江西省信丰中学高三数学 三角法与向量法解平面几何题复习试题

江西省信丰中学高三数学 三角法与向量法解平面几何题复习试题
江西省信丰中学高三数学 三角法与向量法解平面几何题复习试题

第八讲三角法与向量法解平面几何题

相关知识:在中,R为外接圆半径,为内切圆半径,,则

1,正弦定理:,

2,余弦定理:,,. 3,射影定理:,,.

4,面积:

= =(海伦公式)

.

A类例题

例1.在ΔABC中,已知b=asinC ,c=asin(900-B),试判断ΔABC的形状。

例1.解由条件c = asin(900 - B) = acosB =

.

ΔABC是等腰直角三角形。

例2.(1)在△ABC中,已知cosA =,sinB =,则cosC的值为()A.B.C.D.

例2.解∵C = (A + B),∴cosC = c os(A + B),又∵A (0, ),∴sinA = ,而sinB =

显然sinA > sinB ,∴A > B , ∵A为锐角, ∴B必为锐角, ∴cosB =

∴cosC = cos(A + B) = sinAsinB cosAcosB =.选A.

说明△ABC中,sinA > sinB A > B . 根据这一充要条件可判定B必为锐角。

(2)在Rt△ABC中,C=90°,A=θ,外接圆半径为R ,内切圆半径为r ,

当θ为时,的值最小。

解答由题意,R=,r=.(其中a、b、c为Rt△ABC的三条边长,c为斜边长)∴===.

∵ sin(α+)≤1,∴≥=+1.

当且仅当θ=时,的最小值为+1。

例3 在△ABC中,=,求证:B、A、C成等差数列。

例3证明由条件得=.∵sin(A+B)=sinC,

∴sin(A-B)=sinC-sinB,∴sinB=sin(A+B)-sin(A-B)=2cosAsinB.

∵sinB≠0,∴cosA=,A=60°.∴B、A、C成等差数列。

例4 ABC中,三个内角A、B、C的对边分别为,若

,求角C的大小。

例4解由=cosB,故B=,A+C=.

由正弦定理有:,

又sinA=sin(-C)=,于是

sinC=cosC,tanC=1, C=。

情景再现

1 △ABC的三个内角A、B、C的对边分别是a、b、c,如果a2=b(b+c),求证:A=2B. 2.ABC中,内角A、B、C的对边分别为a、b、c,已知a、b、c成等比数列,且

(1)求的值

(2)设,求的值

3 已知A、B、C是△ABC的三个内角,y=cotA+.

(1)若任意交换两个角的位置,y的值是否变化?试证明你的结论.(2)求y的最小值. B类例题

例5 如图,某园林单位准备绿化一块直径为BC的半圆形空地,△ABC外的地方种草,△ABC 的内接正方形PQRS为一水池,其余的地方种花.若BC=a,∠ABC=,设△ABC的面积为S1,正方形的面积为S2.

(1)用a,表示S1和S2;

(2)当a固定,变化时,求取最小值时的角。

例5解(1)

设正方形边长为,则

(2)当固定,变化时,

令,用导数知识可以证明:函数在是减函数,于是当时,取最小值,此时。

例6如图,A、B是一矩OEFG边界上不同的两点,且∠AOB=45°,OE=1,EF=,

设∠AOE=α.

(1)写出△AOB的面积关于α的函数关系式f(α);

(2)写出函数f(x)的取值范围。

例6解:(1)∵OE=1,EF=

∴∠EOF=60°

当α∈[0,15°]时,△AOB的两顶点A、B在E、F上,

且AE=tanα,BE=tan(45°+α)

∴f(α)=S△AOB=*tan(45°+α)-tanα+

==

当a∈(15°,45°]时,A点在EF上,B点在FG上,且OA=,OB=

∴=S△AOB=OA·OB·sin45°=··sin45°=

综上得:f(α)=

(2)由(1)得:当α∈[0,]时

f(α)= ∈[,-1]

且当α=0时,f(α)min=;α=时,f(α)max=-1;

当α∈时,-≤2α-≤,f(α)=∈[-,]

且当α=时,f(α) min=-;当α=时,f(α) max=所以f(x) ∈[,]。

20高考数学平面向量的解题技巧

第二讲平面向量的解题技巧 【命题趋向】 由2007年高考题分析可知: 1.这部分内容高考中所占分数一般在10分左右. 2.题目类型为一个选择或填空题,一个与其他知识综合的解答题. 3.考查内容以向量的概念、运算、数量积和模的运算为主. 【考点透视】 “平面向量”是高中新课程新增加的内容之一,高考每年都考,题型主要有选择题、填空题,也可以与其他知识相结合在解答题中出现,试题多以低、中档题为主. 透析高考试题,知命题热点为: 1.向量的概念,几何表示,向量的加法、减法,实数与向量的积. 2.平面向量的坐标运算,平面向量的数量积及其几何意义. 3.两非零向量平行、垂直的充要条件. 4.图形平移、线段的定比分点坐标公式. 5.由于向量具有“数”与“形”双重身份,加之向量的工具性作用,向量经常与数列、三角、解析几何、立体几何等知识相结合,综合解决三角函数的化简、求值及三角形中的有关问题,处理有关长度、夹角、垂直与平行等问题以及圆锥曲线中的典型问题等. 6.利用化归思想处理共线、平行、垂直问题向向量的坐标运算方面转化,向量模的运算转化为向量的运算等;利用数形结合思想将几何问题代数化,通过代数运算解决几何问题.【例题解析】 1. 向量的概念,向量的基本运算 (1)理解向量的概念,掌握向量的几何意义,了解共线向量的概念. (2)掌握向量的加法和减法. (3)掌握实数与向量的积,理解两个向量共线的充要条件. (4)了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算.

(5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件. (6)掌握平面两点间的距离公式. 例1(2007年北京卷理)已知O 是ABC △所在平面内一点,D 为BC 边中点,且 2OA OB OC ++=0u u u r u u u r u u u r ,那么( ) A.AO OD =u u u r u u u r B.2AO OD =u u u r u u u r C.3AO OD =u u u r u u u r D.2AO OD =u u u r u u u r 命题意图:本题考查能够结合图形进行向量计算的能力. 解: 22()(,22.OA OB OC OA DB OD DC OD DB DC OA OD AO OD ∴∴++=++++=-+==)=0,0,u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r 故选A . 例2.(2006年安徽卷)在ABCD Y 中,,,3AB a AD b AN NC ===u u u r r u u u r r u u u r u u u r ,M 为BC 的中点,则MN =u u u u r ______.(用a b r r 、表示) 命题意图: 本题主要考查向量的加法和减法,以及实数与向量的积. 解:343A =3()AN NC AN C a b ==+u u u r u u u r u u u r u u u r r r 由得,12 AM a b =+u u u u r r r , 所以,3111()()4 2 4 4 MN a b a b a b =+-+=-+u u u u r r r r r r r . 例3.(2006年广东卷)如图1所示,D 是△ABC 的边AB 上的中点,则向量 =CD ( ) (A )BA BC 2 1+- (B ) BA BC 2 1-- (C ) BA BC 2 1- (D )BA BC 2 1+ 命题意图: 本题主要考查向量的加法和减法运算能力. 解:BA BC BD CB CD 2 1+-=+=,故选A. 例4. ( 2006年重庆卷)与向量a r =71,,22b ? ?= ???r ?? ? ??27,21的夹解相等,且模为1的向量是 ( ) (A) ?? ?- ??53,5 4 (B) ?? ?- ??53,5 4或?? ? ??-53,54 (C )?? ?- ??31,3 22 (D )?? ?- ??31,3 22或?? ? ? ?- 31,3 22 命题意图: 本题主要考查平面向量的坐标运算和用平面向量处理有关角度的问题. 解:设所求平面向量为,c r 由433,,, 1. 555c c ???? =-= ? ?????r 4或-时5 另一方面,当222274134312525,,cos ,. 55271432255a c c a c a c ?? ?+?- ?????? =-=== ????????????+++- ? ? ? ?????????r r r r r r r 时

(完整版)运用向量法证明几个数学公式

运用向量法证明几个数学 向量法是几何问题代数化的一种重要方法,运用向量法可以证明一些三角或者几何公式,下面仅举几例予以说明。 例1、用向量证明和差化积公式 cos cos 2cos cos 22αβ αβ αβ+-+= sin sin 2sin cos 22αβαβ αβ+-+= 如图,作单位圆,并任作两个向量 (cos ,sin )OP αα=u u u r ,(cos ,sin )OQ ββ=u u u r 取 ?PQ 的中点M ,则 (cos ,sin )2 2 M αβαβ ++ 连接PQ 、OM ,设它们相交于点N ,则点N 为线段PQ 的中点,且ON PQ ⊥,∠Mo x 和∠MOQ 分别为,22αβαβ +-,所以||||cos cos 22 ON OM αβαβ --==u u u r u u u u r ,所以点N 的坐标为(||cos ,||sin ) 22 ON ON αβαβ ++u u u r u u u r ,即(cos cos ,cos sin )2222N αβαβαβαβ-+-+ 又11 ()(cos cos ,sin sin )22ON OP OQ αβαβ=+=++u u u r u u u r u u u r 所以(cos cos ,cos sin )2222αβαβαβαβ-+-+1 (cos cos ,sin sin )2 αβαβ=++ 即cos cos 2cos cos 22 αβαβ αβ+-+= sin sin 2sin cos 22 αβαβαβ+-+= 在上面的基础上,还可以证明另外两个和差化积公式:

sin sin 2cos sin 22αβ αβ αβ+--= cos cos 2sin sin 2 2 αβ αβ αβ+--=- 如图,过P 点作y 轴的平行线,过Q 作x 轴的平行线相交于点F ,那么||sin sin PF αβ=-u u u r ,||cos cos FQ βα=-u u u r , ∠ QPF = ∠ QNE = ∠ Mox = 2 αβ +, ||2||2||sin 2sin 22 PQ NQ OQ αβαβ --===u u u r u u u r u u u r 所以||||cos ,||||sin PF PQ QPF FQ PQ QPF =∠=∠u u u r u u u r u u u r u u u r 即sin sin 2cos sin 22αβ αβ αβ+--= cos cos 2sin sin 22 αβαβ αβ+--=- 例2、用向量解决平行四边形与三角形面积的计算公式 如图,在直角坐标系中,已知12(,)OA a a a ==u u u r r ,12(,)OB b b b ==u u u r r ,以线段OA 、OB 为邻边作平行四边形OACB ,那么平行四边形的面积1221||S a b a b =-,三角形OAB 的面积 12211 ||2 OAB S a b a b ?= - 证明:设,a b α<>=r r ,那么可以得出 ||||sin OACB S a b α=r r ,由于cos ||||a b a b α?=r r r r 所以222sin 1cos 1()|||| a b a b αα?=-=-r r r r 222222 1122122111221221222222222 222121212121212()2()1()()()()()()a b a b a b a b a b a b a b a b a a b b a a b b a a b b ++--=-==++++++ 所以sin α=

高中平面解析几何知识点总结

高中平面解析几何知识点总结 一.直线部分 1.直线的倾斜角与斜率: (1)直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为α叫做直线的倾斜角. 倾斜角)180,0[?∈α,?=90α斜率不存在. (2)直线的斜率: αtan ),(21121 2=≠--= k x x x x y y k .两点坐标为111(,)P x y 、222(,)P x y . 2.直线方程的五种形式: (1)点斜式:)(11x x k y y -=- (直线l 过点),(111y x P ,且斜率为k ). 注:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =. (2)斜截式:b kx y += (b 为直线l 在y 轴上的截距). (3)两点式:121121x x x x y y y y --= -- (12y y ≠,12x x ≠). 注:① 不能表示与x 轴和y 轴垂直的直线; ② 方程形式为:0))(())((112112=-----x x y y y y x x 时,方程可以表示任意直线. (4)截距式:1 =+b y a x (b a ,分别为x 轴y 轴上的截距,且0,0≠≠b a ). 注:不能表示与x 轴垂直的直线,也不能表示与y 轴垂直的直线,特别是不能表示过原点的直线. (5)一般式:0=++C By Ax (其中A 、B 不同时为0). 一般式化为斜截式: B C x B A y - - =,即,直线的斜率: B A k -=. 注:(1)已知直线纵截距b ,常设其方程为y kx b =+或0x =. 已知直线横截距0x ,常设其方程为0x my x =+(直线斜率k 存在时,m 为k 的倒数)或0y =. 已知直线过点00(,)x y ,常设其方程为00()y k x x y =-+或0x x =. (2)解析几何中研究两条直线位置关系时,两条直线有可能重合;立体几何中两条直 线一般不重合.

立体几何中的向量方法(一)——证明平行与垂直

立体几何中的向量方法(一)——证明平行与垂直 1.直线的方向向量与平面的法向量的确定 (1)直线的方向向量:在直线上任取一非零向量作为它的方向向量. (2)平面的法向量可利用方程组求出:设a ,b 是平面α两不共线向量,n 为平面α的法向量,则求法向量的方程组为???? ? n ·a =0,n ·b =0. 2.用向量证明空间中的平行关系 (1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)?v 1∥v 2. (2)设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ?α?存在两个实数x ,y ,使v =x v 1+y v 2. (3)设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ?α?v ⊥u . (4)设平面α和β的法向量分别为u 1,u 2,则α∥β?u 1 ∥u 2. 3.用向量证明空间中的垂直关系 (1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2?v 1⊥v 2?v 1·v 2=0. (2)设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α?v ∥u . (3)设平面α和β的法向量分别为u 1和u 2,则α⊥β?u 1⊥u 2?u 1·u 2=0. 【思考辨析】 判断下面结论是否正确(请在括号中打“√”或“×”) (1)直线的方向向量是唯一确定的.( ) (2)平面的单位法向量是唯一确定的.( ) (3)若两平面的法向量平行,则两平面平行.( ) (4)若两直线的方向向量不平行,则两直线不平行.( ) (5)若a ∥b ,则a 所在直线与b 所在直线平行.( ) (6)若空间向量a 平行于平面α,则a 所在直线与平面α平行.( ) 1.下列各组向量中不平行的是( )

【精品】2020年高考数学总复习专题讲义★☆专题5.2 解析几何与平面向量相结合问题(原卷版)

【精品】2020年高考数学总复习专题讲义★☆ 一.方法综述 向量具有代数与几何形式的双重身份,平面向量与解析几何的交汇是新课程高考命题改革的发展方向和必然趋势. 平面向量与解析几何的结合通常涉及到夹角、平行、垂直、共线、轨迹等问题的处理,目标是将几何问题坐标化、符号化、数量化,从而将推理转化为运算.或者考虑向量运算的几何意义,利用其几何意义解决有关问题. 二.解题策略 类型一 利用向量垂直的充要条件,化解解析几何中的垂直问题 【例1】【河北省石家庄市2019届高三3月检测】已知双曲线的左,右焦点分别是,,若双 曲线右支上存在一点,使(为坐标原点),且,则实数的值为( ) A . B . C . D . 【指点迷津】由向量加法法则结合三角形中位线性质,可得△MF 1F 2是以为F 1F 2斜边的直角三角形.由此设 运用勾股定理算出 与 ,得到结论. 【举一反三】 1.【山东省济南市2019届高三3月模拟】设,分别是椭圆的左、右焦点,过 的直线交椭圆于,两点,且 , ,则椭圆的离心率为( ) A . B . C . D . 2.已知双曲线2222:1(0,0)x y E a b a b -=>>的右顶点为A ,抛物线2 :8C y ax =的焦点为F .若在E 的渐近 线上存在点P ,使得AP FP ⊥u u u r u u u r ,则E 的离心率的取值范围是 ( ) A . ()1,2 B . 321, 4? ?? C . 324?? +∞??? ?? D . ()2,+∞ 【指点迷津】本题主要考查了双曲线的基本性质的应用,抛物线基本性质的应用,向量数量积坐标运算以

立体几何中的向量方法

立体几何中的向量方法(二)——求空间角和距离 1. 空间向量与空间角的关系 (1)设异面直线l 1,l 2的方向向量分别为m 1,m 2,则l 1与l 2所成的角θ满足cos θ=|cos 〈m 1,m 2〉|. (2)设直线l 的方向向量和平面α的法向量分别为m ,n ,则直线l 与平面α所成角θ满足sin θ=|cos 〈m ,n 〉|. (3)求二面角的大小 1°如图①,AB 、CD 是二面角α—l —β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB →,CD →〉. 2°如图②③,n 1,n 2分别是二面角α—l —β的两个半平面α,β的法向量,则二面角的大小θ满足cos θ=cos 〈n 1,n 2〉或-cos 〈n 1,n 2〉. 2. 点面距的求法 如图,设AB 为平面α的一条斜线段,n 为平面α的法向量,则B 到 平面α的距离d =|AB → ·n | |n | . 1. 判断下面结论是否正确(请在括号中打“√”或“×”)

(1)两直线的方向向量所成的角就是两条直线所成的角. ( × ) (2)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角. ( × ) (3)两个平面的法向量所成的角是这两个平面所成的角. ( × ) (4)两异面直线夹角的范围是(0,π2],直线与平面所成角的范围是[0,π 2],二面角的 范围是[0,π]. ( √ ) (5)直线l 的方向向量与平面α的法向量夹角为120°,则l 和α所成角为30°. ( √ ) (6)若二面角α-a -β的两个半平面α、β的法向量n 1,n 2所成角为θ,则二面角α- a -β的大小是π-θ. ( × ) 2. 已知二面角α-l -β的大小是π 3 ,m ,n 是异面直线,且m ⊥α,n ⊥β,则m ,n 所成 的角为 ( ) A.2π3 B.π 3 C.π 2 D. π6 答案 B 解析 ∵m ⊥α,n ⊥β, ∴异面直线m ,n 所成的角的补角与二面角α-l -β互补. 又∵异面直线所成角的范围为(0,π 2], ∴m ,n 所成的角为π 3 . 3. 在空间直角坐标系Oxyz 中,平面OAB 的一个法向量为n =(2,-2,1),已知点P (-1,3,2),

高考数学解析几何中常用到的平面几何关系

解析几何题中用到的几何关系 一、常用到的一些结论(初中) 1 定理三角形两边的和大于第三边 2 推论三角形两边的差小于第三边 3 三角形内角和定理三角形三个内角的和等于180° 4 定理在角的平分线上的点到这个角的两边的距离相等 5 定理到一个角的两边的距离相同的点,在这个角的平分线上 6 等腰三角形的顶角平分线、底边上的中线和高互相重合 7 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 8 直角三角形斜边上的中线等于斜边上的一半 9 定理线段垂直平分线上的点和这条线段两个端点的距离相等 10 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上11勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c2 12定理四边形的内角和等于360° 13平行四边形性质定理平行四边形的对角线互相平分

14矩形性质定理矩形的对角线相等 15矩形判定定理对角线相等的平行四边形是矩形 16菱形性质定理菱形的对角线互相垂直,并且每一条对角线平分一组对角17正方形性质定理2 正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角 18等腰梯形性质定理等腰梯形在同一底上的两个角相等 19等腰梯形的两条对角线相等 20平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等 21 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半 22 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2 S=L×h 23 (1)比例的基本性质如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d 24 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d 25 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

立体几何中的向量方法总结

立体几何中的向量方法基础篇一(几何证明) 一.求直线方向向量 1.已知()()4,2,2,2,1,1B A -且),,6(y x a =为直线AB 的方向向量,求y x ,。 二.平面的法向量 2.在空间中,已知()()()0,1,1,1,1,0,1,0,1C B A ,求平面ABC 的一个法向量。 3.如图,在四棱锥ABCD P -中,底面ABCD 为正方形, 2,==⊥DC PD ABCD PD 平面,E 为PC 中点 (1)分别写出平面PDC ABCD PAD ,,的一个法向量; (2)求平面EDB 的一个法向量; (3)求平面ADE 的一个法向量。 三.向量法证明空间平行与垂直 1.如图,已知正方形ABCD 和矩形ACEF 所在的平面互相垂直,M AF AB ,1,2== 为EF 的中点,求 证:BDE AM 平面//

2. 如图,正方体''''D C B A ABCD -中,F E ,分别为CD BB ,'的中点,求证:ADE F D 平面⊥'。 3. 如图,在四棱锥ABCD E -中,BCE CD BCE AB 平面平面⊥⊥, 0120,22=∠====BCE CD CE BC AB ,求证:平面ABE ADE 平面⊥。 巩固练习: 1. 如图,在正方体''''D C B A ABCD -中,P 是'DD 的中点,O 是底面ABCD 的中心, (1)求证:O B '为平面PAC 的一个法向量;(2)求平面CD B A ''的一个法向量。

2. 如图,在直棱柱'''C B A ABC -中,4',5,4,3====AA AB BC AC (1)求证:'BC AC ⊥ (2)在AB 上是否存在点D ,使得'//'CDB AC 平面,若存在,确定D 点位置,若不存在,说明理由。 3. 如图,已知长方体''''D C B A ABCD -中,2==BC AB ,E AA ,4'=为'CC 的上的点,C B BE '⊥, 求证:BED C A 平面⊥' 4. 在三棱柱'''C B A ABC -中,1',2,,'===⊥⊥AA BC AB BC AB ABC AA 平面,E 为'BB 的中点,求证:C C AA AEC '''平面平面⊥

立体几何中的向量方法—证明平行和垂直

2017届高二数学导学案编写 审核 审批 课题:立体几何中的向量方法—证明平行和垂直 第 周 第 课时 班 组 组评 姓名 师评 【使用说明】 1、依据学习目标。课前认真预习,完成自主学习内容; 2、课上思考,积极讨论,大胆展示,充分发挥小组合作优势,解决疑难问题; 3、当堂完成课堂检测题目; 4、★的多少代表题目的难以程度。★越多说明试题越难。不同层次学生选择相应题目完成 【学习目标】1.理解空间向量的概念;掌握空间向量的加法、减法和数乘; 2.了解空间向量的基本定理; 3.掌握空间向量的数量积的定义及其性质;理解空间向量的夹角的概念;掌握空间向量的数量积的概念、性质和运算律;了解空间向量的数量积的几何意义;能用向量的数量积判断向量的共线与垂直。 【教学重点】理解空间向量的概念;掌握空间向量的运算方法 【教学难点】 理解空间向量的概念;掌握空间向量的运算方法 【学习方法】学案导学法,合作探究法。 【自主学习·梳理基础】 1、 考点深度剖析 利用空间向量证明平行或垂直是高考的热点,内容以解答题为主,主要围绕考查空间直角坐标系的建立、空间向量的坐标运算能力和分析解决问题的能力命制试题,以多面体为载体、证明线面(面面)的平行(垂直)关系是主要命题方向. 2.【课本回眸】 1.直线的方向向量与平面的法向量的确定 ①直线的方向向量:l 是空间一直线,A ,B 是直线l 上任意两点,则称AB → 为直线l 的方向向量,与AB → 平行的任意非零向量也是直线l 的方向向量. ②平面的法向量可利用方程组求出:设a ,b 是平面α内两不共线向量,n 为平面α的法向量, 则求法向量的方程组为??? ?? n·a =0, n·b =0. 2.用向量证明空间中的平行关系 ①设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)?v 1∥v 2. ②设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ?α?存在两个实数x ,y ,使v =xv 1+yv 2. ③设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ?α?v ⊥u . ④设平面α和β的法向量分别为u 1,u 2,则α∥β?u 1∥u 2. 3. 用向量证明空间中的垂直关系 ①设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2?v 1⊥v 2?v 1·v 2=0. ②设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α?v∥u . ③设平面α和β的法向量分别为u 1和u 2,则α⊥β?u 1⊥u 2?u 1·u 2=0. 4.共线与垂直的坐标表示 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a ∥b ?a =λb ?a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R), a ⊥ b ?a·b =0?a 1b 1+a 2b 2+a 3b 3=0(a ,b 均为非零向量). 【课堂合作探究】 探究一:如图,在棱长为2的正方体1111D C B A ABCD -中, N M F E ,,,分别是棱1111,,,D A B A AD AB 的中点,点Q P ,分别在 棱 1DD ,1BB 上移动,且()20<<==λλBQ DP . 当1=λ时,证明:直线//1BC 平面EFPQ . 探究二:如图所示,在四棱锥P -ABCD 中,PA ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD ,∠ABC =60°,PA =AB =BC ,E 是PC 的中点.证明: (1)AE ⊥CD ; (2)PD ⊥平面ABE .

平面解析几何中的对称问题

平面解析几何中的对称问题 新林 市第一中学 515031 对称性是数学美的重要表现形式之一,在数学学科中对称问题无处不在。在代数、三角中有对称式问题;在立体几何中有中对称问题对称体;在解析几何中有图象的对称问题。深入地研究数学中的对称问题有助于培养学生分析解决问题的能力,有助于提高学生的数学素质。 在平面解析几何中,对称问题的存在尤其普遍。平面解析几何中的对称问题在高考试题中更是屡见不鲜。本文将对平面解析几何中的几种常见对称问题作一些肤浅的探讨,以求斧正。 平面解析几何中的对称问题主要有如下几种:点关于点的对称问题简称点点对称;点关于直线的对称问题简称点线对称;曲线关于点的对称问题简称线点对称;曲线关于直线的对称问题简称线线对称。 一、点点对称 定理1平面上一点),(y x M 关于点),(00y x P 的对称点为)2,2(00' y y x x M --, 特别地,点 ),(y x M 关于点)0,0(P 的对称点为),('y x M --。 证明:显然 ),(00y x P 为线段'MM 的中点,设),('''y x M ,由中点坐标公式有: ??? ????+=+=22' 0'0y y y x x x ,即???-=-=y y y x x x 0' 0'22 ,故)2,2(00' y y x x M --。 例1 若点 A 关于点)1,2(- B 的对称点为)2,4( C ,求点A 的坐标。 解:设 ),(y x A ,由定理1有)212,4)2(2(-?--?A ,即)0,8(-A 。 二、点线对称 定理1平面上一点),(00y x M 关于直线)0(,0:2 2 ≠+=++B A C By Ax l 的对称点为: -+++- 022000',)(2(y B A C By Ax A x M )) (22 200B A C By Ax A +++。 证明:先证明一般情况,即0,0≠≠ B A 的情况。 ),(' y x ,线段'MM 交直线l 于点 与点),('y x M 关于直线l 对称,故),(Q Q y x Q 为线段' MM 的中点且l MM ⊥', X 于是有: ),(y x M

平面向量的解题技巧

第四讲平面向量的解题技巧 【命题趋向】由2007年高考题分析可知: 1.这部分内容高考中所占分数一般在10分左右. 2.题目类型为一个选择或填空题,一个与其他知识综合的解答题. 3.考查内容以向量的概念、运算、数量积和模的运算为主. 【考点透视】“平面向量”是高中新课程新增加的内容之一,高考每年都考,题型主要有选择题、填空题,也可以与其他知识相结合在解答题中出现,试题多以低、中档题为主. 透析高考试题,知命题热点为: 1.向量的概念,几何表示,向量的加法、减法,实数与向量的积. 2.平面向量的坐标运算,平面向量的数量积及其几何意义. 3.两非零向量平行、垂直的充要条件. 4.图形平移、线段的定比分点坐标公式. 5.由于向量具有“数”与“形”双重身份,加之向量的工具性作用,向量经常与数列、三角、解析几何、立体几何等知识相结合,综合解决三角函数的化简、求值及三角形中的有关问题,处理有关长度、夹角、垂直与平行等问题以及圆锥曲线中的典型问题等. 6.利用化归思想处理共线、平行、垂直问题向向量的坐标运算方面转化,向量模的运算转化为向量的运算等;利用数形结合思想将几何问题代数化,通过代数运算解决几何问题. 【例题解析】 1. 向量的概念,向量的基本运算 (1)理解向量的概念,掌握向量的几何意义,了解共线向量的概念. (2)掌握向量的加法和减法. (3)掌握实数与向量的积,理解两个向量共线的充要条件. (4)了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算. (5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题, 掌握向量垂直的条件. (6)掌握平面两点间的距离公式. 例1(2007年北京卷理)已知O是ABC △所在平面内一点,D为BC边中点,且2OA OB OC ++=0,那么()A.AO OD =D.2AO OD AO OD = AO OD =B.2 =C.3

三角法与向量法解平面几何题(正)

第27讲 三角法与向量法解平面几何题 相关知识 在ABC ?中,R 为外接圆半径,r 为内切圆半径,2 a b c p ++=,则 1,正弦定理: 2sin sin sin a b c R A B C ===, 2,余弦定理:2 2 2 2cos a b c bc A =+-,2 2 2 2cos b a c ac B =+-,2 2 2 2cos c a b ab C =+-. 3,射影定理:cos cos a b C c B =+,cos cos b a C c A =+,cos cos c a B b A =+. 4,面积:211sin 2sin sin sin 224a abc S ah ab C rp R A B C R = ==== = (sin sin sin )rR A B C ++ 2 221(cot cot cot )4 a A b B c C = ++. A 类例题 例1.在ΔABC 中,已知b =asinC ,c =asin (900 -B ),试判断ΔABC 的形状。 分析 条件中有边、角关系, 应利用正、余弦定理, 把条件统一转化为边或者是角的关系, 从而判定三角形的形状。 解 由条件c = asin (900 - B ) = acosB = c b c a ac b c a a 222 22222-+=-+ 2 2222c b c a =-+? 是直角A b c a ?+=?2 22 1sin sin sin =?=A A C c A a 是直角?? ?C a c C c a sin sin =?=?. Q C a b sin =?=? c b ΔABC 是等腰直角三角形。 例2.(1)在△ABC 中,已知cosA =13 5,sinB =53 ,则cosC 的值为( ) A .6516 B .6556 C .65566516或 D . 65 16- 解 ∵C = π - (A + B ),∴cosC = - cos (A + B ),又∵A ∈(0, π),∴sinA = 13 12,而sinB =53 显然sinA > sinB ,∴A > B , ∵A 为锐角, ∴B 必为锐角, ∴ cosB = 5 4 ∴cosC = - cos (A + B ) = sinAsinB - cosAcosB =65 1654135531312=?-?.选A . 说明 △ABC 中,sinA > sinB ?A > B . 根据这一充要条件可判定B 必为锐角。 (2)在Rt △ABC 中,C =90°,A =θ,外接圆半径为R ,内切圆半径为r ,

高中平面解析几何 全一册

高中平面解析几何全一册 第二章圆锥曲线 第二单元圆 一、教法建议 【抛砖引玉】 本单元共有两小节,主要研究圆的标准方程和圆的一般方程。 在初中平面几何我们已经学习了圆的定义和性质,在这里我们根据圆是到定点(圆心)的距离等于定长(半径)的点的轨迹,建立了圆的标准方程:(x-a)2 + (y-b)2 = r2,它是由在直角坐标第中圆心的坐标(a、b)和半径r所确定的方程,又根据平面几何中所学圆的切线的定义和性质,由圆的标准方程研究了圆的切线方程,并由圆的标准方程解决了一些实际问题。 由于圆的标准方程实际上是一个二元二次方程,我们又研究了一般的二元二次方程与圆的方程的关系,得到了圆的一般方程,最后又研究了用待定系数法求圆的方程。 【指点迷津】 这一单元的重点是圆的标准方程和圆的一般方程,要求学生能由圆心坐标和半径长熟练地写出圆的标准方程,并能由圆的标准方程准确地写出它的圆心坐标和半径长。对于圆的一般方程,要求学生掌握它的特点,会用配方法把一般方程化为标准方程。 由于圆是平面几何中重点学习的图形,学习了圆的很多性质,特别是和圆有关的直线和线段(直线的一部分)的性质,如圆的切线,割线,弦等的性质在这一单元都会用到,教师可概括学习内容适当地复习有关性质,并启发学生在解题中运用性质,可以顺利解决有关问题。 圆的切线也是这个单元的重要内容,它主要研究了过圆上一点的圆的切线,过圆外一点的圆的切线,已知斜率的圆的切线,要求学生掌握求各种条件下切线的方法,在此基础上也可以总结出一些带规律性的东西,适当记忆,加快解题速度,特别是解选择题和填空题,如: 过圆x2 + y2 = r2上一点(x1,y1)的切线方程是x1x + y1y = r2 过圆(x-a)2 + (y-b)2 = r2上一点(x1、y1)的切线方程是(x1-a)(x-a) + (y1-b)(y -b) = r2 圆x2 + y2 = r2的斜率为k的切线的方程是y kx r k 12 =±+ 对于圆的一般方程应要求学生明确掌握,二元二次方程的一般形式 A x2 + B xy + C y2 + D x + D y + F = 0必须满足如下三个条件: (1)x2和y2项的系数相同,且不等于零,即A=C≠0 (2)不含xy项,即B = 0

高中数学向量法解立体几何总结

向量法解立体几何 1、直线的方向向量和平面的法向量 ⑴.直线的方向向量:若A 、B 是直线l 上的任意两点,则AB 为直线l 的一个方向向量;与AB 平行的任意非零向量也是直线l 的方向向量. ⑵.平面的法向量:若向量n 所在直线垂直于平面α,则称这个向量垂直于平面α,记作 n α⊥,如果n α⊥,那么向量n 叫做平面α的法向量. ⑶.平面的法向量的求法(待定系数法): ①建立适当的坐标系. ②设平面α的法向量为(,,)n x y z =. ③求出平面内两个不共线向量的坐标123123(,,),(,,)a a a a b b b b ==. ④根据法向量定义建立方程组0 n a n b ??=???=??. ⑤解方程组,取其中一组解,即得平面α的法向量. 2、用向量方法判定空间中的平行关系 ⑴线线平行。设直线12,l l 的方向向量分别是a b 、 ,则要证明1l ∥2l ,只需证明a ∥b ,即()a kb k R =∈.⑵线面平行。设直线l 的方向向量是a ,平面α的法向量是u ,则要证明l ∥ α,只需证明a u ⊥,即0a u ?=. ⑶面面平行。若平面α的法向量为u ,平面β的法向量为v ,要证α∥β,只需证u ∥v ,即证u v λ=. 3、用向量方法判定空间的垂直关系⑴线线垂直。设直线12,l l 的方向向量分别是a b 、 ,则要证明12l l ⊥,只需证明a b ⊥,即0a b ?=.⑵线面垂直 ①(法一)设直线l 的方向向量是a ,平面α的法向量是u ,则要证明l α⊥,只需证明a ∥u ,即a u λ=. ②(法二)设直线l 的方向向量是a ,平面α内的两个相交向量分别为m n 、 ,若

巧用平面向量解解析几何问题

巧用平面向量解析几何问题 一:课堂教学设计: 在高中数学新课程教材中,学生学习平面向量在前,学习解析几何在后,而且教材中二者知识整合的不多,很多学生在学习中就“平面向量”解平面向量题,不会应用平面向量去解决解析几何问题。用向量法解决解析几何问题思路清晰,过程简洁,有意想不到的神奇效果。著名教育家布鲁纳说过:学习的最好刺激是对所学材料的兴趣,简单的重复将会引起学生大脑疲劳,学习兴趣衰退。这充分揭示方法求变的重要性,如果我们能重视向量的教学,必然能引导学生拓展思路,减轻负担。所以本节课就这一方面做一归纳。 二:教学目标:利用平面向量的加法,减法,数量积的几何意义解决解析几何问题。 三:教学方法:启发式教学 四:重点难点:把解析几何问题转化为向量问题。 五:例题解析 例1、椭圆14 92 2=+y x 的焦点为F ,1F 2,点P 为其上的动点,当∠F 1P F 2为钝角时,点P 横坐标的取值范围是 。 解:F 1(-5,0)F 2(5,0),设P (3cos θ,2sin θ) 21PF F ∠Θ为钝角 ∴ 123cos ,2sin )3cos ,2sin )PF PF θθθθ?= -?-u u u r u u u u r ( =9cos 2θ-5+4sin 2θ=5 cos 2θ-1<0 解得:55cos 55<<-θ ∴点P 横坐标的取值范围是(5 53,553-) 点评:解决与角有关的一类问题,总可以从数量积入手。本题中把条件中的角为钝角转化为向量的数量积为负值,通过坐标运算列出不等式,简洁明了。 例2、已知定点A(-1,0)和B(1,0),M 是圆1)1(2 2=-+y x 上的一动点, +的最大值和最小值; ②求22MB MA +的最大值和最小值 分析:因为O 为AB 的中点,所以MO MB MA 2=+的最值。

专题:运用向量法证明立体几何问题

专题:运用向量法证明立体几何问题 一、知识点: 1、若向量m 与直线l 平行,则向量叫做直线l 的方向向量。 2、若⊥α,则叫做平面α的法向量。 (1)要证m 为平面α的法向量,只须让m 与平面α内的两条相交直线垂直。 (2)若χ轴与平面的法向量,可设为=(1,0,0) (3)若 y 轴为平面的法向量,可设为=(0,1,0) (4)若Z 轴为平面的法向量,可设为m =(0,0,1) 3、证明线面平行与线面垂直 若为平面α的法向量,n 为直线l 的方向向量,则 (1)l ⊥α?m ∥n ?m =λn (2)l ∥α ?m ⊥n ?m ·n =0 4、运用向量求角 (1)若两条异面直线l 1,l 2所成的角为 θ,为l 1 的方向向量, n 为l 2 的方向向量,则 cos (090)m n m n θθ=<≤ , (2)若两个平面12αα,所成的二面角的平面角为 θ,为1α的法向

量,为2α的法向量,则 cos (090)m n m n θθ=<≤ , 当二面角为锐时为θ;当二面角为钝角时为 π-θ。 (3)直线l 与平面α所成的角为θ,n 为直线l 的方向向量,m 为平面α 的法向量,则 sin (090)m n m n θθ=<≤ , 5、点P 到平面α的距离为d,若为平面α的法向量,A 为平面α内任 一点,则PA m d m = 例1.如图在四棱锥P-ABCD 中,底面AB 、CD 是正方形且边长为1,侧棱PD ⊥底面ABCD ,PD=DC ,点E 是PC 的中点,且F 的坐标是(31,31,3 2 )。 (1)求证:PA ∥平面EDB (2)求证:PB ⊥平面EFD 解:如图建立空间直角坐标系D xyz -。 设底面正方形的边长为1,则PD=1 D (0,0,0),P (0,0,1),A (1,0,0), B (1,1,0), C (0,1,0),E (0,21,2 1 ) (1)设(x,y,z)m = 为平面EDB 的法向量 则00m DB m DE ?=??=?? , 而(1,1,0)11(0,,)22 DB DE ?=??=?? ∴011022 x y y z +=?? ?+=?? , 即 x y z y =-??=-? 故m =(1,-1,1)(取Y=-1)

专题:平面向量常见题型与解题指导

平面向量常见题型与解题指导 一、考点回顾 1、本章框图 2、高考要求 1、理解向量的概念,掌握向量的几何表示,了解共线向量的概念。 2、掌握向量的加法和减法的运算法则及运算律。 3、掌握实数与向量的积的运算法则及运算律,理解两个向量共线的充要条件。 4、了解平面向量基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算。 5、掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件。 6、掌握线段的定比分点和中点坐标公式,并且能熟练运用;掌握平移公式。 7、掌握正、余弦定理,并能初步运用它们解斜三角形。 8、通过解三角形的应用的教学,继续提高运用所学知识解决实际问题的能力。 3、热点分析 对本章内容的考查主要分以下三类: 1.以选择、填空题型考查本章的基本概念和性质.此类题一般难度不大,用以解决有关长度、夹角、垂直、判断多边形形状等问题. 2.以解答题考查圆锥曲线中的典型问题.此类题综合性比较强,难度大,以解析几何中的常规题为主. 3.向量在空间中的应用(在B类教材中).在空间坐标系下,通过向量的坐标的表示,运用计算的方法研究三维空间几何图形的性质. 在复习过程中,抓住源于课本,高于课本的指导方针.本章考题大多数是课本的变式题,即源于课本.因此,掌握双基、精通课本是本章关键.分析近几年来的高考试题,有关平面向量部分突出考查了向量的基本运算。对于和解析几何相关的线段的定比分点和平移等交叉内容,作为学习解析几何的基本工具,在相关内容中会进行考查。本章的另一部分是解斜三角形,它是考查的重点。总而言之,平面向量这一章的学习应立足基础,强化运算,重视应用。考查的重点是基础知识和基本技能。 4、复习建议 由于本章知识分向量与解斜三角形两部分,所以应用本章知识解决的问题也分为两类:一类是根据向量的概念、定理、法则、公式对向量进行运算,并能运用向量知识解决平面几何中的一些计算和证明问题;另一类是运用正、余弦定理正确地解斜三角形,并能应用解斜三角形知识解决测量不可到达的两点间的距离问题。 在解决关于向量问题时,一是要善于运用向量的平移、伸缩、合成、分解等变换,正确地进行向量的各种运算,进一步加深对“向量”这一二维性的量的本质的认识,并体会用向量处理问题的优越性。二是向量的坐标运算体现了数与形互相转化和密切结合的思想,所以要通过向量法和坐标法的运用,进一步体会数形结合思想在解决数学问题上的作用。 在解决解斜三角形问题时,一方面要体会向量方法在解三角形方面的应用,另一方面要体会解斜三角形是重要的测量手段,通过学习提高解决实际问题的能力。

平面向量解题技巧

平面向量解题技巧 1.这部分内容高考中所占分数一般在10分左右. 2.题目类型为一个选择或填空题,一个与其他知识综合的解答题. 3.考查内容以向量的概念、运算、数量积和模的运算为主. 【考点透视】 "平面向量"是高中新课程新增加的内容之一,高考每年都考,题型主要有选择题、填空题,也可以与其他知识相结合在解答题中出现,试题多以低、中档题为主. 透析高考试题,知命题热点为: 1.向量的概念,几何表示,向量的加法、减法,实数与向量的积. 2.平面向量的坐标运算,平面向量的数量积及其几何意义. 3.两非零向量平行、垂直的充要条件. 4.图形平移、线段的定比分点坐标公式. 5.由于向量具有"数"与"形"双重身份,加之向量的工具性作用,向量经常与数列、三角、解析几何、立体几何等知识相结合,综合解决三角函数的化简、求值及三角形中的有关问题,处理有关长度、夹角、垂直与平行等问题以及圆锥曲线中的典型问题等. 6.利用化归思想处理共线、平行、垂直问题向向量的坐标运算方面转化,向量模的运算转化为向量的运算等;利用数形结合思想将几何问题代数化,通过代数运算解决几何问题.

【例题解析】 1. 向量的概念,向量的基本运算 (1)理解向量的概念,掌握向量的几何意义,了解共线向量的概念. (2)掌握向量的加法和减法. (3)掌握实数与向量的积,理解两个向量共线的充要条件. (4)了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算. (5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件. (6)掌握平面两点间的距离公式. 向量与三角函数创新题型的解题技巧 1.三角函数的性质、图像及其变换,主要是的性质、图像及 变换.考查三角函数的概念、奇偶性、周期性、单调性、有界性、图像的平移和对称等.以选择题或填空题或解答题形式出现,属中低档题,这些试题对三角函数单一的性质考查较少,一道题所涉及的三角函数性质在两个或两个以上,考查的知识点来源于教材. 2.三角变换.主要考查公式的灵活运用、变换能力,一般要 运用和角、差角与二倍角公式,尤其是对公式的应用与三角

相关文档
最新文档