Digital self-coherent detection

Digital self-coherent detection
Digital self-coherent detection

Digital self-coherent detection
Xiang Liu1*, S. Chandrasekhar1, and Andreas Leven2
2
Bell Laboratories, Alcatel-Lucent, 791 Holmdel-Keyport Road, Holmdel, New Jersey 07733, USA Bell Laboratories, Alcatel-Lucent, 600-700 Mountain Avenue, Murray Hill, New Jersey 07974, USA * Corresponding author: xliu20@https://www.360docs.net/doc/e62830299.html,
1
Abstract: We review recent progresses on digital self-coherent detection of differential phase-shift keyed (DPSK) signal using orthogonal differential direct detection followed by high-speed analog-to-digital conversion and digital signal processing (DSP). Techniques such as data-aided multisymbol phase estimation for receiver sensitivity enhancement, unified detection scheme for multi-level DPSK signals, and optical field reconstruction are described. The availability of signal field information brings the possibility to compensate for some linear and nonlinear transmission impairments through further DSP. An adaptive DSP algorithm for simultaneous electronic polarization de-multiplexing and polarizationmode dispersion compensation is also presented.
?2008 Optical Society of America
OCIS codes: (060.1660) Coherent communications; (060.5060) Phase modulation; (060.2330) Fiber optics communication.
References and links
1. 2. 3. 4. 5. 6. 7. 8. 9. R. C. Giles and K. C. Reichmann, "Optical self-homodyne DPSK transmission at 1-Gbit/s and 2-Gbit/s over 86km of fiber," Electron. Lett. 23, 1180-1181 (1987). C. Xu, X. Liu, and X. Wei, “Differential phase-shift keying for high spectral efficiency optical transmissions,” IEEE J. Sel. Top. Quantum Electron. 10, 281 – 293 (2004). A. H. Gnauck and P. J. Winzer, “Optical phase-shift-keyed transmission,” J. Lightwave Technol. 23, 115130 (2005). K.-P. Ho, Phase-modulated optical communication systems, (Springer, New York, 2005). F. Derr, “Coherent optical QPSK intradyne system: Concept and digital receiver realization,” J. Lightwave Technol. 10, 1290-1296 (1992). M. Taylor, “Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments,” IEEE Photon. Technol. Lett. 16, 674–676 (2004). R. Noe, “PLL-free synchronous QPSK polarization multiplex/diversity receiver concept with digital I&Q baseband processing,” IEEE Photon. Technol. Lett. 17, 887-889 (2005). K. Kikuchi, “Phase-diversity homodyne detection of multilevel optical modulation with digital carrier phase estimation,” IEEE J. Sel. Top. Quantum Electron. 11, 563-570 (2006). M. Nazarathy, Y. Yadin, M. Orenstein, Y. Lize, L. Christen, and A. Willner, " Enhanced Self-Coherent Optical Decision-Feedback-Aided Detection of Multi-Symbol M-DPSK/PolSK in Particular 8DPSK/BPolSK at 40 Gbps," in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper JWA43. https://www.360docs.net/doc/e62830299.html,/abstract.cfm?URI=OFC-2007-JWA43. M. Nazarathy, X. Liu, L. Christen, Y. Lize, and A. Willner, “Self-coherent decision-feedback-directed 40 Gbps DQPSK Receiver,” IEEE Photon. Technol. Lett. 19, 828-839 (2007). M. Nazarathy, X. Liu, L. Christen, Y. Lize, and A. Wilner, “Self-coherent optical detection of multisymbol differential phase-shift-keyed transmission ,” J. Lightwave Technol. (accepted for publication). N. Kikuchi, K. Mandai, S. Sasaki and K. Sekine, “Proposal and first experimental demonstration of digital incoherent optical field detector for chromatic dispersion compensation,” in Proceedings of European Conference on Optical Communications 2006, Post-deadline Paper Th4.4.4. X. Liu and X. Wei, " Electronic Dispersion Compensation Based on Optical Field Reconstruction with Orthogonal Differential Direct-Detection and Digital Signal Processing," in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper OTuA6. https://www.360docs.net/doc/e62830299.html,/abstract.cfm?URI=OFC-2007-OTuA6. G. Charlet, J. Renaudier, M. Salsi, H. Mardoyan, P. Tran, and S. Bigo, " Efficient Mitigation of Fiber Impairments in an Ultra-Long Haul Transmission of 40Gbit/s Polarization-Multiplexed Data, by Digital Processing in a Coherent Receiver," in Optical Fiber Communication Conference and Exposition and The
10. 11. 12. 13.
14.
#87880 - $15.00 USD
Received 25 Sep 2007; revised 26 Nov 2007; accepted 26 Nov 2007; published 9 Jan 2008
(C) 2008 OSA
21 January 2008 / Vol. 16, No. 2 / OPTICS EXPRESS 792

National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper PDP17. https://www.360docs.net/doc/e62830299.html,/abstract.cfm?URI=OFC-2007-PDP17. 15. C. Laperle, B. Villeneuve, Z. Zhang, D. McGhan, H. Sun, and M. O’Sullivan; “Wavelength division multiplexing (WDM) and polarization mode dispersion (PMD) performance of a coherent 40Gbit/s dualpolarization quadrature phase shift keying (DP-QPSK) transceiver,” in Proceedings of Optical Fiber Communication Conference 2007, Post-deadline Paper PDP16. 16. C. R. Fludger, T. Duthel, D. van den Borne, C. Schulien, E. -D. Schmidt, T. Wuth, E. de Man, G. D. Khoe, and H. de Waardt, " 10 x 111 Gbit/s, 50 GHz Spaced, POLMUX-RZ-DQPSK Transmission over 2375 km Employing Coherent Equalisation," in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper PDP22. https://www.360docs.net/doc/e62830299.html,/abstract.cfm?URI=OFC-2007-PDP22. 17. D. van den Borne, S. Jansen, G. Khoe, H. de Wardt, S. Calabro, and E. Gottwald, “Differential quadrature phase shift keying with close to homodyne performance based on multi-symbol phase estimation,” IEE Seminar on Optical Fiber Comm. and Electronic Signal Processing, ref. No. 2005-11310 (2005). 18. X. Liu, “Receiver sensitivity improvement in optical DQPSK and DQPSK/ASK through data-aided multisymbol phase estimation,” in Proceedings of European Conference on Optical Communications 2006, Paper We2.5.6, 2006. 19. X. Liu, “Generalized data-aided multi-symbol phase estimation for improving receiver sensitivity in directdetection optical m-ary DPSK,” Opt. Express 15, 2927-2939 (2007), https://www.360docs.net/doc/e62830299.html,/abstract.cfm?URI=oe-15-6-2927 20. C. R. Doerr, D. M. Gill, A. H. Gnauck, L. L. Buhl, P. J. Winzer, M. A. Cappuzzo, A. Wong-Foy, E. Y. Chen, and L. T. Gomez, "Simultaneous reception of both quadratures of 40-Gb/s DQPSK using a simple monolithic demodulator," in Proceedings of Optical Fiber Communication Conference 2005, Post-deadline Paper PDP12, 2005. 21. X. Liu, S. Chandrasekhar, A. H. Gnauck, C. R. Doerr, I. Kang, D. Kilper, L. L. Buhl, and J. Centanni, “DSP-enabled compensation of demodulator phase error and sensitivity improvement in direct-detection 40-Gb/s DQPSK,” in Proceedings of European Conference on Optical Communications 2006, post-deadline paper Th4.4.5, 2006. 22. Y. Cai and A. N. Pilipetskii, " Comparison of Two Carrier Phase Estimation Schemes in Optical Coherent Detection Systems," in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper OMP5. https://www.360docs.net/doc/e62830299.html,/abstract.cfm?URI=OFC-2007-OMP5. 23. G. Goldfarb and G. Li, "BER estimation of QPSK homodyne detection with carrier phase estimation using digital signal processing," Opt. Express 14, 8043-8053 (2006), https://www.360docs.net/doc/e62830299.html,/abstract.cfm?URI=oe-14-18-8043 24. X. Liu and S. Chandrasekhar, “Measurement of constellation diagrams for 40-Gb/s DQPSK and 60-Gb/s 8ary-DPSK using sampled orthogonal differential direct-detection”, in Proceedings of European Conference on Optical Communications 2007, Paper 7.2.7, 2007 25. J. P. Gordon and L. F. Mollenauer, “Phase noise in photonic communications systems using linear amplifiers,” Opt. Lett. 15, 1351–1353 (1990). 26. X. Liu, X. Wei, R. E. Slusher, and C. J. McKinstrie, “Improving transmission performance in differential phase-shift-keyed systems by use of lumped nonlinear phase-shift compensation,” Opt. Lett. 27, 1616-1618 (2002). 27. K.-P. Ho and J. M. Kahn, “Electronic compensation technique to mitigate nonlinear phase noise,” J. Lightwave Technol 22, 779 – 783 (2004). 28. G. Charlet, N. Maaref, J. Renaudier, H. Mardoyan, P. Tran, and S. Bigo, “Transmission of 40Gb/s QPSK with coherent detection over ultra long haul distance improved by nonlinearity mitigation,” in Proceedings of European Conference on Optical Communications 2006, Post-deadline Paper Th4.3.4, 2006. 29. N. Kikuchi, K. Mandai, and S. Sasaki, “Compensation of non-linear phase-shift in incoherent multilevel receiver with digital signal processing,” in Proceedings of European Conference on Optical Communications 2007, Paper 9.4.1, 2007.. 30. D. N. Godard, “Self-recovering equalization and carrier tracking in two-dimensional data communication systems,” IEEE Trans. Commun. 28, 1867-1875 (1980). 31. S. J. Savory, V. Mikhailov, R. I. Killey, and P. Bayvei, “Digital coherent receivers for uncompensated 42.8Gb/s transmission over high PMD fibre,” in Proceedings of European Conference on Optical Communications 2007, Paper 10.4.1, 2007. 32. T. Pfau, S. Hoffmann, R. Peveling, S. Bhandare, S.K. Ibrahim, O. Adamczyk, M. Porrmann, R. Noe, and Y. Achiam, “First Real-Time Data Recovery for Synchronous QPSK Transmission With Standard DFB Lasers,” IEEE Photon. Technol. Lett. 18, 1907 – 1909 (2006). 33. A. Leven, N. Kaneda, A. Klein, U.-V. Koc, and Y.-K. Chen, “Real-time implementation of 4.4 Gbit/s QPSK intradyne receiver using field programmable gate array,” Electron. Lett. 42, 1421-1422 (2006). 34. A. Leven, N. Kaneda, U. -V. Koch, and Y. -K. Chen, " Coherent Receivers for Practical Optical Communication Systems," in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper OThK4. https://www.360docs.net/doc/e62830299.html,/abstract.cfm?URI=OFC-2007-OThK4.
#87880 - $15.00 USD
Received 25 Sep 2007; revised 26 Nov 2007; accepted 26 Nov 2007; published 9 Jan 2008
(C) 2008 OSA
21 January 2008 / Vol. 16, No. 2 / OPTICS EXPRESS 793

1. Introduction Optical transmission system based on self-homodyne differential phase-shift keying (DPSK) [1-4] has emerged as an attractive vehicle for supporting high-speed optical transport networks by offering lower requirements on optical signal-to-noise ratio (OSNR) and higher tolerance to system impairments such as certain fiber nonlinear effects as compared to traditional on-off-keying (OOK) based systems. Multilevel DPSK formats such as differential quadrature phase-shift keying (DQPSK) additionally offer high spectral efficiency and high tolerance to chromatic dispersion (CD), polarization-mode dispersion (PMD), and optical filtering, particularly when polarization-division multiplexing (PMUX) is also applied. Selfhomodyne DPSK signals are received by differential direct detection that does not need an optical local oscillator (OLO) as required in coherent detection [5-8]. To generate coherent gain without the actual presence of a physical OLO, self-coherent detection was recently proposed, based either optical signal processing [9-11] or digital signal processing (DSP) [12,13]. With the help of high-speed analog-to-digital conversion (ADC) and DSP following orthogonal differential direct detection, the phase and even the field of a received optical signal can be digitally reconstructed [12,13]. Adaptive equalization of transmission impairments such as nonlinear phase noise, CD, and PMD could then be subsequently performed, in a similar way as digital coherent detection [14-16]. Such DSP-assisted selfhomodyne detection is herein referred to as digital self-coherent detection (DSCD). These new capabilities bring opportunities to make transport systems more versatile, flexible, and ultimately cost-effective. With advances in high-speed electronic circuits, digital coherent and self-coherent detections are expected to find a wide range of applications to meet the everincreasing demand of capacity upgrade and cost reduction in future optical networks. This paper is organized as follows. In Section 2, we describe the architecture of DSCD. Section 3 briefly discusses a data-aided multi-symbol phase estimation (MSPE) scheme for receiver sensitivity enhancement [17-19]. Section 4 presents the detection of multi-level DPSK signals [19]. The reconstruction of signal field and compensation of transmission impairments are discussed in Section 5. Section 6 presents a dual-polarization version of DSCD for electronic polarization de-multiplexing and PMD compensation (PMDC). A simple adaptive DSP algorithm for simultaneous electronic polarization de-multiplexing and PMDC is also presented. Section 7 concludes this paper.
Fig. 1. Schematic DSCD architecture based on orthogonal differential direct-detection followed by ADC and DSP. OA: optical pre-amplifier; OF: optical filter; ODI: optical delay interferometer; BD: balanced detector; ADC: analog-to-digital converter.
2. Architecture of digital self-coherent detection A schematic DSCD architecture is shown in Fig. 1. The optical complexity of the DSCD is similar to that of conventional direct-detection for differential quadrature phase-shift keying (DQPSK). The received signal, r(t)=|r(t)|exp[j?φ(t)], is first split into two branches that are
#87880 - $15.00 USD Received 25 Sep 2007; revised 26 Nov 2007; accepted 26 Nov 2007; published 9 Jan 2008
(C) 2008 OSA
21 January 2008 / Vol. 16, No. 2 / OPTICS EXPRESS 794

connected to a pair of optical delay interferometers (ODIs) with orthogonal phase offsets θ and θ -π/2, where θ is an arbitrary phase value. Note that the phase orthogonality is assumed to be guaranteed, e.g., via the design reported in Ref. [20]. This simplifies the control of the pair of ODIs to a single phase control. The delay in each of the ODI, τ, is set to be approximately T/sps, where T is the signal symbol period and sps is the number of samples per symbol of the analog-to-digital converters (ADCs) that convert the two detected analog signal waveforms, referred to as the I and Q components, to digitized waveforms uI (t) and
uQ (t) , which follow
u(t) = u I (t) + j ? uQ (t) = e j?θ r(t ) ? r * (t ? τ ) .
(1)
In the special case with sps=1, the delay in the orthogonal ODI pair equals to the symbol period, and the I and Q decision variables for an m-ary DPSK signal can be directly obtained by setting θ = π / m , as to be discussed later. Any demodulator phase error φ e = θ ? π / m can be readily compensated by using the following simple electronic demodulator error compensation (EDEC) process [21]
u(t ) → e ? j?φe u(t )
3. Receiver sensitivity enhancement via data-aided MSPE
.
(2)
There is a well-known differential-detection penalty in receiver sensitivity for DPSK as compared to PSK. This penalty can be substantially reduced by using a data-aided MSPE that utilizes the previously recovered data symbols to recursively extract a new phase reference that is more accurate than that provided by the immediate past symbol alone, and its analog implementations have been proposed for optical DQPSK [17], DQPSK/ASK [18], and m-ary DPSK [19]. The MSPE concept was recently extended to the digital domain in Refs. [19] and [21]. An improved complex decision variable for m-ary DPSK can be written as [19]
where u(n) is the directly detected complex decision variable for the n-th symbol, m is the number of phase states of the m-ary DPSK signal, N is the number of past decisions used in the MSPE process, w is a forgetting factor, and Δφ (n-q)=φ (n-q)-φ (n-q-1) is the optical phase difference between the (n-q)-th and the (n-q-1)-th symbols, which can be estimated based on the past decisions. For optical DQPSK, using recovered I and Q data tributaries, cI and cQ, we have [19]
exp [? j ? Δ φ ( n ) ] = c I ( n ) ⊕ c Q ( n ) ? ( ?1) c I
(n)
+ j ? c I ( n) ⊕ c Q ( n ) ? ( ?1) c I
where ⊕ denotes XOR logic operation. One advantage of the digital implementation is that w can be conveniently set to 1, and N can be small (e.g., <5) to obtain most of the sensitivity enhancement [19]. The computational complexity of the data-aided MSPE, in terms of the number of complex multiplications and additions, increases roughly linearly with N. Note that in digital coherent detection, carrier phase estimation, instead of the MSPE, is needed [8,22,23].
#87880 - $15.00 USD
Received 25 Sep 2007; revised 26 Nov 2007; accepted 26 Nov 2007; published 9 Jan 2008
(C) 2008 OSA
21 January 2008 / Vol. 16, No. 2 / OPTICS EXPRESS 795



x(n) = u (n) +
p =1
q =1
? ? ?
(n)
? ? ?
N
w p e ? jp π / m u ( n )∏ u ( n ? q ) ? e ? jΔφ ( n ? q )
p
[
]
(3)
,
(4)

Fig. 2. Measured BER performance of the 40-Gb/s DQPSK signal received with and without the data-aided MSPE [21].
In a recent 40-Gb/s DQPSK experiment with offline DSP, the benefits of the MSPE and EDEC were confirmed. Figure 2 shows the BER performance with the data-aided MSPE activated in both back-to-back and nonlinear transmission configurations [21]. At BER=10-3, the MSPE improves the back-to-back receiver sensitivity by 0.5 dB and 1 dB with N=1 and N=3, respectively. The forgetting factor w was set to 1. The performance difference between 215–1 and 27–1 patterns is negligible. The achieved back-to-back sensitivity is -41.5 dBm for BER=10-3, which is close to that obtained with coherent-detection QPSK (-42 dBm for BER=10-3) [8]. After transmission over the 320-km fiber link, the signal performance was severely degraded by nonlinear phase noise and polarization-dependent frequency shift (PDFS) of the demodulator. Remarkably, with the combined use of EDEC and MSPE, the required OSNR for BER=10-3 is reduced by 3.2 dB, indicating the improved performance of DSCD over conventional differential direct detection that uses binary decision circuitries. It is worth mentioning that the MSPE scheme can be applied to advanced modulation formats that involve simultaneous differential-phase and amplitude modulation, such as DQPSK/ASK [18]. For quadrature amplitude modulation (QAM), such as 16-QAM, coherent detection, rather than differential detection, is usually used. In digital coherent detection, the decision-feedback aided carrier phase estimation [22] is effectively equivalent to the dataaided MSPE used here for DSCD. 4. Detection of m-ary DPSK The DSCD can be used to receive high spectral-efficiency m-ary DPSK signals [19]. An mary DPSK signal has log2(m) binary data tributaries that are usually obtained from m/2 decision variables associated with m/4 ODI pairs having the following orthogonal phase
π π ,? π . . With DSP, the last (m/2-2) decision offsets, π , π ? π , 3m , 3m ? π , ... , m m 2 2 m m variables can be derived by linear combinations of the first two decision variables, uI and uQ. This dramatically reduces the optical complexity associated with the detection of m-ary DPSK. The decision variables associated with phase offset πp/m (p=3,5,…,m/2-1), can be expressed as
(
)(
)
(
( m / 2 ?1)π
)
ν (πp / m) = cos(
p ?1 p ?1 π )u I ? sin( π )u Q . m m
(5)
Similarly, we can express their orthogonal counterparts as
#87880 - $15.00 USD
Received 25 Sep 2007; revised 26 Nov 2007; accepted 26 Nov 2007; published 9 Jan 2008
(C) 2008 OSA
21 January 2008 / Vol. 16, No. 2 / OPTICS EXPRESS 796

ν (πp / m ? π / 2) = sin(
p ?1 p ?1 π )u I + cos( π )u Q . m m
π
m
(6)
The data tributaries of an m-ary DPSK signal can then be retrieved by [19].
c1 = cI = [u( ) > 0], m c3 = [u( clog2 (m)
π
c2 = cQ = [u(
+ ) > 0] ⊕ [u( ? ) > 0], ... 4 m 4 3 7 m / 2 ?1 π ) > 0] = [u( π ) > 0] ⊕ [u( π ) > 0]... ⊕ [u( m m m π π 3 7 π m / 2 ?1 π ? ) > 0]. ⊕ [u( π ? ) > 0] ⊕ [u( ? ) > 0]... ⊕ [u( 2 2 m m 2 m m
π
π
π
π
? ) > 0], 2
π
(7)
When the data-aided MSPE is applied, uI and uQ need to be replaced with their corresponding improved decision variables. In effect, the complex decision variable u(n) or x(n) contains complete information on the differential phase between adjacent symbols, and is sufficient statistic, allowing to derive all the required decision variables. Note that a similar approach based on analog signal processing, rather than DSP, was reported in Ref. [9]. The above formulas form the basis of a simple yet universal DSCD receiver platform for m-ary DPSK using only one pair of orthogonal demodulators as shown in Fig. 1. 5. Reconstruction of signal optical field and compensation of transmission impairments 5.1 Field reconstruction principle The optical phase difference between adjacent sampling locations can be obtained from
e j?[φ (t )?φ (t ?τ )] = u(t )e ? j?θ u(t )e ? j?θ
.
(8)
With the differential phase information being available, a digital representation of the received signal field can be obtained by
r (t 0 + n ?τ ) =| r (t 0 + n ?τ ) | e
j ?φ ( t 0 )
∏e
m =1
n
j ? Δφ ( t 0 + m?τ )
,
(9)
where t0 is an arbitrary reference time, φ(t0) is a reference phase that can be set to 0, and the amplitude of the receiver signal can be obtained by an additional intensity detection branch [12] or approximated as below [13]
| r(t 0 + n ?τ ) |≈| u(t 0 + n ?τ ) ? u(t 0 + n ?τ +τ ) |1 / 4 .
(10)
We note, however, that care needs to be taken at sampling locations where the signal amplitude is close to zero, particularly when the sampling resolution is limited [12,13]. In addition, the required digitization resolution is higher in DSCD than in digital coherent receiver. When the inter-symbol interference caused by distortions such as dispersion and PMD is reasonably small, synchronous sampling with sps=1 may be used and the signal amplitude may be approximated as a constant. Note that DSCD can be designed to be polarizationindependent to readily receive a single-polarization signal in an arbitrary polarization state, while digital coherent detection requires accurate polarization alignment between the signal and the OLO or polarization diversity. Once the received optical signal field is digitally available, advanced signal processing techniques, similar to those used in digital coherent receivers, may be applied to mitigate transmission impairments.
#87880 - $15.00 USD
Received 25 Sep 2007; revised 26 Nov 2007; accepted 26 Nov 2007; published 9 Jan 2008
(C) 2008 OSA
21 January 2008 / Vol. 16, No. 2 / OPTICS EXPRESS 797

5.2 Reconstruction of signal constellation Recently, in a proof-of-concept experiment, DSCD was shown to accurately reconstruct the constellation diagrams of a 40-Gb/s DQPSK signal and a 60-Gb/s 8ary-DPSK signal, and reveal quality degradations due to amplified spontaneous emission (ASE) noise and fiber nonlinearity [24]. Figure 3 shows the experimental setup. A tunable laser locked at 1553 nm was used as the CW source. A 40-Gb/s return-to-zero (RZ) DQPSK signal was generated by modulating the CW source through a nested LiNbO3 Mach-Zehnder modulator (MZM) driven by the two 20-Gb/s data tributaries, followed by pulse carver, which is an x-cut LiNbO3 MZM driven sinusoidally at 20 GHz. The RZ pulses had a duty-cycle of 50%. The 20-Gb/s drive signals were generated by suitably multiplexing 10-Gb/s pseudo-random bit sequences (PRBSs) of length up to 215-1. To generate 8ary-DPSK, an additionally phase modulator, driven by another 20-Gb/s signal whose peak-to-peak amplitude is ~?Vπ was used. The generated RZ-DQPSK signal or RZ-8ary-DPSK signal was then optionally transmitted over a transmission link consisting of a pre dispersion compensation module (DCM) providing -510 ps/nm dispersion, 4 80-km SSMF spans, each of which was followed by a 2-stage EDFA having a DCM inserted between its two stages, and post-DCM that compensated the overall dispersion to about zero. The span dispersion was under-compensated by 33, 37, 56, and 40 ps/nm (at 1550 nm), respectively, for the four spans. The span losses ranged from 18 to 21 dB. The power launched into each span can be varied for evaluating signal distortions under different conditions of ASE noise and fiber nonlinearity. After fiber transmission, the signal was sent into an optical pre-amplifier, followed by a bandpass filter with a 3-dB bandwidth of 0.3 nm.
I Q
Fig. 3. Experimental setup for reconstructing the constellation diagrams of a 40-Gb/s RZDQPSK and a 60-Gb/s RZ-8ary-DPSK signal using DSCD [24]. Inset shows simultaneously measured I/Q eye diagrams of a 40-Gb/s RZ-DQPSK signal. Time scale: 20 ps/division.
The received signal was detected by a DSCD setup with offline DSP. The I/Q waveforms were then digitized at a sampling rate of 40 Gsamples/s using two 8-bit ADCs embedded within a Tektronix TDS6154C real-time oscilloscope. Care was taken to ensure that the two digitized waveforms were temporally aligned within 2 ps. The ADCs had low-pass filter characteristics with a cutoff frequency of about 15 GHz. The sampled I/Q waveforms were recorded and processed offline to reconstruct signal constellation diagrams under various link conditions. From the digitized waveforms I(t) and Q(t), we can obtain the differential phase between adjacent symbols. The amplitude of the receiver signal can be obtained by an intensity detection branch [12] or approximated from I(t) and Q(t) [13]. Figure 4 shows the reconstructed differential-phase constellation diagrams of the 40-Gb/s DQPSK signal at
#87880 - $15.00 USD
Received 25 Sep 2007; revised 26 Nov 2007; accepted 26 Nov 2007; published 9 Jan 2008
(C) 2008 OSA
21 January 2008 / Vol. 16, No. 2 / OPTICS EXPRESS 798

different optical signal-to-noise ratios (OSNRs). Each constellation contains about 5,000 2 symbols. As expected, the variance of the differential-phase distribution, σ Δφ , increased with
2 the decrease of OSNR. Figure 4 also shows the measured differential-phase variance σ Δφ as a function of OSNR. The dashed line is calculated using the following relation [24]
2 σ Δφ ? 1 NEB ? (0.1nm ? OSNR0.1nm ) ?1 , 2
(11)
where the noise effective bandwidth of the monitor NEB is determined by the optical 2 bandpass filter to be 0.3 nm. The measured σ Δφ is in excellent agreement with the calculated one over an OSNR range from 10 dB to 25 dB. For OSNR>25 dB, the intrinsic differentialphase variance due to imperfect modulation starts to affect the measurement.
Fig. 4. Measured differential-phase constellation diagrams of the 40-Gb/s DQPSK signal at OSNR=35 dB (left) and 21 dB (center) and measured differential-phase variance as a function of OSNR (right). The dashed line is calculated.
Figure 5 shows the reconstructed differential-phase constellations of the 40-Gb/s DQPSK signal after the 320-km SSMF transmission at different signal powers. The presence of the Gordon-Mollenauer nonlinear phase noise [25] becomes apparent at 6-dBm and 10-dBm signal powers, which corresponds to mean nonlinear phase shifts of 0.8 and 2 rad., respectively. Figure 5 also shows a reconstructed differential-phase constellation diagram of the 60-Gb/s RZ-8ary-DPSK signal. The modulator bandwidth limitation induced phase pattern dependence is more pronounced than in DQPSK, indicating that care needs to be taken in the modulation of multi-level DPSK formats.
Fig. 5. Measured differential-phase constellations of the 40-Gb/s DQPSK signal after transmission with 6 dBm (left) and 8 dBm (center) signal launch powers, and measured differential-phase constellation diagram of a 60-Gb/s 8ary-DPSK signal (right).
5.3 Electronic dispersion compensation With the availability of signal field, electronic dispersion compensation (EDC) may be performed to restore the original signal via, e.g., a multi-stage digital finite impulse response (FIR) filter that approximates the inverse function of the dispersion experienced by the signal
#87880 - $15.00 USD Received 25 Sep 2007; revised 26 Nov 2007; accepted 26 Nov 2007; published 9 Jan 2008
(C) 2008 OSA
21 January 2008 / Vol. 16, No. 2 / OPTICS EXPRESS 799

during fiber transmission. EDC with DSCD was reported, both experimentally [12] and numerically [13], in typical optically repeated transmission links with the consideration of ASE noise and fiber nonlinearity. We note, however, that special care needs to be taken at sampling locations where the signal amplitude is close to zero [12,13]. For example, the effective sampling resolution needs to be sufficiently high. 5.4 Compensation of nonlinear phase noise In optical fiber transmission, phase modulated signals may be degraded by the GordonMollenauer nonlinear phase noise [25] resulting from the interaction between the self-phase modulation (SPM) and the ASE noise. It was found that the Gordon-Mollenauer nonlinear phase noise can be substantially compensated by a lumped post compensation process [26], which can be achieved by replacing the directly measured complex decision variable, u(n), with a compensated complex variable v(n)
v ( n ) = u ( n ) ? exp {? j ? 1 c NL ? [P ( n ) ? P ( n ? 1) ]} , 2
(12)
where cNL is the average nonlinear phase shift experienced by the signal over the fiber transmission, P(n) is the normalized power of the n-th symbol, and the factor of ? is for the 50% under-compensation that was found to be optimum in the lumped post-compensation scheme [26]. Post nonlinear phase noise compensation was recently demonstrated in digital coherent detection [27,28] and DSCD [29]. 6. Dual-polarization digital self-coherent detection 6.1 Architecture Polarization multiplexing provides a straightforward way to double spectral efficiency, relax transmitter/receiver bandwidth requirement, and increase signal tolerance to CD and PMD. To receive a polarization-multiplexed DPSK signal, polarization diversity is needed for DSCD. Figure 6 shows the schematic of a dual-polarization DSCD. The received optical signal is first split by a PBS into two orthogonally polarized components, which are demodulated by two orthogonal ODI pairs, and detected and sampled according to the single-polarization DSCD architecture described previously. Figure 6 also shows an alternative implementation where four PBSs are placed after a single orthogonal ODI pair. The optical fields of these two polarization components are then reconstructed, and used to recover the fields of the original polarization components.
Fig. 6. Schematic of two dual-polarization DSCD configurations for receiving a polarizationmultiplexed DPSK signal using two orthogonal ODI pairs (upper) and one shared ODI pair (lower). PBS: polarization beam splitter.
6.2 Simultaneous electronic polarization de-multiplexing and PMDC Due to fiber birefringence, the two orthogonal polarization components of the optical signal as reconstructed at the receiver after fiber transmission are generally not the original polarization components of the polarization-multiplexed signal, so electronic polarization de#87880 - $15.00 USD Received 25 Sep 2007; revised 26 Nov 2007; accepted 26 Nov 2007; published 9 Jan 2008
(C) 2008 OSA
21 January 2008 / Vol. 16, No. 2 / OPTICS EXPRESS 800

multiplexing (EPDMUX) is needed to recover the original polarization components. In addition, fiber birefringence induced signal polarization changes are usually time varying due to fluctuations in ambient temperature and mechanical stress, so adaptive EPDMUX is needed. In the presence of PMD, signal is further distorted. We discuss below how simultaneous EPDMUX and PMDC may be realized with DSCD. Figure 7 illustrates the polarization evolution of a polarization-multiplexed optical signal in a typical fiber transmission link having PMD. Under the first-order PMD assumption, the two orthogonal polarization components reconstructed in the DSCD, Ex’ and Ey’, can be expressed as
? ? ? ? ? ? ? ? ?
? ? ?
E y'
where Ex and Ey are the original polarization components at the transmitter, matrix T represents the polarization transformation of the fiber link, R1 is the rotation matrix associated with the projection of the original signal on the principle state of polarization (PSP) axes of the fiber PMD, R2 is the rotation matrix associated with the projection of the signal components along the PMD PSP axes of the fiber PMD on the polarization axes of the PBS(s) used in the receiver, PMD(ω) is the PMD matrix, and P is a matrix representing the addition phase delay between the two reconstructed fields after the polarization beam splitting at the receiver.
Fig. 7. Polarization evolution of an optical signal over a typical fiber transmission link having PMD. “||” and “⊥” represent the orientations of the two PSP axes of the fiber PMD.
Using the notations shown in Fig. 7, the above matrixes can be further expressed as
? ? ? ? ? ? ? ? ? ? ? ?
R1 =
cos(θ 1 ) sin(θ 1 ) , ? sin(θ1 ) cos(θ 1 )
? ? ?
cos(θ 2 ) ? sin(θ 2 ) 1 0 , P= , R2 = j ?δφ PBS sin(θ 2 ) cos(θ 2 ) 0 e
where
θ 1 and θ
2
are rotation angles as illustrated in Fig. 7,
differential group-delay (DGD) between the two PSP axes, δφ PMD is the phase delay caused by fiber PMD or birefringence, Δf is the frequency offset from the center frequency of the signal, and δφ PBS is the addition phase delay between the two reconstructed fields after the polarization beam splitting. When the polarization transformation matrix is known, the original signal polarization components can then be derived from the reconstructed polarization components through
Ey
E y ' (t )
E y'
#87880 - $15.00 USD
Received 25 Sep 2007; revised 26 Nov 2007; accepted 26 Nov 2007; published 9 Jan 2008
(C) 2008 OSA
21 January 2008 / Vol. 16, No. 2 / OPTICS EXPRESS 801
? ? ?
? ? ?
? ? ?
? ? ?
Ex
= T ?1 ?
E x ' (t )
? = R1?1 ? PMD ?1 ( Δ f ) ? R 2 1 ? P ?1
? ? ?
? ? ?
? ? ?
? ? ?
E x'
=T ?
Ex Ey
= P ? R 2 ? PMD (ω ) ? R1 ?
Ex Ey
? ? ?
? ? ?
,
(13)
PMD(Δf ) =
1 0 j ( 2π ?Δf ?τ DGD + δφ PMD ) , 0 e
(14)
? ? ?
τ
DGD
is the PMD-induced
E x'
.
(15)

Using Equations (14) and (15), the original signal polarization components can be expressed in the time domain as
Ey (t) =
θ θ θ θ θ θ sin( 1)[cos( 2 )Ex' (t) + sin( 2 )Ey' (t)e? j ?δφPBS ] + cos( 1)[?sin( 2 )Ex' (t + τ DGD) + cos( 2 )Ey' (t + τ DGD)e? j ?δφPBS ]e? j ?δφPMD
In general, there are five parameters that specify the polarization transformation matrix, θ 1 ,
θ 2 , δφ PBS , and they need to be determined. When PMD is sufficiently small, e.g., the PMD-induced DGD is much smaller than the signal symbol period, τ DGD may be set to zero, leaving four parameters to be determined. Since these parameters are generally time varying, it is needed to find the values of these parameters dynamically. For high-speed optical signal, parallelization in signal processing is needed to lower the speed requirement for EPDMUX and electronic PMDC. Figure 8 shows a parallel DSP arrangement with a multiplexer and demultiplexer pair and multiple (M) processing units (PUs) each operating on a block-by-block basis. Overlap of data processed by adjacent PUs is needed to address the PMD induced inter-symbol interference.
δφ PMD ,
τ DGD ,
Fig. 8. A parallel structure of the DSP circuit for EPDMUX and electronic PMDC.
Figure 9 shows the block diagram of a PU. The PU inputs two blocks of samples that represent the two reconstructed optical fields, and outputs two blocks of samples that represent the original signal polarization components. The block size is N. Note that the field reconstruction process can share the same parallel structure used for EPDMUX and PMDC. Since the changes of parameters θ 1 , τ DGD , δφ PMD , and θ 2 are generally much slower than the signal symbol rate, a feed-forward path is used to estimate the best-guess values of these four parameters through a search process, and provide them to a real-time path. For example, the search process can be based on a global search that samples all possible sets of values of the matrix parameters, computes the corresponding Ex and Ey values for each set according to Eq. (16), and finds the set of best-guess values that give the minimized variances of
| E x (t ) |
2
and/or
| E y (t ) |
2
since each of the original signal polarization components is of DPSK
format, which is has a constant amplitude characteristics. In effect, this is similar to the constant modulus algorithm (CMA) widely used in blind equalization of wireless DPSK signals [30], and recently used in digital self-coherent receivers [31]. The feed-forward path constantly updates the best-guess values at a speed that is sufficient to track the physical changes of these parameters (e.g., 10 kHz). To save computational effort, a new set of best guess values can be obtained from those that are the nearest neighbors (in a multi-dimensional space constructed by these parameters) of the preceding set of best guess values.
#87880 - $15.00 USD
Received 25 Sep 2007; revised 26 Nov 2007; accepted 26 Nov 2007; published 9 Jan 2008
(C) 2008 OSA
21 January 2008 / Vol. 16, No. 2 / OPTICS EXPRESS 802
? ? ? ?
? ? ? ?
? ? ?
Ex (t)
θ θ θ θ θ θ cos( 1)[cos( 2 )Ex' (t) + sin( 2 )Ey' (t)e? j ?δφPBS ] ? sin( 1)[?sin( 2 )Ex' (t + τ DGD) + cos( 2 )Ey' (t + τ DGD)e? j ?δφPBS ]e? j ?δφPMD
.
(16)
? ? ?

The real time path uses the best guess values provided by the feed-forward path, computes Ex and Ey values for each of a set of possible δφ PBS values, and finds the Ex and Ey values that gives the minimized variance of
| E x (t ) |
2
and/or
| E y (t ) |
2
. Note that in DSCD, δφ PBS needs to be
found in real time (on a block by block basis) since there is an uncertainty in the relative phase difference between the reconstructed signal fields Ex’ and Ey’, as indicated in Eq. (9). For digital coherent detection, the OLO provides a common phase reference for both polarization components, so δφ PBS can be advantageously estimated in the feed-forward path to save computational effort. Simultaneous EPDMUX and PMDC have recently been demonstrated with digital coherent detection through offline DSP [14-16].
Fig. 9. Block diagram of a processing unit for EPDMUX and electronic PMDC.
7. Conclusion
We have reviewed recent progresses on digital self-coherent detection. Techniques such as data-aided multi-symbol phase estimation (MSPE) for receiver sensitivity enhancement, unified detection of multi-level DPSK signals, and optical field reconstruction have been briefly discussed. Adaptive DSP methods for the compensation of linear and nonlinear transmission impairments, PMD in particular, are also described. With real-time implementations on the horizon [32-34], digital self-coherent detection and digital coherent detection in general are expected to find interesting applications in future high-speed optical transport systems.
Acknowledgments
The authors wish to thank Y. K. Chen, A. R. Chraplyvy, C. R. Giles, and R. W. Tkach for their support.
#87880 - $15.00 USD
Received 25 Sep 2007; revised 26 Nov 2007; accepted 26 Nov 2007; published 9 Jan 2008
(C) 2008 OSA
21 January 2008 / Vol. 16, No. 2 / OPTICS EXPRESS 803

深圳航空 责任公司社会招聘试题

深圳航空有限责任公司招聘试题 第一部分综合行政能力测试 (前20题,每题3分,后5题,每题2分,共70分) 1.找出有歧义的一句: A.他叫我给你送一盘磁带过来。 B.河北省去年贷款一亿多元,支持机电行来进行挖掘革新。 C.他刚把这辆车修好。 D.轮船准时启锚了。 2.找出没有歧义的一句: A.最优秀的企业的领导人。 B.刚建成的S大学教学楼非常漂亮。 C.张校长的女儿说他不来了。 D.老张告诉何伯,他孩子考上大学了。 3.下边语句没有歧义的一句: A.张老师家里收藏了许多俄国证明作家屠格涅夫的书。 B.走进大殿,中间是阎王的塑像,西边站着两个判官。 C.要像勇士那样生活,用英勇的气概去战胜灾难。 D.在场的所有人当中,只有韩履正跟刘国清学过几句国语。 4.对下面句子的修辞方法及其作用的表达,判断不正确的一项是: A.那溅着的水花,晶莹而多芒;远望去,像一朵朵小小的白梅,微雨似的纷纷落着。 ――运用了比喻的手法,描写了水花的颜色\形态和动态。 B.思厥先祖父,暴霜露,斩荆棘,以有尺寸之地。

――运用了夸张的手法,说明了六国创业的艰辛不易。 C.这里教条主义休息,有些同志却叫它起床。 ――运用了拟人的手法,使文章的说理更加生动。 D.五岭逶迤腾细浪,乌蒙磅礴走泥丸。 ――运用了对比的手法,写出了山势的起伏而又微不足道。 5.下列各组词语书写注音完全正确的一组是: A.参与(yù)?? 犒赏(kào)? 信手拈来(niān) B.记载(zǎi)? 奢侈(chǐ)? 潜移默化(qiǎn) C.粗糙(cāo)? 哺育(fǔ)??? 一暴十寒(pù) D.祠堂(cí)?? 揣度(duó)? 弱不经风(jīn) 6.下列各句没有语病的一句是: A.她一摸口袋,发觉钱不见了,她马上推醒身边的秦某追问,秦某假装摇头说“不知道”。 B.一班人都把制服孙悟空的“紧箍咒”说成“金箍咒”,这大概是因为孙悟空头上戴着金箍,手上拿着金箍棒的缘故吧。 C.数十年来,我一直害病,在我就医的生涯中,结交了一批从事医务工作的朋友,万隆医院的陈氏父子,就是其中之一。 D.香港和上海女人,又好似一对天敌,沪港两地的选美舞台和水银灯下,从来是两地女人的必争之地。 7.小张认为:打猎不仅无害于野生世界,反而能对其起一定的控制功能。这一控 制功能能使动物在一定程度上免受饥饿和疾病,其结果是产生一个更健康的动物群体。

深圳航空有限责任公司云计算基础平台建设项目

深圳航空有限责任公司云计算基础平台建设项目 技术需求说明书 本项目要求通过分布式技术基础架构与专业的虚拟化软件相结合,提供一套成熟的云计算基础架构平台方案,具体的配置需求如下: *注:以下为本项目投标必须满足项,不满足废标。 1. 云计算基础平台架构设备共配置包含不低于6个节点,结点配置参数及功能说明如下表详述:

2、企业级虚拟化软件: 虚拟化VMware软件授权许可(服务器虚拟化企业增强版),项目需求个数为16 CPU+1 vCenter ,软件需提供一年原厂技术支持服务。 3、网络配套设备:

4、服务要求 4.1产品工程师资质要求 1)乙方所提交方案产品的认证工程师不少于1名,须提供可调用服务于我司 本项目的技术支持工程师名单、及最近六个月的社保缴纳证明,加盖公 章; 4.2乙方的资质要求 1)乙方将提供由原厂商出具本项目的原厂服务承诺函; 4.3服务内容 本次服务包括以下服务内容: 1)现场实施与培训服务 A.现场实施服务。要求获选产品代理商和厂商承担所有本次获选产品的 现场实施服务,包括设备的上架安装配置,虚拟化软件安装、配置、 性能调优等集成实施,实施地点为深圳。 B.现场培训服务。要求获选厂商在完成实施后提供不少于2个工作日的 现场运维技能培训,培训时间由客户选择,有效期不少于1年。 2)技术支持服务 能提供投标产品技术支持服务,包括以下服务内容: A.提供设备的季度健康性检查,并出具检查报告。 B.提供7*24的远程技术支持,必要时提供现场技术支持。 C.分析投标产品平台的配置状况、运维管理状况,提出优化的建议。

3)现场运维服务 A.项目实施完成后,维保期内根据客户的需求提供灵活的现场运维服 务, B.运维人员必须获得原厂认证资质,并有所投标产品的技术支持服务工 作经验; C.运维人员不能存有沟通问题,并能在必要时联系乙方原厂商技术人员 支持,及时解决问题。 4.4服务要求 1)乙方必须保证所供设备的各方面与合同规定的质量、规格和配置相一致。 2)在设备正确安装、正常操作和维修情况下,乙方必须对合同设备的正常使 用给予硬件3年原厂的质量保证期与软件1年原厂的质量保证期(保修期)(特殊说明的除外)。质量保证期内,乙方应负责产品运行的稳定性,负责免费提供系统软件技术支持,提供系统软件免费升级、维护等技术服务。 3)质量保证期内的故障维修服务方式及响应时间: A.电话等远程方式。乙方提供7X24小时电话热线支持服务,在接到采 购人请求支持的通知后,应立即通过电话等方式提供远程支持服务, 帮助排除故障; B.现场服务方式。如通过电话等方式无法排除故障,乙方应在收到甲方 通知后2小时内派员到现场维修。

深圳航空有限责任公司合同管理办法(F)

深圳航空有限责任公司合同管理办法(F) 深圳航空有限责任公司合同管理办法 第一章总则 第一条为加强深圳航空有限责任公司,下称公司,的合同管理工作,规范公司签订、履行、变更和解除合同的行为,防范经营风险,提高公司对外经济交往的效率,最大限度维护公司的合法利益,根据《中华人民共和国合同法》及有关法律法规,制定本办法。 第二条本办法适用于公司各部门、分公司及筹备办,下称各单位,。 公司劳动合同不适用本办法。 第三条本办法所称合同是指公司与其他法人、组织或自然人签订的为明确双方权利义务关系的协议、意向书、备忘录等书面文件。 第四条公司合同签订应符合国家法律、法规要求,合同事项应是公司年度和月度预算,包括资本性支出预算、损益预算和资金预算等,之内的经济事项。 第五条本办法将公司合同按照不同的类别和标的额大小分为三级,参见附件一,,由各单位按照合同审批权限进行审批和管理。 第二章合同分类 第六条公司根据经济业务事项,将合同分类如下, 1 ,一,飞机、模拟机及发动机财产类 ,二,金融类 ,三,航空服务类 ,四,航空业务合作类 ,五,一般采购类

,六,固定资产类投资及物业开发、管理和维修类 ,七,信息管理类 ,八,知识产权、广告类 ,九,咨询、评估及委托代理类 ,十,培训类 ,十一,权益性投资类 ,十二,联盟类 ,十三,其他类 第三章合同管理职责 第七条合同承办单位职责 ,一,负责设置合同管理员专职或兼职岗位,并明确岗位职 责, ,二,负责选择或自拟合同文本,并承办合同文本的报批工 作。对合同文本及相关文件的真实性、完整性、准确性和合理性负责, ,三,负责对签约单位主体资格、经营范围、履约能力和签 字人签约资格进行审查, 2 ,四,负责确保合同事项已取得公司相应的批准, ,五,负责组织合同的谈判、审核、签订、变更和解除等工作, ,六,负责申请办理合同签字授权和用章等事项, ,七,负责向公司报告合同签订、履行中出现的重大问题, ,八,负责协助处理合同纠纷并提出解决意见和建议,

深圳航空有限责任公司小动物运输告知申请书(正面)

一、小动物是指旅客携带的家庭饲养的小狗、猫、鸟等。野生动物和具有形体怪异或易于伤人等特性的动物,如蛇等,不属于此范围。 二、小动物运输限制和条件 1、旅客应在乘机当日不迟于航班离站时间前90分钟将小动物自行运到机场办理托运手续。 2、除导盲犬、助听犬及救助犬等工作犬外均不能作为客舱行李运输,必须办理托运。 3、每个航班最多允许载运两个装有小动物的容器 4、小动物作为托运行李运输时,每个容器的总重量(包括其中的小动物以及食物和水等的重量)不得超过50千克。 5、小动物及其容器和携带食物的重量,不得计算在旅客的免费行李额内,应按逾重行李交付运费。 6、小动物运输不能办理声明价值托运。 5、对于出现的以下情况,承运人无法办理航空运输: ①托运人所托运的活体动物为国家禁运的动物。 ②具有传染病征候,或疑似传染病载体的动物(如发生地区禽流感的禽类)。 ③怀孕动物或是在飞机起飞前48小时之内刚刚分娩过的动物。 ④因飞机原因,不适合运输的活体动物。 ⑤对于波音机型,如果起飞、经停或目的地机场的大气温度超过32°C,货舱内温度过高,不适合运输活体动物。 三、运输文件要求 1、国际运输时必须具备运输过程中有关国家运输小动物出境、入境和过境所需的有效证件。 2、国内运输所须文件国内运输时必须具备动物卫生监督所出具的有效的《动物检疫合格证明》。 3、导盲犬、助听犬、救助犬等工作犬运输所须文件:除须备齐本条1或2款证件外,还应携带有效的《动物训练合格证 明书》、《动物工作证》或/和《动物身份证》。 四、装运小动物的容器要求 1、深航建议旅客使用专用航空箱运输动物。 2、能防止小动物破坏、逃逸以及将身体某一部位伸出容器损伤人员、行李、货物或飞机。 3、能保证小动物站立和适当活动,保证空气流通,不致使其窒息。 4、必须由坚固材料制成,应至少三面通风。容器的门可由塑料或金属制成。由塑料制成时,折叶及锁闭装置必须为金属。容器硬件(包括螺母、螺丝以及门)及固定零件必须完整、有效。容器的底部平稳,能够固定在平整的面上而不滑动。带轮子的容器,应有轮锁固定装置,防止在运输过程中滑动。 5、容器两侧应有固定的把手或凸起边缘,以便分拣及装卸过程中能够正常进行搬运。 6、容器内应有托盘,托盘上铺有吸水性衬垫,例如毛巾、毯子或者白纸,以防止小动物排泄物外溢,污染其他行李。吸附性衬垫不得使用含有毒性物质的物品。 7、容器必须上锁并使用打包带打包加固,打包带应覆盖笼门。 8、二只体重低于14千克且能够共处的成年动物,可以使用同一容器运输。体重超过14千克的小动物应使用独立容器运输。同窝6月龄以下的小动物最多三只装在同一容器或分隔室内运输。 9、每个航班最多允许载运两个装有小动物的容器。 深圳航空有限责任公司

浅析深圳航空公司服务营销战略和策略

浅析深圳航空公司服务营销战略和策略 一、企业现状 1.1公司简介:深圳航空有限责任公司于1992年11月成立,1993年9月17日正式开航。股东为中国国际航空股份有限公司、深国际全程物流(深圳)有限公司等,主要经营航空客、货、邮运输业务。截止2010年7月,深航及其控股的河南航空、昆明航空、翡翠货运等4家航空公司共拥有波音747、737,空客320、319等各类型干线客货机逾百架,经营国内国际航线160多条。 深航秉承“安全第一,预防为主,综合治理”的安全工作方针,注重营造科学务实的安全管理文化,不断强化系统防控能力,严格履行责任体系,努力提升风险管理水平,确保安全链的整体可靠,为旅客提供安全可靠的飞行服务。 安全筑基石,服务塑品牌。深航注重持续提升服务质量以铸就优秀企业品牌,通过全力打造“尊鹏俱乐部”和“深航女孩”两个子品牌,为旅客提供出行的全程优质服务;陆续推出的“经深飞”、“城市快线”等多项特色产品,使旅客获得最便捷舒适的出行体验。 作为与特区共同成长起来的航空企业,深航扎根深圳,服务大众,搭建起一条条深圳对外经贸往来和文化交流的“空中走廊”。深航不仅注重企业自身发展,还自觉履行社会责任、感恩回报社会,被誉为深圳的一张亮丽名片。 根据公司发展规划,“十二五”期末,深航将达到或超过180架客机,并适时引进宽体客机。在未来发展中,深航将努力打造成具有独立品牌的亚太地区著名的全国性航空公司,并以深圳为基地、航线网络覆盖亚洲及洲际的大型网络航空公司。 雄关漫道真如铁,而今迈步从头越。深圳航空将致力于实践贯彻落实科学发展观,当好科学发展排头兵,为建设民航强国做出更大贡献。 1.2企业文化:深圳航空奉行“安全第一,正常飞行,优质服务,提高效益”的经营理念。深圳航空以“立志成为世界上最受推崇和最有价值的航空公司,推动民族航空成为世界首选”为使命,以成为“特色航空的领跑者”为愿景,提出“深情无限,航程万里”的口号,不断创新服务手段、提高服务质量、增加服务种类,

深圳航空有限责任公司案例

2007年深圳市市长质量奖获奖单位 深圳航空有限责任公司案例 组织概述 深圳航空有限责任公司是全国最大的民营航空公司,主要服务产品是国内航空客运,已成为集机票查询预订、航空货运、城际速递、金鹏俱乐部、集团客户服务、酒店订房、旅游于一体的航空服务体系。在15年的安全运营中,以安全运行、成本领先、持续盈利、服务优秀著称,特别是自2005年以来,在机队规模、航线数量、旅客运输量、营业收入、集团化经营、品牌服务建设等方面实现了跨越式发展,形成了以客运为主体、客货并举,同时大力发展机场、酒店、旅游、房地产、飞机租赁等相关产业的格局。截止2007年12月底,深航总资产近200亿元人民币,共有8500多名员工,拥有波音747、737,空客320、319等各类型飞机70多架,经营国内国际航线160多条,有驻国内外营业部57个,设立了八个基地分公司和一所国际飞行学校等。 深航确立了“特色航空的领跑者”愿景、“我们立志成为世界上最受推崇和最有价值的航空公司,推动民族航空成为世界首选”使命、“持续改进、团队、尊重”的价值观等5大类共20多条理念组成,从内化于心,固化于制,到外化于行,成为全体深航人共同的信仰和行为操守。 深航采用目前世界上最先进的波音737、空客319/320系列两种机型,拥有价值1.96亿的2台飞行模拟机,一座能同时容纳3架B737飞机进行大修的国际标准机库,采用了国际先进的ACARS空地数据通讯、JEPPESEN计算机飞行计划、AOC运行控制、QAR飞行品质监控、SMS安全管理系统等,并具备C级的飞机深度检修能力。通过了国际航协IOSA 运行安全审计和中国民航总局联合安全审计,自开航以来持续14年安全飞行。 一、领导 深航企业文化是深航的灵魂,也是深航未来发展的思想统领,是深航全体成员共同遵守和信仰的价值体系、行为规范。高层领导在长期生产经营实践中,总结、提炼出系统完善的具有深航特色的企业文化体系(见图1.1-1)。

各大航空公司介绍

一,中国国际航空股份有限公司中国国际航空股份有限公司的前身中国国际航空公司成立于1988年。根据国务院批准通过的《民航体制改革方案》,2002年10月11日,以中国国际航空公司为基础,联合中国航空总公司和中国西南航空公司,正式成立了中国航空集团公司,并以联合三方的航空运输资源为基础,组建了新的中国国际航空公司。2004年9月23日,经国务院国有资产监督管理委员会批准,中国国际航空股份有限公司在北京正式成立。中国国际航空股份有限公司英文名称为“Air China Limited”,英文简称为“Air China”。公司代码:CA,公司航徽:红色凤凰,凤是一只美丽吉祥的神鸟。选用凤凰作为公司航徽,希望这神圣的生灵及其有关的魅力的传说带给朋友们吉祥和幸福。 二。中国东方航空集团公司中国东方航空集团公司是中国三大国有大型骨干航空企业集团之一,与2002年在原中国东方航空集团的基础上,兼并中国西北航空公司,联合云南航空公司重组而成。基地位于上海。公司代码MU,公司航徽:燕子东航的目标:追求卓越,报效于社会东航的哲学:逆水行舟东航的精神:满意服务高于一切 三,中国南方航空公司中国南方航空集团公司是以原中国南方航空集团公司为主体,联合中国北方航空公司和新疆航空公司组建的大型国有航空运输企业。基地位于广州。公司代码:CZ,公司航徽:红色木棉花。木棉花显示公司地域特征,顺应南方人民对木棉花的喜爱和赞美。木棉花象征坦诚,热情的风格,塑造公司的形象,表示公司将始终用坦诚,热情的态度为广大旅客,货主提供尽善尽美的航空运输服务。 四,海南航空股份有限公司海南航空福分有限公司是中国民航第一家A股和B股上市的航空公司。公司于1993年1月由海南省航空公司经规范化股份制改造而成,1993年5月2日正式开行运营。注册地址为海口市。公司代码HU,公司徽标:一条弧线图形,隐含回沪相生的太极图形。标志中向空中的飞翔的翅膀,取庄子《逍遥游》之意喻为鲲鹏,标志下方设计含云纹和水浪纹。标志使用现代设计语言,以传统中国画墨韵的偶成和飞白灵动的笔法,来诠释海航以东方文化根基作为企业之魂,以最古老的东方文化精神连接新世纪最先进的科学管理和技术,以德为伦,已诚为本。 五,上海航空股份有限公司上海航空股份有限公司成立于1985年12月30日,其前身是上海航空公司。公司代码:FM,公司徽标:白鹤,象征吉祥,如意,如展翅飞翔的白鹤,带领全体民航人不断前进。公司宗旨:安全第一,旅客至上,优质服务,树立信誉。 六,深圳航空有限责任公司深证航空有限责任公司成立于1992年11月,原名深圳航空公司,2001年1月更名为深圳航空有限责任公司。基地位于深圳。公司代码:HZ 深航一直以一流的服务,一流的管理,一流的信誉,为大众提供便利的交通。 七,山东航空集团有限公司山东航空集团有限公司是托幼大型一类航空运输企业,它的前身山东航空有限责任公司于1994年3月筹建,总部设在泉城济南。公司代码:SC,公司徽标:由三个S形曲线组成。首先,代表擅长飞翔纪律严明的飞雁,成为团结一致的象征;第二,飞雁的三个S形翅膀看上去是山东省“山”字的变体;第三,这三个S又分别代表“Sh andong”山东,“Safety”安全和“Success”成功;第四,航徽周围对称排列的八条平行线段组成机翼形状,代表山航永远为鉴安全的飞翔。公司宗旨:安全正点,优质服务,提高效益八,四川航空股份有限公司四川航空股份有限公司成立于1986年9月19日,1988年7月14日正式开航运营,其前身是四川航空公司。该公司大力倡导“真诚,善良,美丽,爱心”为核心理念的川航“美丽文化”,在企业,员工,旅客,社会的关系中建立起价值共同体,利

深圳航空

1.深圳航空有限责任公司(以下简称“深航”)成立于1992年11月,1993年9月17日正式开航,深航共有8000多名员工,拥有50架客机和5架波音747全货机,开通国内国际航线130多条。目前深航总资产规模超过150亿元人民币。自开航以来,深航连续保持了13年盈利和14年安全飞行. 2.2005年11月新股东提出了实现深航跨越式发展的“369”发展战略规划,争取用3年时间将机队规模由目前的33架扩充到60—70架,用6年时间达到100架,将始发基地扩充到8—10个力争用9年左右的时间把深航打造成拥有国际化、现代化的管理体系,资产优良、效益突出的真正的国际化公众公司,跻身国内一流航空公司的行列 3.2006年深航引进波音747、737和空客A319、A320飞机12架,建成生产基地三个,是深航历史上引进飞机数量最多的一年,也是基地建设最快的一年。在确保安全的前提下,深航超额完成各项经营指标,运输旅客712.57万人次,运输货邮10.59吨,总收入达到6 4.48亿元,与上年相比分别增长了24.3%、27.3%和31.8%,实现利润3.6亿元,创造了深航历史上最高的经营业绩.截止2010年7月,深航及其控股的河南航空、昆明航空、翡翠货运等4家航空公司共拥有波音747、737,空客320、319等各类型干线客货机逾百架,经营国内国际航线160多条。 4.标志是什么是企业的形象和文化,体现企业的精神和凝聚力,是企业的守护神.“民族之鹏”是深圳航空的新标志是中国传统文化和现代文化集合的图腾. 5.精神: 拼搏,热情,进取,创新,责任 6.标语:任何时候、自然体贴、深圳航空 7.你考虑过做空姐工作的辛苦吗?如果你被我公司录取,你将准备如何做一名合格的空中乘务员? 空服人员是辛苦的,我做好了吃苦的准备。我的目标是做优秀的乘务员不止是合格。与人交流是我所擅长的,我愿意仔细聆听旅客的需求,尽我可能让其感受到旅途的愉快。 8.在飞机上如果遇到不讲理的旅客你应如何处理? 首先,控制自己的情绪,不能和乘客发生正面冲突。 然后,耐心解释,如果是我有不对的地方,先道歉。 肯定他说的对的地方,然后指出观点的不同,提出解决办法,询问他是否能够接受。 如果他不能接受,询问他打算如何解决?之后重复上面步骤,直到解决。 9.你为什么要报考本公司? 对于贵公司的了解,贵公司需要的是。。。。样的人才,而我有这个自信,我是适合您的要求的。我相信经过贵公司的培训,我能够成为优秀乘务员。

深圳航空有限责任公司外派人员补助发放办法

深圳航空有限责任公司 外派补助标准及管理办法 第一条为了适应公司生产规模扩大、业务范围拓展的需要,规范外派员工补助的管理,结合现行国家公务员因公外出的补助标准和同行业其 他公司的综合水平,制定本规定。 第二条外派、出差与培训 1、外派 外派是指因为工作需要被派往分公司和营业部相关岗位工作,该岗位具备不因为外派人员的变化而变动的特征,具备长期存在性。 外派岗位和人数由公司确定,其中分公司、北京、吉隆坡营业部详见附件(新增外派岗位另行报批确定); 2、出差 出差是指因为工作需要暂时到国内、国外(地区)办公事或负担临时任务,该工作具备因目标完成而结束的特征,不具备延续性。 3、培训 培训是指因为工作需要由公司选送到国内、国外(地区)学习。 第三条外派补助标准 外派补助是对员工因外派引起生活不便给予的补助,主要包括艰苦补偿、离家补偿、消费补偿、通讯补偿等。 1、外派国内分公司和营业部员工的外派补助,在规定范围内据实执行: (1)外派国内分公司的外派补助标准按照《深圳航空有限责任公司分公司人力资源管理方案》(深航发[2005]109号)的规定执行;

(2)外派国内营业部的外派补助标准按如下标准执行: 2、外派国外(地区)员工的外派补助,包括住宿补助、伙食补助和公 杂补助等,以包干的形式计发,具体标准为: (1)住宿补助:公司未解决住宿的,住宿补助以国家标准为上限实报实销;解决住宿的,不再享受; (2)伙食补助和公杂补助:按国家标准的65%发放。 3、外派国外(地区)员工的通讯补助及交通补助标准为: (1)通讯补助:在营业部新开设的前三个月,实报实销;三个月后根据实际情况确定; (2)交通补助:因工作从市区到机场发生的交通费用,按当地营业部的财务规定另行办理。 4、外派人员往返于深圳与外派地点的机票及机场巴士费等参照出差标 准按规定报销。 5、外派补助发放原则 (1)外派人员的外派天数由部门汇总统计; (2)外派国外(地区)补助的发放天数按离、抵我国国境之日计算; (3)外派补助以人民币为结算币种;汇率以发放当月第一个工作日国家公布的外汇牌价为准。 (4)外派员工回深圳期间,不享受外派补助;

深圳航空有限责任公司结账管理制度

深圳航空有限责任公司结账管理制度 第一章总则 第一条为加强深圳航空有限责任公司(以下简称公司)月度及年度结账管理工作,规范账务结账流程及操作,特制定本制度。 第二条本制度适用于使用Oracle核算系统、用友核算系统及金蝶核算系统的公司各级财务部门及公司控股并拥有经营管理权的子公司财务部门(以下简称各单位财务部门)。 第三条本制度中结账是指把一定时期内发生的全部经济业务登记入账的基础上,计算并记录本期发生额和期末余额的过程。 第二章管理职责 第四条公司财务部会计管理室为公司结账工作的管理单位,其管理职责如下: 一、负责制定公司结账工作的管理制度; 二、负责制定公司各单位月度及年度账务结账时间; 三、负责监督、检查各单位月度及年度账务结账情况, 并定期进行通报;

四、负责公司月度及年度账务的最终结账工作。 第五条各单位财务部门为结账工作的执行部门,负责按时完成本单位月度及年度结账工作。 第六条各单位财务部门负责人对本单位月度及年度账务结账工作负有管理责任,其职责如下: 一、负责组织、协调本单位月度及年度账务结账工作; 二、负责检查本单位月度及年度账务结账情况; 三、保证本单位月度及年度账务的完整性和正确性。 第七条各单位总账会计负责各自所核算业务月度及年度账务的结账工作,并对所核算业务的完整性和正确性负责。 第三章结账流程 第八条对于使用Oracle财务核算系统的单位,每月需按照应收模块(AR),应付模块(AP),资产管理模块(FA),总账模块(GL),公司间往来(AGIS)的顺序依次完成各个模块的结账工作,填制各模块关账清单,完成本单位月度结账工作,并关闭当月会计周期。具体操作方法详见《深圳航空有限责任公司Oracle系统月末结账指引》(附件一)。 第九条对于使用用友财务核算系统的单位,每月结账前,需自行检查本单位账务完成情况,核对总账和明细账是否一致,并对所有凭证进行审核,同时结转损益类科目,检

深圳航空责任公司社会招聘试题精编版

深圳航空责任公司社会 招聘试题 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

深圳航空有限责任公司招聘试题 第一部分综合行政能力测试 (前20题,每题3分,后5题,每题2分,共70分) 1.找出有歧义的一句: A.他叫我给你送一盘磁带过来。 B.河北省去年贷款一亿多元,支持机电行来进行挖掘革新。 C.他刚把这辆车修好。 D.轮船准时启锚了。 2.找出没有歧义的一句: A.最优秀的企业的领导人。 B.刚建成的S大学教学楼非常漂亮。 C.张校长的女儿说他不来了。 D.老张告诉何伯,他孩子考上大学了。 3.下边语句没有歧义的一句: A.张老师家里收藏了许多俄国证明作家屠格涅夫的书。 B.走进大殿,中间是阎王的塑像,西边站着两个判官。 C.要像勇士那样生活,用英勇的气概去战胜灾难。 D.在场的所有人当中,只有韩履正跟刘国清学过几句国语。 4.对下面句子的修辞方法及其作用的表达,判断不正确的一项是: A.那溅着的水花,晶莹而多芒;远望去,像一朵朵小小的白梅,微雨似的纷纷落着。 ――运用了比喻的手法,描写了水花的颜色\形态和动态。 B.思厥先祖父,暴霜露,斩荆棘,以有尺寸之地。 ――运用了夸张的手法,说明了六国创业的艰辛不易。 C.这里教条主义休息,有些同志却叫它起床。 ――运用了拟人的手法,使文章的说理更加生动。 D.五岭逶迤腾细浪,乌蒙磅礴走泥丸。 ――运用了对比的手法,写出了山势的起伏而又微不足道。 5.下列各组词语书写注音完全正确的一组是: A.参与(yù)犒赏(kào)信手拈来(niān) B.记载(zǎi)奢侈(chǐ)潜移默化(qiǎn) C.粗糙(cāo)哺育(fǔ)一暴十寒(pù) D.祠堂(cí)揣度(duó)弱不经风(jīn) 6.下列各句没有语病的一句是: A.她一摸口袋,发觉钱不见了,她马上推醒身边的秦某追问,秦某假装摇头说“不知道”。B.一班人都把制服孙悟空的“紧箍咒”说成“金箍咒”,这大概是因为孙悟空头上戴着金箍,手上拿着金箍棒的缘故吧。 C.数十年来,我一直害病,在我就医的生涯中,结交了一批从事医务工作的朋友,万隆医院的陈氏父子,就是其中之一。 D.香港和上海女人,又好似一对天敌,沪港两地的选美舞台和水银灯下,从来是两地女人的必争之地。 7.小张认为:打猎不仅无害于野生世界,反而能对其起一定的控制功能。这一控制功能能使动 物在一定程度上免受饥饿和疾病,其结果是产生一个更健康的动物群体。 小张的结论如果成立,必须基于以下哪一个前提

深圳航空有限责任公司机上延误应急处置预案

深圳航空有限责任公司机上 延误应急处置预案 (2017年1月1日生效) 目录 第一条目的 (2) 第二条定义 (2) 第三条适用范围 (2) 第四条机上延误处置标准 (2)

第一条目的 为有效处置航班延误,维护消费者合法权益,做好对旅客的各项服务保障工作,提升公司机上延误应急处置能力与服务质量,深圳航空有限责任公司根据民航局下发的《航班正常管理规定》(交通运输部令…2016?56号)要求,特制定本预案。 第二条定义 “机上延误”是指航班飞机关舱门后至起飞前或者降落后至开舱门前,旅客在航空器内等待超过机场规定的地面滑行时间的情况。 第三条适用范围 本预案适用于深航作为实际承运人所执行航班发生机上延误时的应急处置工作。 第四条机上延误处置标准 4.1按时向旅客提供信息通告 当航班因天气、突发事件、空中交通管制等原因发生机上延误时,深航应每30分钟向旅客通告延误原因和预计延误时间等航班动态信息。

4.2及时为旅客提供客舱服务 4.2.1预计航班机上延误2小时内,在不影响飞行安全、客舱安全、不加剧航班延误的前提下,乘务组对旅客提供饮用水。 4.2.2预计航班机上延误2小时(含)以上,在不影响飞行安全、客舱安全、不加剧航班延误的前提下,乘务组对旅客提供餐食和饮用水。 4.2.3出港发生机上延误时,如航班计划未配备餐饮,应及时根据配餐公司提供的餐饮加配时间以及航班预计起 飞时间,在避免因提供餐饮影响飞行、客舱安全和加剧航班延误的前提下,加配餐食。 4.2.4机上延误期间,在不影响航空安全的前提下,乘务组应当保证洗手间设备的正常使用。 4.2.5机上延误期间,如果航班突然接到起飞指令,乘务组应立即停止一切客舱服务,进行客舱安全检查。 4.3特殊旅客保障 4.3.1乘务组关注旅客动态,做好机上旅客突发疾病的处置预案。

深圳航空有限责任公司人力资源规划.doc

深圳航空有限责任公司“十五”期间人力资源规划 (征求意见稿) 一、总则 深航“十五”期间人力资源规划根据各部门定员定编标准和未来公司机队规模制定,目的在于发掘现有人力资源的潜力,改进部门人员结构、人员素质,引入竞争和淘汰机制,通过外部劳动力市场与内部人员的置换,把就业市场压力传递到每一个岗位,使内部用人机制处于激活状态,促进优秀人才脱颖而出,实现人力资源的合理配置,“十五”期间深航的人力资源规划按以下原则进行: 1、严格控制进人数量,每年年初由各部门报用人计划,经人力资源部审核,总经理批准后严格执行,凡部门所需进人计划必须由人力资源部进行工作量分析,对工作量不饱和的岗位坚决不进; 2、提高进人质量,进入深航人员需具备良好的个人素质,达不到岗位任职资格要求的人坚决不进,对应聘人员在学历、专业、技能、外部形象等方面严格挑选,以满足未来深航的用人需求; 3、对于飞行员的招聘,将逐渐减少空军飞行员的招聘,飞行员招聘将集中于在校学习的本科理工专业二、三年级的男性学生当中,国际飞行员市场放开后将面向国际招聘; 4、乘务人员的招聘,立足于深圳本部,面向全国招收在校乘务大专班毕业生及符合条件的适龄青年;空中保安员兼乘务工作,主要在已建立军民共建关系的军队复员战士中招聘; 5、市场管理、财务管理、行政管理人员的招聘,要求是研究生学历; 6、明确各岗位的责任,加强监督机制,减少业务流程; 7、实行岗位任职资格制,对不符合岗位任职资格条件的,进行逐级分流,岗位开放,由原岗位人员与其他员工竞争上岗;

8、建立公司级考核指标并分解为部门指标,对部门级考核指标进行分解后,建立各岗位的考核指标,对工作业绩不佳的人员进行分流,公司每年的平均淘汰率为9.8%; 9、加强各部门人员专业和技能培训,培养适合深航未来发展的复合型专业人才; 10、提供具有竞争力的薪酬福利待遇,体现核心员工在公司的价值,给员工合理的回报; 11、公司实行全员劳动合同制,各类员工与公司签定不同期限的“劳动合同”或“劳务工合同”,以此确认劳动关系。 二、“十五”期间飞行员配置计划 1、飞行员任职资格条件 (1)飞行学员:在校学习的本科理工专业二、三年级的男性学生,年龄不超过22周岁,作风正派,体格健壮,性格开朗,处事果断,成绩优良,英语水平达到国家四级以上; (2)空军飞行员:大型机35岁以下,在座飞行2000小时左右,小型机30岁以下,在座飞行1200小时左右的男性飞行员,飞行技术过硬,部队表现良好,身体达到体验要求; (3)本公司内定的飞行员停飞时间为60岁,58岁进入保护性飞行,保护性飞行期间不任教员,不带学员。 2、飞行员定员标准为 按1架飞机配4个机组,每架飞机配10名飞行员,每个机组2至3人,每架飞机应达到4.5至5名机长的比例。每个机组由1个机长、2个副驾驶组成。根据公司飞机引进计划,上一年末应把当年所须飞行员配备到位,飞行员不设淘汰比率,对违反公司规定,情节严重者,当即查处。

深圳航空有限责任公司结账管理制度.doc

深圳航空有限责任公司结账管理制度1 附件1 深圳航空有限责任公司结账管理制度 第一章总则 第一条为加强深圳航空有限责任公司(以下简称公司)月度及年度结账管理工作,规范账务结账流程及操作,特制定本制度。 第二条本制度适用于使用Oracle核算系统、用友核算系统及金蝶核算系统的公司各级财务部门及公司控股并拥有经营管理权的子公司财务部门(以下简称各单位财务部门)。 第三条本制度中结账是指把一定时期内发生的全部经济业务登记入账的基础上,计算并记录本期发生额和期末余额的过程。 第二章管理职责 第四条公司财务部会计管理室为公司结账工作的管理单位,其管理职责如下: 一、负责制定公司结账工作的管理制度; 二、负责制定公司各单位月度及年度账务结账时间; 三、负责监督、检查各单位月度及年度账务结账情况, 并定期进行通报;

四、负责公司月度及年度账务的最终结账工作。 第五条各单位财务部门为结账工作的执行部门,负责按时完成本单位月度及年度结账工作。 第六条各单位财务部门负责人对本单位月度及年度账务结账工作负有管理责任,其职责如下: 一、负责组织、协调本单位月度及年度账务结账工作; 二、负责检查本单位月度及年度账务结账情况; 三、保证本单位月度及年度账务的完整性和正确性。 第七条各单位总账会计负责各自所核算业务月度及年度账务的结账工作,并对所核算业务的完整性和正确性负责。 第三章结账流程 第八条对于使用Oracle财务核算系统的单位,每月需按照应收模块(AR),应付模块(AP),资产管理模块(FA),总账模块(GL),公司间往来(AGIS)的顺序依次完成各个模块的结账工作,填制各模块关账清单,完成本单位月度结账工作,并关闭当月会计周期。具体操作方法详见《深圳航空有限责任公司Oracle系统月末结账指引》(附件一)。 第九条对于使用用友财务核算系统的单位,每月结账前,需自行检查本单位账务完成情况,核对总账和明细账是 否一致,并对所有凭证进行审核,同时结转损益类科目,检查试算平衡情况,待以上操作全部完成后,在期末处理结账模块

人力资源规划深圳航空有限责任公司人力资源规划

(人力资源规划)深圳航空有限责任公司人力资源规 划

深圳航空有限责任公司“十五”期间人力资源规划 (征求意见稿) 壹、总则 深航“十五”期间人力资源规划根据各部门定员定编标准和未来公司机队规模制定,目的于于发掘现有人力资源的潜力,改进部门人员结构、人员素质,引入竞争和淘汰机制,通过外部劳动力市场和内部人员的置换,把就业市场压力传递到每壹个岗位,使内部用人机制处于激活状态,促进优秀人才脱颖而出,实现人力资源的合理配置,“十五”期间深航的人力资源规划按以下原则进行: 1、严格控制进人数量,每年年初由各部门报用人计划,经人力资源部审核,总经理批准后严格执行,凡部门所需进人计划必须由人力资源部进行工作量分析,对工作量不饱和的岗位坚决不进; 2、提高进人质量,进入深航人员需具备良好的个人素质,达不到岗位任职资格要求的人坚决不进,对应聘人员于学历、专业、技能、外部形象等方面严格挑选,以满足未来深航的用人需求; 3、对于飞行员的招聘,将逐渐减少空军飞行员的招聘,飞行员招聘将集中于于校学习的本科理工专业二、三年级的男性学生当中,国际飞行员市场放开后将面向国际招聘; 4、乘务人员的招聘,立足于深圳本部,面向全国招收于校乘务大专班毕业生及符合条件的适龄青年;空中保安员兼乘务工作,主要于已建立军民共建关系的军队复员战士中招聘; 5、市场管理、财务管理、行政管理人员的招聘,要求是研究生学历; 6、明确各岗位的责任,加强监督机制,减少业务流程;

7、实行岗位任职资格制,对不符合岗位任职资格条件的,进行逐级分流,岗位开放,由原岗位人员和其他员工竞争上岗; 8、建立公司级考核指标且分解为部门指标,对部门级考核指标进行分解后,建立各岗位的考核指标,对工作业绩不佳的人员进行分流,公司每年的平均淘汰率为9.8%; 9、加强各部门人员专业和技能培训,培养适合深航未来发展的复合型专业人才; 10、提供具有竞争力的薪酬福利待遇,体现核心员工于公司的价值,给员工合理的回报; 11、公司实行全员劳动合同制,各类员工和公司签定不同期限的“劳动合同”或“劳务工合同”,以此确认劳动关系。 二、“十五”期间飞行员配置计划 1、飞行员任职资格条件 (1)飞行学员:于校学习的本科理工专业二、三年级的男性学生,年龄不超过22周岁,作风正派,体格健壮,性格开朗,处事果断,成绩优良,英语水平达到国家四级之上; (2)空军飞行员:大型机35岁以下,于座飞行2000小时左右,小型机30岁以下,于座飞行1200小时左右的男性飞行员,飞行技术过硬,部队表现良好,身体达到体验要求; (3)本公司内定的飞行员停飞时间为60岁,58岁进入保护性飞行,保护性飞行期间不任教员,不带学员。

相关文档
最新文档