碳素煅烧炉余热的综合利用实例

碳素煅烧炉余热的综合利用实例
碳素煅烧炉余热的综合利用实例

煅烧炉清焦影响

浅谈罐式煅烧炉空罐清焦对生产的影响 李芳块 (山西华圣铝业有限公司,山西永济 044501) 摘要:本文通过对大型32罐顺流式煅烧炉在使用过程中罐壁结焦的原因进行分析,采取措施,从而减小煅烧过程中结焦对煅烧炉的影响,保证煅后焦的质量,取得了一定的效果,满足了预焙阳极对煅后焦的质量性能要求,值得同行借鉴。 关键词:罐式煅烧炉;原因分析;清焦; 1 现状 某炭素厂采用两台国内大型32罐顺流式煅烧炉,每台分八组,每组四罐,煅烧产生的高温烟气用作余热热媒锅炉的热源,用来加热糊料和熔化沥青。该煅烧炉自2006年12月烘炉开始,2007年3月开始排料,5月份转入正常生产阶段,至2008年3月期间未进行过空罐清理,导致罐壁两侧的结焦达到20㎝左右,3月中旬开始出现大面积的棚料现象,由于各个罐的结焦程度不同,使各火道的温差较大,火道之间的不能保持平衡,煅烧炉很难平稳运行。 2 煅烧的设备及原理 2.1煅烧设备 我国石油焦煅烧设备主要为回转床、回转窑和罐式炉三种类型。三者各有优缺点:1)回转床:产量大,烧损小,煅烧质量好,主要用于大型集中煅烧石油焦厂、结构较复杂、引进价格昂贵,国产技术不成熟;2)回转窑:具有产能大,投资少,对原料的适应性较宽,产品质量容易控制。世界上约有85%的石油焦都采用回转窑煅烧。但炭质烧损高于罐式炉,运转率较罐式炉低。由于火苗与物料直接接触,烧损率较大,不利于节约能源。3)罐式炉:煅烧石油焦质量好,能耗较低,炭质烧损少,完全靠原料自身逸出的挥发分加热火道,并且

火道与物料间接加热,热能利用率高,适合于节能发展趋势,但投资大、产能低,不易实现自动化,当石油焦挥发分较高时,需掺配煅烧石油焦,以防止石油焦煅烧过程中在炉子内结焦。 2.2 煅烧原理 煅烧是在隔绝空气的条件下进行的热处理温度高达1380℃,使物料在煅烧过程中发生一系列物理、化学变化,改变焦炭的内部结构,提高它的密度、强度、导电性和抗氧化性。煅烧的目的主要有:(1)排除原料中的挥发分;(2)提高炭质原料的密度和机械强度;(3)提高原料的导电性能;(4)提高原料的化学稳定性。 石油焦煅烧是在隔绝空气的条件下进行的热处理过程,同时也伴随着炭化反应、烟气中石油焦粉或煅烧焦的氧化或燃烧、氢气的氧化或燃烧、挥发分中碳氢化合物氧化或燃烧,水蒸汽与石油焦或煅烧焦作用,二氧化碳与石油焦或煅烧焦的作用。 3 产生的原因分析 煅烧是生产煅后焦的一道重要工序。但在实际生产中,由于原料质量不稳定,对煅烧炉的温度控制,物体寿命,产量和煅后料的质量及物料平衡有直接的关系。 (1)原料产地对煅烧的影响 石油焦因其产地不同,所以它们的生成条件亦不相同,它们的性质也就不会一样,从而要求我们必须按不同产地、不同厂家分类存放。(2)原料质量对煅烧的影响

锅炉的余热回收技术

锅炉的余热回收技术 锅炉的排烟温度一般在120℃~350℃,烟气中有7%~25%的显热和15%的 潜热未被利用就被直接排放到大气中。这不仅造成大量的能源浪费也加剧了环 境的热污染;一方面,我们设计的高效烟气余热回收装置不仅能够满足加工生活热水或采暖水的需要,也能够将锅炉的排烟温度冷却至100度使得锅炉的工作 效率显著提高。另一方面,也为全国蓝天白云环保事业做出了应有的贡献。 我公司的锅炉的余热回收装置是引用超导热管节能技术,具有自主知识产 权的高效烟气余热回收装置。它特别设计了一套冷凝水的排放装置,使冷凝过 程产生的冷凝水及时地排放,从而避免了冷凝水的二次蒸发,使余热回收装置 的回收效率得到保证,这套系统已获得国家专利。 我公司的锅炉采用新型的换热翅片、换热元件,以及凝结水排水结构能够 充分回收烟气中的潜热,排烟温度可降到40℃~80℃;总压降较小,动力消耗少,即烟气压降小且符合系统要求。由于采用了高效的换热元件以及合理的结 构配置,使得该产品重量轻,尺寸小、外形美观。 我公司的锅炉烟气冷凝器换热管采用不锈钢制作高效防腐。设备在制作时 就充分考虑了热应力、防腐性能和强度等,能够保证设备的安全、可靠、稳定。一般一至两年就可收回加装该设备的投资成本,两年后即可获得节能受益,可 以为用户带来显著的经济效益。 由于锅炉烟气余热回收装置的特殊结构能够有效降低锅炉烟气的排放噪音。由于烟气中的部分水蒸气变成冷凝水,可以使烟气中的NOx等有害气体部分溶解,减少排入大气的有害气体。余热回收装置可组装在锅炉上部,缩小占有空间,生成在传热面上的凝结水亦可自然排出。烟气阻力小,对原锅炉排烟系统 影响小,大部分锅炉房不用增加引风机或增加烟囱高度。 河北耀一节能环保专注节能行业15年,老品牌,值得信赖!现全国火热招商中,想加入我们的团队,想开创节能事业,那就赶紧加入我们的大家庭吧!欢迎各 位来电咨询! 公司名称:河北耀一节能环保设备制造有限责任公司 主营产品:余热回收,有机废气处理,循环水处理,油田节能,生物质燃 烧机,车间降温,烘干机、智能节电设备

罐式煅烧炉

罐式煅烧炉 罐式煅烧炉 在固定的料罐中实现对炭素材料的间接加热,使之完成煅烧过程的热工设备。罐式煅烧炉是炭素工业中被广泛采用的一种炉型。煅烧时原料由炉顶加料装置加入罐内,在由上而下的移动过程中,逐渐被位于料罐两侧的火道加热。燃料在火道中燃烧产生的热量是通过火道壁间接传给原料的。当原料的温度达到350~600℃时,其中的挥发分大量释放出来。通过挥发分道汇集并送入火道燃烧。挥发分的燃烧是罐式煅烧炉的又一个热量来源。原料经过1200~1300℃以上的高温,完成一系列的物理化学变化后,从料罐底部进入水套冷却,最后由排料装置排出炉外。完成了热交换的废烟气送入余热锅炉,利用其余热生产蒸汽,或送人换热室预热供燃料和挥发分燃烧的空气。 基本构造罐式煅烧炉由炉体(包括料罐、火道、四周大墙,有的还有换热室)和金属骨架以及附属在炉体上的冷却水套、加排料装置、煤气(或重油)管道等几部分组成。(见图) 料罐和火道是炉体最重要的组成部分,料罐按纵横方向成双排列,连同它两侧的四条火道构成一组,一台炉可有3~7组。料罐的水平截面为两端是弧形的扁长形,罐壁垂直或略向外倾斜,后者即所谓斜罐式煅烧炉。对煅烧含挥发分较高的延迟焦,斜罐可以使下降的料层松动,减小结焦造成堵炉的危险。火道在料罐高度上分6~8层,烟气在火道内是一长“之”字形路线。料罐和火道都处于高温,工作条件恶劣,而且还要求罐壁导热性好,气密性高,故采用壁厚为80mm的硅质异型砖砌筑。 炉体的中部是几组料罐和火道,外部四周是大墙。在大墙中设有挥发分和预热空气通道。煅烧过程中排出的挥发分从罐上部的逸出口流出,由位于炉顶部的集合道把同组中的挥发分汇集,然后经大墙中的通道,才能送到燃烧口和需要补充热量的火道进行燃烧。经换热室或炉底空气预热道预热过的空气,也要通过大墙中的通道才能送到煤气(或重油)和挥发分的燃烧点供其燃烧。为了控制挥发分和预热空气的量,专门设有拉板砖进行调节。另外在大墙上还设有很多火道观察孔、测温测压孔,便于炉子的操作和监控。大墙采用黏土质耐火砖、保温砖和红砖砌筑。 在炉后不设余热锅炉的时候,为了利用废烟气的余热,可设换热室。换热室由黏土质的格子砖砌筑,废烟气和空气按各自的通道交错流动进行换热,通过格子砖,废烟气温度由1000℃降为500~600℃,而空气则被预热到400~600℃。开发预热空气助燃,不但提高煅烧温度,还节约燃料,当改用延迟焦作原料后,大量挥发分的燃烧,不但满足了煅烧温度的要求,而且还大大富裕,采用换热室的形式已不能充分利用这部分热量,所以被余热锅炉取代。

制冷机组余热回收讲义

中央空调制冷机组余热回收讲义 一.常用的计量单位: 1.压力: 1)米制单位:公斤力每平方厘米:Kg / cm2; 标准大气压:符号:atm ,海平面大气压力。 换算:1 atm = 760 mmHg = 101.325 KPa = 0.98 Kg / cm2。 2). 国际制单位:帕:Pa ( N / m2) ; 1000Pa = 1K Pa ; 1000000 Pa = 10 Pa = 1 M Pa 单位换算:1 Kg / cm2= 0.1 M Pa = 100 K Pa ; 2.热、能、功单位: A.米制单位:卡(Cal):1公斤水温度升1℃所需热能。 1000 Cal = 1 Kcal (大卡)。 千瓦时:Kwh ; B.国际单位:焦耳(J)、千焦耳; 3.热流、功率单位: A.米制单位:千卡每小时;Kcal /h; B.国际单位:瓦(W)、千瓦(KW); 换算:1千瓦(KW)= 860 Kcal (大卡)/h ; 1RT = 3.517 Kw 4. 制冷系数 = 制冷量÷消耗的功 能效比(COP):每耗电1千瓦得到的制冷量。

二.空气调节: 空气调节是一门维持室内良好的热环境的技术。热环境是指室内空气的温度、湿度、空气流动速度、洁净度、新鲜度等。空调系统的作用是根据使用对象的要求使各参数达到规定的指标。 空调系统的组成五个部分:空气处理设备;冷源和热源;空调风系统;空调水系统;控制、调节装置。 三.提供冷源方式——蒸气压缩式制冷循环: 1.原理:液体蒸发时吸收热量, 2. 基本概念: 1)液体的沸腾温度(饱和温度)随液体所处的压力而变化,压力越低液体的饱和温度也越低;如:1Kg液态R22在0.584Mpa压力时的沸腾温度为5℃,吸热量(制冷量)为201.246KJ/Kg;在0.64MPa压力时的沸腾温度为8℃,吸热量(制冷量)为198.695 KJ/Kg。不同液体的沸腾温度与压力、吸热量也各不相同。因此,只要根据制冷所用液体(制冷剂)的热力性质,并创造一定的压力条件,就可获得所要求的低温。 2).制冷工质:(制冷剂、冷媒、雪种); 常用有:氨(R717)、氟里昂等; 氟里昂:R11:一氟三氯甲烷 R12:二氟二氯甲烷 R13:三氟一氯甲烷 R22:二氟一氯甲烷

空压机余热回收的利用技术改造

空压机余热回收的利用 我公司共有空压机6台,正常生产时需开机4台,冷却形式为空冷,空压机运行时产生的热量大部分散发到空压机房内,导致空压机房内温度较高,空压机频频跳停,严重制约生产。为解决这个问题,我公司技术人员多次与空压机厂家咨询交流,最终采用水冷方式解决了这个问题,这种方案既解决了空压机的散热问题,也可将冷却水加热用来洗澡。在解决这个问题中我公司也走了不少弯路,现将实施过程作简要介绍,以供同行参考。 一、探索中的情形 1、最初的情形 2011年11月我公司开始试生产,由于工期紧张,在空压机散热管道未安装的情况下就开始开机生产,造成空压机房室温在50度以上,空压机频频跳停,我公司岗位人员密切注意空压机运行情况,严防酿成生产事故。 2、第一次完善 12月份,我公司利用停机间隙安装散热管道,但由于设计不太合理,散热管道出口未开在屋顶而开在侧面墙上,并且6台空压机只预留5个散热出口,做不到每个空压机一个散热出口,为了方便安装散热管道,我公司决定串联所有散热出口安装。安装后再次开机运行发现空压机房室温仍旧居高不下,检查散热管道发现,整个散热管道温度都较高,在空压机房室内形成了一个大大的暖气管道,使整个空压机房温度依旧偏高,问题仍旧存在。

串联的散热 管道。 3、第二次完善 我公司技术人员经过讨论决定封堵空压机串联部分散热管道,使运行的空压机每个都单独散热。利用停机时间我们在串联管道中加入挡板,隔开该部分散热管道。如图: 加入的隔板 在实际运行中起到一定的效果,但随之而来了新的问题,由于只有5个散热出口而有6台空压机,势必有两台空压机共用一个散热管道,若该两台空压机同时运转,依旧会造成空压机温度高而跳停;另外散热管道在侧面墙上,未充分利用热空气上升的特性,且管道较长,给空压机顶部散热风机造成很大负担,主要原因是热空气温度较高、散热管道较长,散热风机在推着热空气排出室内时工况不良,时常导

罐式煅烧炉[整理版]

罐式煅烧炉[整理版] 罐式煅烧炉(retortc alciner) 在固定的料罐中实现对炭素材料的间接加热,使之完成煅烧过程的热工设备。罐式煅烧炉是炭素工业中被广泛采用的一种炉型。煅烧时原料由炉顶加料装置加入罐内,在由上而下的移动过程中,逐渐被位于料罐两侧的火道加热。燃料在火道中燃烧产生的热量是通过火道壁间接传给原料的。当原料的温度达到350,600?时,其中的挥发分大量释放出来。通过挥发分道汇集并送入火道燃烧。挥发分的燃烧是罐式煅烧炉的又一个热量来源。原料经过1200,1300?以上的高温,完成一系列的物理化学变化后,从料罐底部进入水套冷却,最后由排料装置排出炉外。完成了热交换的废烟气送入余热锅炉,利用其余热生产蒸汽,或送人换热室预热供燃料和挥发分燃烧的空气。 罐式煅烧炉由炉体(包括料罐、火道、四周大墙,有的还有换热室)和金基本构造 属骨架以及附属在炉体上的冷却水套、加排料装置、煤气(或重油)管道等几部分组成。(见图) 料罐和火道是炉体最重要的组成部分,料罐按纵横方向成双排列,连同它两侧的四条火道构成一组,一台炉可有3,7组。料罐的水平截面为两端是弧形的扁长形,罐壁垂直或略向外倾斜,后者即所谓斜罐式煅烧炉。对煅烧含挥发分较高的延迟焦,斜罐可以使下降的料层松动,减小结焦造成堵炉的危险。火道在料罐高度上分6,8层,烟气在火道内是一长“之”字形路线。料罐和火道都处于高温,工作条件恶劣,而且还要求罐壁导热性好,气密性高,故采用壁厚为80mm的硅质异型砖砌筑。

炉体的中部是几组料罐和火道,外部四周是大墙。在大墙中设有挥发分和预热空气通道。煅烧过程中排出的挥发分从罐上部的逸出口流出,由位于炉顶部的集合道把同组中的挥发分汇集,然后经大墙中的通道,才能送到燃烧口和需要补充热量的火道进行燃烧。经换热室或炉底空气预热道预热过的空气,也要通过大墙中的通道才能送到煤气(或重油)和挥发分的燃烧点供其燃烧。为了控制挥发分和预热空气的量,专门设有拉板砖进行调节。另外在大墙上还设有很多火道观察孔、测温测压孔,便于炉子的操作和监控。大墙采用黏土质耐火砖、保温砖和红砖砌筑。 在炉后不设余热锅炉的时候,为了利用废烟气的余热,可设换热室。换热室由黏土质的格子砖砌筑,废烟气和空气按各自的通道交错流动进行换热,通过格子砖,废烟气温度由1000?降为500,600?,而空气则被预热到400,600?。开发预热空气助燃,不但提高煅烧温度,还节约燃料,当改用延迟焦作原料后,大量挥发分的燃烧,不但满足了煅烧温度的要求,而且还大大富裕,采用换热室的形式已不能充分利用这部分热量,所以被余热锅炉取代。 整个炉体用金属骨架支撑和紧固。冷却水套悬挂在料罐的底部。煅烧好的料通过冷却水套即被冷却到100?以下。加、排料装置分别位于炉顶和冷却水套下面。加排料方式和设备结构形式虽然不同,但对其总的要求都一样,即连续均匀地加、排料,且在较大范围内能调节加、排料量;密闭性能良好,不允许漏进空气造成料的氧化,牢固可靠,便于维护。加、排料装置的结构见煅烧炉用机械设备。 分类罐式煅烧炉按其结构特点分类如下: (1)按料罐数量分,有6罐炉、12罐炉、16罐炉、20罐炉、24罐炉、28罐炉等。因为 炉子以组为单元,而一组有4个料罐,所以炉子的料罐数是4的倍数。 (2)按料罐的形状分,有直罐炉和斜罐炉。 (3)按火道层数分,有4,5层火道炉、6层火道炉和8层火道炉。

余热利用方案

一种利用低品位热能的蒸汽动力装置一种利用低品位热能的蒸汽动力装置,属能量转换和蒸汽动力装置技术,本装置采用水吸收低品位热源的热能。并让水在密封容器内蒸发,利用水蒸汽的蓄能作用,通过对蒸汽的压缩,实现低品位热能的回收、利用和品位提高。使用本装置可方便地实现低品位热能的利用和回收,并获得十分廉价的可用能。可广泛用于各行各业。 一种利用低品位热能的蒸汽动力装置 一种利用低品位热能的蒸汽动力装置。由一个低品位热能转换器(2)一个内部带汽水分离的蒸发器(4)一个蒸汽压缩装置(9)一个带有发电机(13)的膨胀涡轮机(12)和一个带回止阀(13)的热水出管(11)一个热网加热器(14)一个抽气器(15)组成,其特征为:--低品位热能转换器(2)由循环泵(5)蒸发器(4)抽气器(15)组成转换循环。--蒸发器(4)蒸发出口与压缩装置(9)入口连接,蒸发器是通过蒸发器的排水和补水从转换器得到热能,并维持连续蒸发。--蒸气压缩装置(9)与带电机(13)的蒸汽膨胀机(12)同轴,压缩装置出口与蒸汽膨胀机入口和出口水管相通。--蒸汽膨胀机(12)出口接至蒸发器(4)入口。或另一个本装置入口。--取消膨胀机(12)时,作蒸汽生产设备。--取消膨胀机(12)增加加热器(14)本装置作热网热源设备。 张沈杰 投资有风险,请您关注我们为您提供的专利咨询服务专利号: 90107291

申请日: 1990年8月23日 公开/公告日: 1992年3月4日 授权公告日: 申请人/专利权人: 张沈杰 国家/省市: 江苏(32) 申请人地址: 江苏省南通市西外环路南通市电力开发公司邮编: 226006 发明/设计人: 张沈杰 代理人: 专利代理机构: (00000) 专利代理机构地址: () 专利类型: 发明 公开号: 1059184 公告日: 授权日: 20 公告号: 0000000 优先权: 审批历史: 1993年8月18日视撤日 附图数: 2 页数: 3 权利要求项数: 9

天然气镀锌炉的余热利用计算

天然气镀锌炉的余热利用计算 本项目的余热来源为天然气镀锌炉燃烧废气余热,项目计划新增一台余热锅炉;利用烟道余热降低助镀剂溶液和酸洗槽酸液加热工序的能耗量,以达到节能减排效果。 一、余热来源:天然气镀锌炉燃烧废气余热 二、余热利用用处: 1、助镀剂溶液加热。 2、酸洗槽酸液加热(冬天低温情况下) 由于热镀锌工艺中,助镀剂溶液需要工艺温度50-70℃,酸洗液在10-20℃的温度范围内酸洗速度最适当。这2种溶液均需加热才能保持适当的工艺温度,如果使用电加热或燃气锅炉加热,需额外能源消耗,增加产品成本,本项目采用镀锌炉烟道余热回收的办法予以解决。 三、余热利用设备的选用: 本项目拟选用热管式余热蒸汽锅炉,热管技术是当今普遍采用的高效热量转换技术,热转换效率达到95%以上。 余热利用设备安装 本设备直接安装在镀锌炉燃烧废气排放烟囱上,见图8-2-7

图8-2-7余热利用及排放示意图 四、热量利用价值计算: 本项目耗用天然气主要为助镀剂再生系统加热, 初步估算耗气量240m3/h, 日耗气量为5760N m3年耗时300天,根据实测折损率0.5%计算,年能评前天然气利用量为171.94万Nm3。相当于2087.86吨标准煤。 天然气燃烧过量空气系数φ=1.1 当φ=1.0时,空气燃气配比为9.371:1, 则天然气燃烧时产生废气量为:240×11.3=2712 NM3/h 进入余热锅炉的废气温度700℃,出余热锅炉额废气温度160℃。 700℃时:废气比热1.089,密度0.404 160℃时:废气比热:1.026,密度0.815 废气热量利用量:2712×0.404×1.089×700-2712×0.404×1.026×160=655351kJ/h÷90%÷35544kJ/m3=20.48m3/h; 按每天工作16小时,年工作天数300天计算, =20.48m3/h×16h×300d=9.83万Nm3 则余热锅炉年利用量为9.83万Nm3,相当于119.36吨标准煤/a。

煅烧炉余热的综合利用

煅烧炉余热的综合利用 文章出处:万方数据发布时间:2005-03-24 高扶民 COMPREHENSIVE UTILIZATION OF THE SURPLUS HEAT OF CALCINER GAO Fu-min(Hebei Province Matou Aluminium Group CoLtd, Hebei Handan Matouzhen 056046,China) 目前,河北省马头铝业集团公司有2台6层火道12室全封闭自动排料顺流式煅烧炉。2年来,一方面煅烧炉产生大量热能、烟气不加利用地排放到大气中,造成污染;另一方面,总公司生产、动力、取暖又需要大量热能,因此,决定引进化工部第一设计院设计的高效有机热载体加热炉,利用煅烧炉烟气余热作为该加热炉的热源,综合利用能源,减少环境污染,提高经济效益。 1 理论计算 1.1 公司生产及生活所需热量计算 (1)沥青熔化所需热量〔1〕 Q熔=G沥〔c p固(t1-t0)+c p液(t2-t1)〕/t=14000×〔1 34×(95-0)+1.67×(195-95)〕/24=171675kJ/h 式中:Q熔——沥青熔化所需热量,kJ/h;G——每天所需熔化沥青的质量,kg;c p固——固体沥青比热容,kJ/(kg·℃);c p液——液体沥青比热容,kJ /(kg·℃);t1——沥青熔化时温度,℃;t0——冬季沥青常温,℃;t2——液体沥青应达到温度,℃;t——沥青熔化时间,h。(2)沥青排除水分的蒸发热 Q蒸=〔G水c水(100-t0)+G水C蒸〕/t=〔14000×5%×1.0×100+14000×5% ×539〕/1=447300kJ/h

镀锌厂镀锌锅余热回收系统方案设计

烟道余热回收系统技术方案设计 废热回收加热助镀槽系统 一、工况条件 助镀槽1个,要求工艺温度:65℃~80℃; 槽体尺寸:14000×2100×2300(液高2100)mm,容积:62m3。 二、系统设备配置(详细配置的布置,见系统循环图) 利用我司生产的余热换热器对锌锅烟道进行余热回收,以水为介质完成两次热交换。吸收的热源用来加热生产线上助镀槽溶液,使助镀槽溶液温度保持在65℃左右。(以下选图均为实物拍摄) 1、助镀槽PFA换热器 S换=80㎡; 换热面积平均分配为两组,每组40㎡,安装于助镀槽两宽度方向; 换热器选配ZJ-FH-271-7.83; 口径DN65; 管束材质为PFA氟塑料管,选用品牌为美国杜邦; 材质特色 ●防腐蚀,耐各类强酸、强碱、强氧化剂; ●耐高温,适用温度范围-150℃-- +280℃;

管道与法兰焊接方法为热熔; 保护框架为20mmPP板(大板),支撑框架为15mmPP板(大板)。 备选方案: 将PFA管束换成FEP材质,换热器换热面积增加至96㎡,口径DN65; 选型:ZJ-FH-271-9.4; 耐温:-150℃~200℃; 同等工况下,PFA的柔性为FEP的10倍以上。 2.烟道余热回收换热器 管材:20#无缝钢管上加红外新型纳米高温节能防腐涂料,吸热能为普通余热换热器所吸热量的140%; 余热换热器选配:S余换=56㎡; 烟道尺寸:待确定; 烟道余热回收器尺寸:3300 x 1100 x1300,12排10根,具体尺寸可根据烟道尺寸调节。 3.水泵系统 水泵系统包括热水泵2台,变频水泵1台,阀门6个,压力表6个; 靠近烟道处热水泵2台为一个系统,采用一备一用方式运转,型号:IRG-65-160。水泵为自动控制,当一台水泵运行4-5小时后,另一台水泵开始运行。如一台水泵遇故障,另一台水泵将自动运行,并进行故障报警。控制柜内装有24小时微电脑调节器,可进行手动设定。管道上安装阀门4个,压力表2个。 另一台水泵为变频水泵,管道上安装阀门2个,压力表2个,可根据槽内温度自行调节水泵的流量,达到节能的目的。 4.测温探头、电磁阀系统 电磁阀受控于控制柜,槽内温度可实现自动控制,温度范围65-70℃。 5.水箱 水箱采用A3钢板,厚度:δ3mm,容积:1m3。有排污阀,并具有自动补水功能。 6.在水泵系统管道上装有压力表、阀门,水泵可4-5小时自行转换。

煤矿余热新能源综合利用

煤矿新能源综合利用技术资料 (压风机余热、矿井水余热、矿井乏风余热、工业太阳能综合利用)

一、制取洗浴热水的方式: 1、太阳能免费制取洗浴热水 太阳能是一种免费的能源,我公司先后研发太阳能系统防冻技术和太阳能系统免结垢技术。利用太阳能集热器系统中分别循环防冻液和软化水,达到防冻和免结垢的目的。根据矿区职工洗浴需求的大小,布置太阳能集热器的面积,利用PLC控制技术,得到恒温的洗浴热水。 兖矿集团北宿煤矿650吨洗浴热水工程 太阳能系统原理图 2、压风机余热免费制取洗浴热水

空压机连续的运行中,把电能转换为机械能,机械能通过专用设备压缩自然状态下的空气获得高压压缩空气,其中一小部分由机械能转换为高压压缩空气势能,另外空气被压缩产生的大量热量,经润滑油带出,最后以风冷或水冷的形式把热量散发出去。采用冷热交换原理,将空压机中高温润滑油中的热量转移至水中,油温为85℃-90℃, 将常温水转换为50℃-70℃ 热水,既降低油的工作温度,提高了空压机自身的工作效率,并且得到了可靠的洗浴热水。 空气压缩机余热制取洗浴热水原理图 3、热泵制取洗浴热水 水源热泵和空气源热泵热水机组是一种可以替代锅炉不受资源限制的节能环保热水供应装置。根据卡诺循环原理,实现由低温热能向高温热能转移的一种新能源利用技术,得到可靠稳定的洗浴热水。 4、瓦斯发电高温冷却水制取洗浴热水 瓦斯发电机组系统在运行中,产生高温烟气和高温冷却水,高温冷却水一般在40℃~50℃,可以作为洗浴热水的热源,免费制取洗浴热水。 5、井下热害处理热回收免费制取洗浴热水

高温矿井对于井下热害处理的要求比较重要,一般情况下,非供暖季时需要全负荷运行,供暖季小负荷运行。因此,在井下热害处理时安装热回收机组,在实现制冷的同时可以得到高温的热水用于洗浴。 总结:满足矿区职工洗浴热水的需求,本着“免费能源优先,节能能源辅助”的原则,结合矿区的实际情况,对矿区现有的可利用能源进行规划,综合利用,实现最大节能。 二、井下热害处理: 随着矿井开采深度的增加,矿井高温热害问题越来越严重,为保障煤炭工业持续健康发展,必须采取相应措施进行治理。依靠科学技术,加大安全投入,创造井下适宜的作业环境,提高井下工作人员的工作效率,保证员工的生命安全及身体健康迫在眉睫。我公司有以下三种技术方案: 方案一:井下降温制冷系统设于井底附近的制冷机房--即井下集中式系统,与地面建筑空调制冷系统分别独立设置。井下集中式系统是指除散热设备冷却塔置于地面上,制冷系统其它的设备均设置于井下制冷机房,制冷机组制备的冷冻水(3-5℃)通过冷冻水循环水泵经绝热管道送至采煤工作面或掘进工作面的空气冷却器,将通过空气冷却器的空气降温,冷却后的空气与未通过空气冷却器温度较高的空气在巷道混合后,使得通过采煤或掘进工作面的空气温度≤26℃,达到规要求的工作温度。同时,在地面上矿井工业场地风井井口附近设置冷却塔,用以排放井下制冷机组产生的冷凝热。 该方案系统简单、中间环节少,能耗低;与地面集中式(方案二)系统相比减少了换冷器、冷水泵及相应的附属设备。该系统存在的问题是要求制冷机组的冷凝器及冷却水泵必须承受近10MPa的压力,同时,井下集中式系统运行管理、维修安装等方面不如地面集中式系统。

空压机余热回收方案

空压机余热回收 系统工程方案书

目 录 一:空压机余热回收原理、用途说明 (3) 二:空压机热能回收的优点 (5) 三:空压机专用热水机和热泵、锅炉等各种制热设备的比较 (6) 四:贵公司的热能回收方案设计基础 (7) 五:空压机热能回收应用安装示意图 (8) 六:方案目标及验收标准 (10) 七:“新热能”空压机专用热水机的独特原理、设备数据、产品特点 (10) 八:工程施工依据与管道选材 (14) 九:安装施工方案 (15) 十:售后服务 (17) 十一:报价清单、回报周期、商务条款 (17) 十二:回报周期、商务条款: (19) 十三:工程实例图: (20) 附件:热水机产品介绍………………………………………………………………

一、空压机余热回收原理、用途说明: 1、概述:空压机热能的基本概况: 空压机的工作过程中,输入电能的80%左右变成热量,余不足20%左右变成最终的压缩空气能。 压缩机在工作过程中所耗电能转变成热量后,大部分被压缩后的油气混合物带走。分别在各自的冷却器(油冷却器和气冷却器)中被冷却介质(水或空气)带走,热量白白地浪费了。从理论上讲,除了2%的辐射热量不能回收外,几乎98%的热量均可以被回收利用。 2、热水机的基础原理及热能回收的用途: “新热能”热水机组实际上是一台热量回收装置,不同于机器上的冷却器。根据压缩机各机型的不同热量,设计制造出不同型号的机组与各种型号的压缩机匹配使用,避免因换热面积不精确,压降过大等原因给压缩机带来故障。热水机组接管通常设置在压缩机主机和冷却器之间,无论是水冷式压缩机还是风冷式压缩机都可适用。要实现全自动供水功能还需添置其它设备,其中包括热水管道、保温工程、储热水箱、循环水泵、自动控制箱、各种阀件管件等。可根据用户的不同需求安装不同的控制系统,使余热回收工程在最经济、最安全可靠的状态下运行。 回收水温常规为55℃-75℃之间,广泛适用于需要高温水或热水地方,如: 员工浴室用水、食堂用水、造纸及食品工业等生产设备用热水、锅炉预热、取暖设备、木材及电子产品烘干等。

铅锌冶炼厂炉窑的余热回收及利用

铅锌冶炼厂炉窑的余热回收及利用 宋冬根 南昌有色冶金设计研究院 摘要侧重介绍了沸腾焙烧炉、烟化炉等炉窑的余热资源的回收及其利用系统。 关键词余热资源余热利用、烟气露点 1 前言 有色冶金炉窑种类繁多,用途各异,其中大多数为高温设备,余热资源非常丰富。例如,铅锌冶炼厂锌精矿沸腾焙烧炉,排烟温度一般在850~1050℃,烟化炉排烟温度可达l100℃以上。 然而,有色冶金炉窑的余热有其自身的特点,一是烟气波动大,多数有色冶金炉窑呈周期性作业,加料熔化时,送风量大、烟气温高,烟气量大,含热量也大,反之,出料时,仅需保温,送风量小,烟气量也小,烟气温度也相应较低,含热量也自然随之减少。二是热源分散,如分散在烟气里,炉窑本身各冷却元件里,产品物料里等。三是余热载体较复杂,如烟气中的尘以及烟气中的不同气体成分如S02、CO、H2O、N2等。 总之,有色冶金炉窑余热资源非常丰富,利用难度也较大,本文将侧重探讨某有色冶炼厂锌精矿沸腾焙烧炉、烟化炉等常用炉窑的余热回收及余热利用。 2 余热回收装置 2.1 锌精矿沸腾焙烧炉的余热回收装置 锌主要以硫化物形态存在于自然界,约90%的锌是从硫化矿产出的。炼锌方法一般有火法和湿法两大类,无论那种冶炼方法,硫化锌精矿一般都要先经过脱硫,使硫化锌转变为氧化锌,以适应下一步冶炼工序的要求。 硫化锌精矿的沸腾焙烧为自热熔炼,锌精矿中的硫化锌与鼓入炉内空气中的氧进行的氧化反应为强放热过程。 硫化锌精矿在酸化沸腾焙烧时,沸腾层温度一般要求在850~900℃,排烟温度达900~950℃。烟气中并含有大量的烟尘和SO2,根据烟气后续处理工艺要求,烟气温度必须降至300~400℃后才能送至后续处理设备进行处理。 余热回收装置的设置必须考虑烟尘的粘结和烟气的低温腐蚀,因此余热回收装置的结构设置必须考虑合理的清灰设施和控制每段冷却元件的烟气出口温度,同时余热回收装置生产蒸汽的压力也必须合理,防止受热面低温腐蚀。目前采用比较多的清灰设施是弹簧锤振打清灰,使用效果较好。装置的设计压力可根据烟气的成分和压力来考虑,一般饱和蒸汽压力对应的饱和蒸汽温度应高于烟气露点温度。生产的蒸汽(饱和或过热蒸汽)可用于发电和生产。 2.2 沸腾层的余热回收装置 硫化锌精矿的酸化沸腾焙烧,沸腾层温度需维持在850~900℃,而硫化锌的氧化放热除能保证沸腾层的温度外,还约有19%的富余热量需要排出。最常用的方法是在锌焙砂沸腾层内设置汽化冷却埋管(换热装置),所产蒸汽并入烟气余热锅炉蒸汽系统。 2.3 烟化炉的余热回收装置 铅鼓风炉渣常含有Zn、Pb,此外,还含有其他有价金属,应该尽量综合回收。尽管处理铅炉渣的方法很多,但大多数工厂都采用烟化法。 烟化过程是典型的间歇作业,分加料期、吹炼期、放渣期等。吹炼100kg鼓风炉炉渣约产生240Nm3的烟气。排烟温度约1150℃,烟气含尘在70~100g/Nm3。 烟化炉余热锅炉的开发运用不如沸腾炉余热锅炉出现得早。主要原因一是烟化炉没有沸腾焙烧炉应用广泛,数量远少于沸腾焙烧炉,只有大型冶炼厂才用烟化炉来处理鼓风炉渣;

详解罐式煅烧炉

罐式煅烧炉 罐式煅烧炉(retortc alciner) 在固定的料罐中实现对炭素材料的间接加热,使之完成煅烧过程的热工设备。罐式煅烧炉是炭素工业中被广泛采用的一种炉型。煅烧时原料由炉顶加料装置加入罐内,在由上而下的移动过程中,逐渐被位于料罐两侧的火道加热。燃料在火道中燃烧产生的热量是通过火道壁间接传给原料的。当原料的温度达到350~600℃时,其中的挥发分大量释放出来。通过挥发分道汇集并送入火道燃烧。挥发分的燃烧是罐式煅烧炉的又一个热量来源。原料经过1200~1300℃以上的高温,完成一系列的物理化学变化后,从料罐底部进入水套冷却,最后由排料装置排出炉外。完成了热交换的废烟气送入余热锅炉,利用其余热生产蒸汽,或送人换热室预热供燃料和挥发分燃烧的空气。 基本构造罐式煅烧炉由炉体(包括料罐、火道、四周大墙,有的还有换热室)和金属骨架以及附属在炉体上的冷却水套、加排料装置、煤气(或重油)管道等几部分组成。(见图) 料罐和火道是炉体最重要的组成部分,料罐按纵横方向成双排列,连同它两侧的四条火道构成一组,一台炉可有3~7组。料罐的水平截面为两端是弧形的扁长形,罐壁垂直或略向外倾斜,后者即所谓斜罐式煅烧炉。对煅烧含挥发分较高的延迟焦,斜罐可以使下降的料层松动,减小结焦造成堵炉的危险。火道在料罐高度上分6~8层,烟气在火道内是一长“之”字形路线。料罐和火道都处于高温,工作条件恶劣,而且还要求罐壁导热性好,气密性高,故采用壁厚为80mm的硅质异型砖砌筑。 炉体的中部是几组料罐和火道,外部四周是大墙。在大墙中设有挥发分和预热空气通道。煅烧过程中排出的挥发分从罐上部的逸出口流出,由位于炉顶部的集合道把同组中的挥发分汇集,然后经大墙中的通道,才能送到燃烧口和需要补充热量的火道进行燃烧。经换热室或炉底空气预热道预热过的空气,也要通过大墙中的通道才能送到煤气(或重油)和挥发分的燃烧点供其燃烧。为了控制挥发分和预热空气的量,专门设有拉板砖进行调节。另外在大墙上还设有很多火道观察孔、测温测压孔,便于炉子的操作和监控。大墙采用黏土质耐火砖、保温砖和红砖砌筑。 在炉后不设余热锅炉的时候,为了利用废烟气的余热,可设换热室。换热室由黏土质的格子砖砌筑,废烟气和空气按各自的通道交错流动进行换热,通过格子砖,废烟气温度由1000℃降为500~600℃,而空气则被预热到400~600℃。开发预热空气助燃,不但提高煅烧温度,还节约燃料,当改用延迟焦作原料后,大量挥发分的燃烧,不但满足了煅烧温度的要求,而且还大大富裕,采用换热室的形式已不能充分利用这部分热量,所以被余热锅炉取代。 整个炉体用金属骨架支撑和紧固。冷却水套悬挂在料罐的底部。煅烧好的料通过冷却水套即被冷却到100℃以下。加、排料装置分别位于炉顶和冷却水套下面。加排料方式和设备结构形式虽然不同,但对其总的要求都一样,即连续均匀地加、排料,且在较大范围内能调节加、排料量;密闭性能良好,不允许漏进空气造成料的氧化,牢固可靠,便于维护。加、排料装置的结构见煅烧炉用机械设备。 分类罐式煅烧炉按其结构特点分类如下:

余热利用-化工行业

1.黄磷生产过程余热利用及尾气发电(供热)技术 一、技术名称 黄磷生产过程余热利用及尾气发电(供热)技术 二、技术所属领域及适用范围 化工行业黄磷生产 三、与该技术相关的能耗及碳排放现状 我国黄磷单位产品平均综合能耗约为3.2tce左右,每生产1t黄磷产生黄磷尾气约3000Nm3,约占单位黄磷生产综合能耗的30%以上。目前,黄磷生产中的尾气主要用来烧热水或者做原料烘干使用,其尾气的利用率不足20%。按行业年总产能180万t计算,黄磷生产行业每年碳排放超过400万t,节能潜力很大。 四、技术内容 1. 技术原理 通过对黄磷生产中排放的尾气进行收集、加压并进行净化处理,再输送到专用燃烧器中进行配风旋混燃烧,燃烧后产生的热量及强腐蚀高温烟气再经过耐腐蚀的专用黄磷尾气锅炉进行换热,交换后的热量用于加热水产生蒸汽或者利用蒸汽带动汽轮机发电系统发电,所产蒸汽与电量均用于黄磷生产,降低产品能耗。 2. 关键技术 黄磷生产过程余热利用和尾气发电(供热)技术是对黄磷尾气处理、尾气燃烧热能、尾气燃烧后(烟气中)排放物循环使用的综合利用系统,其主要的关键技术如下: (1)尾气净化技术 通过除尘、除酸方式对尾气进行净化,净化技术采用水洗除尘及碱洗除酸,通过采取合理的净化方式以及适合的净化剂,确保在低净化成本的前提下,使得尾气中的杂质、总硫、总磷的含量控制在合理的范围之内,达到下述目的:净化后的尾气因杂质减少避免堵塞燃烧及换热设备;减轻尾气酸性物质对系统设备的腐蚀。 (2)专用燃烧器燃烧技术 通过专用燃烧器的旋混式结构设计,使得尾气与空气得到充分的混合,确保尾气燃烧充分,用于提高燃烬率;采用PDI技术合理配风及风压控制,确保尾气

煤矿余热节能环保综合利用项目

煤矿余热节能综合利用项目 瓦斯发电机组余热、压风机余热、矿井水余热、矿井乏风氧化余热综合利用 胜动集团节能工程公司 2014年5月21日

公司简介 胜动集团节能工程公司位于山东省东营市经济技术开发区府前大街30号,是“中国节能服务产业十佳企业”胜利油田胜利动力机械集团有限公司下属分公司,专业从事分布式能源发电;矿井水、乏风、工艺循环、压风机冷却废热提取;井口保温和井下制冷;工业余/ 废热综合利用等节能工程项目建设总承包业务,集节能工程项目咨询、工程设计、施工总包于一体,提供节能工程建设一体化服务。公司以工程设计院为依托,拥有一支精良工程项目管理团队,业务内容涵盖节能诊断、节能规划、方案设计、可行性研究报告、工程设计、工程施工、EPC总承包。公司目前拥有电力行业(新能源发电、火电)设计和咨询乙级资质、机电设备安装工程专业承包叁级资质,现有员工120余人,其中设计咨询板块60余人,拥有注册建筑师、注册结构师、注册电气工程师、注册公用设备工程师、注册造价师、注册咨询师等各类执业资格技术人员20余名,拥有建筑、结构、暖通、机务、电气、动力等各类专业高中级工程师30余名,工程项目管理板块拥有国家注册建造师执业资格的项目管理人员10余名。节能工程公司立足于集团公司节能减排产业,始终如一的秉承“节约能源、保护蓝天”的企业宗旨,坚持“追求完美、创造卓越”的工作理念,提供给社会“全盘、全套、全面、全新、全优”的节能工程综合服务。近年来,公司以全国范围内燃煤替代节能工程为市场方向,进入煤矿余热综合利用、工业余/废热回收利用等集成供热制冷节能工程领域,实现了快速发展。

一、煤矿丰富的余热资源 1、煤矿瓦斯发电余热 胜动集团是全国最大的燃气内燃机发电机组产业基地,拥有多种型号的燃气发电机组,如500kW/600kW/700kW/1200kW/2000kW大型煤矿瓦斯发电机组。拥有多项发明专利的特有技术。是煤矿低浓度瓦斯发电的行业实施者、标准制定者。 发电机组在运行时,只有约35%转化为电能,约30%-35%随高温烟气排出,20%-25%被发动机冷却水带走,通过机身散热等其他损失约占10%左右,充分利用这些没有被转化为电能的余热,用来制取冷热水以满足用户的生产生活需求。例如:煤矿瓦斯变害为利改造途径中,既有瓦斯的发电利用,也有瓦斯发电余热的利用,既提高了瓦斯的利用率,改善机组运行工况,又降低其他能源消耗。 2、压风机余热制取洗浴热水

工业导热油锅炉余热回收节能项目

工业导热油锅炉余热回收节能项目 第一章总论 一、项目背景 1.项目名称: 利用余热锅炉和空气预热器的工业导热油锅炉余热回收节能项目 2.相关国策: 为深入贯彻科学发展观,落实节约资源基本国策,调动社会各方面力量进一步加强节能工作,加快建设节约型社会,实现“十一五”规划纲要提出的节能目标,促进经济社会发展切实转入全面协调可持续发展的轨道,目前工业窑炉余热利用率仅有15%左右,工业炉应优先把高品位愈能余热用于发电,低温余热用于空调、采暖或生活用热。 2010年财政部、国家发展改革联合出台的《关于印发合同能源管理财政奖励资金管理暂行办法的通知》中明确规定,相关部门将对节能服务公司以节能效益分享型合同能源管理方式实施的年节能量在500吨标准煤以上(含)、10000吨标准煤以下的工业节能改造项目给予奖励; 3.EPC在中国工业的发展前景分析: 工业是我国的第一大耗能大户。2006年我国的工业能源消费量占全国能源消耗总量的71.2%,以煤炭、焦炭、原油和电力为主要能源消费对象,在能源消费的几个部门当中,工业以绝对“优势”占第一位。世界各国工业能源消费一般只占能源消费总量的1/3左右,而在我国,工业能耗占比接近70%。 二、项目概况 1.企业现状

该工业企业存在大量余热资源,包括烟气余热、炉体散热、高温产品余热、冷却介质余热、废气和废料余热等。其中烟气余热几乎占燃料消耗量的1/3以上,是主要的余热资源。 该锅炉目前排烟温度为600℃,单台烟气量为h Nm /200003,燃柴油。 2.锅炉烟气余热问题分析 大型锅炉都安装有铸铁管或不锈钢式省煤器,用来助燃空气或预热锅炉给水,但是由于石油、煤、天然气燃料中均含有硫,在燃烧时,硫氧化物的产生是必不可少的,它与水蒸气结合后即形成硫酸蒸汽。 当锅炉尾部受热面的金属壁面温度低于硫酸蒸汽的凝结点(称为酸露点),就会在其表面形成液态硫酸(称为结露)。 据相关数据表明,一般工业锅炉的热效率约为60~70%,它的排烟温度大概在250℃~350℃之间,而导热油炉,排烟温度更是达到280℃以上,大量余热未充分利用,如果把这些烟气直接排放到空气中,这不但会导致气温升高,污染了环境,而且极大的浪费了能源。 ①稍高于烟气露点腐蚀温度。 露点防腐蚀的一般方法是通过精心的设计,在效率降低不多的情况下,提高换热面的壁温,使之稍高于烟气露点温度,使之不产生露点,从而防止腐蚀。 ②选用耐腐蚀材料。 比如,我们可以用ND 钢(09CrCuSb ),因为它具有较高的抵抗低温腐蚀能力,不但能抗硫酸腐蚀,而且在负氯离子中也具有较高的耐蚀性,而它的力学性能与碳钢相当。 ③加入换热器。 锅炉余热回收主要是在烟气进入水膜除尘器前增加烟道截面积,同时再加入一组换热器。的加入会影响到锅炉的排烟流量和排烟阻力,而增加烟道截面积主要是为避免加入换热器后在烟道中形成的阻力。 3.投资必要性 该烟气含有的余热量为h KJ c t G Q g g g g /104568.1214.1600200007?=??== 这部分能量若白白排入空气中,不但造成了能源的巨大浪费,而且造成了环境的热污染。随着全社会对节能减排的提倡和企业对节能降耗越来越重视,为降低成本,充分利用排掉的烟气中的热量,是每一个工业企业都应该重视起来的。 生产中发现,不论是燃用何种燃料的导热油炉,其热效率普遍偏低,一般都在60%以下。其中原因是排烟温度高,该油炉排烟温度高达600℃,烟气余热未能得到利用,造成热能损失过大。 该项目是符合国家产业政策的,本项目的实施,将大大减少企业能源消耗,提高企业的产品质量,增加企业经济效益,促进企业的健康发展,有助于缓解政府能源供应和建设压力,对减少大气污染保护环境也有巨大的现实意义。

空压机余热回收技术方案

XXXX有限公司 XXX系统技术方案 一、概述 节能减排,降耗增效是当今每个企业所必须面对的话题,是关系到企业生存和发展的重中之重。能源的危机对于高能耗的企业,面临着严峻的考验和巨大的生存压力,现如今激烈的市场竞争,导致企业的利润空间已经大幅度下浮。只有在企业内部挖潜,在节能降耗上下功夫,不然企业无法生存。作为节能设备的制造企业,我们针对市场开发了适合于各种行业的空压机热能回收系列产品。本系统设计主要是提取空压机运行过程中浪费的热能,在回收热能的同时对空压机进行保护作用。从而达到节约能源与环保的作用。系统采用智能数字自动化控制,自动化程度高,可以完全不需要专人操作。 二、工程实施的意义 1、利用原本浪费的空压机热能进行回收,避免空压机房温度过高,空压机排气温度保持在750C到850C最好温度运行。 2.使空压机更省电,风扇不用开启,以贵公司76千瓦螺杆机为例风机为2.2千瓦,每小时可省约2.2度电,二十四小时可省52.8度电。 3、无需任何费用回收460C~480C热水,用于办公室或者车间供暖热源。 4、完全清洁无污染,安装方便,无需改变原有压缩机结构。 5、提高员工待遇(硬件设施),减少电费支出。

三、系统特点 系统采用全自动智能化控制, 无需专人看管。 回收热水温度可调 循环水箱自动补水 扬程水泵自动送水(达到设定的温度) 循环水箱水位控制 保温水箱水位控制 电脑检测循环水箱水位显示 电脑检测保温水箱水位显示 循环水自动循环加热 电脑系统自动检测故障源并显示在显示屏上

四、系统设计方案 (一)、根据贵公司提供的有关数据可以计算出供暖的面积:针对贵公司x台76千瓦空压机热量进行回收(假定空压机负载率为80%,24小时工作),我公司热能回收机热量吸收率为80%(对油气热量同时回收): 第一部分:空压机加载吸收的热量可转化中央空调供暖的功率为: 76×8×80%×80%=389千瓦 第二部分:空压机卸载吸收的热量可转化中央空调供暖的功率为: 76×8×20%×40%×80%=38.9千瓦 总共可以转化成中央空调供暖的功率为: 389+38.9=427.9千瓦 经过保温处理并考虑热量损失10%计算,可供中央空调供暖的总功率为:385千瓦 按照生活供暖加热到23摄氏度为例,每平方米面积所需供暖的功率为180W~200W左右,所以: 压缩机总体可以供暖的面积大致在2000个平方左右。(二)设计方案如下: 针对贵公司8台76千瓦空压机热量进行回收(假定空压机负载率为80%,24小时工作),我公司热能回收机热量吸收率为80%(对油气热量同时回收);

相关文档
最新文档