纸板造纸机PLC控制系统设计

纸板造纸机PLC控制系统设计
纸板造纸机PLC控制系统设计

纸板造纸机PLC控制系统设计

1 引言

目前,我国造纸行业的控制系统主要采用集散控制系统(dcs),控制器和现场设备之间靠大量的i/o电缆连接,不仅增加成本,而且降低了系统的可靠性。

控制系统传送4~20ma信号,并以此监控现场设备,这样,由于控制器获得的信息量有限,现场级设备的在线故障诊断、报警、记录功能比较弱;另一方面也很难完成现场设备的动态监控、远程参数设定、修改等功能,造成造纸控制系统的信息集成能力不强和可维护性较差,影响工厂的生产效率,并给生产管理带来诸多不便。

随着计算机网络技术的发展,串行现场总线通信技术已深入到自动控制的各个领域。应用这项技术可以将可编程序控制器、交直流驱动器、监控计算机、远程i/o及智能传感器等连接起来,实现分布式计算机控制,可提高检测和控制的精度,改善系统的动态响应速度,提高系统的安全性,因而建立基于现场总线的纸机控制系统成为解决这一问题的有效途径。

profibus过程现场总线是一种全数字化的、串行、双向传输、多分支结构的通信网络,用于工厂/车间仪表和控制设备的局域网。profibus-dp是profibus过程现场总线协议的工厂自动化控制子集。因此其在纸机控制系统中的应用,将大大减少布线工作量与电缆投资,避免信号干扰,使系统更可靠,操作更简便,监控更直观。正是基于上述原因,山东中茂圣源纸浆有限公司纸板纸机项目工程中采用了profibus-dp现产总线技术,实现了该机组的通信及分布式控制,取得了良好的效果。

2 纸板造纸工艺分析

图1所示的纸板造纸机示意图中,可以看到该纸机是一种由多台设备组成的联动机。湿部包括浆料流送设备、网部和压榨部;干部包括干燥部、切纸机和理纸机。具有适合抄纸性能的浆料进入造纸机的浆料流送设备,经浆流分布器和流浆箱的分布和匀整以后,均匀而稳定的流送到运动着的成形网的网面上。浆流在网部逐渐地过滤、脱水,形成连续的湿的纸幅。当湿纸幅脱水到一定干度,便可以从网面剥离,送至压榨部继续脱水。压榨部是由若干组辊式压榨组成。湿纸幅是由压榨毛毯支托着,在压辊间用机械挤压的方法脱水。为了保持压榨毛毯的良好脱水性能,压榨辊上配设有毛毯洗涤装置。经压榨部后,湿纸幅的干度一般可达40%左右。然后湿纸幅经气垫式烘干箱进一步脱水。干燥后的纸板经牵引辊进入切纸机,经纵切刀由送纸辊进入横切部分,横切甩刀将纸幅切断送出。切断的纸经输送辊、高速输送带、低速输送带、压纸带送往理纸机。最后打包称重,整个工序完成。

图1 纸板纸机示意图

2.1 稳速的要求

造纸机由纸浆到形成纸张,需经过多个分部,因此是一个多单元的速度协调系统,各个分部间的速度要求严格配合,根据工艺流程,一般有以下关系:只要其中一个分部速度不稳,就会无法维持生产,纸幅不是断裂,就是松垮下来。如果整台纸机车速不稳,就不能保证纸张的定量(每平方米纸页的重量)不变。因此要求纸机的各分部都能稳速。但是,在实际运行中,有许多干扰因素破坏速度的稳定,例如电网电压的波动、频率的变化、负载的波动、温度的变化等等,对电气传动自动化控制的要求是克服这些干扰的影响,保证车速的稳定。

2.2 平稳起动的要求

纸机中有的分部要求平稳起动,例如网部起动太快就会损坏铜网;干燥部传动惯量比较大,起动太猛会把机械连轴扭断,因此要求整个系统能平稳起动,而且各分部要能单独起动和停止。

2.3 纸机速度链

由于各分部传送着生产过程中的纸张,根据造纸工艺的要求,各分部间要求达到线速度比例协调(相邻两个分部间的线速度比值应保持恒定),高精度地、可靠地保持这个比例系数是保证产品质量、生产正常运行的重要条件,任何原因破坏这种比例协调,就会降低产品质量。同时,纸机的这种速度比例协调关系应在该变车速或停机后重新开机时继续保持,而不需重新调节。其次,这种比例协调应具有微调功能,以调节相邻两分部间的速差,避免纸张在传送过程中的松弛和绷紧现象,并且速度微调应该灵敏、可靠,不应在调过程中有明显的滞后现象。比例协调关系如下:

n1=k1(n0+δn0)

n2=k2(n1+δn1)

n3=k3(n2+δn2)

n4=k4(n3+δn3)

本系统中,采用profibus-dp过程现场总线结合plc程序来完成速度链的控制,避免了运算放大器的速度链给定环节的信号漂移,提高了稳定性。

图2 纸板纸机系统结构示意图

3 工艺自动化系统设计

3.1 硬件构成

根据纸板纸机的工艺要求,该控制系统有profibus-dp构成单主从工作方式,如图2

所示。主站选用siemens的s7-300 plc(cpu313c-2dp),站地址设为2,实现总线通信控制和管理,完成周期性数据访问。网部、压榨部、干燥部和切纸机的各变频器(mm440)为从站,地址分别为3,4,5,6,7,8,9,10。现场触摸屏通过mpi口与plc相连,其地址设为1。上位机通过cp5611与主站plc连接,地址使用默认值0。理纸机部分的远程i/o(et200m)地址为11。主站plc与变频器及现场触摸屏实现高速数据通讯,完成整个纸机传动过程中的速度链、负荷分配、张力控制等功能。现场触摸屏实时显示各分布点的工作状态,监测各变频器的运行、故障状态,通过它可以对各传动点实现全部控制功能。plc实时的接受来自上位机和触摸屏的优化控制指令,自动调节各分部的速度以适应生产需求。同时plc将各分部的运行参数送往上位机,以便及时了解生产状况。整个系统采用profibus-dp现场总线控制技术,系统全部控制功能的实现都由现场总线通讯完成。只靠一条通讯电缆传输,省去了传统的线路接点。大大提高系统的可靠性,节约了控制电缆。同时实现了从操作到控制的全数字化,彻底杜绝了现场干扰对控制系统运行的影响。

3.2 软件设计

plc的编程使用s7系列的编程软件step7 v5.3,通过其对系统进行相应的网络配置,如通信端口的设置,站地址和数据传输速率的设定等;然后对主站s7-300进行硬件组态,通过配置,cpu313c-2dp可以各个变频器和et200m的i/o 分配地址,这样从编程角度来看,cpu313c-2dp队给从站的控制如同本机的i/o一样。

step7 v5.3软件采用模块化结构编程,整个控制程序由ob组织块、fc功能块、db数据块等构成。控制字是现场总线系统控制传动单元的基本手段。控制字由现场总线控制器(plc)发送给传动单元,传动单元根据控制字的位编码指示作出相应动作。状态字是一个包含了状态信息的字,它由传动单元发送给现场总线控制器(plc)。组织块ob是系统操作程序与用户应用程序在各种条件下的接口界面,用于控制程序的运行。不同的ob有不同的功能。本设计中组织块有ob1、ob20、ob35、ob82、ob86、ob87、ob100、ob121、ob122。

b1是用作主程序循环的,它用来设计主循环程序的结构;在用户程序延时中断ob20种调用了系统功能块sfc32(“srt_dint” 启动延时中断)、sfc33(“can_dint” 取消延时中断)、sfc34(“qry_dint” 查询延时中断的状态)。ob35是程序循环中断组织块;ob82是诊断中断程序,诊断接受来自有诊断能力的模块;ob86是机架错误中断,ob87通讯错误中断;ob100属于启动组织块,是暖启动用的;ob121是程序错误组织块,ob122是访问错误组织块,

属于故障处理组织块。ob1是主程序,主要完成系统的初始化、初始参数设定、调用子程序。fc是自定义的子程序块,包括网部控制、压榨部控制、干燥部控制、切纸机控制、理纸机控制、故障处理、数据采集与处理等功能块。数据块db用来存放用户程序运行所需的大量数据或变量,它也是实现各程序块之间交换、传递和共享数据的重要途径。在本系统中,上位机和下位机的通信主要是通过都区和改变下位机的db块来实现的。该系统共设计了8个db 块,分别表示实际速度数据块、设定速度数据块、电流数据块、时钟背景数据块、报警数据块、实际温度数据块、设定温度数据块和纸板尺寸数据块。通过读取下位机的db块,上位机上显示相应的速度、纸板尺寸和报警等相应信息。通过触摸屏改变下位机相应的db块数据,就可以生产达到预期的目的。

上位机采用visual c++进行画面显示设计,通过dll获得plc的实时数据,进行动画设计,数据管理,报表打印和故障记录和分析等。现场触摸屏通过siemens的hmi组态软件protool v6.0进行组态和编制画面。触摸屏画面是以设备图为底并分段细化。从触摸屏上可以轻松观察系统总图、各分部图,直至每个分布的传感器的状态。利用触摸屏提供的输入/输出、棒图、曲线图、字符、帮助信息、口令和画面切换等功能,可以观察和设定变频器的频率、转速及当前实际的频率和转速、纸机的运行状况等。

4 结束语

工程实践证明,本控制系统采用profibus-dp网络技术实现分布式控制,可以大大降低现场信号连接的工作量和费用,提高信号的传输精度与灵活性,降低系统成本,给安装、调试和设备维护带来方便。profibus-dp网络速度快、可靠性高、开放性好、抗干扰能力强,适用于各种工业控制系统,是pc、plc与其他智能现场设备通信的优选网络。

PLC控制系统的设计流程与基本要求

(1)根据工艺流程分析控制要求,明确控制任务,拟定控制系统设计的技术条件。技术条件一般以设计任务书的形式来确定,它是整个设计的依据。工艺流程的特点和要求是开发PLC控制系统的主要依据,所以必须详细分析、认真研究,从而明确控制任务和范围。如需要完成的动作(动作时顺、动作条件,相关的保护和联锁等)和应具备的操作方式(手动、自动、连续、单周期,单步等)。 (2)确定所需的用户输入设备(按钮、操作开关、限位开关、传感器等)、输出设备(继电器、接触器、信号灯等执行元件)以及由输出设备驱动的控制对象(电动机、电磁阀等),估算PLC的I/O点数;分析控制对象与PLC之间的信号关系,信号性质,根据控制要求的复杂程度,控制精度估算PLC的用户存储器容量。 (3)选择PLC。PLC是控制系统的核心部件,正确选择PLC对于保证整个控制系统的各项技术、经济指标起着重要的作用,PLC的选择包括机型的选择、容量的选择、I/O模块的选择、电源模块的选择等。选择PLC的依据是输入输出形式与点数,控制方式与速度、控制精度与分辨率,用户程序容量。 (4)分配、定义PLC的I/O点,绘制I/O连接图。根据选用的PLC所给定的元件地址范围(如输入、输出、辅助继电器、定时器、计数器。数据区等),对控制系统使用的每一个输入、输出信号及内部元件定义专用的信号名和地址,在程序设计中使用哪些内部元件,执行什么功能格都要做到清晰,无误。 (5)PLC控制程序设计。包括设计梯形图、编写语句表、绘制控制系统流程图。控制程序是控制整个系统工作的软件,是保证系统工作正常,安全。可靠的关键,因此,控制程序的设计必须经过反复测试。修改,直到满足要求为止。 (6)控制柜(台)设计和现场施工。在进行控制程序设计的同时,可进行硬件配备工作,主要包括强电设备的安装、控制柜(台)的设计与制作、可编程序控制器的安装、输入输出的连接等。在设计继电器控制系统时,必须在控制线路设计完成后,才能进行控制柜(台)设计和现场施工。可见,采用PLC控制系统,可以使软件设计与硬件配备工作平行进行,缩短工程周期。如果需要的话,尚需设计操作台、电气柜、模拟显示盘和非标准电器元部件。 (7)试运行、验收、交付使用,并编制控制系统的技术文件。编制控制系统的技术文件包括说明书、设计说明书和使用说明书、电器图及电器元件明细表等。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,

MZ1-1000自动埋弧焊机

MZ1-1000自动埋弧焊机使用说明书 一、性能和用途: MZ1-1000 自动埋弧焊机系熔剂层下自动焊接的设备,它配用交流焊机作为电弧电源,它适用于水平位置或与水平位置倾斜不大于10度的各种有、无坡口的对接焊缝、搭接焊缝和角焊缝。与普通手工弧焊相比,具有生产效率高、焊缝质量好,节省焊接材料和电能,焊接变形小及改善劳动条件等突出优点。二、技术数据: 型号 MZ-1000 电源电压 380V 50Hz 次级受载电压初级69~86V 焊接电流 400~1200A 焊丝直径 3~6mm 焊丝输送速度(电弧电压30伏时) 0.5~2m/min 焊接速度 15~70m/或 自动焊机装置可移式 焊机头以小车垂直轴可旋转 ±90° 焊机头横向位移 0~60mm 焊机头在焊缝垂直面上的向前倾斜角 45° 焊机头在焊缝垂直面上的侧面倾斜角 45° 焊机头在垂直方向的位移 65mm 焊接电流的调节方法远距离控制 焊缝平面的最大允许倾斜角 10° 焊丝盘可容纳焊丝重量 12kg 焊剂斗可容纳焊剂容量 12L 焊车重量(不包括焊丝及焊剂) 65kg BX2-1000 型焊接变压器 初级电压 380V 50Hz 1相

额定输入容量 76KVA 额定初级电流 196A 额定焊接电流 1000A 次级空载电压 69-78V 额定工作电压 44V 额定负载持续率 60% 重量 560kg 三:结构概述: 本焊机由自动机头及焊接变压器两部分组成。 1 、自动机头:由焊车及支架、送丝机构、焊丝矫直机构、导电部分、焊接操作控制盒、焊丝盘、焊剂斗等部件组成。 送丝机构由一个110V、1500rpm、80W直流他激电机、减速箱、进给轮等、将焊丝从焊丝盘内拉出,送至导电部分再送入焊接区。送丝速度可以根据焊接规范要求在控制盒上旋动“焊接电压”电位器(见原理图中W1)来平滑调节。顺时针旋转时,送丝速度减慢,电弧电压提高。矫直机构在送丝机构下端,由二个矫直轮、进给轮与导电嘴等一起组成。调节可动轮的位置,将焊丝进行矫直。 导电部分装在进给轮下面,由二个合金滚轮及架组成,用软铜带,使导电嘴与外接电缆作电器连接。滚轮磨损后可以调换。 控制盒内装有全部控制电路。在控制盒面板上装有控制电源开关,焊接电流与电压的指示用电表、送丝速度的调节旋钮。启动、停止、紧急停车与焊丝点动上下各按钮、焊车行走方向转换开关,以及焊车调试开关等,另外配有远程电流调节操作盒,用户可放在控制盒顶部或其它部位,使在焊接时可以调节焊接电流。 控制电源通过14芯多芯电缆从焊接变压器内辅助变压器供应。送丝电机与焊车电机分别用5芯与7芯电缆与控制盒连接。拆下多芯电缆插头,并将焊机头横梁从焊车立柱分开后,可以将焊机头与焊底盘分别搬运。 焊车拖动电机为92瓦、110V、6000转/分,通过齿轮减速箱、也可对焊接速度进行平滑调节。焊车装有传动联合器。在电机转动情况下可以使焊车行走或停止。

plc控制系统设计的一般步骤

plc控制系统设计的一般步骤 丰炜PLC说明资料1-PLC系统设计及选型方法 在现代化的工业生产设备中,有大量的数字量及模拟量的控制装置,例如电机的起停,电磁阀的开闭,产品的计数,温度、压力、流量的设定与控制等,工业现场中的这些自动控制问题,若采用可编程控制器(PLC)可以轻松的解决,PLC已成为解决自动控制问题最有效的工具之一,越来越广泛的应用于工业控制领域中,本文简要叙述了PLC控制系统设计的步骤及PLC的基本选型方法,供大家参考。 一、可编程控制器应用系统设计与调试的主要步骤 ( 1 )深入了解和分析被控对象的工艺条件和控制要求 这是整个系统设计的基础,以后的选型、编程、调试都是以此为目标的。 a .被控对象就是所要控制的机械、电气设备、生产线或生产过程。 b .控制要求主要指控制的基本方式、应完成的动作、自动工作循环的组成、必要的保护和连锁等。对较复杂的控制系统,还可将控制任务分成几个独立部分,这样可化繁为简,有利于编程和调试。

( 2 )确定 I/O 设备 根据被控对象的功能要求,确定系统所需的输入、输出设备。常用的输入设备有按钮、选择开关、行程开关、传感器、编码器等,常用的输出设备有继电器、接触器、指示灯、电磁阀、变频器、伺服、步进等。 ( 3 )选择合适的 PLC 类型 根据已确定的用户 I/O 设备,统计所需的输入信号和输出信号的点数,选择合适的 PLC 类型,包括机型的选择、 I/O 模块的选择、特殊模块、电源模块的选择等。 ( 4 )分配 I/O 点 分配 PLC 的输入输出点,编制出输入 / 输出分配表或者画出输入 / 输出端子的接线图。接着就可以进行 PLC 程序设计,同时可进行控制柜或操作台的设计和现场施工。 ( 5 )编写梯形图程序 根据工作功能图表或状态流程图等设计出梯形图即编程。这一步是整个应用系统设计的最核心工作,也是比较困难的一步,要设计好梯形图,首先

MZ-1250埋弧焊机电气系统分析与维护

第1章绪论 第节引言 一、电弧焊技术的发展历程 1801年,迪威发现了电弧放电碳弧焊现象; 19世纪中叶,提出利用电弧熔化金属惊醒材料连接的思想; 1885年俄国人发明了碳弧焊; 1891年俄国人提出金属电极代替碳电极; 1907年瑞典人发明了焊条; 1912年瑞典人开发出保护性能良好的厚涂层焊条; 1920年,英国的全焊接船下水; 1930年,开发了埋弧焊; 1930年以后,气体保护钨电极电弧; 1945年前后,电弧放电的阴极点具有去除氧化膜的作用。出此GMA(Gas Metal Arc)。 二、我国的电焊业发展 我国电焊机行业经过40多年的发展壮大,目前已形成一批有一定规模的企业,其生产的产品主要包括:手工电弧焊机、电阻焊机、半自动弧焊机、特种焊机以及各类专用成套焊接设备和焊装生产线,可以基本满足国民经济的需求。 随着我国改革开放和企业与产品结构改革的不断深化,原有的1500家电焊机专业和兼业制造厂、辅机具制造厂中,停产、半停产、转产以及资产重组的约占50%;一批电焊机制造的新兴企业“异军突起”,部分合资和民营企业的业绩尤为突出。 根据我国经济发展的总体趋势,今后几年内我国的年钢总产量及钢材进口量基本保持 稳定,因而以钢产量来核算国内市场对电焊机产品的需求量不会有大的出入。单市场对产品的需求将随着焊接技术、工艺的发展和生产的机械化、自动化水平的提高而变化,特别是各类产品的构成比,如交流弧焊机的比重明显下降,自动、半自动焊机,特别是CO2焊机,专用成套焊机的需求量有显著的增加。 电焊机产品的进口量将持续增大,其进口总值仍占国内市场总额的50%左右;国产电焊机的出口额历年来都不超过生产总值的6%。随着新产品开发能力和生产水平的提高,引进产品国产化和规模化的实现,特别是外资、合资企业的发展和民营企业的迅速崛起,不

PLC控制系统设计的基本原则

PLC 控制系统设计的基本原则 来源: https://www.360docs.net/doc/ee5087495.html, 任何一种控制系统都是为了实现被控对象的工艺要求,以 提高生产效率和产品质量。因此,在设计PLC 控制系统时,应遵循以下基本原则: 1. 最大限度地满足被控对象的控制要求 充分发挥PLC 的功能,最大限度地满足被控对象的控制要求,是设计PLC 控制系统的首要前提,这也是设计中最重要的一条原则。这就要求设计人员在设计前就要深入现场进行调查研究,收集控制现场的资料,收集相关先进的国内、国外资料。同时要注意和现场的工程管理人员、工程技术人员、现场操作人员紧密配合,拟定控制方案,共同解决设计中的重点问题和疑难问题。 2. 保证PLC 控制系统安全可靠 保证PLC 控制系统能够长期安全、可靠、稳定运行,是设计控制系统的重要原则。这就要求设计者在系统设计、元器件选择、软件编程上要全面考虑,以确保控制系统安全可靠。例如:应该保证PLC 程序不仅在正常条件下运行,而且在非正常情况下(如突然掉电再上电、按钮按错等),也能正常工作。 3. 力求简单、经济、使用及维修方便 一个新的控制工程固然能提高产品的质量和数量,带来巨大的经济效益和社会效益,但新工程的投入、技术的培训、设备的维护也将导致运行资金的增加。因此,在满足控制要求的前提下,一方面要注意不断地扩大工程的效益,另一方面也要注意不断地降低工程的成本。这就要求设计者不仅应该使控制系统简单、经济,而且要使控制系统的使用和维护方便、成本低,不宜盲目追求自动化和高指标。 4. 适应发展的需要

由于技术的不断发展,控制系统的要求也将会不断地提高,设计时要适当考虑到今后控制系统发展和完善的需要。这就要求在选择PLC、输入/输出模块、I/O点数和内存容量时,要适当留有裕量,以满足今后生产的发展和工艺的改进。 [返回 ]

奥太MZ-1250埋弧焊机电气系统分析与维护

第1章 绪 论 第1.1节 引言 一、电弧焊技术的发展历程 1801年,迪威发现了电弧放电碳弧焊现象; 19世纪中叶,提出利用电弧熔化金属惊醒材料连接的思想; 1885年俄国人发明了碳弧焊; 1891年俄国人提出金属电极代替碳电极; 1907年瑞典人发明了焊条; 1912年瑞典人开发出保护性能良好的厚涂层焊条; 1920年,英国的全焊接船下水; 1930年,开发了埋弧焊; 1930年以后,气体保护钨电极电弧; 1945年前后,电弧放电的阴极点具有去除氧化膜的作用。出此G M A(G a s M e t a l A r c)。 二、我国的电焊业发展 我国电焊机行业经过40多年的发展壮大,目前已形成一批有一定规模的企业,其生产的产品主要包括:手工电弧焊机、电阻焊机、半自动弧焊机、特种焊机以及各类专用成套焊接设备和焊装生产线,可以基本满足国民经济的需求。 随着我国改革开放和企业与产品结构改革的不断深化,原有的1500家电焊机专业和兼业制造厂、辅机具制造厂中,停产、半停产、转产以及资产重组的约占50%;一批电焊机制造的新兴企业“异军突起”,部分合资和民营企业的业绩尤为突出。 根据我国经济发展的总体趋势,今后几年内我国的年钢总产量及钢材进口量基本保持 稳定,因而以钢产量来核算国内市场对电焊机产品的需求量不会有大的出入。单市场对产品的需求将随着焊接技术、工艺的发展和生产的机械化、自动化水平的提高而变化,特别是各类产品的构成比,如交流弧焊机的比重明显下降,自动、半自动焊机,特别是CO2焊机,专用成套焊机的需求量有显著的增加。 电焊机产品的进口量将持续增大,其进口总值仍占国内市场总额的50%左右;国产电焊机的出口额历年来都不超过生产总值的6%。随着新产品开发能力和生产水平的提高,引进产品国产化和规模化的实现,特别是外资、合资企业的发展和民营企业的迅速崛起,

最新PLC控制系统设计.pdf

PLC控制系统设计 PLC控制系统设计的一般步骤可以分为以下几步:熟悉控制对象并计算输入/输出设备、PLC选型及确定硬件配置、设计电气原理图、设计控制台(柜)、编制控制程序、程 序调试和编制技术文件。 一、明确控制要求,了解被控对象的生产工艺过程 熟悉控制对象设计工艺布置图这一步是系统设计的基础。首先应详细了解被控对象 的工艺过程和它对控制系统的要求,各种机械、液压、气动、仪表、电气系统之间的关系,系统工作方式(如自动、半自动、手动等),PLC与系统中其他智能装置之间的关系,人 机界面的种类,通信联网的方式,报警的种类与范围,电源停电及紧急情况的处理等等。 此阶段,还要选择用户输入设备(按钮、操作开关、限位开关、传感器等)、输出设备(继电器、接触器、信号指示灯等执行元件),以及由输出设备驱动的控制对象(电动 机、电磁阀等)。 同时,还应确定哪些信号需要输入给PLC,哪些负载由PLC驱动,并分类统计出各输 入量和输出量的性质及数量,是数字量还是模拟量,是直流量还是交流量,以及电压的大小等级,为PLC的选型和硬件配置提供依据。 最后,将控制对象和控制功能进行分类,可按信号用途或按控制区域进行划分,确定检测设备和控制设备的物理位置,分析每一个检测信号和控制信号的形式、功能、规模、 互相之间的关系。信号点确定后,设计出工艺布置图或信号图。 二、PLC控制系统的硬件设计 随着PLC的推广普及,PLC产品的种类和数量越来越多。近年来,从国外引进的PLC 产品、国内厂家或自行开发的产品已有几十个系列,上百种型号。PLC的品种繁多,其结构形式、性能、容量、指令系统、编程方法、价格等各有不同,使用场合也各有侧重。因 此,合理选择PLC对于提高PLC控制系统的技术经济指标起着重要作用。 1、PLC机型的选择 PLC机型的选择应是在满足控制要求的前提下,保证可靠、维护使用方便以及最佳的

埋弧焊机资料全

埋弧焊机 埋弧焊机是一种利用电弧在焊剂层下燃烧进行焊接的焊接机器,2其固有的焊接质量稳定、焊接生产率高、无弧光及烟尘很少等优点,使其成为压力容器、管段制造、箱型梁柱钢结构等制作中的主要焊接机器。近年来,虽然先后出现了许多种高效、优质的新型焊接机器,但埋弧焊机的应用领域依然未受任何影响。从各种熔焊机器的熔敷金属重量所占份额的角度来看,埋弧焊机约占10%左右,且多年来一直变化不大。 埋弧焊机是ESAB众多焊接产品之一,伊萨(ESAB)有100多年的历史, 是全球焊接与切割设备及材料制造的的领军企业之一。2005年7月,伊萨在中国正式注册成立贸易公司,并由此陆续开始在中国投资设厂。截止目前,伊萨已在中国家港、、、等地建立了5家工厂,其围涉及焊机、焊材、自动化以及切割机等,重点发展行业包括能源、工程机械、运输、造船与海洋平台等。 焊机分类 埋弧焊机分为自动焊机和半自动焊机两大类。 度可调。半自动埋弧焊机的主要功能是: (1)将焊丝通过导丝管连续不断地送入电弧区;

(2)传输焊接电流; (3) 控制焊接起动和停止; (4)向焊接区铺施焊剂。 因此它主要由送丝机构、控制箱、带软管的焊接手把及焊接电源组成。半自动埋弧焊机兼有自动埋弧焊的优点及手工电弧焊的机动性。在难以实现自动焊的工件上(例如中心线不规则的焊缝、短焊缝、施焊空间狭小的工件等),可用这种焊机进行焊接。 A6小车 A6小车 门架式 自动埋弧焊机的主要功能是:

(1)连续不断地向焊接区送进焊丝; (2)传输焊接电流; (3)使电弧沿接缝移动; (4)控制电弧的主要参数; (5)控制焊接的起动与停止; (6)向焊接区铺施焊剂; (7)焊接前调节焊丝端位置。 自动埋弧焊机按照工作需要,做成不同的形式。常见的有:焊车式、悬挂式、机床式、悬臂式、门架式等。 结构设计

设计一个PLC控制系统以下七个步骤

设计一个PLC控制系统以下七个步骤 1.系统设计与设备选型 a.分析你所控制的设备或系统。PLC最主要的目的是控制外部系统。这个系统可能是单个机器,机群或一个生产过程。 b.判断一下你所要控制的设备或系统的输入输出点数是否符合可编程控制器的点数要求。(选型要求) c.判断一下你所要控制的设备或系统的复杂程度,分析内存容量是否够。 2.I/O赋值(分配输入输出) a.将你所要控制的设备或系统的输入信号进行赋值,与PLC的输入编号相对应。(列表) b.将你所要控制的设备或系统的输出信号进行赋值,与PLC的输出编号相对应。(列表) 3.设计控制原理图 a.设计出较完整的控制草图。 b.编写你的控制程序。 c.在达到你的控制目的的前提下尽量简化程序。 4.程序写入PLC 将你的程序写入可编程控制器。 5.编辑调试修改你的程序 a.程序查错(逻辑及语法检查) b.在局部插入END,分段调试程序。 c.整体运行调试 6.监视运行情况 在监视方式下,监视一下你的控制程序的每个动作是否正确。如不正确返回步骤5,如果正确则作第七步。 7.运行程序(千万别忘记备份你的程序)首先,DCS和PLC之间有什么不同? 1、从发展的方面来说: DCS从传统的仪表盘监控系统发展而来。因此,DCS从先天性来说较为侧重仪表的控制,比如我们使用的YOKOGAWA CS3000DCS系统甚至没有PID数量的限制(PID,比例微分积分算法,是调节阀、变频器闭环控制的标准算法,通常PID的数量决定了可以使用的调节阀数量)。 PLC从传统的继电器回路发展而来,最初的PLC甚至没有模拟量的处理能力,因此,PLC从开始就强调的是逻辑运算能力。 2、从系统的可扩展性和兼容性的方面来说: 市场上控制类产品繁多,无论DCS还是PLC,均有很多厂商在生产和销售。对于PLC系统来说,一般没有或很少有扩展的需求,因为PLC系统一般针对于设备来使用。一般来讲,PLC也很少有兼容性的要求,比如两个或以上的系统要求资源共享,对PLC来讲也是很困难的事。而且PLC一般都采用专用的网络结构,比如西门子的MPI总线性网络,甚至增加一台操作员站都不容易或成本很高。 DCS在发展的过程中也是各厂家自成体系,但大部分的DCS系统,比如横河YOKOGAWA 、霍尼维尔、ABB等等,虽说系统内部(过程级)的通讯协议不尽相同,但操作级的网络平台不约而同的选择了以太网络,采用标准或变形的TCP/IP协议。这样就提供了很方便的可扩展能力。在这种网络中,控制器、计算机均作为一个节点存在,只要网络到达的地方,就可以随意增减节点数量和布置节点位置。另外,基于wind ows系统的OPC、DDE等开放协议,各系统也可很方便的通讯,以实现资源共享。 3、从数据库来说: DCS一般都提供统一的数据库。换句话说,在DCS系统中一旦一个数据存在于数据库中,就可在任何情况下引用,比如在组态软件中,在监控软件中,在趋势图中,在报表中……而PLC系统的数据库通常都不是统一的,组态软件和监控软件甚至归档软件都有自己的数据库。为什么常说西门子的S7400要到了414以上才

自动埋弧焊机的维修

MZ-1000自动埋弧焊机的维修 一、概述 MZ-1000自动埋弧焊机是本公司引进国外先进技术,在消化吸收并改进后而发展起来的一种高品质自动焊机.该焊机主要用于大中型碳钢、合金钢、不锈钢的焊接,在钢结构厂房、造船、锅炉、化工容器、桥梁、起重机械及冶金机械等制造业中应用最为广泛,该机具有如下特点: 1.采用特殊引弧,引弧成功率极高。 2.电源波动补偿电路在电压波动10%时仍能保持输出电压恒定和电流稳定,使焊接质量得以保证。 3.保护电路完善,使焊机可靠性大大提高。 4.负载持续率为100%,满足高强度的焊接。 5. 1台焊机4种功能 自动埋弧焊 碳弧气刨 实心、药芯气保焊 直流手弧焊 二、主要技术参数 技术参数 MZ-630 MZ-1000 MZ-1250 额定输入电压 3-380V 3-380V 3-380V 额定频率 50/60Hz 50/60Hz 50/60Hz 额定输入容量 57 kVA 98 KVA 110 kVA 额定输入电流 68A 112A 140A 电流调节范围 130A-630A 200A-1000A 250A-1250A 负载持续率 100% 100% 100% 最高空载电压 69V 72V 72V 适用焊丝直径Ф3Ф4Ф3Ф4Ф5 Ф3Ф4Ф5 行走速度 20-170cm/min 20-170cm/min 20-170cm/min 送丝速度 20-200cm/min 20-200cm/min 20-200cm/min 电源外型 970X470X690mm 970X570X690mm 970X570X690mm 电源重量 200 kg 400 kg 420 kg 小车重量 50 kg 50 kg 50 kg

自动埋弧焊机知识大全

自动埋弧焊机知识大全 埋弧焊是电弧在焊剂保护层下进行燃烧焊接的一种焊接方法。自动埋弧焊机是指采用熔剂层下自动焊接的设备,它配用交流焊机作为电弧电源,它适用于水平位置或与水平位置倾斜不大于10度的各种有、无坡口的对接焊缝、搭接焊缝和角焊缝。与普通手工弧焊相比,具有生产效率高、焊缝质量好,节省焊接材料和电能,焊接变形小及改善劳动条件等突出优点 该焊机主要用于大中型碳钢、合金钢、不锈钢的焊接,在钢结构厂房、造船、锅炉、化工容器、桥梁、起重机械及冶金机械等制造业中应用最为广泛 本焊机由自动机头及焊接变压器两部分组成。 1 、自动机头:由焊车及支架、送丝机构、焊丝矫直机构、导电部分、焊接操作控制盒、焊丝盘、焊剂斗等部件组成。 2 、焊接电源(焊接变压器):交流焊接电源,由同体的二相降压变压器及电抗器、冷却风扇、调节电抗器用的电动机及减速箱、控制电动机正反转的控制变压器及交流接触器、按钮以及给自动机头提供电源的控制变压器等组成。控制线通过电源上的 14 芯插座与外界相连,遥控盒与电源上的 4 芯插座相连,实现远距离电流调节,电源上还有近控的电流增加,减少按钮也可实现电流调节,电流大小可通过电源顶部的电流指示窗指示。 IGBT逆变技术 具有恒流/恒压两种电源特性 数显预设焊接电流、焊接电压及小车行走速度 具有手工弧焊功能及碳弧气刨功能

引弧/收弧均采用自动“回抽”控制 小车可“手动/自动”行走 小车机械调节方便,行走稳定,适应多种工况条件 可选配两种小车 可焊板厚:≥5mm 1、热效率高,熔深大,焊接速度快,焊接效果好,成型美观,劳动强度低; 2、使用寿命提高。埋弧焊小车采用无触点控制电路,电机起动、换向可靠,使寿命显着提高; 3、电弧柔和稳定,可靠性好。晶闸管式直流弧焊电源,具有电网电压波动补偿功能及抗干扰功能; 4、适用范围广。电流调节范围宽,可适合多种板厚的焊接; 5、使用更安全。内置过热、电压异常保护电路; 技术参数 MZ-630MZ-1000 MZ-1250 额定输入电压 3-380V 3-380V 3-380V 额定频率 50/60Hz 50/60Hz 50/60Hz 额定输入容量 57 kVA 额定输入电流 68A 112A 140A 电流调节范围 130A-630A200A-1000A 250A-1250A

[控制系统]基于PLC控制系统设计的研究

基于PLC控制系统设计的研究 摘要:PLC控制系统因其具有可靠性高、编程简单、易于修改、低能耗、适应性较强等优点,被广泛应用在现代化工业生产过程的控制当中。PLC控制系统与当下信息通信网络组合,对现代化工业生产过程实现了有效的控制,从而进一步提升了劳动生产率,促进了企业经济效益的提高。故此,加强对PLC控制系统设计的研究,对企业的良好、长远的发展具有重要的作用。 关键词:PLC控制;系统设计;研究 1 PLC控制系统概述 可编程逻辑控制器简称为PLC,它是集自动化技术、计算机技术、通信技术为一体的综合性技术,主要应用在工业领域。在工业生产过程中应用PLC控制系统,可以通过可编制程序的存储器对内部的存储进行逻辑运算、计数与算术操作、顺序控制、定时等面向用户的指令,之后经过数字式或模拟式输入、输出控制各种工业的机械生产。另外,PLC控制系统和外围的配套设备是一个完整的体系,设计系统时要本着简单操作、易于控制、便于扩展的原则进行,从而保障该控制系统的使用可以实现工业生产的精准化和高效化。目前随着科学技术的日益成熟,PLC控制系统在冶金、机械、纺织、化工、食品等多个工业生产领域中得到了广泛的应用,因此应对PLC控制系统进行更为深入的研究。现代化的PLC控制系统应配合工业以太网、网络通信以及大数据等计算机高端技术,向着全自动、高效率、高精度的智能化生产过程控制方向发展。 2 PLC自动化控制系统的设计 PLC程序设计的主要目的是实现对生产过程中的所有活动的控制,主要内容为采集数据、控制顺序、处理数据等。PLC的内部结构包括CPU模块、内部存储器、电源模块与输入、输出单元等。具体步骤见图1。 2.1 PLC控制系统的硬件设计硬件设计是保障PLC自动化控制系统安全、可靠运行的关键部分,也是PLC控制系统设计的重要部分。下面具体对其进行分析。 2.1.3 系统的抗干扰设计目前PLC控制系统设计的重要内容随着科学技术的发展以及工业自动化程度的加深,变成了如何有效降低外界因素对其的干扰。我们通常采取以下三种方法进行系统的防干扰设计:一是,隔离。系统最直接解决干扰的方式就是隔离。由于原副边绕组之间的分布电容耦合造成PLC控制系统的高频率干扰,我们可采用1:1的超隔离变压器隔离高频干扰,来实现系统的抗干扰目的;二是布线,分散干扰的重要方式是布线方法,例如把弱电信号线以及原来的强电动力线路进行分开走线,从而达到良好的抗干扰目的;三是屏蔽,阻断干扰源传播的抗干扰方式是屏蔽,因为金属柜能够对静电和磁场起到很好的屏蔽作用,所以可以将PLC控制系统直接置于金属柜之中,提高系统的直接抗干扰性能。 2.2 PLC控制系统的软件设计 PLC控制系统设计中的另一个重要环节是软件设计,软件设计的具体化表现就是程序的编制,这也是PLC控制系统应用的关键部分,同时软件设计是以根据企业的生产过程控制的相关要求,将工艺流程图转换为梯形图为主要任务。PLC控制

PLC控制系统设计的一般流程与要求

PLC控制系统设计的一般流程与要求 PLC控制系统设计的一般步骤与传统的继电器——接触器控制系统的设计相比较,组件的选择代替了原来的器件选择,程序设计代替了原来的逻辑电路设计。 (1)根据工艺流程分析控制要求,明确控制任务,拟定控制系统设计的技术条件。技术条件一般以设计任务书的形式来确定,它是整个设计的依据。工艺流程的特点和要求是开发PLC控制系统的主要依据,所以必须详细分析、认真研究,从而明确控制任务和范围。如需要完成的动作(动作时顺、动作条件,相关的保护和联锁等)和应具备的操作方式(手动、自动、连续、单周期,单步等)。 (2)确定所需的用户输入设备(按钮、操作开关、限位开关、传感器等)、输出设备(继电器、接触器、信号灯等执行元件)以及由输出设备驱动的控制对象(电动机、电磁阀等),估算PLC的I/O点数;分析控制对象与PLC之间的信号关系,信号性质,根据控制要求的复杂程度,控制精度估算PLC的用户存储器容量。 (3)选择PLC。PLC是控制系统的核心部件,正确选择PLC对于保证整个控制系统的各项技术、经济指标起着重要的作用,PLC的选择包括机型的选择、容量的选择、I/O模块的选择、电源模块的选择等。选择PLC的依据是输入输出形式与点数,控制方式与速度、控制精度与分辨率,用户程序容量。 (4)分配、定义PLC的I/O点,绘制I/O连接图。根据选用的PLC所给定的元件地址范围(如输入、输出、辅助继电器、定时器、计数器。数据区等),对控制系统使用的每一个输入、输出信号及内部元件定义专用的信号名和地址,在程序设计中使用哪些内部元件,执行什么功能格都要做到清晰,无误。 (5)PLC控制程序设计。包括设计梯形图、编写语句表、绘制控制系统流程图。控制程序是控制整个系统工作的软件,是保证系统工作正常,安全。可靠的关键,因此,控制程序的设计必须经过反复测试。修改,直到满足要求为止。 (6)控制柜(台)设计和现场施工。在进行控制程序设计的同时,可进行硬件配备工作,主要包括强电设备的安装、控制柜(台)的设计与制作、可编程序控制器的安装、输入输出的连接等。在设计继电器控制系统时,必须在

自动埋弧焊机

时代集团自动埋弧焊机系列 江福民

MZ-630(A310-630)MZ-800(A310-800) MZ-1000(A310-1000)MZ-1250(A310-1250)

一、自动埋弧焊机MZ-630(A310-630)主要特点: IGBT逆变技术 具有恒流/恒压两种电源特性 数显预设焊接电流、焊接电压及小车行 走速度 具有手工弧焊功能及碳弧气刨功能 引弧/收弧均采用自动“回抽”控制 小车可“手动/自动”行走 小车机械调节方便,行走稳定,适应多 种工况条件 可选配两种小车 可焊板厚:≥5mm

IGBT,绝缘栅双极型晶体管 是由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式功率半导体器件, 兼有MOSFET的高输入阻抗和GTR的低导通压降两方面的优点。GTR饱和压降低,载流密度大,但驱动电流较大;MOSFET驱动功率很小,开关速度快,但导通压降大,载流密度小。IGBT综合了以上两种器件的优点,驱动功率小而饱和压降低。非常适合应用于直流电压为600V及以上的变流系统如交流电机、变频器、开关电源、照明电路、牵引传动等领域。

电力电子器件的发展经历了晶闸管(SCR)、可关断晶闸管(GTO)、大功率晶体管(GTR)、绝缘栅晶体管(IGBT)等阶段,目前,常压变频器基本上采用IGBT组成逆变电路,中压 变频器中由于电路结构的不同,交-直-交变频器中逆变电路基本上由高压IGBT、GTO、IGCT等组成,单元串联多电平变频器和中-低-中变频器型多采用低压IGBT构成。

MZ-630(A310-630)技术参数 输入电压3相380V± 适用焊丝规格φ1.6~φ2.4 (15%~20%) 50~60Hz 额定输入电流50A 绝缘等级 F 额定输入功率33KW 外壳防护等级IP23 电压调节范围20~50V 冷却方式风冷 电流调节范围120~630A 电源外形尺寸810×345×1022(mm) 100% 电源重量90Kg 额定负载持续 率 小车行走速度6~72(M/h) 小车外形尺寸1038×480×628(mm) 送丝速度1~6.5(M/min)小车重量51Kg

PLC控制系统设计的一般步骤与传统的继电器

PLC控制系统设计的一般步骤与传统的继电器——接触器控制系统的设计相比较,组件的选择代替了原来的器件选择,程序设计代替了原来的逻辑电路设计。 (1)根据工艺流程分析控制要求,明确控制任务,拟定控制系统设计的技术条件。技术条件一般以设计任务书的形式来确定,它是整个设计的依据。工艺流程的特点和要求是开发PLC控制系统的主要依据,所以必须详细分析、认真研究,从而明确控制任务和范围。如需要完成的动作(动作时顺、动作条件,相关的保护和联锁等)和应具备的操作方式(手动、自动、连续、单周期,单步等)。(2)确定所需的用户输入设备(按钮、操作开关、限位开关、传感器等)、输出设备(继电器、接触器、信号灯等执行元件)以及由输出设备驱动的控制对象(电动机、电磁阀等),估算PLC的I/O点数;分析控制对象与PLC之间的信号关系,信号性质,根据控制要求的复杂程度,控制精度估算PLC的用户存储器容量。 (3)选择PLC。PLC是控制系统的核心部件,正确选择PLC对于保证整个控制系统的各项技术、经济指标起着重要的作用,PLC的选择包括机型的选择、容量的选择、I/O模块的选择、电源模块的选择等。选择PLC的依据是输入输出形式与点数,控制方式与速度、控制精度与分辨率,用户程序容量。 (4)分配、定义PLC的I/O点,绘制I/O连接图。根据选用的PLC所给定的元件地址范围(如输入、输出、辅助继电器、定时器、计数器。数据区等),对控制系统使用的每一个输入、输出信号及内部元件定义专用的信号名和地址,在程序设计中使用哪些内部元件,执行什么功能格都要做到清晰,无误。 (5)PLC控制程序设计。包括设计梯形图、编写语句表、绘制控制系统流程图。控制程序是控制整个系统工作的软件,是保证系统工作正常,安全。可靠的关键,因此,控制程序的设计必须经过反复测试。修改,直到满足要求为止。 (6)控制柜(台)设计和现场施工。在进行控制程序设计的同时,可进行硬件配备工作,主要包括强电设备的安装、控制柜(台)的设计与制作、可编程序控制器的安装、输入输出的连接等。在设计继电器控制系统时,必须在控制线路设计完成后,才能进行控制柜(台)设计和现场施工。可见,采用PLC控制系统,可以使软件设计与硬件配备工作平行进行,缩短工程周期。如果需要的话,尚需设计操作台、电气柜、模拟显示盘和非标准电器元部件。 (7)试运行、验收、交付使用,并编制控制系统的技术文件。编制控制系统的技术文件包括说明书、设计说明书和使用说明书、电器图及电器元件明细表等。传统的电器图,一般包括电器原理图、电器布置图及电器安装图。在PLC控制系统中,这一部分图可以统称为“硬件图”。它在传统电器图的基础上增加了PLC 部分,因此在电器原理图中应增加PLC的I/O连接图。此外,在PLC控制系统的电器图中还应包括程序图(梯形图),可以称它为“软件图”。向用户提供“软件图”,可便于用户发生发展或工艺进时修改程序,并有利于用户在维修时分析和排除故障。根据具体任务,上述内容可适当调整。

plc控制系统设计的一般步骤

plc 控制系统设计的一般步骤 丰炜PLC说明资料1-PLC系统设计及选型方法 在现代化的工业生产设备中,有大量的数字量及模拟量的控制装置,例如电机的起停,电磁阀的开闭,产品的计数,温度、压力、流量的设定与控制等,工业现场中的这些自动控制问题,若采用可编程控制器(PLC) 可以轻松的解决,PLC 已成为解决自动控制问题最有效的工具之一,越来越广泛的应用于工业控制领域中,本文简要叙述了PLC控制系统设计的步骤及PLC的基本选型方法,供大家参考。 一、可编程控制器应用系统设计与调试的主要步骤 ( 1 )深入了解和分析被控对象的工艺条件和控制要求 这是整个系统设计的基础,以后的选型、编程、调试都是以此为目标的。 a .被控对象就是所要控制的机械、电气设备、生产线或生产过程。 b .控制要求主要指控制的基本方式、应完成的动作、自动工作循环的组成、必要的保护和连锁等。对较复杂的控制系统,还可将控制任务分成几个独立部分,这样可化繁为简,有利于编程和调试。 2)确定I/O 设备

根据被控对象的功能要求,确定系统所需的输入、输出设备。常用的输入 设备有按钮、选择开关、行程开关、传感器、编码器等,常用的输出设备有继电器、接触器、指示灯、电磁阀、变频器、伺服、步进等。 (3 )选择合适的PLC 类型 根据已确定的用户I/O 设备,统计所需的输入信号和输出信号的点数,选择合适的PLC 类型,包括机型的选择、I/O 模块的选择、特殊模块、电源模块的选择等。 (4 )分配I/O 点 分配PLC 的输入输出点,编制出输入/ 输出分配表或者画出输入/ 输出端子的接线图。接着就可以进行PLC 程序设计,同时可进行控制柜或操作台的设计和现场施工。 (5 )编写梯形图程序 根据工作功能图表或状态流程图等设计出梯形图即编程。这一步是整个应用系统设计的最核心工作,也是比较困难的一步,要设计好梯形图,首先要十分熟悉控制要求,同时还要有一定的电气设计的实践经验。

PLC控制系统的设计

PLC控制系统的设计 知识目标 1. 掌握控制系统设计的基本原则及步骤。 2.熟悉PLC与输入输出设备的连接。 技能目标: 1.掌握常用控制系统的PLC设计。 2.掌握PLC控制系统常用外部设备的连接和调试。 任务一 PLC控制系统设计的基本原则及步骤任务目标: 1、掌握PLC控制系统设计的基本原则 2、掌握PLC控制系统设计的步骤 任务教学方式: 教学步骤时间安排教学手段及方式 阅读教材课余学生自学、查资料、相互讨论 知识点讲授课时2 1.总结PLC控制系统设计的基本原则 2.讲解PLC控制系统设计的步骤。 任务操作课时2 现场观察PLC的硬件系统,PLC软件操作方法。 评估检测与课堂同时进行教师与学生共同完成任务的检测与评估,并能对出现的问题进行分析与处理 读一读: 1、 PLC控制系统设计的基本原则 在设计PLC控制系统时,应遵循以下基本原则: 1)最大限度地满足控制要求 充分发挥PLC功能,最大限度地满足被控对象的控制要求,是设计中最重要的条原则。设计人员要深入现场进行调查研究,收集资料。同时要注意和现场工程管理和技术人员及操作人员紧密配合,共同解决重点问题和疑难问题。 2)保证系统的安全可靠 保证PLC控制系统能够长期安全、可靠、稳定运行,是设计控制系统的重要原则。 3)力求简单、经济、使用与维修方便 在满足控制要求的前提下,一方面要注意不断地扩大工程的效益,另一方面也要注意不断地降低工程的成本。不宜盲目追求自动化和高指标。 4)适应发展的需要 适当考虑到今后控制系统发展和完善的需要。 2、PLC控制系统设计的步骤 1)分析被控对象并提出控制要求 详细分析被控对象的工艺过程及工作特点,了解被控对象机、电、液之间的配合,提出被控对象对PLC 控制系统的控制要求,确定控制方案,拟定设计任务书。 2)确定输入/输出设备 根据系统的控制要求,确定系统所需的全部输入设备(如:按纽、位置开关、转换开关及各种传感器

PLC控制系统设计

PLC控制系统设计 湖北三峡职业技术学院机电系 PLC控制系统设计知识点库※PLC控制系统设计 1. 设计基本原则 为了实现被控对象的工艺要求~以提高生产效率和产品质量。 1. PLC的选择除了应满足技术指标的要求外~还应重点考虑该公司产品技 术支持与售后服务情况。,尽量选择主流产品, 2. 最大限度地满足被控对象的控制要求。 3. 在满足控制要求的前提下~力求使控制系统简单、经济~使用及维修方 便。 4. 保证控制系统得安全、可靠。 5. 考虑到生产的发展和工艺的改进~在选择PLC容量时~应适当留有余量。 2. 设计的主要内容 1. 拟定控制系统设计的技术条件。技术条件一般以设计任务书的形式来确 定~它是整个设计的依据, 2. 选择电气传动形式和电动机、电磁阀等执行机构, 3. 选定 PLC 的型号, 4. 编制 PLC 的输入 / 输出分配表或绘制输入 / 输出端子接线图, 5. 根据系统设计的要求编写软件规格说明书~然后再用相应的编程语言,常 用梯形图,进行程序设计, 6. 了解并遵循用户认知心理学~重视人机界面的设计~增强人与机器之间 的友善关系, 7. 设计操作台、电气柜及非标准电器元部件,

8. 编写设计说明书和使用说明书, 3. PLC控制系统的一般步骤 可编程控制器应用系统设计与调试的主要步骤~如图 15-1 所示。第 1 页共 8 页 湖北三峡职业技术学院机电系 PLC控制系统设计知识点库

图15-1 控制系统一般设计步骤 ,1, 深入了解和分析被控对象的工艺条件和控制要求 1) 被控对象就是受控的机械、电气设备、生产线或生产过程。 2) 控制要求主要指控制的基本方式、应完成的动作、自动工作循环的 组成、必要的保护和联锁等。对较复杂的控制系统~还可将控制任务分 成几个独立部分~这种可化繁为简~有利于编程和调试。 ,2, 确定 I/O 设备第 2 页共 8 页 湖北三峡职业技术学院机电系 PLC控制系统设计知识点库 根据被控对象对 PLC 控制系统的功能要求~确定系统所需的用户输入、 输出设备。常用的输入设备有按钮、选择开关、行程开关、传感器等~常用的输出设备有继电器、接触器、指示灯、电磁阀等。 ,3, 选择合适的 PLC 类型 根据已确定的用户 I/O 设备~统计所需的输入信号和输出信号的点数~ 选择合适的 PLC 类型~包括机型的选择、容量的选择、 I/O 模块的选择、电源模块的选择等。 ,4, 分配 I/O 点 分配 PLC 的输入输出点~编制出输入 / 输出分配表或者画出输入 / 输 出端子的接线图。接着九可以进行 PLC 程序设计~同时可进行控制柜或操作台的设计和现场施工。 ,5, 设计应用系统梯形图程序 根据工作功能图表或状态流程图等设计出梯形图即编程。这一步是整个 应用系统设计的最核心工作~也是比较困难的一步~要设计好梯形图~首先要十分熟悉控制要求~同时还要有一定的电气设计的实践经验。 ,6, 将程序输入 PLC

相关文档
最新文档