防火墙的x86、NP、ASIC和多核架构的比较

防火墙的x86、NP、ASIC和多核架构的比较
防火墙的x86、NP、ASIC和多核架构的比较

防火墙的x86、NP、ASIC和多核架构的比较

更新于2009-12-21 20:01:51 文章出处:51CTO技术博客

随着网络的发展,网络威胁日益严峻,目前各大安全厂商都推出了多核心防火墙,采用多核芯片,终结了x86、NP和ASIC一统天下的时代,终结了高功耗、低稳定性的时代,并且提供了全面的应用安全解决方案。

多核心技术真正实现了千兆的小包吞吐量,相对于以往的X86、ASIC、NP技术,有了革命性的进步。先从以往的这些架构的优缺点讲起:

国内多数安全厂商的产品基于传统的X86架构防火墙,从总线速度来看基于32位PCI总线的X86平台,做为百兆防火墙的方案是没有任何问题的。但X86平台的防火墙方案,数据从网卡到CPU之间的传输机制是靠“中断”来实现的,中断机制导致在有大量数据包的需要处理的情况下(如:64 Bytes的小包,以下简称小包),X86平台的防火墙吞吐速率不高,大概在30%左右,并且CPU占用会很高。这是所有基于X86平台的防火墙所共同存在的问题。

因此,基于32位PCI总线的X86平台是不能做为千兆防火墙使用的问题,Intel提出了解决方案,可以把32位的PCI总线升级到了PCI-E ,即:PCI-Express,这样,PCI-E 4X的总线的速度就可以达到2000MB Bytes/S,即:16Gbits/S,并且PCI-E各个PCI设备之间互相独立不共享总线带宽,每个基于PCI-E的网口可以使用的带宽为:2000MB Bytes/S,即:16Gbits/S,所以基于PCI-E 4X的X86从系统带宽上来说,做为千兆防火墙是没有任何问题的。但是,基于PCI-E的防火墙数据从网卡到CPU之间传输同样使用“中断”机制来传输数据,所以小包(64 Bytes)的通过率仍然为:30-40%.

X86平台的防火墙其最大的缺点就是小包通速率低,只有30%-40%,造成这个问题的主要原因是因为X86平台的中断机制以及X86平台的防火墙所有数据都要经过主CPU处理。基于ASIC架构的防火墙从架构上改进了中断机制,数据从网卡收到以后,不经过主CPU处理,而是经过集成在系统中的一些芯片直接处理,由这些芯片来完成传统防火墙的功能,如:路由、NAT、防火墙规则匹配等。这样数据不经过主CPU处理,不使用中断机制。

但随之而来的问题是,ASIC架构的防火墙是芯片一级的,所有的防火墙动作由芯片来处理。这些芯片的功能比较单一,要升级维护的开发周期比较长。无法在芯片一级完成垃圾邮件过滤、网络监控、病毒防护等比较复杂的功能,所以说,ASIC架构用来做功能简单的防火墙,是完全适用的,64 Bytes的小包都可以达到线速。但是在扩展上通用CPU也是无法和专门的嵌入式CPU比较,并且在总线带宽上也无法承载太多的内部处理数据传输(Multi-core多核处理器内部是通过高速总线或者交叉矩阵式连接的)。

NP架构实现的原理和ASIC类似,但升级、维护远远好于ASIC 架构。NP架构在的每一个网口上都有一个网络处理器,即:NPE,用来处理来自网口的数据。每个网络处理器上所运行的程序使用微码编程,其软件实现的难度比较大,开发周期比ASIC短,但比X86长。

采用多核处理器,是在同一个硅晶片上集成了多个独立物理核心,每个核心都具有独立的逻辑结构,包括缓存、执行单元、指令级单元和总线接口等逻辑单元,通过高速总线、内存共享进行通信。在实际工作中,每个核心都可以达到1Ghz的主频,而且可以在非常节能的方式下运行。

有的多核产品支持500万并发会话64Byte吞吐量达到3G,256Byte以上吞吐达到8G,VPN吞吐达到8G,支持3万VPN通道,支持5万Policy。每秒新建TCP会话超过20万,每秒处理UDP会话超过50万。在每秒创建5000TCP会话作为背景流量,可以检测并防御80万包/每秒以上的SYN-FLOOD攻击,更是达到了万兆线速。一系列的性能测试结果足以傲视众多安全平台。

防火墙x86架构和ASIC架构和NP架构的区别

更新于2010-03-02 17:37:48 文章出处:新浪博客

在众多的安全产品中,防火墙产品无疑是保障网络安全的第一道防线,很多企业为了保障自身服务器或数据安全都采用了防火墙。

随着Internet的迅速普及,全球范围内的计算机网络病毒、操作系统漏洞、垃圾邮件等网络安全问题也是层出不穷,网络安全产品和解决方案越来越成为各类网络用户和厂商们的聚焦点,在众多的安全产品中,防火墙产品无疑是保障网络安全的第一道防线,很多企业为了保障自身服务器或数据安全都采用了防火墙。随着网络应用的增加,对网络带宽提出了更高的要求。这意味着防火墙要能够以非常高的速率处理数据,于是千兆防火墙逐步崭露头角,频频被运用在金融、电信、教育、气象等大型的行业和机构,以及对安全要求极高的大型企业用户,其市场占有份额已经超过50%;下面就让我们来了解一下千兆防火墙的相关的产品、技术及选购方面的一些知识。

不同构架各具特色

从百兆到千兆,最初只是量变。千兆防火墙在2000年前后就进入了我国市场。由于百兆网络接口与千兆网络接口的成本相差不大,早期的千兆防火墙仅仅是将百兆接口替换为千兆接口而已。这种基于X86体系结构的千兆防火墙主体仍然是软件,其性能受到很大制约,无法达到千兆的处理速度。因此,这些防火墙只是具有千兆接入能力的防火墙,而不是真正具有千兆处理能力的防火墙因此可以说是一种“换汤不换药”的形式改变。随后几年,随着千兆网络在企业和行业用户中的不断普及,以及用户对性能需求的不断增加,千兆防火墙也逐发生了质变。

这种质的变化首先是人们把目光转移到了专用集成电路(ASIC)和网络处理器(NP)上。相对于X86架构,基于这些架构的千兆防火墙才是真正的硬件解决方案,能够实现千兆处理速度。在这里,我们不妨将X86架构、NP和ASIC放在一起进行技术比较,看看不同技术的优缺点。

X86架构

最初的千兆防火墙是基于X86架构。X86架构采用通用CPU和PCI总线接口,具有很高的灵活性和可扩展性,过去一直是防火墙开发的主要平台。其产品功能主要由软件实现,可以根据用户的实际需要而做相应调整,增加或减少功能模块,产品比较灵活,功能十分丰富。

但其性能发展却受到体系结构的制约,作为通用的计算平台,x86的结构层次较多,不易优化,且往往会受到PCI总线的带宽限制。虽然PCI总线接口理论上能达到接近2Gbps的吞吐量,但是通用CPU的处理能力有限,尽管防火墙软件部分可以尽可能地优化,很难达到千兆速率。同时很多X86架构的防火墙是基于定制的通用操作系统,安全性很大程度上取决于通用操作系统自身的安全性,可能会存在安全漏洞。

ASIC架构

相比之下,ASIC防火墙通过专门设计的ASIC芯片逻辑进行硬件加速处理。ASIC通过把指令或计算逻辑固化到芯片中,获得了很高的处理能力,因而明显提升了防火墙的性能。新一代的高可编程ASIC采用了更灵活的设计,能够通过软件改变应用逻辑,具有更广泛的适应能力。但是,ASIC的缺点也同样明显,它的灵活性和扩展性不够,开发费用高,开发周期太长,一般耗时接近2年。

虽然研发成本较高,灵活性受限制、无法支持太多的功能,但其性能具有先天的优势,非常适合应用于模式简单、对吞吐量和时延指标要求较高的电信级大流量的处理。目前,NetScreen在ASIC防火墙领域占有优势地位,而我国的首信也推出了我国基于自主技术的ASIC千兆防火墙产品。

NP架构

NP可以说是介于两者之间的技术,NP是专门为网络设备处理网络流量而设计的处理器,其体系结构和指令集对于防火墙常用的包过滤、转发等算法和操作都进行了专门的优化,可以高效地完成TCP/IP栈的常用操作,并对网络流量进行快速的并发处理。硬件结构设计也大多采用高速的接口技术和总线规范,具有较高的I/O能力。它可以构建一种硬件加速的完全可编程的架构,这种架构的软硬件都易于升级,软件可以支持新的标准和协议,硬件设计支持更高网络速度,从而使产品的生命周期更长。由于防火墙处理的就是网络数据包,所以基于NP架构的防火墙与X86架构的防火墙相比,性能得到了很大的提高。

NP通过专门的指令集和配套的软件开发系统,提供强大的编程能力,因而便于开发应用,支持可扩展的服务,而且研制周期短,成本较低。但是,相比于X86架构,由于应用开发、功能扩展受到NP的配套软件的限制,基于NP技术的防火墙的灵活性要差一些。由于依赖软件环境,所以在性能方面NP不如ASIC。NP开发的难度和灵活性都介于ASIC和x86构架之间,应该说,NP是X86架构和ASIC之间的一个折衷。目前NP的主要提供商是Intel和Motorola,国内基于NP技术开发千兆防火墙的厂商最多,联想、紫光比威等都有相关产品推出。

从上面可以看出,X86架构、NP和ASIC各有优缺点。X86架构灵活性最高,新功能、新模块扩展容易,但性能肯定满足不了千兆需要。ASIC性能最高,千兆、万兆吞吐速率均可实现,但灵活性最低,定型后再扩展十分困难。NP则介于两者之间,性能可满足千兆需要,同时也具有一定的灵活性。

三种架构综合比较

选购千兆防火墙需要考虑什么

在选购千兆防火墙时,用户首先需要明确自己的需求。安全风险和网络应用决定了用户需求,每个网络的层次、作用、大小和结构各不同,致使这些网络所面临的安全风险不相同,安全需求自然也不相同。没有重要资产的网络没有必要选择高端防火墙,高安全需求的网络不能选择低安全性的防火墙,这是很浅显的道理。同样地,只有10M带宽接入互联网的办公机构没有必要去选择千兆防火墙。

其次,在防火墙的安全功能与性能之间做出折衷。防火墙存在着功能与性能的矛盾,根据预定的安全策略,防火墙在协议栈的不同层次对流量进行检查,决定对流量的控制措施(允许通过或丢弃)。检查的层次越高,防火墙消耗的资源就越多,花费的时间就越长,性能就会越低。在应用环境时要考虑网络拓扑,用户规模,流量带宽,通信类型和环境的复杂恶劣程度等。

最后,技术支持与服务,在选择安全产品的时候,厂家或商家的技术支持与服务能力也应该是重要的考虑因素。

多核与多线程技术的区别到底在哪里

多核与多线程技术的区别到底在哪里? 【导读】:毫无疑问的,“多核”、“多线程”此二词已快成为当今处理器架构设计中的两大显学,如同历史战国时代以“儒”、“墨”两大派的显学,只不过当年两大治世思想学派是争得你死我亡,而多核、多线程则是相互兼容并蓄,今日几乎任何处理器都朝同时具有多核多线程的路线发展迈进。毫无疑问的,“多核”、“多线程”此二词已快成为当今处理器架构设计中的两大显学,如同历史战国时代以“儒”、“墨”两大派的显学,只不过当年两大治世思想学派是争得你死我亡,而多核、多线程则是相互兼容并蓄,今日几乎任何处理器都朝同时具有多核多线程的路线发展迈进。 虽然两词到处可见,但可有人知此二者的实际差异?在执行设计时又是以何者为重?到底是该多核优先还是多线程提前?关于此似乎大家都想进一步了解,本文以下试图对此进行个中差异的解说,并尽可能在不涉及实际复杂细节的情形下,让各位对两者的机制观念与差别性有所理解。 行程早于线程 若依据信息技术的发展历程,在软件程序执行时的再细分、再切割的小型化单位上,先是有行程(Process),之后才有线程(Thread),线程的单位比行程更小,一个行程内可以有多个线程,在一个行程下的各线程,都是共享同一个行程所建立的内存寻址资源及内存管理机制,包括执行权阶、内存空间、堆栈位置等,除此之外各个线程自身仅拥有少许因为执行之需的变量自属性,其余都依据与遵行行程所设立的规定。 相对的,程序与程序之间所用的就是不同的内存设定,包括分页、分段等起始地址的不同,执行权阶的不同,堆栈深度的不同等,一颗处理器若执行了A行程后要改去执行B行程,对此必须进行内存管理组态的搬迁、变更,而这个搬迁若是在处理器内还好,若是在高速缓存甚至是系统主存储器时,此种切换、转移程序对执行效能的损伤就非常大,因为完成搬迁、切换程序的相同时间,处理器早就可以执行数十到上千个指令。 两种路线的加速思维 所以,想避免此种切换的效率损耗,可以从两种角度去思考,第一种思考就是扩大到整体运算系统的层面来解决,在一部计算机内设计、配置更多颗的处理器,然后由同一个操作系统同时掌控及管理多颗处理器,并将要执行的程序的各个程序,一个程序喂(也称:发派)给一颗处理器去执行,如此多颗同时执行,每颗处理器执行一个程序,如此就可以加快整体的执行效率。 当然!这种加速方式必须有一个先决条件,即是操作系统在编译时就必须能管控、发挥及运用多行程技术,倘若以单行程的系统组态来编译,那么操作系统就无法管控服务器内一颗以上的处理器,如此就不用去谈论由操作系统负责让应用程序的程序进行同时的多颗同时性的执行派送。 即便操作系统支持多程序,而应用程序若依旧只支持单程序,那情形一样是白搭,操作

分布式汽车电气电子系统设计和实现架构

分布式汽车电气电子系统设计和实现 架构

分布式汽车电气/电子系统设计和实现架构在过去的十几年里,汽车的电气和电子系统已经变得非常的复杂。今天汽车电子/电气系统开发工程师广泛使用基于模型的功能设计与仿真来迎接这一复杂性挑战。新兴标准定义了与低层软件的标准化接口,最重要的是,它还为功能实现工程师引入了一个全新的抽象级。 这提高了软件组件的可重用性,但不幸的是,关于如何将基于模型的功能设计的结果转换成高度环境中的可靠和高效系统实现方面的指导却几乎没有。 另外,论述设计流程物理端的文章也非常少。本文概述了一种推荐的系统级设计方法学,包括、分布在多个ECU中的网络和任务调度、线束设计和规格生成。 为什么需要AUTOSAR? 即使在同一家公司,“架构设计”对不同的人也有不同的含义,这取决于她们站在哪个角度上。物理架构处理系统的有形一面,如布线和连接器,逻辑架构定义无形系统的结构和分配,如软件和通信协议。当前设计物理架构和逻辑架构的语言是独立的,这导致相同一个词的意思能够完全不同,设计团队和流程也是独立的,这也导致了一个非常复杂的设计流程(如图1所示)。

图1:物理和逻辑设计流程。 这种复杂性导致了次优设计结果,整个系统的正确功能是如此的难于实现,以致于几乎没有时间去寻求一种替代方法,它可导致更坚固的、可扩展性更好的和更具成本效益的解决方案。为了实现这样一种解决方案,设计师需要新的方法,它能够将物理和逻辑设计流程紧密相连,并依然允许不同的设计团队做她们的工作。 新兴的AUTOSAR标准为系统级汽车电子/电气设计方法学提供了一个技术上和经济上都可行的选择,尽管它主要针对软件层面,即逻辑系统的设计。不过,大量广泛的AUTOSAR元模型及其丰富的接口定义允许系统级电子/电气架构师以标准的格式表示她的设计思想。从经济上看,AUTOSAR标准打开了一个巨大的、统一的市场,它使得能够创立合适的设计工具。

MSC_MARC单机多核并行计算示例教学文案

M S C_M A R C单机多核并行计算示例

MSC MARC2011单机多核并行计算示例 并行计算可以有效利用本地或者网络计算机计算资源,提高计算效率,特别是针对一些计算规模相对较大的问题。本文作为MARC单机多核并行计算的一个示例。 测试平台:WIN7 64Bit MARC2011 0、提前设置 将电脑名字最好改为administrator,或者通过修改电脑名称,会使user和display后面的名子保持一致。 改电脑名字: 计算机右键—属性—更改设置—更改—计算机名

1、启动多核运算 打开dos界面输入 (1)D:按enter回车键(d为marc所在盘)

(2)cd+空格+ D:\MSC.Software\Marc\2010\marc2010\intelmpi\win64\bin按 enter回车键 (3)ismpd+空格+ –install 按enter回车键 (4)出现上图中的 关闭窗口。 2、基本配置 (1)在MARC安装目录下的intelmpi\win64\bin目录(32Bit计算机选择 win32文件夹),运行wmpiregister.exe. (2)输入用户名(登陆windows的账户名,通常为administrator)及密码(若密码为空,需要重新设置一个密码),点击register按钮,下面的对话框中会出现“Password encrypted into the Registry”信息。

(3)运行ismpd.exe,或者到dos提示符下,进入该目录,运行ismpd -install。 假如提示都正常的话,到此即完成进行并行计算的前提条件了。 3、测试 (1)在MARC安装目录下的intelmpi\win64\bin目录(32Bit计算机选择win32文件夹),运行wmpiconfig.exe (2)依次点击下面1和2.

操作系统对多核处理器的支持方法

随着多核处理器的发展,对软件开发有非常大的影响,而且核心的瓶颈在软件上。软件开发在多核环境下的核心是多线程开发。这个多线程不仅代表了软件实现上多线程,要求在硬件上也采用多线程技术。可以说多核提供了可以大幅提升性能的机制,多核软件就是可以真正利用这一特点的策略。只有与多核硬件相适应的软件,才能真正地发挥多核的性能。多核对软件的要求包括对多核操作系统的要求和对应用软件的要求。 多核操作系统的关注点在于进程的分配和调度。进程的分配将进程分配到合理的物理核上,因为不同的核在共享性和历史运行情况都是不同的。有的物理核能够共享二级cache,而有的却是独立的。如果将有数据共享的进程分配给有共享二级cache的核上,将大大提升性能;反之,就有可能影响性能。进程调度会涉及到比较广泛的问题,比如负载均衡、实时性等。 面向多核体系结构的操作系统调度目前多核软件的一个热点,其中研究的热点主要有下面几方面:程序的并行研究;多进程的时间相关性研究;任务的分配与调度;缓存的错误共享;一致性访问研究;进程间通信;多处理器核内部资源竞争等等。这些探讨相互独立又相互依赖。考虑一个系统的性能时必须将其中的几点同时加以考虑,有时候对一些点的优化会造成另一些点的性能下降,需要用程序进行性能优化评测,所以合适的多核系统软件方案正在形成过程中。 任务的分配是多核时代提出的新概念。在单核时代,没有核的任务分配的问题,一共只有一个核的资源可被使用。而在多核体系下,有多个核可以被使用。如果系统中有几个进程需要分配,是将他们均匀地分配到各个处理器核,还是一起分配到一个处理器核,或是按照一定的算法进行分配。并且这个分配还受底层系统结构的影响,系统是SMP构架还是CMP构架,在CMP构架中会共享二级缓存的核的数量,这是影响分配算法的因子。任务分配结束后,需要考虑任务调度。对于不同的核,每个处理器核可以有自己独立的调度算法来执行不同的任务(实时任务或者交互性任务),也可以使用一致的调度算法。此外,还可以考虑一个进程上一个时间运行在一个核上,下一个时间片是选择继续运行在这个核上,还是进行线程迁移;怎样直接调度实时任务和普通任务;系统的核资源是否要进行负载均衡等等。任务调度是目前研究的热点之一。 在单核处理器中,常见的调度策略有先到先服务(FCFS),最短作业调度(SJF),优先级调度(Priority-scheduling algorithm),轮转法调度(round-robin RR),多级队列调度(multilevel queue-schedule algorithm)等。例如在Linux操作系统中对实时任务采取FCFS和RR两种调度,普通任务调度采取优先级调度。 对于多核处理器系统的调度,目前还没有明确的标准与规范。由于系统有多个处理器核可用,必须进行负载分配,有可能为每个处理器核提供单独的队列。在这种情况下,一个具有空队列的处理器就会空闲,而另一个处理器会很忙。所以如何处理好负载均衡问题是这种调度策略的关键问题所在。为了解决这种情况,可以考虑共同就绪队列,所有处理器公用一个就绪队列。但是这无疑对进程上下文切换、锁的转换增加了执行时间,降低了性能。另外一种想法就是选择一个处理器来为其他处理器调度,因而创建了主从结构。有的系统将主从结构作进一步扩

大型电商分布式架构设计与优化

大型电商分布式架构设计与优化 本文主题为电商网站架构案例,将介绍如何从电商网站的需求,到单机架构,逐步演变为常用的、可供参考的分布式架构原型。除具备功能需求外,还具备一定的高性能、高可用、可伸缩、可扩展等非功能质量需求(架构目标)。

本文大纲: 1. 使用电商案例的原因 2. 电商网站需求 3. 网站初级架构 4. 系统容量估算 5. 网站架构分析 6. 网站架构优化 根据实际需要,进行改造、扩展、支持千万PV,是没问题的。 使用电商案例的原因 分布式大型网站,目前看主要有几类: 1.大型门户(比如网易、新浪等); 2.SNS网站(比如校内、开心网等); 3.电商网站(比如阿里巴巴、京东商城、国美在线、汽车之家等)。

大型门户一般是新闻类信息,可以使用CDN、静态化等方式优化。而开心网等交互性比较多,可能会引入更多的NoSQL、分布式缓存、使用高性能的通信框架等。电商网站具备以上两类的特点,比如产品详情可以采用CDN,静态化,交互性高的需要采用NoSQL等技术。因此,我们采用电商网站作为案例,进行分析。 电商网站需求 客户需求: ?建立一个全品类的电子商务网站(B2C),用户可以在线购买商品,可以在线支付,也可以货到付款; ?用户购买时可以在线与客服沟通; ?用户收到商品后,可以给商品打分和评价; ?目前有成熟的进销存系统,需要与网站对接; ?希望能够支持3~5年,业务的发展; ?预计3~5年用户数达到1000万; ?定期举办双11、双12、三八男人节等活动; ?其他的功能参考京东或国美在线等网站。 客户就是客户,不会告诉你具体要什么,只会告诉你他想要什么,我们很多时候要引导、挖掘客户的需求。好在提供了明确的参考网站。因此,下一步要进行大量的分析,结合行业以及参考网站,给客户提供方案。其它的这里暂不展开。

多核编程与并行计算实验报告 (1)

多核编程与并行计算实验报告 姓名: 日期:2014年 4月20日 实验一 // exa1.cpp : Defines the entry point for the console application.

// #include"stdafx.h" #include #include #include #include using namespace std; void ThreadFunc1(PVOID param) { while(1) { Sleep(1000); cout<<"This is ThreadFunc1"<

实验二 // exa2.cpp : Defines the entry point for the console application. // #include"stdafx.h" #include #include using namespace std; DWORD WINAPI FunOne(LPVOID param){ while(true) { Sleep(1000); cout<<"hello! "; } return 0; } DWORD WINAPI FunTwo(LPVOID param){ while(true) { Sleep(1000); cout<<"world! ";

多核体系结构

多核体系结构 随着桌面并行时代的来临,基于多核的并行计算机已进入千家万户。例如,很多人的笔记本就装有两个处理器芯片,台式计算机装有四个芯片。INTEL、AMD在多核技术方向的相继突破,更使得并行计算成为研究热点之一。虽然多核时代已经到来,目前的困境是,多核硬件技术已成熟,但并行处理核心算法等应用问题却尚未得到解决。中国科大研究人员所做的这项研究在网络数据包的有效分类算法,也即网络核心算法的研究方面获得进展。 多核的普及是很重要的,因为以往仅仅提供高单线程性能。我们观察到,在一个大型变繁忙的内核数量多核心,这技术的应用是最理想的任何个人。每个单是往往无法把所有的方式多核其功率或温度信封由于电源电压或错误率的限制。事务性记忆已经被提出来,用以解决一些芯片多处理器的可编程性问题。事务性内存硬件实现在提供的功能的支持,如取得重大进展,比如长期交易,泄漏出的高速缓存,和上下文切换并在交易中线程迁移。通过集成在单个芯片中的多个内核,芯片多处理器提供一个有吸引力的方法同时提高系统的吞吐量和效率。这种集成允许在片上资源,这可能会导致破坏性的共享相互干扰的执行工作负载。共享资源是一个重要的功能,它有助于显着的整体吞吐量和降低功耗。为了提高系统性能和降低个别表现波动线程,已经提出最后一级缓存和片外带宽分配计划。 多核技术已经是现代处理器发展的主流趋势,它的诞生给软件开

发技术带来了新的挑战。如何编写出高效的并行程序使之充分地利用多核的资源,这一直是学术界和工艺界致力于解决的难题。多核程序的性能调试对于开发高效的并行程序来说,具有良好地辅助作用。它通过分析程序的行为并诊断其性能瓶颈,进而给性能优化提供有效的支持。由于并行程序的动态性和不确定性,传统的代码分析技术很难有效地检测其性能瓶颈。有的研究工作提出在软件层分析程序运行时行为,这通常会引入很大的运行时开销,并且获得数据精确度很低。硬件的实现虽然运行时开销低,然而其结构扩展引入的开销又会损伤程序的性能。 CMP的低成本和广泛可用性,使得一般的软件开发人员能够进行各种级别的并行处理。并行处理不再是超级计算机或集群的专属领域。基本的开发工作站和入门级服务器现在都具有软件级和硬件级的并行处理能力。这意味着程序员和软件开发人员可以无需牺牲设计或性能,即可根据需要部署利用多处理和多线程的应用。然而,需要注意的是,并非每个软件应用都需要多处理或多线程。实际上,一些软件解决方案和计算机算法最好使用顺序编程技术来实现。在某些情况下,在软件中引入并行编程技术的开销会使软件性能降级。并行性和多处理是需要一定成本的。如果软件中顺序地解决问题需要的工作量少于创建额外线程和进程的开销,或者少于协调并发执行的任务之间通信的工作,则应选择顺序的方法。 有时可以较容易地确定何时及何地应当使用并行性,因为软件解决方案本身可能会要求支持并行性。例如在很多客户端-服务器配置

Hadoop分布式文件系统:架构和设计

Hadoop分布式文件系统:架构和设计 引言 (2) 一前提和设计目标 (2) 1 hadoop和云计算的关系 (2) 2 流式数据访问 (2) 3 大规模数据集 (2) 4 简单的一致性模型 (3) 5 异构软硬件平台间的可移植性 (3) 6 硬件错误 (3) 二HDFS重要名词解释 (3) 1 Namenode (4) 2 secondary Namenode (5) 3 Datanode (6) 4 jobTracker (6) 5 TaskTracker (6) 三HDFS数据存储 (7) 1 HDFS数据存储特点 (7) 2 心跳机制 (7) 3 副本存放 (7) 4 副本选择 (7) 5 安全模式 (8) 四HDFS数据健壮性 (8) 1 磁盘数据错误,心跳检测和重新复制 (8) 2 集群均衡 (8) 3 数据完整性 (8) 4 元数据磁盘错误 (8) 5 快照 (9)

引言 云计算(cloud computing),由位于网络上的一组服务器把其计算、存储、数据等资源以服务的形式提供给请求者以完成信息处理任务的方法和过程。在此过程中被服务者只是提供需求并获取服务结果,对于需求被服务的过程并不知情。同时服务者以最优利用的方式动态地把资源分配给众多的服务请求者,以求达到最大效益。 Hadoop分布式文件系统(HDFS)被设计成适合运行在通用硬件(commodity hardware)上的分布式文件系统。它和现有的分布式文件系统有很多共同点。但同时,它和其他的分布式文件系统的区别也是很明显的。HDFS是一个高度容错性的系统,适合部署在廉价的机器上。HDFS 能提供高吞吐量的数据访问,非常适合大规模数据集上的应用。 一前提和设计目标 1 hadoop和云计算的关系 云计算由位于网络上的一组服务器把其计算、存储、数据等资源以服务的形式提供给请求者以完成信息处理任务的方法和过程。针对海量文本数据处理,为实现快速文本处理响应,缩短海量数据为辅助决策提供服务的时间,基于Hadoop云计算平台,建立HDFS分布式文件系统存储海量文本数据集,通过文本词频利用MapReduce原理建立分布式索引,以分布式数据库HBase 存储关键词索引,并提供实时检索,实现对海量文本数据的分布式并行处理.实验结果表 明,Hadoop框架为大规模数据的分布式并行处理提供了很好的解决方案。 2 流式数据访问 运行在HDFS上的应用和普通的应用不同,需要流式访问它们的数据集。HDFS的设计中更多的考虑到了数据批处理,而不是用户交互处理。比之数据访问的低延迟问题,更关键的在于数据访问的高吞吐量。 3 大规模数据集 运行在HDFS上的应用具有很大的数据集。HDFS上的一个典型文件大小一般都在G字节至T字节。因此,HDFS被调节以支持大文件存储。它应该能提供整体上高的数据传输带宽,能在一个集群里扩展到数百个节点。一个单一的HDFS实例应该能支撑数以千万计的文件。

并行计算环境搭建

并行计算环境搭建 一.搭建并调试并行计算环境MPI的详细过程。 1.首先,我们选择在Windows XP平台下安装MPICH。第一步确保Windows平台下安装上了.net框架。 2.在并行环境的每台机子上创建相同的用户名和密码,并使该平台下的各台主机在相同的工作组中。 3.登陆到新创建的帐号下,安装MPICH软件,在选择安装路径时,每台机子的安装路径要确保一致。安装过程中,需要输入一致的passphrase,也即本机的用户名。 4.安装好软件后,要对并行环境进行配置(分为两步): 第一步:注册。在每台机器上运行wmpiregister,按照提示输入帐号和密码,即 本机的登录用户名和密码。 第二步:配置主机。在并行环境下,我们只有一台主机,其他机子作为端结点。 运行主机上的wmpiconfig,在界面左侧栏目中选择TNP工作组,点击“select”按 钮,此时主机会在网络中搜索配置好并行环境的其他机子。配置好并行环境的其他 机子会出现绿色状态,点击“apply”按钮,最后点击“OK”按钮。 5.在并行环境下运行的必须是.exe文件,所以我们必须要对并行程序进行编译并生成.exe文件。为此我们选择Visual C++6.0编译器对我们的C语言程序进行编译, 在编译过程中,主要要配置编译器环境: (1)在编译器环境下选择“工程”,在“link”选项卡的“object/library modules” 中输入mpi.lib,然后点击“OK”按钮。 (2)选择“选项”,点击“路径”选项卡,在“show directories for”下选择“Include files”,在“Directories”中输入MPICH软件中“Include”文件夹的路径; 在“show directories for”下选择“Library files”,在“Directories”中输入 MPICH软件中Library文件夹的路径,点击“OK”。 (3)对并行程序进行编译、链接,并生成.exe文件。 6.将生成的.exe文件拷贝到并行环境下的各台机子上,并确保每台机子的存放路径要相同。 7.在主机上运行“wmpiexec”,在Application中选择生成的.exe文件;输入要执行此程序的进程数,选中“more options”选项卡,在“host”栏中输入主机和各个端结 点的计算机名,点击“execute”执行程序。 二.搭建并调试并行计算环境MPI的详细过程。 1.以管理员身份登录每台计算机,在所有连接的计算机上建立一个同样的工作组,命名为Mshome,并在该工作组下建立相同的帐户,名为GM,密码为GM。 2.安装文件Microsoft NET Framwork1.1,将.NET框架安装到每台计算机上,再安装MPI到每台主机。在安装MPI的过程中,必须输入相同的passphrase,在此输 入之前已建好的帐户名GM。 3.安装好MPI后,再对每台计算机进行注册和配置,其中注册必须每台计算机都要进行,配置只在主控计算机进行: (1)注册:将先前在每台计算机上申请的帐号和密码注册到MPI中去,这样

一分钟看懂CPU多发射超标量、多线程、多核之概念和区别

【闲来无事、做做科普、反正也算是marketing job;教你一分钟看懂CPU多发射超标量/多线程/多核之概念和区别】最近在多个场合大肆宣扬多核多线程,收到对多线程表示不解的问题n多,苦思多日,终得一形象生动的模型,你肯定懂的。 因为是比喻和科普、过于严谨的技术控请勿吐槽。 处理器性能提高之公开秘笈:超标量、多线程、多核。 用于说明的生活模型:高速公路及收费站。 简单CPU的原型:单车道马路 + 单收费闸口,车辆只能一辆辆排队通过,并行度为1。 为了提高通行能力同时积极创收,相关部门运用世界顶尖CPU设计理念,对高速公路系统进行了如下拓宽改造: (1)增加车道(图示为3条车道); (2)增加收费通道(图示为2个通道);

(3)每个收费通道放置多个收费员(图示每条通道有a和b两个收费窗口)。 其中(1)+(3)组合手段就是所谓的超标量结构,该图示为双发射超标量。超标量指有多个车道,双发射是指有a和b两位收费员可以同时发卡,把两辆车送到不同车道上去。 手段(2)就是多线程的模型了,原有车道不变、只增加收费通道,这样多个车流来的时候可以同时发卡放行。 从这个比喻来看多线程显然是个非常直观和有用的办法,但为什么在CPU世界中似乎有点模糊难懂的感觉呢?那是因为CPU的指令流喜欢一个挨一个、一列纵队龟速前进,这样的话单通道多收费员还起点作用、多通道就形同虚设了。收费员1.a和1.b会累死,而2.a和2.b则能够睡觉。因此把车流进行整队就很重要——这就是并行编程,即要设法把一列纵队排列成多列纵队。 至于多核的概念,那就简单粗暴很多了,直接在这条马路边上进行征地拆迁、新修一条一模一样的高速公路便是,牛吧。现在大家手机里面的多核,就是并排几条“单收费通道+多车道”的马路,车流稀少、路况不错,不过相关部门表示因为道路利用率底下、经济效益欠佳、回收投资压力巨大。 无论多核还是多线程,都有一个同样的问题需要解决,就是要把车流整成多列纵队,这样多条马路和多个收费通道的并行度才能发挥作用。

分布式服务架构方案

高并发分布式服务架构方案 下图是一个非常全面的架构蓝图,针对不同的应用系统需要的模块各有不同。此架构方案主要包括以下几个方面的设计:数据存储和读取,基础服务,应用层(APP/业务/Proxy),日志监控等,下面对这些主要的问题提供具体的各项针对性技术方案。 数据的存储和读取 分布式系统应该根据应用对数据不同的一致性、可用性等要求和数据的不同特性,采用不同的数据存储和读取方案,主要有以下几种可选方案: 1)内存型数据库。内存型的数据库,以高并发高性能为目标,在事务性方面没那么严格, 适合进行海量数据的存储和读取。例如开源nosql数据库mongodb、redis等。 2)关系型数据库。关系型数据库在满足并发性能的同时,也需要满足事务性,可通过 读写分离,分库分表来应对高并发大数据量的情况。例如Oracle,Mysql等。 3)分布式数据库。对于数据的高并发的访问,传统的关系型数据库提供读写分离的方案, 但是带来的确实数据的一致性问题提供的数据切分的方案;对于越来越多的海量数据,传统的数据库采用的是分库分表,实现起来比较复杂,后期要不断的进行迁移维护;对

于高可用和伸缩方面,传统数据采用的是主备、主从、多主的方案,但是本身扩展性比较差,增加节点和宕机需要进行数据的迁移。对于以上提出的这些问题,分布式数据库HBase有一套完善的解决方案,适用于高并发海量数据存取的要求。 基础服务 基础服务主要是指数据层之上的数据路由,Cache,搜索等服务。 1)路由Router。对于数据库切分方案中的分库分表问题,需要解决在请求对应的数据时 定位需要访问的位置,可根据一致性Hash,维护路由表至内存数据库等方案解决。 2)Cache。对于高并发的系统来讲,使用Cache可以减轻对后端系统的压力,所有Cache 可承担大部分热数据的读操作。当前用的比较多的是redis和memcache,redis比memcache有丰富的数据操作的API,redis对数据进行了持久化,而memcache没有这个功能,因此memcache更加适合在关系型数据库之上的数据的缓存。 3)搜索。搜索可以支持应用系统的按照关键词的检索,搜索提示,搜索排序等功能。开源 开源的企业级搜索引擎主要有lucene, sphinx,选择搜索引擎主要考虑以下三个方面: a)搜索引擎是否支持分布式的索引和搜索,来应对海量的数据,支持读写分离,提高 可用性 b)索引的实时性 c)搜索引擎的性能 Solr是基于Lucene开发的高性能的全文搜索服务器,满足以上三个方面的考虑,而且目前在企业中应用非常广泛。 应用层 应用层主要包括面向用户的应用,网站、APP等,还包括相关的业务处理的运算等。 1)负载均衡-反向代理。一个大型的平台包括很多个业务域,不同的业务域有不同的集群, 可以用DNS做域名解析的分发或轮询,DNS方式实现简单。但是因存在cache而缺乏灵活性;一般基于商用的硬件F5、NetScaler或者开源的软负载lvs在做分发,当然会采用做冗余(比如lvs+keepalived)的考虑,采取主备方式。Nginx是基于事件驱动的、异步非阻塞的架构、支持多进程的高并发的负载均衡器/反向代理软件,可用作反向代理的工具。

拥抱多核时代-GIS并行计算

告别免费午餐拥抱多核时代 —SuperMap空间分析并行计算实践Written by:Objects 2013-3-12 11:20:00 SuperMap空间分析并行计算实践 信息技术(InformationTechnologies,简称IT)领域,绝大多数定律都会随着技术的进步被人们淡忘,但有一些却可以经受住时间的考验,对信息技术发展带来持久而深远的影响,“摩尔定律”便是其中典型代表。“摩尔定律”支配下的信息技术,64位系统和多核计算日益普及,如何充分利用64位系统和多核环境下的计算资源成为系统设计和开发人员必 须面对的问题。地理信息系统(Geographic InformationSystem,简称GIS)中的空间分析服务具有算法逻辑复杂、数据规模庞大的特点,属于一种计算密集型服务。针对该特点,我们将并行计算技术引入传统空间分析计算过程,充分利用64位大内存和多核计算资源,大幅提升空间分析 计算性能。 一、摩尔定律下的免费午餐 摩尔定律是由英特尔创始人之一戈登·摩尔(Gordon Moore)提出。其内容为:当价格不变时,集成电路上可容纳的电子元件数目,约每隔24个月(现在普遍流行的说法是每隔18个月)便会增加一倍,性能也将提升一倍。换言之,相同性能的芯片产品,每隔18个月价钱就会降 低一半。该定律自1965年提出以来,始终较好的预测了半导体产业的

发展趋势,又由于半导体产业的巨大影响力,该定律辐射到包括微处理器、移动电话、个人电脑、互联网等在内的众多IT领域。几十年来,包括处理器速度、内存容量、网络传播速度等关键IT指标的发展大都符合摩尔定律的描述。我们有理由认为,摩尔定律在一定程度上揭示与展现了信息技术令人惊讶的进步速度。诞生于1946年的世界上第一台电子计算机,其计算速度是每秒5000次加减法运算,而今天个人电脑的计算速度是每秒500亿次浮点运算。三十五年前的英特尔8086处理器仅有三万个晶体管,而今天一个基于Nehalem架构的英特尔酷睿i7处理器集成了7.74亿个晶体管。

浅谈多核CPU、多线程与并行计算

0.前言 最近发觉自己博客转帖的太多,于是决定自己写一个原创的。笔者用过MPI 和C#线程池,参加过比赛,有所感受,将近一年来,对多线程编程兴趣一直不减,一直有所关注,决定写篇文章,算是对知识的总结吧。有说的不对的地方,欢迎各位大哥们指正:) 1.CPU发展趋势 核心数目依旧会越来越多,依据摩尔定律,由于单个核心性能提升有着严重的瓶颈问题,普通的桌面PC有望在2017年末2018年初达到24核心(或者16核32线程),我们如何来面对这突如其来的核心数目的增加?编程也要与时俱进。笔者斗胆预测,CPU各个核心之间的片内总线将会采用4路组相连:),因为全相连太过复杂,单总线又不够给力。而且应该是非对称多核处理器,可能其中会混杂几个DSP处理器或流处理器。 2.多线程与并行计算的区别 (1)多线程的作用不只是用作并行计算,他还有很多很有益的作用。 还在单核时代,多线程就有很广泛的应用,这时候多线程大多用于降低阻塞(意思是类似于 while(1) { if(flag==1) break;

sleep(1); } 这样的代码)带来的CPU资源闲置,注意这里没有浪费CPU资源,去掉sleep(1)就是纯浪费了。 阻塞在什么时候发生呢?一般是等待IO操作(磁盘,数据库,网络等等)。此时如果单线程,CPU会干转不干实事(与本程序无关的事情都算不干实事,因为执行其他程序对我来说没意义),效率低下(针对这个程序而言),例如一个IO操作要耗时10毫秒,CPU就会被阻塞接近10毫秒,这是何等的浪费啊!要知道CPU是数着纳秒过日子的。 所以这种耗时的IO操作就用一个线程Thread去代为执行,创建这个线程的函数(代码)部分不会被IO操作阻塞,继续干这个程序中其他的事情,而不是干等待(或者去执行其他程序)。 同样在这个单核时代,多线程的这个消除阻塞的作用还可以叫做“并发”,这和并行是有着本质的不同的。并发是“伪并行”,看似并行,而实际上还是一个CPU在执行一切事物,只是切换的太快,我们没法察觉罢了。例如基于UI 的程序(俗话说就是图形界面),如果你点一个按钮触发的事件需要执行10秒钟,那么这个程序就会假死,因为程序在忙着执行,没空搭理用户的其他操作;而如果你把这个按钮触发的函数赋给一个线程,然后启动线程去执行,那么程序就不会假死,继续响应用户的其他操作。但是,随之而来的就是线程的互斥和同步、死锁等问题,详细见有关文献。 现在是多核时代了,这种线程的互斥和同步问题是更加严峻的,单核时代大都算并发,多核时代真的就大为不同,为什么呢?具体细节请参考有关文献。我

多核CPU体系结构

1.3.2 片上多核处理器体系结构 片上多核处理器(Chip Multi-Processor,CMP)就是将多个计算内核集成在一个处理器芯片中,从而提高计算能力。 按计算内核的对等与否,CMP可分为同构多核和异构多核。计算内核相同,地位对等的称为同构多核,现在Intel和AMD主推的双核处理器,就是同构的双核处理器。计算内核不同,地位不对等的称为异构多核,异构多核多采用“主处理核+协处理核”的设计,IBM、索尼和东芝等联手设计推出的Cell处理器正是这种异构架构的典范。处理核本身的结构,关系到整个芯片的面积、功耗和性能。怎样继承和发展传统处理器的成果,直接影响多核的性能和实现周期。同时,根据Amdahl定理,程序的加速比受制于串行部分的比例和性能,所以,从理论上来看似乎异构微处理器的结构具有更好的性能。 CMP处理器的各CPU核心执行的程序之间需要进行数据的共享与同步,因此其硬件结构必须支持核间通信。高效的通信机制是CMP处理器高性能的重要保障,目前比较主流的片上高效通信机制有两种,一种是基于总线共享的Cache结构,一种是基于片上的互连结构。 总线共享Cache结构是指每个CPU内核拥有共享的二级或三级Cache,用于保存比较常用的数据,并通过连接核心的总线进行通信。这种系统的优点是结构简单,通信速度高,缺点是基于总线的结构可扩展性较差。 基于片上互连的结构是指每个CPU核心具有独立的处理单元和Cache,各个CPU核心通过交叉开关或片上网络等方式连接在一起。各个CPU核心间通过消息通信。这种结构的优点是可扩展性好,数据带宽有保证;缺点是硬件结构复杂,且软件改动较大。 如何有效地利用多核技术,对于多核平台上的应用程序员来说是个首要问题。客户端应用程序开发者多年来一直停留在单线程世界,生产所谓的“顺序软件”,但是多核时代到来的结果是软件开发者必须找出新的开发软件的方法,选择程序执行模型。程序执行模型的适用性决定多核处理器能否以最低的代价提供最高的性能。程序执行模型是编译器设计人员

主流分布式系统架构分析

主流分布式系统架构分析 主流分布式---系统架构分析

目录 一、前言 (3) 二、SOA架构解析 (3) 三、微服务( Microservices )架构解析 (7) 四、SOA和微服务架构的差别 (9) 五、服务网格( Service Mesh )架构解析 (9) 六、分布式架构的基本理论 ......................................................................................... 1 1 七、分布式架构下的高可用设计 (15) 八、总结 .......................................................................................................... 1 9

、八、 、 》 本文我们来聊一聊目前主流的分布式架构和分布式架构中常见理论以及如何才能设计出高可用的分布式架构好了。分布式架构中,SOA和微服务架构是最常见两种分布式架构,而且目前服务网格的 概念也越来越火了。那我们本文就先从这些常见架构开始。 、SOA架构解析 SOA全称是:Service Oriented Architecture ,中文释义为"面向服务的架构",它是一种设计理念,其中包含多个服务,服务之间通过相互依赖最终提供一系列完整的功能。各个服务通常以独立 的形式部署运行,服务之间通过网络进行调用。架构图如下:

Appl 跟SOA 相提并论的还有一个 ESB (企业服务总线),简单来说ESB 就是一根管道,用来连接各个服 务节点。 ESB 的存在是为了集成基于不同协议的不同服务, ESB 做了消息的转化、解释以及路由的工 作,以此来让不 同的服务互联互通;随着我们业务的越来越复杂, 会发现服务越来越多,SOA 架构下, 它们的调用关系会变成如下形式: App 2 App 6 App 3 App 4

MSC-MARC单机多核并行计算示例

MSC MARC2011单机多核并行计算示例 并行计算可以有效利用本地或者网络计算机计算资源,提高计算效率,特别是针对一些计算规模相对较大的问题。本文作为MARC单机多核并行计算的一个示例。 测试平台:WIN7 64Bit MARC2011 0、提前设置 将电脑名字最好改为administrator,或者通过修改电脑名称,会使user和display后面的名子保持一致。 改电脑名字: 计算机右键—属性—更改设置—更改—计算机名

1、启动多核运算 打开dos界面输入 (1)D:按enter回车键(d为marc所在盘) (2)cd+空格+ D:\MSC.Software\Marc\2010\marc2010\intelmpi\win64\bin按enter回车键 (3)ismpd+空格+ –install 按enter回车键 (4)出现上图中的

关闭窗口。 2、基本配置 (1)在MARC安装目录下的intelmpi\win64\bin目录(32Bit计算机选择win32文件夹),运行wmpiregister.exe. (2)输入用户名(登陆windows的账户名,通常为administrator)及密码(若密码为空,需要重新设置一个密码),点击register按钮,下面的对话框中会出现“Password encrypted into the Registry”信息。 (3)运行ismpd.exe,或者到dos提示符下,进入该目录,运行ismpd -install。 假如提示都正常的话,到此即完成进行并行计算的前提条件了。 3、测试 (1)在MARC安装目录下的intelmpi\win64\bin目录(32Bit计算机选择win32文件夹),运行wmpiconfig.exe (2)依次点击下面1和2.

多核多线程期末考试复习原题

多核编程 一、不定项选择(每题4分) 计算机的硬件工艺发展顺序是:(A) A.电子管数字计算机、晶体管数字计算机、集成电路数字计算机、大规模集成电路数字计算机 B.晶体管数字计算机、电子管数字计算机、集成电路数字计算机、大规模集成电路数字计算机 C.电子管数字计算机、集成电路数字计算机、大规模集成电路数字计算机、晶体管数字计算机 D.电子管数字计算机、集成电路数字计算机、晶体管数字计算机、大规模集成电路数字计算机 下面关于Intel 8086芯片于8088芯片的描述,不正确的是:(D) A. 8086是第一个16位的微处理器。 B. 8088是第一个16位的微处理器。 C. 8086每周期能传送或接收16位数据 D. 8088每周期能传送或接收16位数据 针对内存的速度瓶颈,英特尔为80386设计了_______来解决这个速度瓶颈:(B) A. 虚拟86 B. 高速缓存(Cache) C. 浮点运算单元 D. 多媒体扩展指令集 对一个具体的问题做性能优化时,可以同时在这多个层次上考虑可能的优化手段,一般说来:(AB) A. 在越高的层次上进行优化,可能获得的效益越高 B. 在越低的层次上进行优化工作则相对越容易实现 C. 在越高的层次上进行优化,可能获得的效益越低 D. 在越低的层次上进行优化工作则相对越难于实现 VTune性能分析器中的取样功能有哪几种方式?(AC) A. 基于时间取样 B. 随机取样 C. 基于事件取样 D. 线性取样 Intel调优助手能够给我们自动推荐代码改进办法,主要有以下哪些方面?(BCD) A. 算法自动改进 B. 处理器瓶颈以及改进 C. 取样向导增强 D. 超线程 使用-O3编译选项所得的程序,执行效率比使用-O2编译选项所得的程序_______。(D) A. 高 B. 低 C. 一样 D. 不一定 对于函数调用的边际效应,以下表述不正确的是:(B)

多核多线程

多核多线程复习资料 1. 什么是CMP 单芯片多处理器(Chip Multiprocessors,简称CMP),将大规模并行处理器中的SMP (对称多处理器)集成到同一芯片内,各个理器并行执行不同的进程。 2 .并行计算的菲林分类 单指令流单数据流(Si ngle In struction stream Si ngle Data stream, SISD) 单指令流多数据流(Single Instruction stream Multiple Data stream, SIMD ) 多指令流单数据流( Multiple Instruction stream Single Data stream, MISD ) 多指令流多数据流( Multiple In struction stream Multiple Data stream, MIMD ) 3?进程和线程的区别 进程是正在被执行的程序,是系统进行资源分配和调度的一个独立单位,是一个动态的概念。线程是程序的有序控制流,是被执行的指令序列。 线程属于进程,线程运行在进程空间内。 4?线程的特点 线程因创建而产生,因调度而处于运行状态,因等待资源或事件而处于阻塞状态。 5?分解模式 1?任务分解---园丁修理草坪2?数据分解---矩阵相乘&园丁修理草坪 3?数据流分解---园丁修理草坪 将一个复杂的过程划分成多个任务,这些任务按照某种顺序执行,这种分解方式成为数据流 分解。 ---要求:理解,分析,举例 总结:任务分解下分工工作,相互配合;数据分解模式下分工明确,互不干扰;数据流分解模式下前一个工作是后一个工作开始的前提。 6 ?理解处理任务之间的数据依赖关系的战略有什么? 变量本地化:最简单的解决方案就是创建,初始化,并使用局部变量 改造变量(把共享变量改造成不共享的变量) 规约:创建线程1和线程2的局部变量suml和sum2,然后suml初始化,并计算循环的奇数迭代,sum2初始化和计算循环的偶数迭代。每个线程都独立计算其迭代。在循环结束时,主线程可以组合规约变量的总和( sum1+ sum2 )。 7 ?常用的同步机制

相关文档
最新文档