量子力学[第二章波函数和薛定谔方程] 山东大学期末考试知识点复习

量子力学[第二章波函数和薛定谔方程] 山东大学期末考试知识点复习
量子力学[第二章波函数和薛定谔方程] 山东大学期末考试知识点复习

第二章波函数和薛定谔方程

1.微观粒子运动状态的描述

(1)波函数

波函数ψ(r,t)是描述微观粒子状态的复值函数,波函数需要满足的标准条件为单值性、连续性和有界性,实际体系的波函数满足平方可积条件,即

(2)波函数的意义

波函数的模方

给出t时刻粒子出现在位置r邻域单位体积内的概率,即概率密度。

因此,标准的波函数应该是归一化的,即满足归一化条件

未归一化的波函数可以通过乘以一个归一化因子来实现归一化。

(3)波函数的性质

(r,t),i=1,2,…为微观粒子的波函数ψ(r,t)满足叠加原理,如果ψ

i

可能状态,则

也是一个可能的状态。

2.微观状态的演化

(1)薛定谔方程

状态ψ(r,t)随时间演化满足薛定谔方程

其中

称为哈密顿算符,U(r,t)是势能,若已知初始状态ψ(r,0),由薛定谔方程可求出任意时刻t的状态ψ(r,t)。

(2)连续性方程

由薛定谔方程可以推出连续性方程

其中

称为概率流密度,即沿着给定方向单位时间通过单位截面的概率,连续性方程是概率守恒定律的定域表现。

(3)定态薛定谔方程

若体系的哈密顿不显含时间,即势场U不含t时,薛定谔方程可以分离变量,得到定态波函数解

(r)为对应的本征函数,满足定态薛定谔方程

其中E为能量本征值,ψ

E

3.一维束缚定态问题

(1)问题的描述

一维束缚定态问题由下面的方程和边界条件组成

其中束缚态能量满足条件E<U(±∞)。

(2)束缚定态解的性质

束缚定态中的能量取值不连续,形成能级,同一能级只对应一个本征函数,

无简并现象,第n个能级E

n ,n∈N对应的本征函数ψ

n

(x)有n个内部零点(不包

括边界)。

束缚态本征函数ψ

n

(x)可以归一化,归一化后的本征函数满足正交归一性

本征函数集合具有完备性,任何平方可积函数ψ(x)都可以展开为归一化本征函数的线性组合,即

其中展开系数为

(3)典型实例:一维简谐振子一般的解析势阱在其极小值附近都可以近似为简谐振子势,其标准形式为

在上述势场中,粒子作束缚运动,能级为

对应的本征函数为

简谐振子的本征函数满足递推关系

4.一维散射问题

(1)问题的描述

以能量E>U(±∞)自左边向势场U(x)入射的粒子满足下面的方程和边界条件

(2)问题的意义

(3)典型实例:粒子对方势垒的透射

能量为E的粒子入射到一个宽度为a,高度为U

的方形势垒

反射系数和透射系数分别为

复变函数_期末试卷及答案

一、单项选择题(本大题共15小题,每小题2分,共30分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括 号内。错选、多选或未选均无分。 1.下列复数中,位于第三象限的复数是( ) A. 12i + B. 12i -- C. 12i - D. 12i -+ 2.下列等式中,不成立的等式是( ) 3.下列命题中,正确..的是( ) A. 1z >表示圆的内部 B. Re()0z >表示上半平面 C. 0arg 4 z π << 表示角形区域 D. Im()0z <表示上半平面 4.关于0 lim z z z z ω→=+下列命题正确的是( ) A.0ω= B. ω不存在 C.1ω=- D. 1ω= 5.下列函数中,在整个复平面上解析的函数是( ) 6.在复平面上,下列命题中,正确..的是( ) A. cos z 是有界函数 B. 2 2Lnz Lnz = 7 .在下列复数中,使得z e i =成立的是( ) 8.已知3 1z i =+,则下列正确的是( ) 9.积分 ||342z dz z =-??的值为( ) A. 8i π B.2 C. 2i π D. 4i π 10.设C 为正向圆周||4z =, 则10()z C e dz z i π-??等于( ) A. 1 10! B. 210! i π C. 29! i π D. 29! i π- 11.以下关于级数的命题不正确的是( ) A.级数0327n n i ∞ =+?? ?? ?∑是绝对收敛的 B.级数 212 (1)n n i n n ∞ =??+ ?-??∑是收敛的 C. 在收敛圆内,幂级数绝对收敛 D.在收敛圆周上,条件收敛 12.0=z 是函数(1cos ) z e z z -的( ) A. 可去奇点 B.一级极点 C.二级极点 D. 三级极点

《复变函数》-期末试卷及答案(A卷)

《复变函数》试卷 第1页(共4页) 《复变函数》试卷 第2页(共4页) XXXX 学院2016—2017学年度第一学期期末考试 复变函数 试卷 一、单项选择题(本大题共10小题,每题3分,共30分,请从每题备选项中选出唯一符合题干要求的选项,并将其前面的字母填在题中括号内。) 1. =)i Re(z ( ) A.)i Re(z - B.)i Im(z C.z Im - D.z Im 2. 函数2 ) (z z f =在复平面上 ( ) A.处处不连续 B. 处处连续,处处不可导 C.处处连续,仅在点0= z 处可导 D.处处连续,仅在点0=z 处解析 3.设复数a 与b 有且仅有一个模为1,则b a b a --1的值 ( ) A.大于1 B.等于1 C.小于1 D.无穷大 4. 设x y z f y x z i )(i +-=+=,,则=')(z f ( ) A.i 1+ B.i C.1- D.0 5.设C 是正向圆周 1=z ,i 2sin π=?dz z z C n ,则整数n 等于 ( ) A.1- B.0 C.1 D.2 6.0=z 是2 1 )( z e z f z -=的 ( ) A.1阶极点 B.2阶极点 C. 可去奇点 D.本性奇点 7.幂级数!2)1(0 n z n n n n ∑∞ =-的和函数是 ( ) A.z e - B.2 z e C.2 z e - D.z sin 8.设C 是正向圆周 2=z ,则 =?C z dz 2 ( ) A.0 B.i 2π- C.i π D.i 2π 9.设函数)(z f 在)0( 00+∞≤<<-

波函数和薛定谔方程-力学量算符

波函数和薛定谔方程-力学量算符 1.一维运动的粒子处在 的状态,其中,求: (1)粒子动量的几率分布函数; (2)粒子动量的平均值。 [解]首先将归一化,求归一化系数A。 (1)动量的几率分布函数是 注意到中的时间只起参数作用,对几率分布无影响,因此可有 令 代入上式得 (2) 动量p的平均值的结果从物理上看是显然的,因为对本题说来,粒子动量是和是的几率是相同的。讨论: ①一维的傅里叶变换的系数是而不是。 ②傅里叶变换式中的t可看成参变量。因此,当原来坐标空间的波函数不含时间变量时, 即相当于的情况,变换式的形式保持不变。

③不难证明,若是归一化的,则经傅里叶变换得到也是归一化的。 2.设在时,粒子的状态为 求粒子动量的平均值和粒子动能的平均值。 [解]方法一:根据态迭加原理和波函数的统计解释。任意状态总可以分解为单色平面波的线性和,即,展开式的系数表示粒子的动量为p时的几率。知道了几率分布函数后,就可按照 求平均值。 在时,动量有一定值的函数,即单色德布罗意平面波为,与的展开式比较可知,处在状态的粒子动量可以取 ,而,粒子动量的平均值为 A可由归一化条件确定 故 粒子动能的平均值为 。 方法二:直接积分法

根据函数的性质,只有当函数的宗量等于零时,函数方不为零,故的可能值有 而 则有及。 讨论:①由于单色德布罗意平面波当时不趋于零,因此的归一化积分是发散的,故采用动量几率分布的概念来求归一化系数。 ②本题的不是平方可积的函数,因此不能作傅氏积分展开,只能作傅氏级数展开,即 这时对应于波函数的是分立谱而不是连续谱,因此计算积分,得到函数。 ③在连续谱函数还未熟练以前,建议教学时只引导学生按方法一做,在第三章函数讲 授后再用函数做一遍,对比一下,熟悉一下函数的运算。 3.一维谐振子处在 的状态,求: (1)势能的平均值; (2)动量的几率分布函数; (3)动能的平均值 [解]先检验是否归一化。 是归一化的。 (1) . 其中应用及 (2)由于是平方可积的,因此可作傅氏变换求动量几率分布函数

大学物理-一维定态薛定谔方程的应用

一维定态薛定谔方程 的应用 授课人: 物理科学与技术学院

势 阱 日常生活中的各种井(阱) 物理学中研究微观粒子运动状态时常用的模型,因其势能函数曲线的形状如同井而得名 水井 窨井 陷阱 U x O a U

() U x x O a ∞ ∞00()0 , x a U x x x a ≤≤?=?∞<>? 这是一个理想化的物理模型, 应用定态薛定谔方程求解波函数, 有利于进一步理解在微观系统中 能量量子化和概率密度等概念 这样的势能函数称为 一维无限深势阱

建立定态薛定谔方程并求解 假设微观粒子质量为 ,由 m 22 2d ()()()2d U x x E x m x ψψ??-+=???? x a U x 0()0≤≤=阱内( ) : 22 2d ()()2d x E x m x ψψ-= x x a U x 0 , ()<>→∞ 阱外( ): 令: 2 22mE k =得通解: ()sin() x A kx ψ?=+ 微观粒子的能量不可能达到 无穷大,所以粒子不可能在阱外出现,或者说粒子在阱外出现的概率为零。 ()0 x ψ≡222 d 0d k x ψψ+=

利用标准条件确定 和 k ?因 在整个 轴上必须连续 x ()x ψsin() 0()0 0 0 A kx x a x x x ?ψ+≤≤?=? <>?,(0)sin 0 A ψ?== a A ka ()sin()0 ψ?=+=求归一化的波函数 一维无限深势阱中 微观粒子的波函数 2220π()d sin d a n x x A x x a ψ+∞-∞=??221 A a =?= 2A a = n a x x a x a x x a π2sin 0()00 , ψ? ≤≤?=??<>?() π ()sin 1,2,3n x A x n a ψ==??, 0?=π n k a =()1,2,3n =???,

波函数和薛定谔方程

波函数和薛定谔方程 一、波函数的统计解释、叠加原理和双缝干涉实验 微观粒子具有波粒二象性<德布罗意假设); 德布罗意关系<将描述粒子和波的物理量联系在一起) 物质波<微观粒子—实物粒子) 引入波函数<概率波幅)—描述微观粒子运动状态 对于微观粒子来说,如果不考虑“自旋”一类的“内禀”态,单值波函数是其物理状态的最详尽描述。至少在目前量子力学框架中,我们不能获得比波函数更多的物理信息。b5E2RGbCAP 微观粒子的状态用波函数完全描述 ——量子力学中的一条基本原理 该原理包含三方面内容:粒子的状态用波函数表示、波函数的统计解释和对波函数性质的要求。 要明确“完全”的含义是什么。按着波函数的统计解释,波函数统计性的描述体系的量子态,若已知单粒子<不考虑自旋)波函数,则不仅可以确定粒子的位置概率分布,而且如动量等粒子的其它力学量的概率分布也均可通过波函数而完全确定。由此可见,只要已知体系的波函数,便可获得该体系的一切物理信息。从这个意义上说,有关体系的全部信息已包含在波函数中,所以说微观粒子的状态用波函数完全描述。p1EanqFDPw 必须强调指出,波函数给出的有关粒子的“信息”本质上是统计性质的。例如,在适当条件下制备动量为p的粒子,然后测量其空间位置,我们根本无法预言测量的结果,我们只能知道获得各种可能结果的概率。DXDiTa9E3d

很自然,人们会提出这样的疑问:既然量子力学只能给出统计结果,那就只需引入一个概率分布函数<象经典统计力学那样),何必假定一个复值波函数呢?RTCrpUDGiT 事实上,引入复值波函数的物理基础,乃是量子力学中的又一条基本原理——叠加原理。 这条原理告诉我们,两种状态的叠加,绝不是概率相加,而是带有相位的复值波函数的叠加<数学求和)。正因如此,在双缝干涉实验中,我们才能看见屏上的干涉花纹。5PCzVD7HxA 实物粒子双缝干涉实验分析 我们首先只打开一条狭缝,根据粒子的波动性,可以预言屏上将显示波 长<为粒子动量)的单缝衍射花纹。但是,根据粒子的微粒性, 它们将是一个一个打上去的,怎样将这两种性质的描述调和起来呢?为此,我们想象将入射粒子束强度降低,直到只一个粒子通过狭缝,这时屏上会出现很微弱的衍射花纹吗?当然不会!单个粒子只能作为一个不可分割的整体打到屏上的一个点,从而出现一个小斑点。如果让这种微弱的粒子束<几乎让粒子一个一个地通过狭缝)长时间照射狭缝<相当于一个粒子的多次行为),结果发现,屏上一个一个斑点逐渐增加,最后形成一种接近连续的分布,它恰恰就是单缝衍射花纹!<单个粒子具有波动性的有力证明)jLBHrnAILg 这提示:粒子的波动性只是一种“概率波”,或者干脆说只是一种概率分布而已。这种看法对吗?这种说法容易造成误解,因为它忽略了叠加原理的要求。xHAQX74J0X 为了说明这一点,我们继续分析双缝干涉实验。

复变函数期末考试题大全(东北师大)

____________________________________________________________________________________________________ 一、填空题(每小题2分) 1、复数i 212--的指数形式是 2、函数w = z 1将Z S 上的曲线()1122 =+-y x 变成W S (iv u w +=)上 的曲线是 3、若01=+z e ,则z = 4、()i i +1= 5、积分()? +--+i dz z 22 22= 6、积分?==1sin 21z dz z z i π 7、幂级数()∑∞ =+0 1n n n z i 的收敛半径R= 8、0=z 是函数 z e z 1 11- -的 奇点 9、=??? ? ??-=1Re 21z e s z z 10、将点∞,i,0分别变成0,i,∞的分式线性变换=w 二、单选题(每小题2分) 1、设α为任意实数,则α 1=( ) A 无意义 B 等于1 C 是复数其实部等于1 D 是复数其模等于1 2、下列命题正确的是( ) A i i 2< B 零的辐角是零 C 仅存在一个数z,使得z z -=1 D iz z i =1 3、下列命题正确的是( ) A 函数()z z f =在z 平面上处处连续 B 如果()a f '存在,那么()z f '在a 解析 C 每一个幂级数在它的收敛圆周上处处收敛 D 如果v 是u 的共轭调和函数,则u 也是v 的共轭调和函数 4、根式31-的值之一是( ) A i 2321- B 223i - C 223i +- D i 2 321+- 5、下列函数在0=z 的去心邻域内可展成洛朗级数的是( ) A z 1sin 1 B z 1cos C z ctg e 1 D Lnz 6、下列积分之值不等于0的是( ) A ?=-123z z dz B ?=-12 1z z dz C ?=++1242z z z dz D ?=1 cos z z dz 7、函数()z z f arctan =在0=z 处的泰勒展式为( ) A ()∑∞ =+-02121n n n n z (z <1) B ()∑∞ =+-0 1221n n n n z (z <1) C ()∑∞ =++-012121n n n n z (z <1) D ()∑∞=-0 221n n n n z (z <1) 8、幂级数n n n z 20 1)1(∑∞ =+-在1w 的分式线性变换是( ) A )1(1>--=a z a a z e w i β B )1(1<--=a z a a z e w i β

量子力学专题二(波函数和薛定谔方程)

量子力学专题二: 波函数和薛定谔方程 一、波粒二象性假设的物理意义及其主要实验事实(了解) 1、波动性:物质波(matter wave )——de Broglie (1923年) p h =λ 实验:黑体辐射 2、粒子性:光量子(light quantum )——Einstein (1905年) h E =ν 实验:光电效应 二、波函数的标准化条件(熟练掌握)

1、有限性: A 、在有限空间中,找到粒子的概率是有限值,即有 =?ψψτ* d 有限值 有限空间 B 、在全空间中,找到粒子的概率是有限值,即有 =? ψψτ* d 有限值 全空间 2、连续性:波函数ψ及其各阶微商连续; 3、单值性:2 ψ是单值函数(注意:不是说ψ是单值!) 三、波函数的统计诠释(深入理解) 1、∝dV 2ψ在dV 中找到粒子的概率;

2、ψ和ψC 表示的是同一个波函数(注意:我们关心的只是相对概率); 四、态叠加原理以及任何波函数按不同动量的平面波展开的方法及其物理意义(理解) 1、态叠加原理:设1ψ,2ψ是描述体系的态,则 2211ψψψC C += 也是体系的一个态。其中,1C 、2C 是任意复常数。 2、两种表象下的平面波的形式: A 、坐标表象中 r d e p r r p i 3/2/3)() 2(1)( ??=?πψ B 、动量表象中

p d e r p r p i 3/2/3)() 2(1)( ?-?=ψπ? 注意:2/3)2( π是热力学中,Maxwell 速率分布的一个常数,也可以使原子物理中,一个相空间的大小! 五、Schrodinger Equation (1926年) 1、Schrodinger Equation 的建立过程(熟练掌握) ψψH t i ?=?? 其中,V T H ???+=。 2、定态薛定谔方程,定态与非定态波函数的意义及相关联系(深入了解) A 、定态:若某一初始时刻(0=t )

复变函数与积分变换期末试题(附有答案)

复变函数与积分变换期末试题 一.填空题(每小题3分,共计15分) 1. 2 3 1i -的幅角是( 2,1,0,23±±=+-k k ππ);2. )1(i Ln +-的主值是 ( i 4 32ln 21π + );3. 211)(z z f +=,=)0() 5(f ( 0 ),4.0=z 是 4sin z z z -的( 一级 )极点;5. z z f 1 )(=,=∞]),([Re z f s (-1 ); 二.选择题(每题3分,共15分) 1.解析函数),(),()(y x iv y x u z f +=的导函数为( ); (A ) y x iu u z f +=')(; (B )y x iu u z f -=')(; (C ) y x iv u z f +=')(; (D )x y iv u z f +=')(. 2.C 是正向圆周3=z ,如果函数=)(z f ( ),则0d )(=?C z z f . (A ) 23-z ; (B )2)1(3--z z ; (C )2)2()1(3--z z ; (D )2 ) 2(3 -z . 3.如果级数∑∞ =1 n n n z c 在2=z 点收敛,则级数在 (A )2-=z 点条件收敛 ; (B )i z 2=点绝对收敛;

(C )i z +=1点绝对收敛; (D )i z 21+=点一定发散. 4.下列结论正确的是( ) (A )如果函数)(z f 在0z 点可导,则)(z f 在0z 点一定解析; (B) 如果)(z f 在C 所围成的区域内解析,则 0)(=? C dz z f (C )如果 0)(=? C dz z f ,则函数)(z f 在C 所围成的区域内一定解析; (D )函数 ),(),()(y x iv y x u z f +=在区域内解析的充分必要条件是 ),(y x u 、),(y x v 在该区域内均为调和函数. 5.下列结论不正确的是( ). (A) 的可去奇点;为z 1 sin ∞(B) 的本性奇点;为z sin ∞ (C) ;1sin 1 的孤立奇点为 z ∞(D) .sin 1的孤立奇点为z ∞ 三.按要求完成下列各题(每小题10分,共40分) (1).设)()(2 2 2 2 y dxy cx i by axy x z f +++++=是解析函数,求 .,,,d c b a 解:因为)(z f 解析,由C-R 条件

固体物理学 1-5-薛定谔方程应用举例II

薛定谔方程应用举例II---原子系统
? 氢原子 ? 电子自旋 ? 多电子原子
1

氢原子的定态薛定谔方程
?原子由一个原子核和核外电子构成,属于多粒子体系。多粒 子体系的总能量等于每一个粒子的能量与粒子间相互作用能量 之和。
?氢原子包括一个原子核和电子,库仑场是各向同性的,哈密 顿量可记作(绝热近似):
H?
=
?
h2 2me
?2
+
qeU(r)
me为电子质量,qe是电子电荷。U(r)为原子核静电场中的库 仑势,记作:
U(r) = ? Zqe = ? Z h2
4πε0r a1meqer
Z为核的电荷数,a1 = 4πε0?2/(meqe2) = 0.529?,为氢原子的第
一波尔轨道半径。
2

??? ?
h2 2me
?2
?
Zh 2 a1meqer
??ψ
?
(r)
=
E

(r)
中心力场问题,采用球坐标,薛定谔方程为:
? ?? ??
h2 2me
?
????
1 r2
? ?r
r2
? ?r
?
L?2 r2
???? ?
Zh2
?
?ψ (r,?,θ ) =
a1mer ??
E ?ψ (r,?,θ )
用分离变量法求解,令:
ψ (r,θ ,φ) = R(r) ?Y (?,θ )
分别求解径向波函数R(r)和角向波函数Y(?,θ)。
3

复变函数题库(包含好多试卷,后面都有答案)

《复变函数论》试题库 《复变函数》考试试题(一) 一、 判断题(20分): 1.若f(z)在z 0的某个邻域内可导,则函数f(z)在z 0解析. ( ) 2.有界整函数必在整个复平面为常数. ( ) 3.若 } {n z 收敛,则 } {Re n z 与 } {Im n z 都收敛. ( ) 4.若f(z)在区域D 内解析,且 0)('≡z f ,则C z f ≡)((常数). ( ) 5.若函数f(z)在z 0处解析,则它在该点的某个邻域内可以展开为幂级数. ( ) 6.若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点. ( ) 7.若 ) (lim 0 z f z z →存在且有限,则z 0是函数f(z)的可去奇点. ( ) 8.若函数f(z)在是区域D 内的单叶函数,则)(0)('D z z f ∈?≠. ( ) 9. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C 0)(=? C dz z f . ( ) 10.若函数f(z)在区域D 内的某个圆内恒等于常数,则f(z)在区域D 内恒等于常数.( ) 二.填空题(20分) 1、 =-?=-1||0 0)(z z n z z dz __________.(n 为自然数) 2. =+z z 2 2cos sin _________. 3.函数z sin 的周期为___________. 4.设 11 )(2+= z z f ,则)(z f 的孤立奇点有__________. 5.幂级数 n n nz ∞ =∑的收敛半径为__________. 6.若函数f(z)在整个平面上处处解析,则称它是__________. 7.若ξ=∞→n n z lim ,则=+++∞→n z z z n n (i) 21______________. 8.= )0,(Re n z z e s ________,其中n 为自然数.

复变函数与积分变换 期末试卷及答案

华南农业大学期末考试试卷(A 卷) 2007-08 学年第1学期 考试科目: 复变函数与积分变换 考试类型:(闭卷) 考试时间: 120 分钟 学号 姓名 年级专业 一、单项选择题(本大题共15小题,每小题2分,共30分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括 号内。错选、多选或未选均无分。 1.下列复数中,位于第三象限的复数是( ) A. 12i + B. 12i -- C. 12i - D. 12i -+ 2.下列等式中,不成立的等式是( ) 4 .34arctan 3 A i π-+-的主辐角为 .arg(3)arg()B i i -=- 2.rg(34)2arg(34)C a i i -+=-+ 2 .||D z z z ?= 3.下列命题中,正确..的是( ) A. 1z >表示圆的内部 B. Re()0z >表示上半平面 C. 0arg 4 z π << 表示角形区域 D. Im()0z <表示上半平面 4.关于0 lim z z z z ω→=+下列命题正确的是( ) A.0ω= B. ω不存在 C.1ω=- D. 1ω= 5.下列函数中,在整个复平面上解析的函数是( ) .z A z e + 2 sin . 1 z B z + .tan z C z e + .sin z D z e + 6.在复平面上,下列命题中,正确.. 的是( ) A. cos z 是有界函数 B. 2 2Lnz Lnz = .cos sin iz C e z i z =+ . ||D z = 7.在下列复数中,使得z e i =成立的是( )

复变函数与积分变换期末考试复习知识点

复习要点 一题型 1、填空题(每题3分,共18分) 2、单项选择题(每题3分,共21分) 3、计算题(每题6分,共36分) 4、解答题(4小题,共25分) 二知识点 第一章复数与复变函数 1、会求复数的各种表示式(一般式、三角式、指数式)。 一般式:z=x+yi 三角式:z=r(cosθ+isinθ) 指数式:z=re iθ 2、会求复数(各种表示式)的模、辐角、辐角主值。 3、掌握复数的四则运算、共轭运算、乘幂运算、方根运算。 4、理解区域、有界域、无界域、单连通域与多连通域等概念。 5、会用复变数的方程来表示常用曲线及用不等式表示区域。 6、理解复变函数的概念。 7、了解复变函数的极限与连续性的概念,会求常见的复变函数的极限。 例:1.1;1.2 习题一:1.2(2)(3);1.3;1.5 第二章解析函数 1、理解可导与解析的联系与区别(在一点;在一个区域)。 对于点:解析→可导→连续对于区域:解析?可导 2、会判别常见函数的解析性,会求常见函数的奇点。

3、了解柯西—黎曼方程。 4、掌握各类初等函数(指数函数、对数函数、幂函数、三角函数)的定义、性质。 例:1.4;2.1;3.1;3.2 习题二:2.3(1)(2)(3);2.4;2.9(1)(2)(3);2.10;2.12(1)(3) 第三章复变函数的积分 1、熟悉复积分的概念及其基本性质。 2、了解复积分计算的一般方法。 3、会求常见的各类积分(包括不闭路径、闭路径)。 本章的主要方法如下,但要注意适用的积分形式。 (1)牛顿—莱布尼茨公式。 (2)柯西积分定理。 (3)柯西积分公式。 (4)高阶导数公式。 (5)复合闭路定理。 注意:上述方法中的(3)(4)(5)可与第五章中的留数定理的应用结合起来复习。 例:1.1;2.1;2.2;3.1;4.1 习题三:3.1(1);3.3;3.4;3.5;3.6;3.7 第四章级数 1、理解复数项级数的相关概念(收敛、发散、绝对收敛、条件收敛)。 2、会判常见复数项级数的敛散性,包括判绝对收敛和条件收敛。 3、熟悉幂级数的概念,会求幂级数的收敛半径。

复变函数D卷答案

湖南科技学院二○○ 年 学期期末考试 专业 年级 试题 考试类型:闭卷 试卷类型:D 卷 考试时量: 120 分钟 一(共7分,每小题1分) 1.nLnz Lnz n =(n 为正整数) ( ) 2.),(),()(y x iv y x u z f +=在区域D 内解析,则在区域D 内),(y x u 是),(y x v 的共轭调 函数。 ( ) 3.函数在可去奇点处的留数为0。 ( ) 4.0是2sin )(z z z f = 的一阶极点。 ( ) 5.复数0的辐角主值为0。 ( ) 6.在复变函数中,0cos ,0sin ,1|cos |,1|sin |2 2 ≥≥≤≤z z z z 同样成立。 ( ) 7.解析函数),(),()(y x iv y x u z f +=的实部),(y x u 和虚部),(y x v 都是其解析区域内的调 和函数。 ( ) 二 、填空题(共28分,每小题4分) 1. i i -1=_________. 2.? =-2 |1|2 z z dz = 。 3. dz z c ?=__________。 (其中c 是从1到的直线段) 4.幂级数n n n z n ∑ +∞ =1 的收敛半径R =

5.0为 )1()(2-=z e z z f 的 阶零点。 6.2 ||2(1)(3)z dz z z =--?=____________ 7. )1(Re z z s z +∞== 。 8.1z =+arg z =_______________。 三 、计算题(共39分) 1. 已知),(),()(y x iv y x u z f +=在z 平面上是解析函数,且2 33),(xy x y x u -=,求解)(z f , 使得i f 2)0(=。(12分) 2. 求 ) 1(1 -z z 在10<z 内的展开式。(15分) 3. 利用留数求定积分20 1 .51sin 82 I d π θθ=-? (12分) 四、证明题(共12分) 若函数)(),(z f z f 在区域D 内都解析,证明在D 内)(z f 为常数。

复变函数期末试题

西北农林科技大学本科课程考试试题(卷) 2016-2017学年第1学期《复变函数》课程B 卷 专业班级: 命题教师:李 祯 审题教师: 学生姓名: 学 号: 考试成绩: 一、选择题(每题3分,共15分) 得分: 分 1. 下列说法正确的是( ), A .零的辐角是零 B.若c 为实常数,则c c = C. 2121z z z z +=+ D. i i 2< 2. 1,++=+=y x v y x u 则( ) A .u 是v 的共轭调和函数 是u 的共轭调和函数 和v 互为共轭调和函数 和v 不构成共轭调和函数 =1是() 21111sin -+-z z 的( ) A.本性奇点 B.可去奇点 C.极点 D.非孤立奇点 为ππ32<

4. =?=dz e z z 1 . 5. ()=+??? ? ??-?=dz z i z z 1221 三、计算题 (共50分) 得分: 分 1.解方程01=++i ie z (10分) 2.将函数 ()()211--z z 在圆环域110<-

《复变函数与积分变换》期末考试试卷及答案[1]

一.填空题(每小题3分,共计15分) 1. 2 31i -的幅角是( 2,1,0,23 ±±=+- k k ππ ) ; 2.)1(i Ln +-的主值是( i 4 32ln 21π + ); 3. 2 11)(z z f +=,=)0()5(f ( 0 ), 4.0=z 是 4 sin z z z -的( 一级 )极点; 5. z z f 1 )(=,=∞]),([Re z f s (-1 ); 二.选择题(每题4分,共24分) 1.解析函数 ),(),()(y x iv y x u z f +=的导函数为(B ) ; (A ) y x iu u z f +=')(; (B )y x iu u z f -=')(; (C ) y x iv u z f +=')(; (D )x y iv u z f +=')(. 2.C 是正向圆周 3=z ,如果函数=)(z f ( D ) ,则0d )(=?C z z f . (A ) 23-z ; (B )2 ) 1(3--z z ; (C ) 2)2()1(3--z z ; (D ) 2 )2(3 -z . 3.如果级数∑∞ =1 n n n z c 在 2=z 点收敛,则级数在(C ) (A )2-=z 点条件收敛 ; (B )i z 2=点绝对收敛; (C ) i z +=1点绝对收敛; (D )i z 21+=点一定发散. 4.下列结论正确的是( B ) (A )如果函数 )(z f 在0z 点可导,则)(z f 在0z 点一定解析; (B) 如果 )(z f 在C 所围成的区域内解析,则 0)(=? C dz z f (C )如果0)(=? C dz z f ,则函数)(z f 在C 所围成的区域内一定解析; (D )函数 ),(),()(y x iv y x u z f +=在区域内解析的充分必要条件是),(y x u 、) ,(y x v

薛定谔方程对氢原子的应用

(16.4.4) (16.4.5) (图16.4a )球极坐标 薛定谔方程对氢原子的应用 (一)氢原子的薛定谔方程 前一节讨论一维运动自由粒子的薛定谔方程及 其定态解.本节要讨论氢原子中电子的运动,这与 前一节有两点不同: (1)氢原子电子作三维空间运动,因此,薛定 谔方程(16.3.3)中的波函数ψ(x,t )应换成ψ(x,y,z,t ) 或ψ(r ,t ),而22x ??应换成=??+??+??222222z y x ▽2.此▽2称为拉普拉斯算符或拉氏算符. ??????<<的薛定谔方程三维运动自由粒子)c (v 222222222z y x )m 2/(t i ??+??+??=?=?ψ?-=?ψ? (16.4.1) (2)氢原子的电子不是自由粒子,它受到氢核的库仑力,此力的作用可用它们的电势能E p 表示.因此,氢原子电子的薛定谔方程可表示如下??,见〔附录16D 〕. ??????<<的薛定谔方程氢原子电子)c (v p 2p k p 22E )m 2/p (E E E E )m 2/(t i +=+=ψ+ψ?-=?ψ? (16.4.2) *(二)氢原子的定态薛定谔方程 定态解是解决氢原子各种问题的基础.参照(16.3.4)至(16.3.6)式,可把(16.4.2)式中的波函数ψ(r ,t )分离为空间部分u (r )和时间部分f (t ),并参照(16.3.10)式写出氢原子的定态薛定谔方程,见〔附录16E 〕. ψ(r ,t )=u (r )f (t ), f (t )=C /iEt e - (16.4.3) ??????<<的定态薛定谔方程氢原子电子)c (v r 4e E 0u )E E )(/m 2(u 02p p 22πε-==-+? 氢核的质量比电子的大得多,可认为氢核不动,电子绕核转动.其电势能可表成E p =-e 2/4πε0r .此势能E p 只与电子至氢核的距离r 有关,而与方向无关,即具有球对称性,应用球极坐标较为方便.如(图16.4a ),O 表氢核,e 表电子,r 为e 至O 的距离.θ为r 与z 轴的夹角,θ称天顶角或极角.?为r 在xOy 平面的投影与x 轴的夹角.故有 x=rsin θcos ?; y=rsin θsin ?; z=rcos θ (16.4.6) 拉氏算符 2222222z y x ??+??+??=?改用球坐标(r,θ,?)表示如下:?? ()() 22222222sin r 1sin sin r 1r r r r 1???θ+θ??θθ ??θ+????=?(16.4.7) 将此▽2算符代入(16.4.4)式,便得到以球坐标表示的氢原子定态薛定谔方程. ? 郭敦仁《量子力学初步》18—19,34—35页,1978年版. ? 程守洙、江之永编,王志符、朱讠永春等修订《普通物理学》第3册177—180页,1982年修订本. ? 郭敦仁《量子力学初步》35—45页,1978年版. ? 周世勋编《量子力学》59—72页,1961年版.

《复变函数与积分变换》期末考试试卷及答案(2)

吉林大学?复变函数与积分变换?期末试题(A ) 一.填空题(每小题3分,共计15分) 2 的幅角是( ); 2.)1(i Ln +-的主值是( ); 3. 211)(z z f += ,=)0() 5(f ( ); 4.0=z 是 4 sin z z z -的( )极点; 5. z z f 1 )(= ,=∞]),([Re z f s ( ); 二.选择题(每小题3分,共计15分) 1.解析函数),(),()(y x iv y x u z f +=的导函数为( ); (A ) y x iu u z f +=')(; (B )y x iu u z f -=')(; (C ) y x iv u z f +=')(; (D )x y iv u z f +=')(. 2.C 是正向圆周3=z ,如果函数=)(z f ( ),则0d )(=?C z z f . (A ) 23-z ; (B )2 ) 1(3--z z ; (C )2)2()1(3--z z ; (D )2 )2(3-z . 3.如果级数∑∞ =1 n n n z c 在 2=z 点收敛,则级数在 (A )2-=z 点条件收敛 ; (B )i z 2=点绝对收敛; (C )i z +=1点绝对收敛; (D )i z 21+=点一定发散.

4.下列结论正确的是( ) (A )如果函数)(z f 在0z 点可导,则)(z f 在0z 点一定解析; (B) 如果)(z f 在C 所围成的区域内解析,则0)(=? C dz z f (C )如果 0)(=? C dz z f ,则函数)(z f 在C 所围成的区域内一定解析; (D )函数 ),(),()(y x iv y x u z f +=在区域内解析的充分必要条件是 ),(y x u 、),(y x v 在该区域内均为调和函数. 5.下列结论不正确的是( ). (A) 的可去奇点;为z 1 sin ∞(B) 的本性奇点;为z sin ∞ (C) ;1sin 1 的孤立奇点为 z ∞(D) .sin 1的孤立奇点为z ∞ 三.按要求完成下列各题(每小题10分,共计40分) (1)设)()(2 2 2 2 y dxy cx i by axy x z f +++++=是解析函数,求.,,,d c b a (2).计算? -C z z z z e d ) 1(2 其中C 是正向圆周:2=z ;

第二章波函数和薛定谔方程

第二章波函数和薛定谔方程 ●§2.1 波函数的统计解释 ●§2.2 态叠加原理 ●§2.3 薛定谔方程 ●§2.4 粒子流密度和粒子数守恒定律●§2.5 定态薛定谔方程 ●§2.6 一维无限深势阱 ●§2.7 线性谐振子 ●§2.8势垒贯穿

本章主要介绍了波函数的统计解释、薛定谔方程的建立过程、用定态薛定方程处理势阱问题和线性谐振子问题。

§2.1 波函数的统计解释(一)波函数 (二)波函数的解释 (三)波函数的性质

?? ????-?=ψ)(exp Et r p i A ?3个问题? 描写自由粒子的 平面波 ),(t r ψ?如果粒子处于随时间和位置变化的力场中运动,他的动量和能量不再是常量(或不同时为常量)粒子的状态就不能用平面波 描写,而必须用较复杂的波描写,一般记为: 描写粒子状态的 波函数,它通常 是一个复函数。 称为de Broglie 波。此式称为自由粒子的 波函数。 (1) ψ是怎样描述粒子的状态呢? (2) ψ如何体现波粒二象性的? (3) ψ描写的是什么样的波呢? (一)波函数

电子源感 光 屏(1)两种错误的看法 1. 波由粒子组成 如水波,声波,由分子密度疏密变化而形成的一种分布。 这种看法是与实验矛盾的,它不能解释长时间单个电子衍射实验。 电子一个一个的通过小孔,但只要时间足够长,底片上增 加呈现出衍射花纹。这说明电子的波动性并不是许多电子在空间聚集在一起时才有的现象,单个电子就具有波动性。 波由粒子组成的看法夸大了粒子性的一面,而抹杀 了粒子的波动性的一面,具有片面性。 P P O Q Q O 事实上,正是由于单个电子具有波动性,才能理解氢原子 (只含一个电子!)中电子运动的稳定性以及能量量子化这样一些量子现象。

《复变函数》考试试题与答案各种总结

《复变函数》考试试题(一) 一、 判断题(20分): 1.若f(z)在z 0的某个邻域内可导,则函数f(z)在z 0解析. ( ) 2.有界整函数必在整个复平面为常数. ( ) 3.若 } {n z 收敛,则 } {Re n z 与 } {Im n z 都收敛. ( ) 4.若f(z)在区域D 内解析,且 0)('≡z f ,则C z f ≡)((常数). ( ) 5.若函数f(z)在z 0处解析,则它在该点的某个邻域内可以展开为幂级数. ( ) 6.若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点. ( ) 7.若 ) (lim 0 z f z z →存在且有限,则z 0是函数f(z)的可去奇点. ( ) 8.若函数f(z)在是区域D 内的单叶函数,则)(0)('D z z f ∈?≠. ( ) 9. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C 0)(=? C dz z f . ( ) 10.若函数f(z)在区域D 内的某个圆内恒等于常数,则f(z)在区域D 内恒等于常数.( ) 二.填空题(20分) 1、 =-?=-1||0 0)(z z n z z dz __________.(n 为自然数) 2. =+z z 22cos sin _________. 3.函数z sin 的周期为___________. 4.设 11 )(2+= z z f ,则)(z f 的孤立奇点有__________. 5.幂级数 n n nz ∞ =∑的收敛半径为__________. 6.若函数f(z)在整个平面上处处解析,则称它是__________. 7.若ξ =∞ →n n z lim ,则= +++∞→n z z z n n (i) 21______________. 8.= )0,(Re n z z e s ________,其中n 为自然数.

量子力学_王学雷_第二章波函数薛定谔方程

§2.1 波函数的统计解释 一.波动-粒子二重性矛盾的分析 物质粒子既然是波,为什么长期把它看成经典粒子,没犯错误? 实物粒子波长很短,一般宏观条件下,波动性不会表现出来。到了原子世界(原子大小约 1A),物质波的波长与原子尺寸可比,物质微粒的波动性就明显的表现出来。 传统对波粒二象性的理解: (1)物质波包物质波包会扩散,电子衍射,波包说夸大了波动性一面。 (2)大量电子分布于空间形成的疏密波。电子双缝衍射表明,单个粒子也有波动性。疏密波说夸大了粒子性一面。 对波粒二象性的辨正认识:微观粒子既是粒子,也是波,它是粒子和波动两重性矛盾的统一,这个波不再是经典概念下的波,粒子也不再是经典概念下的粒子。在经典概念下,粒子和波很难统一到一个客体上。 二.波函数的统计解释 1926年玻恩提出了几率波的概念: 在数学上,用一函数表示描写粒子的波,这个函数叫波函数。波函数在空间中某一点的强度(振幅绝对值的平方)和在该点找到粒子的几率成正比。既描写粒子的波叫几率波。 描写粒子波动性的几率波是一种统计结果,即许多电子同一实验或一个电子在多次相同实验中的统计结果。 几率波的概念将微观粒子的波动性和粒子性统一起来。微观客体的粒子性反映微观客体具有质量,电荷等属性。而微观客体的波动性,也只反映了波动性最本质的东西:波的叠加性(相干性)。 描述经典粒子:坐标、动量,其他力学量随之确定; 描述微观粒子:波函数,各力学的可能值以一定几率出现。 设波函数描写粒子的状态,波的强度,则在时刻t、在坐标x到x+dx、 y到y+dy、z到z+dz的无穷小区域内找到粒子的几率表示为,应正比于体 积和强度 归一化条件:在整个空间找到粒子的几率为1。

相关文档
最新文档