行后续处理(精炼及变质);也可使用坩埚电阻炉熔化铝液及进行后续处理(精炼及变质)。 如采用金属型低压铸造、调压铸造成型工艺,可使用侧面开口注入铝液的机下炉进行连续生产。 采用坩埚电阻炉熔化铝液,铝液温度控制750℃以下,熔化过程的铝液吸气较少;采用燃气连续熔化炉熔化铝液,铝液温度控制容易

超750℃,熔化过程的铝液吸气倾向较大。 3.1.2熔炼工具的选择及准备 熔炼前熔炼工具的准备对铝液熔炼质量影响较大,坩埚采用石墨及SiC材质,使用前需进行预热烘干,烘干工艺如图1;如采用金属材质坩埚,最好选用不锈钢材质,如选用铸铁材质坩埚,以合金球墨铸铁为好。常用的浇包、浇勺等多采用不锈钢制作。 图1 新坩埚使用前烘干工艺 上述所选择的工具,使用前均需涂刷涂料,涂刷涂料前要对坩埚及工具进行喷砂处理,去除表面的铁锈及污物,然后预热到120~180 ℃,逐层喷涂,浇包、浇勺的涂料厚度0.3~0.8mm为宜,坩埚涂料可稍厚一些。涂料最好选用专用的金属型非水基涂料,也可自行配制,基本配方如表1所示,使用前涂料需预热到50~90 ℃。 3.1.3炉料的存放与处理,

铝合金熔炼与铸造工艺规范与流程

铝合金熔炼与铸造工艺规范与流程 资料来源:全球铝业网铝业知识频道 一、铝合金熔炼规范 (1)总则 ①按本文件生产的铸件,其化学成分和力学性能应符合GB/T9438-1999《铝合金铸件》、JISH5202-1999《铝合金铸件》、ASTMB108-03a《铝合金金属型铸件》、GB/T15115-1994《压铸铝合金》、JISH5302-2006《铝合金压铸件》、ASTMB85-03《铝合金压铸件》、EN1706-1998《铸造铝合金》等标准的规定。 ②本文件所指的铝合金熔炼,系在电阻炉、感应炉及煤气(天然气)炉内进行。一般采取石墨坩埚或铸铁坩埚。铸铁坩埚须进行液体渗铝。 (2)配料及炉料 1)配料计算 ①镁的配料计算量:用氯盐精炼时,应取上限,用无公害精炼剂精炼时,可适当减少;也可根据实际情况调整加镁量。 ②铝合金压铸时,为了减少压铸时粘模现象,允许适当提高铁含量,但不得超过有关标准的规定。 2)金属材料及回炉料 ①新金属材料 铝锭:GB/T1196-2002《重熔用铝锭》 铝硅合金锭:GB/T8734-2000《铸造铝硅合金锭》 镁锭:GB3499-1983《镁锭》 铝铜中间合金:YS/T282-2000《铝中间合金锭》 铝锰中间合金:YS/T282-2000《铝中间合金锭》

各牌号的预制合金锭:GB/T8733-2000《铸造铝合金锭》、JISH2117-1984《铸件用再生铝合金锭》、ASTMB197-03《铸造铝合金锭》、JISH2118-2000《压铸铝合金锭》、EN1676-1996《铸造铝合金锭》等。 ②回炉料 包括化学成分明确的废铸件、浇冒口和坩埚底剩料,以及溢流槽和飞边等破碎的重熔锭。 回炉料的用量一般不超过80%,其中破碎重熔料不超过30%;对于不重要的铸件可全部使用回炉料;对于有特殊要求(气密性等)的铸件回炉料用量不超过50%。 3)清除污物 为提高产品质量,必须清除炉料表面的脏物、油污、废铸件上的镶嵌件,应在熔炼前除去(可用一个熔炼炉专门去除镶嵌件)。 4)炉料预热 预热一般为350~450℃下保温2~4h。Zn、Mg、RE在200~250℃下保温2~4h。在保证坩埚涂料完整和充分预热的情况下,除Zn、Mg、Sr、Cd及RE等易燃材料外的炉料允许随炉预热。 (3)精炼剂准备 ①铝合金的精炼一般采用六氯乙烷、DSG铝合金除渣除气剂、铝精炼剂ZS-AJ01C 等精炼剂。 ②六氯乙烷使用前,置于熔炉旁预热。 ③DSG铝合金除渣除气剂、铝精炼剂ZS-AJ01C等精炼剂,存放时要防止吸潮,使用前应置于熔炉旁预热。 (4)坩埚及熔炼工具的准备 ①新坩埚使用前应清理干净(可采用吹砂或其它方法),然后加热到600~700℃,保持30~60min,再降温到200~300℃,开始喷刷涂料。

铝合金的变质处理

铝合金的变质处理 材料与能源学院金属材料工程2011级2班范宇鑫 【摘要】变质处理指的是向金属液内添加少量物质,促进金属液生核或改变晶体生长过程的方法。而铝合金制造过程中变质处理是必不可少的工艺,加入不同的变质剂对合金的工艺性能有着不同的影响。 关键词:铝合金变质处理 铝合金的制备主要有铸造和压力变形两种。铝合金制造过程中的缺陷有氧化夹渣、气孔气泡、缩松疏松、裂纹等。这些缺陷严重影响铝合金的性能,容易造成断裂和磨损。为了防止这些缺陷的产生,提高铝合金的工艺性能,加入变质剂就是一种有效的措施。变质处理的目的主要是细化晶粒、改善脆性相、改善晶粒形态和分布状况。变质处理的机理众说纷纭,主要分为两种:一是不溶性质点存在于金属液中的非均质晶核作用;二是以溶质的偏析及吸附作用。在变质剂完全溶解于金属液且不发生化学反应生成化合物的情况下,变质剂就像溶质一样,在凝固过程中,由于偏析使固/液界面前沿液体的平衡液相线温度降低,界面处成分过冷度减少,致使界面上晶体的生长受到抑制,枝晶根部出现缩颈而易于分离。同时,由于变质剂易偏析和吸附,故阻碍晶体生长的作用也加强。因此,往往只需加入少量变质剂,就能显著细化晶粒。其中,不同的变质剂所发挥的作用有所不同,常见以下几种变质剂:(1)钠盐变质剂:Na元素可使共晶硅的结晶由短圆针状变为细粒状,并降低共晶温度,增加过冷度,细化晶粒。其细化效果,对冷的慢的砂型、石膏型铸件 而言比较好,还有分散铸件(铸锭)缩窝的作用,这对要求气密性好的铸件 有重要的作用。钠盐变质法的成本低,制备也比较简单,适合批量小、要求 不很高的产品,但其缺点是,由于钠是化学活泼性元素,在变质处理中氧化、 烧损激烈、冒白色烟雾,对人体和环境都有危害,操作也不太安全,特别是 易使坩埚腐蚀损坏,它的充分变质有效时间短,一般不超过1h。钠还使Al-Mg 系合金的粘性增加,恶化铸造性能,当钠量多时,还会使合金的晶粒催化, 所以Al-Mg系合金和含Mg量高于2%的Al-Si合金,一般都不用钠盐变质剂来 进行变质处理,以免出现所谓“钠脆”现象。 (2)铝锶中间合金变质剂:这是国外使用的较多的一种高效变质方法。加入量为炉料总重量的0.04-0.05%的Sr。其优点是变质效果比钠盐好,氧化烧损也比钠 盐小,有效变质持续时间长,对坩埚的腐蚀性也比钠盐小,因而可使坩埚的

铝合金变质剂的变质效果和特点

铝合金变质剂的变质效果和特点 1)钠盐变质剂变质方法 Na可使共晶硅的结晶由短圆针状变为细粒状,并降低共晶温度,增加过冷度,细化晶粒。其细化效果,对冷的慢的砂型、石膏型铸件而言比较好,还有分散铸件(铸锭)缩窝的作用,这对要求气密性好的铸件有重要的作用。钠盐变质法的成本低,制备也比较简单,适合批量小、要求不很高的产品,其缺点是:钠是化学活泼性元素,在变质处理中氧化、烧损激烈、冒白色烟雾,对人体和环境都有危害,操作也不太安全,特别是易使坩埚腐蚀损坏,它的充分变质有效时间短,一般不超过1h。钠还使Al-Mg系合金的粘性增加,恶化铸造性能,当钠量多时,还会使合金的晶粒催化,所以Al-Mg系合金和含Mg量高于2%的Al-Si合金,一般都不用钠盐变质剂来进行变质处理,以免出现所谓“钠脆”现象 2)铝锶中间合金变质法 这是国外使用的较多的一种长效变质方法。加入量为炉料总重量的0.04-0.05%的Sr。其优点是变质效果比钠盐好,氧化烧损也比钠盐小,有效变质持续时间长,对坩埚的腐蚀性也比钠盐小,因而可使坩埚的使用寿命延长。这种变质法操作也比使用钠盐安全卫生,不产生对人体和环境有害的气体,变质效果也比钠盐好,一般有80-90%的良好变质合格率。其缺点是:成本比钠盐高,要预先配制成中间合金(否则就要采用锶盐变质剂),没有钠盐那样的有分散铸件缩窝的作用。 3)铝锑中间合金变质法 这种方法也是用的较多的一种长效变质方法。加入量为炉料总重量的0.2-0.3%的Sb,可获得长效变质效果,即使到铝合金重熔,此变质效果仍起作用。其变质效果与合金的冷却速度有关,冷却速度快(如在金属型中铸造),变质效果好;冷却速度慢(如在石膏型、砂型中铸造),则变质效果差。但应注意,已经过钠盐或锶盐或铝锶中间合金变质过的铝合金不能再加Sb来变质,因为这样会形成Na3Sb化合物而使合金的晶粒粗大、性能变坏,从而反使钠、锶的变质效果降低。 4)SR813磷复合细化剂和SR814磷盐复合细化剂孕育法 这是近年开发的一种适合过共晶型铝硅合金的初晶Si的细化剂。因为P在铝合金液中形成AlP的微细结晶核种,细化晶粒的效果很好,有效持续孕育时间也长,但它会与Na、Sr、Sb 形成化合物,降低它们对共晶硅结晶的细化效果,所以,已经使用Na、Sr、Sb作过变质处理的铝合金,不要再加P来作变质处理。 5)铝钛中间合金变质法 其中含有4%左右的钛,钛是细化晶粒效果很好的元素,形成的TiAl3成为初晶α枝晶的异质结晶核种,能有效地细化晶粒和防止铸造裂纹,对易产生铸造裂纹的Al-Cu-Mg合金(如ZL207)很合适。由于钛量太多,又是通过与炉料一起熔化、扩散、融合来细化晶粒的,故其细化效果虽没有钛硼熔剂好,但仍可达到一级晶粒的效果。其次是TiAl3的密度比铝合金液大,如合金保温时间过长,就有可能沉降,凝聚成夹杂物,要严格注意。 6)钛硼熔剂细化法 由于钛硼熔剂中同时含有Ti和B两种细化晶粒作用很强的元素,它们在铝合金液中形成TiAl3和TiB2,未熔化的TiAl3和不熔化的TiB2(其相对密度4.4,熔点为2900℃)都残留在铝合金液中,成为铝合金的初晶α枝晶组织的有效异质结晶种。这种熔剂细化晶粒的优点是:①因为有Ti、B两个细化晶粒的元素和Ti含量为Al-Ti中间和金的8倍,故细化晶粒的效果非常好,比Al-Ti中间合金的效果大很多;②处理成本比用Al-Ti中间合金低很多;③熔剂成块状,省去了熔化配制中间合金的许多费用,烧损也少;④储存省面积,很简便,且块重标准

相关文档
最新文档