环境温湿度参数实时监测系统

环境温湿度参数实时监测系统
环境温湿度参数实时监测系统

摘要

采用单片机对温度、湿度等环境参数进行监测是一个工业生产中经常遇到的监测问题,采用单片机不仅具有监测方便、操作简单等优点,而且可以在节约成本的同时大幅度的提高监测质量。本文设计了单片机构成的环境温度、湿度参数实时监测装置,本装置以单片机AT89C51为控制核心,采用独特的单总线数字式温度传感器DS18B20进行温度采集,采用湿敏电容HS1101对湿度参数进行采集。LCD液晶显示屏对于当前的温度值和湿度值进行实时的显示,可以方便用户直观的了解所测得的温度、湿度环境参数值。用户可使用按键根据自身要求设定温湿度上下限,同时,报警装置可依据用户的设定针对温湿度超限情况进行报警。

关键词:温湿度监测;超限报警;LCD显示

Abstract

MCU is always used in industry measurement as temperature and humidity measurement. With MCU, it can be more convenient and simple to complete the measurement efficiently. The paper designs a real-time temperature and humidity measurement device based on MCU. The device adopts AT89C52 as the control. The device also make use of DS18B20 to obtain the digital temperature signal and HS1101 to gain the analogue humidity signal. In the design, LCD is used to display the consumers the real-time temperature and humidity clearly. The consumer can use the buttons to change the upper and lower limits of the temperature and humidity. And the alert in the design should work based on the limits set up by the consumers.

Keywords:temperature and humidity measurement; alert over-limit; LCD

- 1 -

前言

本课题研究的主要目的是设计一个能够提供环境的温度、湿度并具有对温度、湿度超限报警功能的装置。人类的生存和社会中各项活动的展开与温度、湿度参数值密切相关,随着科学技术的发展,人类在不同应用领域对温度、湿度的测量提出了越来越高的要求。日常生活中,工厂、商场、银行、医院以及各类科研场所都需要符合操作规定的温、湿度环境条件。居民家庭中更离不开对温度、湿度的监测,室内湿度一般控制在45%至65%RH之间,人体感觉比较舒适。而冬季供暖期的室内湿度通常仅为10%—15%RH,在干燥的环境下呆久了,会使人皮肤紧绷,干燥上火,感觉不适,甚至使人的呼吸系统抵抗力降低,从而引发或者加重呼吸系统的疾病。当空气湿度低于40%RH的时候,灰尘、细菌等容易附着在鼻部和肺部呼吸道黏膜上,刺激喉部引发咳嗽,也容易发生呼吸道的其它疾病,由此可见湿度参数测量意义重大。工厂中,产品装配过程历来都存在对装配环境中的温、湿度进行监测的问题。温、湿度参数监测报警装置能对特定环境中的温、湿度参数进行监测并能对温、湿度超限情况及时给出报警信号。该监测报警装置采用温、湿度传感器直接测量环境的温度、湿度,将采集到的信号分别送入单片机,由液晶显示屏显示环境的温、湿度,并可以采用键盘输入温、湿度上下限值,由报警装置完成温、湿度超限报警功能。文中对每个部分功能、实现过程作了详细介绍,完成了课题所有要求。

- 2 -

第1章方案论证

1.1 课题的任务与要求

该题目旨在设计一个能够提供环境的温度、湿度并具有对温度、湿度超限报警功能的装置,利用单片机及外围电路构成一个监测系统,达到如下要求:1.能对环境的温度、湿度、静电进行实时检测;

2.检测得到的静电及温、湿度数据可以实时显示,静电测量的误差±

<10%,温度测量的误差±

<5%RH;

<1℃,湿度测量的误差±

3.用户可以自行设定监测中的温、湿度上、下限,超限报警。

1.2 方案论证

根据本课题的任务与要求,提出两种方案进行论证。

1.2.1 方案一

由于课题中涉及温度、湿度两个量的监测,由此设计出应对本课题的方案一,即采用一个温度传感器和一个湿度传感器对温、湿度进行分别测量。基于此设想装置的基本工作原理是:温度、湿度传感器分别采集到两路信号送入单片机,由液晶显示器实时显示环境的温度、湿度,并可通过键盘输入用户需设定的温、湿度上下限,当温、湿度超限时启动报警装置报警,整个装置的控制核心采用单片机。在功能设计上可将整个装置分为测量模块、CPU模块、显示模块、键盘输入模块和报警模块几个部分。

方案一在元器件的选择上,选取DS18B20数字式温度传感器和HS1101湿敏电容作为温、湿度信号的采集传感器。选取1602液晶显示屏显示温、湿度值。DS18B20是美国DALLAS公司生产的单总线数字式温度传感器,可直接将其测得的温度值传入单片机,再通过LCD进行显示。而HS1101湿敏电容是将空气的湿度值转化为该湿敏电容的电容值,电容值随湿度值的增大而增大,将该湿敏电容置于555振荡电路中,电容值的变化可转为与之成反比的电压频率信号的变化,并可以直接送入单片机。采用温度传感器DS18B20与电容式湿敏传感器HS1101的系统结构框图如图2.1所示。

- 3 -

- 4 -

图2.1 采用温度传感器DS18B20、湿度传感器HS1101的系统结构框图

1.2.2 方案二

本方案与方案一的主要不同是采用了SHT71数字温湿度传感器,SHT71是瑞士Sensirion 公司推出的基于CMOSens 技术的新型温湿度传感器。该传感器将CMOS 芯片技术与传感器技术结合起来, 发挥出强大的优势互补作用。包括一个电容性聚合体测湿敏感元件、一个用能隙材料制成的测温元件,并在同一芯片上,与14位的A/D 转换器以及串行接口电路实现无缝连接。SHT71数字温湿度传感器的引脚图如图2.2所示。

图2.2 SHT71数字温湿度传感器引脚图

由于SHT71数字温湿度传感器上除了温度、湿度敏感元件以外,还包括一个放大器,A/D 转换器,OTP 内存和数字接口,所以系统框图得以简化,采用SHT71数字温湿度传感器的系统框图如图2.3所示。

图2.3 采用SHT71数字温湿度传感器的系统框图

1.3 方案比较

在上述两种以传感器为主要区别的方案选择中,主要差别在于是否运用数字传感器以及是否考虑将温度、湿度两个传感器合二为一。从性价比的角度分析,虽然方案1中要采用两个单独的传感器温度传感器DS18B20和湿敏传感器HS1101,看似有些资源浪费,但方案2的SHT71传感器的单价已胜过方案1中两个传感器售价之和,在购置传感器上的开销要大。因此,从性价比角度考虑,方案1更优。另一方面,电容式湿敏传感器实用化程度高,工艺成熟,性能稳定,普遍用于各种情况下湿度测量,且可以使用555振荡电路将其湿度变化对应的湿敏电容值的变化转化为脉冲频率送入单片机。而DS18B20由于具有结构简单不需要外接电路、可用一根I/O数据线既供电又传输数据、体积小、分辨率高、转换快等优点,被广泛用于测量和控制温度的地方。从应用程度上来说,方案1的可操作性更强。

1.4 结论

通过上述方案比较最终确定选择方案1作为温湿度传感器的设计方案。

- 5 -

- 6 - 第3章 硬件系统的设计与实现

本系统以单片机

AT89C52为控制核心,以数字式温度传感器DS18B20作为温度检测元件,以湿敏电容HS1101作为湿度检测元件。本系统在功能设计上可将整个装置分为测量单元、CPU 单元、显示单元、键盘输入单元和报警单元几个部分。系统框图如图3.1所示。

图3.1 系统框图

3.1 测量电路的设计

3.1.1 温度检测单元的设计

设计中采用可编程分辨率的单总线数字式温度传感器DS18B20。DS18B20可以以9-12位数字量的形式反映所测得的温度值。DS18B20通过一个单线接口发送或接收信息,因此在微处理器和DS18B20之间仅需一条连接线(加上地线)。用于读写和温度转换的电源可以从数据线本身获得,而无需外部电源。因为每个DS18B20都有一个独特的64位序列号,所以多只DS18B20可以同时连在一根单线总线上,这样就可以把温度传感器放在许多不同的地方,从而同时采集多处温度。 可编程分辨率的单总线数字式温度传感器DS18B20具有如下的特性: ? 独特的单线接口仅需一个端口引脚进行通讯 ? 简单的多点分布应用 ? 无需外部器件 ? 可通过数据线供电 ? 零待机功耗

? 测温范围-55℃—125℃ ? 温度以9-12位数字量读出

? 温度数字量转换时间200ms (典型值)

- 7 -

? 用户可定义的非易失性温度报警设置

? 报警搜索命令识别并标志超过程序限定温度(温度报警条件)的器件 DS18B20引脚排列如图3.2所示。

图3.2 DS18B20引脚排列图

DS18B20的引脚说明表如表3.1所示。

表3.1 DS18B20引脚说明表

GND 地 DQ

数据I/O V

可选DD V NC

空脚

DS18B20 有三个主要数字部件:

1)64 位激光ROM; 2)温度传感器;

3)非易失性温度报警触发器TH 和TL 。

DS18B20采用如下方式从单线通讯线上汲取能量:在信号线处于高电平期间把能量储存在内部电容里,在信号线处于低电平期间消耗电容上的电能工作,直到高电平到来再给寄生电源(电容)充电。DS18B20也可用外部+5V 电源供电。DS18B20的结构图如图3.3所示。

- 8 -

图3.3 DS18B20结构图

当DS18B20采用寄生电源供电时,所采用电路会在I/O 口或DD V 引脚处于高电平时“偷”能量。当有特定的时间和电压需求时,I/O 口要提供足够的能量。寄生电源有两个好处:

1)进行远距离测温时,无需本地电源; 2)可以在没有常规电源的条件下读ROM 。

在寄生电源模式下,单总线和DS18B20内部的电容在大部分操作中能提供充分的满足规定时序和电压的电流给DS18B20。然而,当DS18B20正在执行温度转换或从高速暂存器向EPPROM 传送数据时,工作电流可能高达1.5mA 。这个电流可能会引起连接单总线的弱上拉电阻的不可接受的压降,这需要更大的电流,而此时DS18B20内部的电容无法提供。为了保证DS18B20有充足的供电而进行精确的温度转换,单总线线必须在转换期间保证供电。有两种方法能够使DS18B20在动态转换周期中获得足够的电流供应。第一种方法,当进行温度转换或拷贝数据到EEPROM 操作时,给单总线线提供一个强上拉。用漏极开路把单总线直接拉到电源上就可以实现,在发出任何涉及拷贝到暂存器的指令或启动温度转换的指令之后,必须在最多10μs 之内把I/O 线转换到强上拉。使用寄生电源供电时,DD V 引脚必须接地。DS18B20温度转换期间的强上拉供电原理图如图3.4所示。

- 9 -

图3.4 DS18B20温度转换期间的强上拉供电原理图

另一种给DS18B20供电的方法是从DD V 引脚接入一个外部电源,这样做的好处是单总线上不需要加强上拉,而且总线控制器不用在温度转换期间总保持高电平。这样在转换期间可以允许在单线总线上进行其他数据往来。另外,在单线总线上可以挂任意多片DS18B20,而且如果它们都使用外部电源的话,可以让它们同时进行温度转换。需注意的是当加上外部电源时,GND 引脚不能悬空。DD V 供电原理图如图3.5所示。

图3.5 DS18B20采用VDD 供电原理图

DS18B20通过一种片上测温技术来测量温度,测温原理如下:用一个高温度系数的振荡器确定一个门周期,内部计数器在这个门周期内对一个低温度系数的振荡器的脉冲进行计数来得到温度值。计数器被预置到对应于-55℃的一个值。如果计数器在门周期结束前到达0,则温度寄存器(同样被预置到-55℃)的值增加,表明所测温度大于-55℃。同时,计数器被复位到一个值,这个值由斜坡式累加器电路确定,斜坡式累加器电路用来补偿感温振荡器的抛物线特性。然后计数器又开始计数直到0,如果门周期仍未结束,将重复这一过程。斜坡式累加器用来补偿感温振荡器的非线性,以期在测温时获得比较高的分辨力。这是通过改变计数器对温度每增加一度所需计数

的值来实现的。因此,要想获得所需的分辨力,必须同时知道在给定温度下计数器的值和每一度的计数值。DS18B20的测温原理图如图3.6所示。

图3.6 DS18B20测温原理图

DS18B20电路图如图3.7所示。

图3.7 DS18B20电路图

- 10 -

3.1.2 湿度检测单元的设计

测量空气湿度的方式很多,其原理是根据某种物质从其周围的空气吸收水分后引起的物理或化学性质的变化,间接地获得该物质的吸水量及周围空气的湿度。电容式、电阻式和湿涨式湿敏元件分别是根据其高分子材料吸湿后的介电常数、电阻率和体积随之发生变化而进行湿度测量的。

课题中采用的湿度传感器HS1101是基于独特工艺设计的电容元件,该相对湿度传感器可以应用于办公自动化,车厢内空气质量检测,家电,工业控制系统等场合。在需要湿度补偿的场合该湿度传感器也可以得到很大的应用。下面介绍HS1100/HS1101湿度传感器及其特点。

一、特点

⑴不需校准的完全互换性;

⑵高可靠性和长期稳定性;

⑶快速响应时间;

⑷专利设计的固态聚合物结构;

⑸有顶端接触(HS1100)和侧面接触(HS1101)两种封装产品;

⑹适用于线性电压输出和频率输出两种电路;

⑺适宜于制造流水线上的自动插件和自动装配过程。

湿敏电容是值随空气湿度变化,同时湿敏电容的工作条件也受温、湿度的限制。图3.8为湿敏电容HS1101工作的温、湿度范围,图3.9为湿度-电容响应曲线。

图3.8 湿敏电容HS1101工作的温、湿度范围

- 11 -

图3.9 湿度-电容响应曲线

相对湿度在1%RH—100%RH范围内;电容量由160pF变到200pF,其误差不大于±2%RH;响应时间小于5S;温度系数为0.04 pF/℃。由此可见,HS1101湿度传感器的精度较高。

二、湿度测量电路

HS1100/HS1101电容式湿敏传感器,在电路构成中等效于一个电容元件,其电容量随着所测空气湿度的增大而增大。将电容的变化量准确地转变为计算机易于接收的信号,常有两种方法:一种是将该湿敏电容置于运放与阻容组成的桥式振荡电路中,再将产生的正弦波电压信号经整流、直流放大、A/D转换后变为可以被单片机接收的为数字信号;另一种方法是将该湿敏电容置于555振荡电路中,将电容值的变化转为与之成反比的电压频率信号的变化,可直接被计算机计数。

湿度测量电路如图3.10所示。集成定时器555芯片外接电阻R4、R2与湿敏电容C,构成了对C的充电回路。7端通过芯片内部的晶体管对地短路又构成了对C的放电回路,并将引脚2、6端相连引入到片内比较器,便成为一个典型的多谐振荡器,生成矩形脉冲。另外,R3 是防止输出短路的保护电阻,R1 用于平衡温度系数。

- 12 -

- 13 -

图3.10 湿度测量电路

该振荡电路两个暂稳态的交替过程如下:首先电源VCC 通过R4、R2 向C 充电,经充电t 时间后,C u 达到芯片内比较器的高触发电平,此时输出引脚3端由高电平突降为低电平,然后通过R2放电,经放电t 时间后,C u 下降到比较器的低触发电平。此时输出引脚3端又由低电平突降为高电平,如此周而复始,形成矩形脉冲输出。其中,充放电时间如(3.1)、(3.2)所示。

充电t =()24R R C +㏑2 (3.1) 放电t =2CR ㏑2 (3.2) 因而,输出的方波频率如(3.3)所示。

f=1/(充电t +放电t )=1/[ ()242R R C +㏑2] (3.3) 可见,空气湿度通过555测量电路就转变为与之呈反比的频率信号,表3.2给出了其中的一组典型对应值。

表3.2 空气相对湿度与电压频率的对应值

湿度/%RH 0 10 20 30 40 50 60 70 80 90 100 频率/Hz

7351

7224

7100

6976

6853

6728

6600

6468

6330

6168

6033

3.2 CPU单元的设计

单片机是整个系统的核心,在此装置中选择8位微处理器AT89C52,该微处理器是一种CMOS工艺的低功耗、高性能8位嵌入式微控制器。该器件与MCS-51系列的同类产品(如80C52等)在指令系统及引脚上完全兼容。微处理器具有8K可写/擦1000次的Flash内部程序存储器,对系统开发过程中的程序编写和调试可以提供极大的方便。另外,微处理器内部还有256字节的RAM、3个16位定时器/计数器、8个中断源和可编程串行口。在该系统的单片机模块中,还有一路由11.0592MHz晶振和电容组成的振荡电路用于构成系统时钟。本设计的CPU单元电路图如图3.1所示。

图3.11 CPU单元电路图

3.2.1时钟信号设计

时钟引脚为XTAL1、XTAL2。时钟引脚外接晶体与片内的反向放大器构成了一个振荡器,它提供单片机的时钟控制信号。时钟引脚也可外接晶体振荡器。

XTAL1(19脚):接外部晶体的一个引脚。在单片机内部,它是一个反向放大器的输入端。这个放大器构成了片内振荡器。当采用外接晶体振荡器时,此引脚应接地。XTAL2(18脚):接外部晶体的另一端,在单片机内部接至内部反向放大器的输出端。若采用外部振荡器时,该引脚接收振荡器的信号,即把此信号直接接到内部时钟发生

- 14 -

器的输入端。

本系统采用晶振时钟电路。外部晶振以及电容C2和C3构成并联谐振电路,接在放大器的反馈回路中。对外接电容的值虽然没有严格要求,但电容的大小多少会影响振荡器频率的高低,振荡器的稳定性,起振的快速性和稳定性。外接晶振时,C1和C2通常选择30pf,晶振采用12MHz。时钟电路如下图3.12所示。

图3.12 时钟电路图

3.2.2复位电路设计

本系统采用的复位电路如图3.13所示。

3.13 复位电路图

本复位电路必须确保系统上电时能够自动复位。上电自动复位电路的基本功能是:系统上电时提供复位信号,直至系统电源稳定后,撤销复位信号。为了可靠起见电源稳定后,还要经一定的延时才撤销复位信号以防电源开关或电源插头分-合过程中引起的抖动而影响复位。为了实现这种功能,本设计采用了一种RC定时电路。其时间常数τ=RC,系统上电时,C两端的电压为零,单片机的复位端的电平为高电平,单片机复位,经过4—5个τ后,C两端的电压约等于电源电压,单片机的复位端的电平为低电平,单片机退出复位状态。

- 15 -

3.3 LCD液晶显示单元的设计

LCD液晶显示单元电路图如图3.14所示。

本系统利用LCD液晶显示屏显示温度、湿度参数。液晶显示屏的第一行显示用户可能需要调节的温湿度上下限值,第二行显示当前测得的温度、湿度值。硬件电路中LCD1602的8个数据端接到单片机P1口。

图3.14 LCD液晶显示单元电路图

本系统的液晶显示单元采用的是长沙太阳人电子有限公司生产的1602字符型液晶显示器,可显示字符、汉字、图形,显示屏结构为160*128点阵。

主要功能:

1.40通道点阵LCD 驱动;

2.可选择当作行驱动或列驱动;

3.输入/输出信号:

输出,能产生20×2个LCD驱动波形;

输入,接受控制器送出的串行数据和控制信号,偏压(V1∽V6);

4.通过单片机控制将所测的频率信号读数显示出来。

引脚功能如表3.3所示。

- 16 -

表3.3 LCD1602引脚功能

编号符号引脚说明

1 VSS 电源地

2 VDD 电源正极

3 VL 液晶显示偏压

4 RS 数据/命令选择

5 R/W 读/写选择

6 E 使能信号

7 D0 数据

8 D1 数据

9 D2 数据

10 D3 数据

11 D4 数据

12 D5 数据

13 D6 数据

14 D7 数据

15 BLA 背光源正极

16 BLK 背光源负极

3.4 按键单元的设计

本设计采用6个独立按键完成对温、湿度上下限的设定。六个按键的功能分别是:

①选择温度进行设限;

②选择湿度进行设限;

③选择温度或湿度上限进行改变;

④选择温度或湿度下限进行改变;

⑤加1;

⑥减1。

按键电路图如图3.15所示。

- 17 -

图3.15 按键电路图

3.5 报警单元的设计

在监测系统中,对于重要的参数一般都设有紧急状态报警系统,以便提醒操作人员注意,或采取紧急措施。其方法就是把计算机采集的数据或记过计算机进行数据处理、数字滤波,标度变换之后,与该参数上下限设定值进行比较,如果高于上限值(或低于下限值)则进行报警,否则就作为采样的正常值,进行显示。

本设计采用峰鸣音报警电路。峰鸣音报警接口电路的设计只需购买市售的压电式蜂鸣器,然后通过单片机的1根口线经驱动器驱动蜂鸣音发声。压电式蜂鸣器约需10mA的驱动电流,可以使用TTL系列集成电路7406或7407低电平驱动,也可以用一个晶体三极管驱动。在图中,P3.2接晶体管基极输入端。当P3.2输出高电平“1”时,晶体管导通,压电蜂鸣器两端获得约+5V电压而鸣叫;当P3.2输出低电平“0”时,三极管截止,蜂鸣器停止发声。

图3.16是运用三极管驱动的峰鸣音报警电路。

- 18 -

图3.16 三极管驱动的峰鸣音报警电路

- 19 -

第4章软件系统的设计与实现

4.1 系统软件设计思想

为了方便于编写、调试,将整个系统程序分为主程序、DS18B20温度子程序、键盘子程序几个主要部分。

4.1.1 主程序设计

主程序流程图如图4.1所示。

开始

初始化

显示当前温湿度值

按键扫描

键值处理

更改温度上下限更改湿度上下限

确认并退出温湿度上下限修改

图4.1 主程序流程图

- 20 -

温湿度监测系统

山东科技大学泰山科技学院实训报告 嵌入式课程综合 实训报告书 课题名称:温湿度监测系统 系(部):信息工程系 专业班级:嵌入式专业方向09班 学生姓名: 学号: 完成日期: 山东科技大学泰山科技学院

1 绪论 嵌入式系统是指操作系统和功能软件集成于计算机硬件系统之中。简单的说就是系统的应用软件与系统的硬件一体化,类似与BIOS的工作方式。具有软件代码小,高度自动化,响应速度快等特点。特别适合于要求实时的和多任务的体系。 嵌入式系统技术具有非常广阔的应用前景,其应用领域可以包括:工业控制、交通管理、信息家电、家庭智能管理系统、POS网络及电子商务、环境工程与自然等。本课题就是把嵌入式系统的优势利用到仓库的温湿度监控系统中。 在仓库的货物的管理中,防潮、防霉、防腐、防爆是衡量仓库管理质量的重要指标,它直接影响到储备物资的使用寿命和工作可靠性。为保证日常工作的顺利进行,我们需要实时知道温湿度的具体变化,因此首要问题就是加强仓库内温度和湿度的监测工作。传统的方法是用与湿度表、毛发湿度表、双金属式测量计和湿度试纸等测试器材,通过人工进行监测,对不符合温度和湿度要求的库房进行通风、去湿和降温等工作。这种人工测试方法费时费力、效率低、测试的温度湿度误差大随机性大,而且库区的面积越来越大,因此我们需要一种造价低廉、使用方便、测量准确、传输能力强和通信距离远的监控系统来有效地对仓库货物进行监管。 本课题的目的就是利用ARM控制器来实现工业现场温度、湿度的采集和无线传输,在远程可以显示温度和被送到上位机。 1.1设计目的 注重培养综合运用所学知识、独立分析和解决实际问题的能力,培养创新意识和创新能力,并获得科学研究的基础训练。了解所选择的ARM芯片各个引脚功能,工作方式,计数/定时,I/O口,中断等的相关原理,并巩固学习嵌入式的相关内容知识。通过软硬件设计实现利用ARM芯片对周围环境温度信号的采集及显示。 1.2设计意义 嵌入式系统是以应用为中心,以计算机技术为基础,且软硬件可裁剪,适应应用系统对功能、可靠性、成本、体积、功耗有严格要求的专用计算机系统。它一般由以下几部分组成:嵌入式微处理器、外围硬件设备、嵌入式操作系统。嵌入式系统是面向用户、面向产品、面向应用的,它必须与具体应用相结合才会具有生命力、才更具有优势。因此嵌入式系统是与应用紧密结合的,它具有很强的

环境温湿度参数实时监测系统

摘要 采用单片机对温度、湿度等环境参数进行监测是一个工业生产中经常遇到的监测问题,采用单片机不仅具有监测方便、操作简单等优点,而且可以在节约成本的同时大幅度的提高监测质量。本文设计了单片机构成的环境温度、湿度参数实时监测装置,本装置以单片机AT89C51为控制核心,采用独特的单总线数字式温度传感器DS18B20进行温度采集,采用湿敏电容HS1101对湿度参数进行采集。LCD液晶显示屏对于当前的温度值和湿度值进行实时的显示,可以方便用户直观的了解所测得的温度、湿度环境参数值。用户可使用按键根据自身要求设定温湿度上下限,同时,报警装置可依据用户的设定针对温湿度超限情况进行报警。 关键词:温湿度监测;超限报警;LCD显示 Abstract MCU is always used in industry measurement as temperature and humidity measurement. With MCU, it can be more convenient and simple to complete the measurement efficiently. The paper designs a real-time temperature and humidity measurement device based on MCU. The device adopts AT89C52 as the control. The device also make use of DS18B20 to obtain the digital temperature signal and HS1101 to gain the analogue humidity signal. In the design, LCD is used to display the

(完整版)环境监测系统解决方案

环境监测系统解决方案 一、系统概要 本综合管控云平台是一套基于云计算的物联网综合管控云服务平台。平台可适配于各种物联网应用系统,实时监控管理接入设备的状态与运行情况,并对设备进行远程操作,通过云平台对接物联网设备做到精确感知、精准操作、精细管理,提供稳定、可靠、低成本维护的一站式云端物联网平台。环境监测系统通过对现场温度、湿度、光照、风向、风速、PM2.5、气压等参数的数据采集,将参数数据远传至物联网云平台,实现现场各个设备的数据实时监测,用户可以通过电脑网页或是手机app实时查看,可以自由设置各个参数的标准值上下限,如果数据超限可以给相关的工作人员发送短信或是微信报警提醒,做到提前预警,避免造成不必要的损失,实现在远程就能值守现场设备。 二、拓扑图 现场传感器数据通过物联网中继器上传云平台,客户通过电脑网页或是手机app可以实时监控现场设备数据。

三、系统构成 3.1系统登陆 ①PC端登陆: 本系统采用B/S架构,PC端用户只需打开浏览器通过IP地址进入管理系统,凭管理员分配的用户名密码进行登陆管理。(登陆界面可定制企业logo及信息)如下图: ②手机端登陆: 用户可在任何有本地局域网信号的地方,通过IOS或Android版本APP登陆系统,登陆账号与PC端账号相同。IOS 版本APP请在Apple Store搜索“易云系统”进行下载,安卓版本请在“易云物联网系统”公众号或PC端系统中扫描二维码进行下载。 3.2数据监控 能够便捷监控实时数据,并且可通过数据变化自动启停其他设备,各项数据可用数值、图片、文字分别展示,并通过短信等功能向用户发送报警信息。另外,可设定不同的监控点,更直观的监测每个测温点实时情况,模拟真实的设备位置分布。如下图:

温湿度监控系统

温湿度监控系统 目录 行业需求 系统概况 行业需求 系统概况 展开 随着科技的飞速发展和普及,高性能设备越来越多,各行各业对温湿度的要求也越来越高。传统的温湿度监测模式是以人为基础,依靠人工轮流值班,人工巡回查看等方式来测量和记录环境状况信息。 温湿度采集系统 在这种模式下,不仅效率低下不利于人才资源的充分利用,而且缺乏科学性,许多重大事故都是由人为因素造成的,人工维护缺乏完整的管理系统。 石家庄恒必达科技基于这种对温湿度测控的需求而设计开发了温湿度监控系统。 环境温湿度的监控包括以下步骤:感应环境温湿度;判断感应到的温湿度是否异常;若感应到的温湿度异常,判断异常是否超过预设时间;若异常超过预设时间,则输出异常信号至主控机;异常报警;判断异常是否处理完毕;以及若异常处理完毕,解除报警。并可以利用控制器和主控机来达到机房温湿度的远程控制,从而实现环境温湿度管理的实时性和有效性。 编辑本段 行业需求

食品行业:温湿度对于食品储存来说至关重要,温湿度的变化会带来食物变质,引发食品安全问题。 档案管理:纸制品对于温湿度极为敏感,不当的保存会严重降低档案保存年限。 温室大棚:植物的生长对于温湿度要求极为严格,不当的温湿度下,植物会停止生长、甚至死亡。 动物养殖:各种动物在不同的温度下会表现出不同的生长状态,高质高产的目标要依靠适宜的环境来保障。 药品储存:根据国家相关要求,药品保存必须按照相应的温湿度进行控制。 石家庄恒必达科技有限公司设计开发的HBD-300温湿度监控系统: 系统功能 1、如实采集和记录各空间温度/温湿度情况。 2、所有的温度/温湿度数据采集和记录到一台主机计算机上,数据可以按照使用人员的要求定时自动记录并长期保存。 3、授权用户可查询历史数据,进行数据分析、打印等操作。 4、在出现异常数据的时候,可进行多种方式的报警,如:电脑图文报警、声光报警、短信报警等。 5、使用网络版软件,局域网内的远程计算机在经过授权后,可以共享温湿度数据。 6、可连接控制模块,在温湿度超出设定值后报警同时自动启动控制模块来进行降温除湿等工作。 系统组成 系统由温湿度传感器、数据通讯转换部分、上位机管理软件和控制模块(可选)组成。 1、温湿度传感器:负责检测并采集各控制点温湿度数据。 2、数据通讯转换器:负责温湿度数据采集数据的信号转换。 3、软件部分:软件部分负责对所有数据进行读取分析,并执行各项管理功能。 4、控制部分:执行远程控制指令。 系统特点

物联网智能环境监测系统

《传感器与物联网技 术》 综合报告 题目:智能环境与物联网技术 专业: 学号: 姓名: 提交日期:二О一六年六月 摘要

环境与所有人的日常生活都息息相关,而物联网技术也随着计算机技术,信息技术,以及智能技术的发展越来越多的开始被应用到我们的日常生活中来。本文主要针对物联网技术应用到环境监测中的相关问题进行了分析与探讨。 智能环境利用各种传感器技术,移动计算,信息融合等技术对空气环境,海洋环境,河,湖水质,生态环境,城市环境质量进行全面有效地监控,通过构建全国各地环境质量的检测实现对全国范围内的环境进行实时在线监控和综合分析,建立全国性的污染源信息综合管理系统,为采取环境治理措施和污染预警提供更客观,有效的依据。 关键字:智能环境物联网技术传感器

目录 1引言 (4) 1.1 物联网简介 (4) 1.2智能环境研究的目的和背景 (4) 2需求分析 (4) 2.1智能环境功能需求分析 (5) 2.2各子系统需求分析 (5) 2.2.1大气污染监测子系统需求分析 (5) 2.2.2海洋污染监测子需求分析 (5) 2.2.3水质监测子系统需求分析 (5) 2.2.4生态环境检测子系统需求分析 (5) 2.2.5城市环境检测子系统需求分析 (5) 2.3其他非功能需求分析 (6) 2.3.1可靠性需求 (6) 2.3.2开放性需求 (6) 2.3.3可扩展性需求 (6) 2.3.4安全性需求 (6) 2.3.5应用环境需求 (6) 3详细设计 (6) 3.1各环境监测子系统解决方案 (6) 3.2智能环境监测系统结构图 (5) 3.2.1各子系统环境监测拓扑结构图 (6) 4结论 (12) 参考文献 (13)

实验室温湿度控制

实验室温湿度控制很重要 在实验室的监控项目中,不同实验室对温湿度都有要求,大部分实验都是在明确的温湿度环境中展开。在医药、生化、仪器校准、农业、建筑与电器等领域中,实验室环境条件直接影响着各种实验或检测的结果,每项实验的进行都需要精确可靠的监测仪器来提供准确的环境参数数据。 精品文档,你值得期待 实验室要求适宜的温度和湿度。室内的小气候,包括气温、湿度和气流速度等,对在实验室工作的人员和仪器设备有影响。夏季的适宜温度应是18-28℃,冬季为16-20℃,湿度最好在30%(冬季)-70%(夏季)之间。除了特殊实验室外,温湿度对大多数理化实验影响不大,但是天平室和精密仪器室应根据需要对温湿度进行控制。 环境条件温湿度的控制方面考虑的要素就是保证实验操作的环境温湿度是能够满足实验程序各个过程的需要。我们主要从以下几个方面来制定实验室环境温湿度控制范围。 首先,识别各项工作对环境温湿度的要求。 主要识别仪器的需要、试剂的需要、实验程序的需要,以及实验室员工的人性化考虑(人体在温度18-25℃ 相对湿度在35-80%范围内总体感觉舒适,并且从医学角度来看环境干燥和喉咙的炎症存在一定的因果关系)四个方面要素综合考虑,列出对温湿度控制范围要求的清单。 第二,选择并制定有效的环境温湿度控制范围。从以上各要素所有要求清单中摘取最窄范围作为该实验室环境控制的允许范围,制定环境条件控制方面的管理程序,并依据该科室实际情况制定合理有效的SOP。 第三,保持和监控。通过各项措施保证环境的温湿度在控制的范围内,并对环境温湿度进行监控和做好监控的记录,超过允许范围及时采取措施,开空调调节温度,开除湿机控制湿度。 试剂室温度10-30℃,湿度35-80% 样品存放室温度10-30℃,湿度35-80% 天平室温度10-30℃,湿度35-80% 水分室温度10-30℃,湿度35-65% 红外室温度10-30℃,湿度35-60% 中心实验室温度10-30℃,湿度35-80% 留样室温度10-25℃,湿度35-70% 各个领域实验室的温湿度最佳范围 1

粮仓温湿度在线监测系统

粮仓温湿度在线监测系统 本系统主要针对多点环境和设备内温度、湿度的集中监控和管理,是一套可无人值所24小时不间断实时监控记录的自动化监测系统。系统能对大面积的多点的温湿度进行监测记录,并将温湿度数据实时传输到PC机上,利用系统监测软件进行数据存储与分析,并输出打印历史数据和曲线图,在设备异常情况下还以现场多媒体音响、声光报警器、电话报警、手机短信息报警、网络客户端报警等多种形式的通知相应监管人员。克服了以前靠管理人员手工检查、测量和手工计算温度值和湿度值,提高了粮仓温度和湿度的检测速度和检测精度,节省了大量人力和物力,减轻了温湿度管理的工作强度,提高了管理效率。 系统基于传感技术、网络技术、信息管理技术、通信技术等先进技术为主体,按照分布式原则设计,以全数字信号进行传输,提高了系统的可靠性和可维护性。。通过我们(优度科技)的专用温湿度监测软件接收、显示、分析、监测,从而达到实时监控被测点位的温湿度环境变化。是一套可无人值所,能24小时不间断实时监控记录的自动化监测系统。 方案为分布式智能网络型监控系统(优度科技),采用硬件功能软件化的系统设计思想及系统硬件的模块化、通讯网络化设计,系统可根据需要升级软件功能与扩展硬件种类,增加监控点数量,监控软件的编制采用软件工程管理,开放性与可扩充性极强。 本系统(优度科技)能对现场温湿度环境进行数据检测、显示、记录、文档保存、打印、数据分析、设置上下线超限报警、分析报警点位及趋势曲线图等功能。监控电脑软件采用图形界面实时显示,界面可进行总貌显示、分区显示、显示各点位温湿度的每时刻的详细数据、历史温湿度曲线、可记录查找、打印各点位的温湿度数据。

温湿度监控系统方案

温湿度监控系统方 案

药品仓库温湿度监控系统介绍 一、开发背景 当前医药行业对药品储存环境的要求越来越高,药监部门已明确要求对药品仓库需要有历史环境监控数据,并纳入发证考核指标,由于要求监测的点数较多,采用传统的记录仪方式已不适应,因此需要开发一种具有多点、远程、易安装的温湿度监控记录系统。 二、系统架构 方案采用分布式智能网络型监控系统,被监控的点位可根据需要扩展硬件种类,增加监控点数量,监控终端采用触摸屏工控机可嵌入安装在现场也能够置于专门的监测机房。 基于现场总线的方式的传输,采用数字化变送器,便于现场布线,记录平台采用PC或嵌入式触摸屏,支持数据导出和以太网传输。软件界面采用图形化,拟采用商业组态软件。 系统组成: 系统由温湿度传感器、数字变送器(带LCD显示)、通讯总线(中继器)和嵌入版触摸屏及上位机管理软件四部分组成。 1、温湿度传感器:负责检测各温湿度数据。 2、数字变送器:负责采集各温湿度传感器采集的数据, 进行数据校正转换,进行现场LCD显示,接受上位机通讯指

令并向其传输数据。 3、通讯总线(中继器):负责数据的有线传输,并能延 长通讯距离。 4、触摸屏及软件部分:负责对数字变送器的通讯,读取 变送器的温湿度数据,进行显示、记录,并执行各项管理功 能。 一层 二层库 变送 第三层 中继 监控系统结构图 三、系统功能 1.操作界面图形化,操作过程简单、直观,用户只需经 简单培训即可操作; 2.以表格和曲线方式的显示各监控点实时测量值。

3.以表格和曲线方式的显示各监控点的历史数据。 4.可查询任意一天、一月、一年的数据,并可进行表格和图形方式显示和打印。 5.可统计任意区间的数据最大值、最小值及平均值。 6.可设置各监控点的上下限报警值。并记录报警值,可查询报警历史记录 7.当被测量值超过上下限报警值时,可经过声光、自动电话语音报警、也可自动发送短信到手机、Email自 动发送报警信号,轻松实现无人值守。 8.数据导出功能,可U盘数据导出功能 9.网络版功能可实现远程异地多用户同时使用 10.操作人员需授权才可查询历史数据,进行数据分析、 打印等操作。 四、技术参数: 1.监测点数:1~32个 (可扩充到255个); 2.温度范围:-40℃~+60℃; 3.温度精度:±0.5℃(-10℃~+35℃); 4.湿度范围:0~100%RH 5.湿度精度:±3%RH(30~90%RH) 6. 485总线传输距离: < 1200 M 7.电源:220V/AC ±10%

战场环境实时监测系统PC端的设计与实现

战场环境实时监测系统PC端的设计与实现 摘要: 本文在战场环境监测平台之上建立一套智能化、高效化的客户端,包括PC 客户端。本文首先对战场环境监测平台的总体架构做了介绍,包括平台总体结构以及客户端的总体数据流向。然后分别对PC 客户端做了详细的介绍。在PC 客户端主要介绍以下几个方面:通过对比Hibernate 缓存机制与JDBC 在查询海量数据时的性能,实现PC 客户端对历史信息的查询;通过数据源模块、信息处理模块以及报警策略模块之间的协同运作,实现PC 客户端的实时报警;通过前端采用Ajax 异步请求减少页面加载数据、后台建立静态区来实现对平台并发控制的优化;通过对不同种类曲线的绘制来实现友好的交互。 本文在战场环境监测平台中实现了基于PC 端,将信息技术与移动互联技术相结合使得战场环境监测更加智能、高效与友好,对于提高监测效率节省操作人员时间具有重要意义。 关键词:战场环境监测;总体架构;PC 客户端

目录 摘要: (1) 1引言 (2) 2相关技术介绍 (4) 2.1物联网技术论述 (4) 2.2Java EE 技术 (5) 3.战场环境监测系统总体架构 (8) 3.1 环境监测平台总体结构 (8) 3.2 PC 客户端总体数据流程 (9) 4 PC 客户端详细设计与实现 (10) 4.1 历史信息查询性能分析 (10) 4.2 报警策略分析与设计 (16) 4.3 系统并发控制优化 (19) 4.3.1 环境信息请求 (21) 4.3.2 静态区设计 (22) 4.4 图形组态实现 (23) 结束语 (26) 参考文献 (27) 1引言 随着科学技术的发展,第二十一世纪以来,电子信息技术在世界上的武器不断保持着主动发展的态势,在消防指挥控制技术、计算机技术、网络技术、通信技术以及信息加密与信息技术领域取得了全面发展。随着西方国家军事能力建设的转变,许多国家的电子信息技术发展战略发生了变化。亚太国家在电子信息技术领域的投资已在过去几年有所增加,印度、澳大利亚、韩国和日本等国都已发

温湿度监测系统

开题报告 通信工程 温湿度监测系统 一、课题研究现状及意义 随着社会各方面的发展,在生产生活的方方面面对温度湿度的环境状况要求越来越高,主要是指库房、储柜、大棚种植、工业生产等对温湿度环境变化有着重要要求的地方。例如:对馆藏文物保存环境实施科学监测和有效调控,是预防性保护文物劣化的关键所在。因此温湿度监测具有重要的意义。 传统温湿度检测的局限性 (1)不具有实时监测性 传统的温湿度检测器只是实时的检测而不是实时监测,检测只是将当前的环境温度检测出来,需要人工的观察检测结果。不仅监测效率低而且当监测环境空间过大也痛耗费人力。采用温湿度监测系统通过设置警戒温湿度的范围和正常的温湿度的范围。如果环境处于正常的温湿度范围系统将继续正常监测,如果环境处于警戒温湿度范围产生报警信号,通知工作人员进行相应的处理。从而大大提高监测效率和减少人力消耗。 (2)不具有历史数据保存性 传统的温湿度检测不具有历史数据保存功能,历史的温湿度信息是一种有用的信息。对于流动型展示的文物,可以利用历史记录温湿度信息作为参考,为以后文物环境的变化做好准备。还可以根据文物在不同历史记录的变化,得出更适于文物保存的温湿度环境。 二、课题研究的主要内容和预期目标 在该课题中采用温湿度监测系统通过单片机为控制核心并协调LCD显示模块、温湿度传感器模块正常工作。通过串口传输与上位机连接,利用上位机软件和数据库进行连接,并对历史温湿度信息进行存储。从而实现温湿度监测系统。有利于降低成本,提高监控效率和能力。

具体内容如下: (1)调研物联网技术的发展、现状及温湿度监测系统现状; (2)利用单片机及其外设电路,通过编程实现温度信息的采集、显示,并给出程序框图及功能代码。 三、课题研究的方法及措施 (1)利用单片机开发板与各模块进行连接,确定连接关系。 (2)利用keil编译工具编写模块化程序。使LCD显示模块和温湿度传感器模块分别独立实现它们的功能。 (3)组合各模块程序,实现各模块协调运行。 (4)制作上位机软件。 (5)利用protel99se软件工具设计电路板,并制作。 (6)组装并调试系统。 四、课题研究进度计划 毕业设计期限:自2009年9月18至2010年5月18日。 2010年10月1日至2010年11月20日:明确任务,查找资料,确定系统总体设计方案,写文献综述,外文翻译,完成开题报告,准备开题答辩。 2010年11月25日至2010年12月10日:了解LCD显示模块和温湿度传感器模块的功能。 2010年12月10日至2010年12月30日:编写模块化程序。使LCD显示模块和温湿度传感器模块分别独立实现它们的功能。 2011年1月1日至2011年2月1日组合各模块程序,实现各模块协调运行。制作上位机软件。 利用protel99se软件工具设计电路板,并制作。组装并调试系统。

大气质量环境监测系统方案

大气质量环境监测系统方案

一、前言 随着生活水平的提高,人们对健康越来越关注,对我们生活的环境也越来越关心,特别是一些对人体有危害的气体物质,并逐步在进行有效的监控和治理。环境空气质量监测是伴随着日益严重的大气污染而发展起来的,环境空气质量自动监测系统近年来在我国得到普遍的应用。 二、我国环境空气质量自动监测概况 1基本概念 环境空气质量自动监测系统是一套自动监测仪器为核心的自动“测-控”系统。空气质量的自动监测系统一般采用湿法和干法两种方式。湿法的测量原理是库仑法和电导法等,需要大量试剂,存在试剂调整和废液处理等问题,操作繁琐,故障率高,维护量大。干法基于物理光学测量原理,利用定电位电解传感器原理,结合国际上成熟的电子技术和网络通讯技术研制、开发出的最新科技产品。使样品始终保持在气体状态,没有试剂的损耗,维护量较小,具有较强的实用性和理想的性能价格比。 2我国空气质量自动监测工作现状 随着工业化进程的加快,科技的不断进步,环境空气监测从传统的事后的大气污染调查监测,事中大气染源监督发展到对大气的实时监测,据不完全统计,现阶段在我国空气质量监测工作的已经基本覆盖1800多个市、县,2000年,47个环保重点城市中只有25个城市建立了空气自动监测站,总数仅为109,,创建24小时连续自动采样系统的监测站为22个,多个城市共同建立了一个空气自动监

测站的情况,大大降低了空气监测的准确性。2004年, 42 个城市待建,除此之外的很多城市,因为城市和地区必要的仪器设备和专业人才的缺失,只能采用“五日法”监测,监测的项目具有局限性,监测常规指标为SO2 、NO2 、PM10和气象5参数,监测特异指标为CO2 、CH4 、H2O、NH3 、总烃、苯、二甲苯等。观察我国环境空气监测工作现状,普遍化、自动化、标准化较世界先进水平都具有一定差距,为了更好地保证监测数据代表性、准确性、精密性和完整性,一方面应当抓紧空气自动监测站的普及,另一方面也要在监测技术上有所突破。3空气质量自动监测系统的发展 空气质量自动监测系统的硬件主要集中在子站,而子站的硬件又主要包括采样系统、监测仪器、校准设备,通信设备、数据处理设备等。其中监测仪器是最重要的仪器。 空气质量监测仪器经历了第一代湿法仪器,第二代干法仪器,近年来,国内部分城市引进了瑞典OPSIS公司、美国TE公司或法国ESA公司的基于差分光谱法(也称长光程法)原理的监测仪器来代替SO2、NO2、O3等参数的测量,主要是利用长光程空气质量监测技术,能够分时测量以上三个主要参数外还能测量如:THC、CH4、n-MHC、BTX等有机污染参数,开启了空气监测仪器的第三个时代,在国内采用此类设备的空气自动监测系统即为DOAS大气环境质量监测系统,与第一代的湿法仪器和第二代的干法仪器相比,第三代的DOAS监测仪器的有点主要表现在以下几个方面, 第一,传感器的使用率上,湿法仪器和干法仪器都无法避免其传感器和样气的直接接触,这样一来,湿法仪器就要经常更换库仑池中的溶液,而干法仪器传

温湿度自动监控系统方案

天成药业有限公司 药品储存温湿度自动监测系统 建设服务方案 北京龙鼎金陆测控技术有限公司

一、北京龙鼎金陆简介 北京龙鼎金陆测控技术有限公司简介 北京龙鼎金陆测控技术有限公司坐落于国家级经济技术开发区-北京经济技术开发区,也称亦庄开发区,是国家计量院高级工程师及地方传感器协会副会长联合成立的一家集科、工、贸为一体的现代化高科技企业。 公司从成立伊始一直脚踏实地的努力为国人创造“质好而不贵”的国货精品,打造以自主创新为龙鼎企业特色的产业价值链,塑造龙鼎金陆LD的这一民族品牌,并一定坚信会成为振兴民族传感器事业及工业自动化控制系统的一面旗帜来迎接国际化的挑战。 近年来,公司又荟萃了环材料学、力学等多种学科的精良人材,不但吸取了日本株式会社共和电业、美国KULITE公司的箔式传感器、扩散硅传感器的制造技术,而且凭借雄厚的技术、科技开发力量及精湛的生产工艺水平,研制、开发、制造上百种称重测力传感器、压力变送器、智能仪表及计算机控制系统。广泛应用于船舶、汽车制造、内燃机、电机、冶金、化工、食品、医疗、航空航天、各大科研所、院校、交通、能源、机械制造、建材等领域。 公司全体员工以热情周到的售前和售后服务,深得用户的好评和信赖。北京龙鼎金陆测控技术有限公司全体员工热忱欢迎各界人士的光临与指导,同时也希望各界人士对我司做深入的监督,以便我们随时的纠正我们的不足,力争向您提供更优质的产品和服务。 以良好的信誉、周到的服务、可靠的质量铸造国货精品是我们一贯的宗旨 以创新技术、优化管理和齐心协力提升品质来嬴取客户信赖是我们的根本 二、我们的优势 北京龙鼎金陆作为一家药品储运温湿度监测系统研发、建设的高新技术企业,为各类涉药企业提供稳定、高效的温湿度监测设备及系统解决方案。 服务专业专注 公司深入研究药品产业政策及行业管理特点,专注服务于药品监管部门与药品相关企业。 公司建立了具备行业资格准入要求的人员队伍,温湿度监管平台及温湿度监测系统(企业端)的研发、销售、安装、服务均由具备执业药师资格的公司在职员工全程参与。

室内温湿度环境检测及显示系统

中国传媒大学南广学院 课程论文 室内温湿度环境检测及显示系统 摘要 随着科技的进步高科技产品不断的走进我们的生活,给我们的生活带来了极大的便利。与此同时,一些精密仪器对周围的运行环境有一定的要求。比如一些大型的机房。本文基于STM32F103RBT6嵌入式设计了一个室内温湿度环境检测与显示系统,本设计采用了DHT11数字温湿度传感器对室内的温湿度信号进行采集与测量,并把采集后的信号经过转换后用 LCD液晶显示屏进行显示并报告实时时间,从而可以直观的了解室内温湿度的情况。本系统实现质优价廉,系统稳定。 关键词:室内;温湿度;STM32F103;DHT11;

目录 中文摘要 ........................................................... I 绪论 . (1) 一、系统介绍 (2) (一)设计原理 (5) (二)系统结构 (7) 二、传感器选型 (11) (一)功能说明 (12) (二)引脚说明 (13) 三、MCU及复位电路与电源电路 (15) (一)MCU (17) (二)复位电路的设计 (19) (三)电源电路的设计 (21) 四、接口电路与LCD液晶显示模块 (30) 结论 (45) 参考文献 (47) 后记 (49) 注: 1.一般列两级标题。行距1.5倍。亦可采取三级标题形式。 2.目录正文用小四号宋体

绪论(三号黑体居中) 随着信息交流的日益增多、经济增长,社会对通信建设的要求越来越高。在21世纪初,单一的话音业务已经过渡到话音、数据、多媒体的窄宽带综合业务。多数技术发达国家都计划在21世纪普及宽带综合业务数字网(B-ISDN),构建“信息高速公路”。 (正文内容为宋体小四,1.25倍行距,首行缩进2字符)…… 一、系统介绍 (正文一级标题三号黑体居中,段前、段后0.5行,如果有副标题,加破折号,黑体四号居中。) (一)设计原理(二级标题和题序,用黑体四号,首行缩进2字符) 本系统以STM32F103为核心控制器件,通过它向DHT11数字温度传感器发送指令,使DHT11进行温湿度信号的采集并进行测量。测量完毕后,单片机读取测量结果,并将读取的温湿度数据转换为液晶字符,然后通过指令送给LCD 液晶显示屏进行显示,第一行显示实时时间,第二行显示温度数据,第三行显示湿度数据。从而可以直观的了解室内温度与湿度的情况。 (二)系统结构 根据原理,系统由六个模块组成。分别为MCU STM32F103, 时钟电路,复位电路,电源,温湿度传感器,液晶显示模块。系统框图如图 1.1所示 . .

温湿度监测系统

一、温湿度监测系统 (一)、系统组成及功能总述 在完全满足《食品药品经营质量管理规范》(GSP)和《疫苗流通和预防接种管理条例》的基础上,本系统依托物联网和传感器技术应答,利用GPRS网络、GPS地理信息系统和单片机技术应答构建对药品流通过程监控的硬件体系。 依托互联网技术,软件技术、数据处理和挖掘技术构建监控云平台;依托行业经验和大数据进行模型建立和趋势分析,对系统进行可自耦合型的功能拆分和开发;构建适合各级疾控中心及接种单位自身情况的药品全程管理过程中的生产、存储、运输、接种等环节的信息化管理和精确化监控。 系统不仅稳定、可靠、实用,还要具有足够的升级空间,不仅满足当前的需要,还要至少满足未来各级医药企业对药品全程管理的发展需要。不仅做到数据实时,监控实时,还达到管控结合,有效预警的目的。 (二)、系统组成及功能 全程5S解决方案包括:监测硬件、5S云平台,手机客户

端应用软件(APP)三部分组成。 安装在药品生产企业、省市区疾控中心和生鲜物流生鲜物流园仓库中的温(湿)度记录仪,负责对仓库的温湿度进行采集、记录、传输、导出,现场显示及现场报警。 安装在库区明显位置或办公区域的管理主机负责对各测点终端监测的数据进行收集、记录、暂存和上传,并具备发生异常情况时的报警管理功能,异常情况包括但不限于:温度超标、开门、断电、故障、掉线(断链),报警的方式包括指定地点的声光报警和远程的短信报警(微信报警)。 系统不间断电源负责在外部供电中断期间保证系统的不间断运行。 硬件设备具备GPRS远程、WIFI近程自适应数据传输方式,同时具备传统有线网络TCP\IP、RS485等数据传输方式。 同时硬件设备具备蓝牙传输方式,可支持手机数据下载和便携设备的打印输出。 安装在服务器上的温湿度监测云平台软件负责全部数据的收集、处理、记录、查询。并与疾控体系既有的ERP\WMS\LBS\TMS\OA等系统进行数据融合。 安装在用户手机上的APP已经获得国家注册商标,分为监管版和企业版。

温湿度环境监控系统

温湿度环境监控系统 温度监测报警系统(以下简称KITOZER)测量范围为-55°C~+125°C,测量精度±0.5℃(在-10℃~+85℃范围内),主要用于仓储和环境温度监测,如冷库、冰箱、冰柜等设施。KITOZER具有同时采集多点温度数据、发出即时或延时报警信息和数据记录分析等功能,并且通过数据的记录分析功能,客户可以掌握自己的冷链设备(例如冷库、冷柜、冷藏车等)是否运行正常,是否需要维护。 KITOZER采用进口数字化温度传感器,区别于传统温度采集方案的模拟信号,提高了温度数据传输的稳定性和抗干扰能力。传感器支持“1-Wire”理论,网络布线方便经济。 在报警功能设计方面,KITOZER着重考虑用户使用的可靠性和便利性。采用了两种报警方式,分别是警灯报警和手机短信报警。特别是短信报警,可以设置多个手机号码接收报警信息,只要是能收到手机信号的地方,无论在哪里,用户都可以及时知道报警的发生。这些功能的设计,都是为了确保报警信息能及时被知道,使用户的财物得到保护。 通过KITOZER的数据分析软件,管理人员在办公室的终端计算机上就可以浏览实时温度数据。而且可以实现数据记录、历史数据调用、数据对比、数据总结、报表打印等功能。如果采用独立服务器作为终端计算机,配置上KITOZER以太网客户端软件,管理人员可以在全球任何有Internet的地方浏览被监测场所的温度状况

壁挂式温湿度传感器以其工业级水准的液晶屏、美观大方的外形、稳定的性能、宽广的温湿度测量范围、全量程的温度补偿、精确的高低温湿度测量,成为暖通空调应用中精确测量相对湿度及温度的理想解决方案。 工作原理: 湿敏元件一般是在绝缘物上浸渍吸湿性物质,或者通过蒸发、涂覆等工艺制各一层金属、半导体、高分子薄膜和粉末状颗粒而制作的,在湿敏元件的吸湿和脱湿过程中,水分子分解出的离子H+的传导状态发生变化,从而使元件的电阻值随湿度而变化。 电阻式湿度传感器最适用于湿度控制领域,其代表产品氯化锂湿度传感器具有稳定性、耐温性和使用寿命长多项重要的优点,氯化锂湿敏传感器已有了五十年以上的生产和研究的历史,有着多种多样的产品型式和制作方法,都应用了氯化锂感湿液具备的各种优点尤其是稳定性最强,氯化锂湿敏器件属于电解质感湿性材料,在众多的感湿材料之中,首先被人们所注意并应用于制造湿敏器件,氯化锂电解质感湿液依据当量电导随着溶液浓度的增加而下降。 氯化锂感湿膜由氯化锂和聚乙烯醇混合制作,湿敏元件测湿量程较窄,一般氯化锂器件的测量范围在20%RH左右,在测量较宽的湿度范围时,常采用多片组合的方法。 总而言之,壁挂式温湿度变送器具有优良的长期稳定性、低延滞

环境预警监测系统介绍

环境智慧监测预警系统 全新物联网环境监测预警分析 集监控、报警、监测、控制、数据采集、IP广播、数据分析为一体。 功能整体介绍:事前预警、事中控制、事后分析 事前预警:对监测点位需要监测的事项进行报警范围的提前设定。通过后端远程监控查看实时状况。 事中控制:当事情发生的第一时间,能够自动/手动打开相应控制的处理设备,远程进行IP广播语音喊话、或者通知相应的管理人员进行第一时间的处理,将事情造成的影响降到最低。 事后分析:在事情结束之后,通过报警抓拍历史记录及数据历史记录进行查看分析,总结事情发生的原因,避免或减少此类事件发生。

具体功能: 1、环境监测预警分析5、分控管理 2、设备故障提示功能6、自动控制 3、信息及时提示功能7、远程终端管理 4、现场图片实时抓拍8、后端实时数据查看

说明:系统根据各类环境在线监测的传感器,能够对土壤温湿度;水质PH、溶解氧、浊度、余氯等;气体中的氨气,二氧化硫、二氧化碳、PM2.5等;以及光照、震动、压力等监测数据进行实时在线预警监测。 主要优势: ■环境预警监测系统有商智通研发,是当前市场上功能最全、最强的物联网环境预警监测系统。 ■安装简单,操作方便,工期短,长期可靠,后期维护简单。■不受距离、地域影响,能够分散布点,后端集中管理。 ■针对户外特殊环境,推出无电无网方案,不需要专门布电线、网线,降低了工程成本。 ■提供一整套的解决方案,具有完备的后段管理平台及手机APP。 ■云端推送,保证任何一条报警信息都能100%收到。 ■设备发生断电断网或硬件故障能够做到故障提示显示。 ■跟随市场发展,系统能够不断更新换代,始终在市场上保持领先的优势。

冷库温湿度环境监测系统

冷库温湿度环境监测系统 简单介绍 冷库温湿度环境监测系统主要应用在仓库的综合监控,通过综合控制系统,可以实现对温度、湿度参数的自动调节与控制,营造舒适、健康的环境,实现更好的经济效益,根据仓库环境需要来选择合适的监测方案构建该系统 产品描述 冷库温湿度环境监测系统厂家,冷库温湿度环境监测系统价格,冷库温湿度环境监测系统主要应用在仓库的综合监控,通过综合控制系统,可以实现对温度、湿度参数的自动调节与控制,营造舒适、健康的环境,实现更好的经济效益,根据仓库环境需要来选择合适的监测方案构建该系统.应用我公司的全数字仓储专用温湿度变送控制器作为测控核心,通过485总线与计算机相连,使您在监控主机上或手机上

通过温湿度智能管理软件,对整个库区的温湿度进行实时而精确的监测控制,并能通过手机对整个场区的温湿度进行报警和查询,整个系统可靠、实用、精确. 冷库温湿度环境监测系统通过温湿度智能管理软件对仪表参数进行设置实现药品库房温湿度的稳定测量,实现数据的长期记录和采集,实现库房温湿度监测、记录、分析的自动化管理,在温湿度超过警戒线时候能够发送各种报警信号(现场多媒体声光报警、网络客户端报警、电话语音报警、手机短信息报警等),在需要调控的药品库房,自动开启调节设备及时进行温湿度调控,使之与药品库房所需环境相适应。同时,通过对设备系统的调控,优化空调运行状态,可以节能省电。系统应用智能化现场总线的技术,整个系统中仅有数字信号传输,而且传感器、采集模块均可联网,使系统更可靠性、布线更方便,智能化的现场总线网络也为功能延伸提供了可能。 冷库温湿度环境监测系统 ◆测量范围:温度: -40℃~100℃ 湿度: 0~100 %RH ◆测量精度: 温度: ±0.5℃ 湿度: ±3% RH ◆分辨率:温度: 0.1℃ 湿度: 0.1%RH ◆通讯接口: RS-232、485、USB、RJ45 ◆软件:中、英文两种版本

实时多点洁净环境监测系统

尘埃粒子在线监测系统 实时多点洁净环境监测系统 系统组成 本方案以9个颗粒采样点,0个浮游菌采样点,1个风速参数,组成此次两灌装线的洁净环境实时在线监测系统。 系统构成分别是: 1.1主要功能 1、远程控制功能: 2、粒子监测功能: 3、声光报警功能: 4、流量监测功能: 5、连续监测功能: 6、浮游菌采样功能: 7、风速监测功能:

目前,药厂的监测方法一般都是定期的人工巡检,可采用手持式或台式单台粒子计数器。但存在以下缺点: 1)人工监测将给洁净厂房带来额外的人员和设备,增加了洁净负荷。 2)人工监测缺乏采样点和采样时间的固定性。 3)人工监测所取得的数据在生成报告时缺乏一致性和连续性 4)人工巡检的检测报告是滞后的结果 5)人工监测是一项强度比较高的劳动,将耗费大量的人力资源。 在生产过程中,环境的情况往往是变化的。由于人工监测无法提供连续监测数据,因此无法估计系统是在何时偏离了规定工况,更无法估计产品的质量情况。而洁净度定点实时监测系统避免了人工监测的种种缺陷。它将多台远程遥控粒子传感器安装在各个点。传感器随时测量,测量结果传送到计算机。温度,湿度和压差,风速,浮游细菌数等都有相关探头测量。 本系统根据新版GMP,FDA 及EC GMP,PIC/S等规则。本次方案包含如下内容: 1、颗粒传感器系统 2、浮游细菌采样系统(待定) 3、风速参数 4、警报系统(待定) 5、实时监控软件系统 6、项目管理、安装调试、系统测试服务 7、认证文件 8、售后服务 本系统主要设备粒子计数器是依据ISO 21501、16330-2004标准要求进行设计、制造,判定;并执行校准标准 GB/T6167-2007,JJF1190-2008。 执行标准如下:

工地环境监测系统——智慧工地解决方案

环境监测系统需求分析 建筑工地遍地开花,扬尘和噪声得不到有效控制,在施工过程中由于施工运输人员/设备粘带泥土、建筑材料逸散以及施工机械等造成扬尘和噪声污染极其严重,已经成为 影响城市空气质量的主要原因之一,甚至影响周围居民的正常生活,也是政府监管部 门的亟待解决的民生问题。 因施工过程中产生的扬尘和噪声污染,一直是施工工地与附近居民最主要纠纷问题, 也是环境监管部门比较关注的部分。为了有效监控建筑工地扬尘污染和噪声,接受市 民的监督和投诉,共建绿色环保建筑工地,有必要进行建设工程环境自动监控系统, 体现政府监管单位和相关企业的社会责任。 系统设计 工地环境监测系统对建筑工地固定监测点的扬尘、噪声、气象参数等环境监测数据的 采集、存储、加工和统计分析,监测数据和视频图像通过有线或无线(3G/4G)方式进行传输到后端平台。该系统能够帮助监督部门及时准确的掌握建筑工地的环境质量 状况和工程施工过程对环境的影响程度。满足建筑施工行业环保统计的要求,为建筑 施工行业的污染控制、污染治理、生态保护提供环境信息支持和管理决策依据。 系统拓扑图

系统设备组成

系统框架设计图 系统组成 本系统是由噪声实时监控系统、扬尘实时监控系统、视频叠加系统、数据采集/传输/处理系统、信息监控平台和客户终端等部分组成的集数据采集、信号传输、后台数据 处理、终端数据呈现等功能为一体的城市环境监测系统。 ??噪声实时监控系统: 提供全天候户外传声器单元,对传感器的户外监测安全和数据准确性提供可靠保障;??扬尘实时监控系统: 对扬尘进行连续自动监测,扬尘每分钟采集一次数据,并实时上传至服务器供后台程 序统计和分析。扬尘监测包括PM10和PM2.5两个参数,并同时实时上传个数据中心和监控平台; ??报警及控制系统:

工地环境监测系统_智慧工地解决方案

环境监测系统 需求分析 建筑工地遍地开花,扬尘和噪声得不到有效控制,在施工过程中由于施工运输人员/设备粘带泥土、建筑材料逸散以及施工机械等造成扬尘和噪声污染极其严重,已经成为影响城市空气质量的主要原因之一,甚至影响周围居民的正常生活,也是政府监管部门的亟待解决的民生问题。 因施工过程中产生的扬尘和噪声污染,一直是施工工地与附近居民最主要纠纷问题,也是环境监管部门比较关注的部分。为了有效监控建筑工地扬尘污染和噪声,接受市民的监督和投诉,共建绿色环保建筑工地,有必要进行建设工程环境自动监控系统,体现政府监管单位和相关企业的社会责任。 系统设计 工地环境监测系统对建筑工地固定监测点的扬尘、噪声、气象参数等环境监测数据的采集、存储、加工和统计分析,监测数据和视频图像通过有线或无线(3G/4G)方式进行传输到后端平台。该系统能够帮助监督部门及时准确的掌握建筑工地的环境质量状况和工程施工过程对环境的影响程度。满足建筑施工行业环保统计的要求,为建筑施工行业的污染控制、污染治理、生态保护提供环境信息支持和管理决策依据。 系统拓扑图

系统设备组成

系统框架设计图 系统组成 本系统是由噪声实时监控系统、扬尘实时监控系统、视频叠加系统、数据采集/传输/处理系统、信息监控平台和客户终端等部分组成的集数据采集、信号传输、后台数据处理、终端数据呈现等功能为一体的城市环境监测系统。 噪声实时监控系统: 提供全天候户外传声器单元,对传感器的户外监测安全和数据准确性提供可靠保障; 扬尘实时监控系统:

对扬尘进行连续自动监测,扬尘每分钟采集一次数据,并实时上传至服务器供后台程序统计和分析。扬尘监测包括PM10和PM2.5两个参数,并同时实时上传个数据中心和监控平台; 报警及控制系统: 本噪声扬尘监测系统具有噪声、扬尘超标现场输出功能,用这些超标信号可以控制警示设备和治理设备的控制;警示设备如报警灯、治理设备如降尘设备雾炮; 数据采集、传输、处理系统: 采集、存储各种监测数据,并按后台服务器指令定时向后台服务器传输监测数据和设备工作状态。 对所收取的监测数据进行判别、检查和存储;对采集的监测数据按照统计要求进行统计分析处理。 信息监控平台 提供基于Web的管理系统,在线显示各前端污染源的实时扬尘和气象参数数据,实现对实时监测仪的参数调控,实现对历史监测数据的统计分析,实现在线数据下载、图像查询等功能。并具有污染物超标报警功能,权限管理功能,可向不同层面的管理者展示所需的信息。 客户终端: 客户终端支持采用智能移动平台(如智能手机、平板电脑)、桌面 PC 机、网络电视等各种能接入公网的设备。 功能介绍

相关文档
最新文档