沈阳理工大学 DSP技术教学大纲胡玉兰

沈阳理工大学 DSP技术教学大纲胡玉兰
沈阳理工大学 DSP技术教学大纲胡玉兰

《DSP技术》课程教学大纲

课程代码:030341003

课程英文名称:DSP technology

课程总学时:64 讲课:48 实验:16 上机:0

适用专业:电子信息工程

大纲编写(修订)时间:2012.10

一、大纲使用说明

(一)课程的地位及教学目标

本课程是电子信息工程专业必修的一门专业课。DSP芯片,即数字信号处理器,是一种具有特殊结构的微处理器。DSP芯片的内部采用程序和数据分开的哈佛结构.具有专门的硬件乘法器,广泛采用流水线操作,提供特殊的DSP指令,可以用来快速地实现各种数字信号处理算法。DSP以其高速的信号数据处理能力和嵌入式的结构在在通信、航空、航天、雷达、工业控制、网络及家用电器各个领域得到广泛的应用。

(二)知识、能力及技能方面的基本要求

要求学生掌握DSP基本知识,具备采用DSP进行设计的基本能力和技能,通过本课程的学习,使学生分析问题和解决问题的能力有所提高,为研究和设计通信系统打下良好的基础。

(三)实施说明

在教学环节中,重点讲授55DSP结构原理及应用。教师可根据具体情况适当调整大纲学时的分配,实验内容可根据信息技术的发展进行适当调整。

(四)对先修课的要求

本课程先修课为《数字信号处理》、《单片机原理与接口》。

(五)对习题课、实验环节的要求

习题侧重学生对基本内容和基本方法的掌握。考试方式将结合平时考核、作业、实验和期末考试。使学生能够注重平时学习的过程,改变学生从应试型到能力型。考试内容侧重于基本概念、基本内容及其知识的综合应用。在实验中,学生可以更直观深刻地理解课程的内容,通过综合实验来提高学生学生提出问题、分析问题及解决问题的能力。

(六)课程考核方式

1、考核方式:考试。

平时考核:平时作业、小论文、大作业结合。

实验考核:实验课内成绩和课外综合设计成绩相结合。

2.考试方法:笔试。

3、成绩构成:最终理论考核、平时考核(包括小测验、提问、小论文、大作业等)、实验环节考核成绩的总和。

(七)参考书目:

《DSP集成开发环境CCS使用指南》尹勇、欧广军、关荣峰等编,北京航天航空出版社

《DSP实用技术》苏涛等编著,西安电子科技大学出版社

《TMS320C55x DSP原理、应用设计》胡庆钟等编著,机械工业出版社,ISBN:7111175522《TMS320C55x DSP结构、原理与应用》戴明桢、周建江编,北京航空航天大学出版社《TMS320C55x DSP原理及应用》汪春梅,电子工业出版社

二、中文摘要

《DSP技术》是电子信息工程专业学生必修的一门专业课程。课程主要介绍TI的TMS320C55x系列DSP的硬件结构、指令系统、开发调试环境、算法实现以及基于该芯片系列的DSP系统设计与开发。通过重点讲授C55x的软硬结构体系、指令、算法、开发工具和DSP系统设计方法,帮助同学掌握DSP系统研发中对于片内外设,中断等芯片资源的运用,以及基于C55x 特殊硬件结构对算法进行的优化。授课过程中配合实验,使同学能通过预习准备与上机操作练习,熟悉软件开发方法,理解各种DSP算法的实现,并掌握DSP系统设计和实现方法。

三、课程学时分配表

四、教学内容及基本要求

第01部分总学时8学时讲课6学时实验2学时上机0学时

标题:绪论

具体内容:

1)数字信号处理概述;

2)DSP芯片特点;

3)DSP芯片现状和发展方向。

重点:

DSP芯片特点

难点:

DSP芯片特点

习题:

DSP芯片特点等。

实验:

CCS集成环境的认识与使用

第02部分总学时14学时讲课 12学时实验2学时上机0学时

标题:TMS320C55x的结构原理

具体内容:

1)TMS320系列DSP概述,TMS320C55x数字信号处理器、总线结构、存储器、中央处理单元;2)数据寻址方式、程序存储器地址生成方式;

3)流水线、在片外围电路、串行口、外部总线、TMS320C55x引脚说明。

重点:

TMS320C55x数字信号处理器、中央处理单元、数据寻址方式。

难点:

TMS320C55x数字信号处理器、中央处理单元、数据寻址方式。

习题:

TMS320C55x的结构、数据寻址方式

实验:

DSP硬件开发系统使用

第03部分总学时8学时讲课 6学时实验2学时上机0学时

标题:指令系统

具体内容:

1)指令系统概述;

2)寻址方式。

重点:

寻址方式。

难点:

寻址方式。

习题:

指令系统、寻址方式。

实验:

正弦波信号产生

第04部分总学时10学时讲课 6学时实验4学时上机0学时

标题:汇编语言程序开发工具

具体内容:

1)TMS320C55X软件开发过程;

2)汇编语言程序的编写方法;

3)汇编语言程序的编辑、汇编和链接过程;

重点:

汇编语言程序的编辑、汇编和链接过程。

难点:

汇编语言程序的编写过程。

习题:

汇编语言程序的编辑、汇编和链接。

实验:

1)数字滤波器设计与实现。

2)定时器及硬件中断

第05部分总学时24学时讲课 18学时实验6学时上机0学时

具体内容:

1)汇编语言程序设计概述;

2)TMS320C55X寻址方式;

3)TMS320C55X汇编指令系统;

4)TMS320C55X汇编伪指令;

5)TMS320C55X目标文件格式;

6)C语言程序设计。

重点:

TMS320C55X汇编指令系统。

难点:

TMS320C55X汇编伪指令、C语言程序设计。

习题:

汇编语言、C语言程序的编写。

实验:

1)C语言和汇编语言混合编程;

2)FFT的C语言及汇编语言实现;

3)数字图像处理。

编写人:胡玉兰

审核人:张晓杰、胡树杰

批准人:张文波

数字信号处理课设题目详细分解步骤

数字信号处理课程详细步骤分解 语音(音乐)信号滤波去噪的选题 课题具体内容 1.1、语音(音乐)信号的采集 要求学生利用Windows下的录音机,录制语音信号“大家好,我是***”,时间在2-3 s左右。或者网上下载一段格式为.wav的音乐。然后在Matlab软件平台下,利用函数wavread 对语音信号进行采样,记住采样频率和采样点数。通过wavread函数的使用,学生很快理解了采样频率、采样位数等概念。采集完成后在信号中加入一个单频噪声,设计的任务即为从含噪信号中滤除单频噪声,还原原始信号。 参考调用格式: [x,fs,bits]=wavread('e:\yuyin.wav'); % 输入参数为文件的全路径和文件名,输出的第一个参数是每个样本的值,fs是生成该波形文件时的采样率,bits是波形文件每样本的编码位数。 sound(x,fs,bits); % 按指定的采样率和每样本编码位数回放 N=length(x); % 计算信号x的长度 fn=2100; % 单频噪声频率,此参数可改 t=0:1/fs:(N-1)/fs; % 计算时间范围,样本数除以采样频率 x=x'; y=x+0.1*sin(fn*2*pi*t); sound(y,fs,bits); % 应该可以明显听出有尖锐的单频啸叫声 1.2、语音信号的频谱分析 要求学生首先画出语音信号的时域波形;然后对语音号进行快速傅里叶变换,得到信号的频谱特性,从而加深学生对频谱特性的理解。 参考调用格式: X=abs(fft(x)); Y=abs(fft(y)); % 对原始信号和加噪信号进行fft变换,取幅度谱 X=X(1:N/2); Y=Y(1:N/2); % 截取前半部分 deltaf=fs/2/N; % 计算频谱的谱线间隔 f=0:deltaf:fs/2-deltaf; % 计算频谱频率范围 用绘图命令分别画出加噪前后信号的时域和频域波形,注意:布局为2*2的子图,每个子图都分别加上横纵坐标,网格和标题。

数字信号处理习题集(附答案)

第一章数字信号处理概述 简答题: 1.在A/D变换之前和D/A变换之后都要让信号通过一个低通滤波器,它们分别起什么作用? 答:在A/D变化之前为了限制信号的最高频率,使其满足当采样频率一定时,采样频率应大于等于信号最高频率2倍的条件。此滤波器亦称为“抗混叠”滤波器。 在D/A变换之后为了滤除高频延拓谱,以便把抽样保持的阶梯形输出波平滑化,故又称之为“平滑”滤波器。 判断说明题: 2.模拟信号也可以与数字信号一样在计算机上进行数字信号处理,自己要增加一道采样的工序就可以了。 () 答:错。需要增加采样和量化两道工序。 3.一个模拟信号处理系统总可以转换成功能相同的数字系统,然后基于数字信号处理理论,对信号进行等效的数字处理。() 答:受采样频率、有限字长效应的约束,与模拟信号处理系统完全等效的数字系统未必一定能找到。因此数字信号处理系统的分析方法是先对抽样信号及系统进行分析,再考虑幅度量化及实现过程中有限字长所造成的影响。故离散时间信号和系统理论是数字信号处

理的理论基础。 第二章 离散时间信号与系统分析基础 一、连续时间信号取样与取样定理 计算题: 1.过滤限带的模拟数据时,常采用数字滤波器,如图所示,图中T 表示采样周期(假设T 足够小,足以防止混叠效应),把从)()(t y t x 到的整个系统等效为一个模拟滤波器。 (a ) 如果kHz T rad n h 101,8)(=π截止于,求整个系统的截止频 率。 (b ) 对于kHz T 201=,重复(a )的计算。 采样(T) () n h () n x () t x () n y D/A 理想低通T c πω=() t y 解 (a )因为当0)(8=≥ω πωj e H rad 时,在数 — 模变换中 )(1)(1)(T j X T j X T e Y a a j ωω=Ω= 所以)(n h 得截止频率8πω=c 对应于模拟信号的角频率c Ω为 8 π = ΩT c 因此 Hz T f c c 625161 2==Ω= π

《数字信号处理》课程研究性学习报告解读

《数字信号处理》课程研究性学习报告 指导教师薛健 时间2014.6

【目的】 (1) 掌握IIR 和FIR 数字滤波器的设计和应用; (2) 掌握多速率信号处理中的基本概念和方法 ; (3) 学会用Matlab 计算小波分解和重建。 (4)了解小波压缩和去噪的基本原理和方法。 【研讨题目】 一、 (1)播放音频信号 yourn.wav ,确定信号的抽样频率,计算信号的频谱,确定噪声信号的频率范围; (2)设计IIR 数字滤波器,滤除音频信号中的噪声。通过实验研究s P ,ΩΩ,s P ,A A 的选择对滤波效果及滤波器阶数的影响,给出滤波器指标选择的基本原则,确定你认为最合适的滤波器指标。 (3)设计FIR 数字滤波器,滤除音频信号中的噪声。与(2)中的IIR 数字滤波器,从滤波效果、幅度响应、相位响应、滤波器阶数等方面进行比较。 【设计步骤】 【仿真结果】

【结果分析】 由频谱知噪声频率大于3800Hz。FIR和IIR都可以实现滤波,但从听觉上讲,人对于听觉不如对图像(视觉)明感,没必要要求线性相位,因此,综合来看选IIR滤波器好一点,因为在同等要求下,IIR滤波器阶数可以做的很低而FIR滤波器阶数太高,自身线性相位的良好特性在此处用处不大。【自主学习内容】 MATLAB滤波器设计 【阅读文献】 老师课件,教材 【发现问题】(专题研讨或相关知识点学习中发现的问题): 过渡带的宽度会影响滤波器阶数N 【问题探究】 通过实验,但过渡带越宽时,N越小,滤波器阶数越低,过渡带越窄反之。这与理论相符合。 【仿真程序】 信号初步处理部分: [x1,Fs,bits] = wavread('yourn.wav'); sound(x1,Fs); y1=fft(x1,1024); f=Fs*(0:511)/1024; figure(1) plot(x1) title('原始语音信号时域图谱'); xlabel('time n'); ylabel('magnitude n'); figure(2) freqz(x1) title('频率响应图') figure(3) subplot(2,1,1); plot(abs(y1(1:512))) title('原始语音信号FFT频谱') subplot(2,1,2); plot(f,abs(y1(1:512))); title(‘原始语音信号频谱') xlabel('Hz'); ylabel('magnitude'); IIR: fp=2500;fs=3500; wp = 2*pi*fp/FS; ws = 2*pi*fs/FS; Rp=1; Rs=15;

北京邮电大学《数字信号处理》课程教学大纲

《数字信号处理》课程教学大纲 一、课程编号:1100020 二、课程名称:数字信号处理 ( 64学时) Digital Signal Processing 三、课程教学目的 数字信号处理是现代信息处理和传输的基础课程之一,已经成为信号和信息处理、通信和电子、计算机科学和技术等专业的学生需要学习和掌握的基本知识。 本课程以离散时间信号与系统作为对象,在介绍经典理论的基础上,适当引入了现代信号处理的理论与方法以及Matlab仿真分析软件。通过本课程的学习,使得学生能够掌握确定性离散时间信号的频谱分析原理及快速实现方法,数字滤波器的设计及实现方法。使学生能够利用计算机技术来进行数字信号的处理,并根据实际需要分析、设计数字滤波系统。 本课程是进一步学习数字通信、图像处理、随机数字信号处理、无线通信、多媒体通信等专业课程的先修课程。 四、课程教学基本要求 1.掌握离散时间信号和系统的基本标识方法 2.掌握离散时间系统的基本特性、Z变换以及离散时间信号的傅立叶变换(DTFT) 3.掌握离散傅立叶变换(DFT)以及离散傅立叶变换的快速算法(FFT) 4.掌握数字滤波器的设计方法和结构 5.了解多速率信号处理的基本内容 五、教学内容及学时分配(含实验) 理论教学(56学时) 1.绪论2学时数字信号处理的特点、实现和应用 Matlab简介 2.离散时间系统的基本特性及流图10学时抽样与重建 离散系统及其普遍关系 信号流图及Mason公式 离散时间信号的傅立叶变换 Z变换及Z反变换(留数法)

Z变换与拉普拉斯、傅立叶变换的关系 离散系统的频域分析 3.离散傅立叶变换及其快速实现14学时DFS的定义及性质 DFT的定义、性质及应用 基2时间抽选法FFT 基2频率抽选法FFT 基4时间抽选法FFT IDFT的快速算法 FFT应用(线性卷积的快速计算、CZT变换) 4.IIR数字滤波器的设计和实现12学时滤波器概述 模拟滤波器的设计 模拟滤波器的数字仿真 冲激响应不变法和双线性变换法的设计 IIR滤波器的频率变换设计 IIR数字滤波器的计算机辅助设计 IIR 滤波器的实现结构 5.FIR数字滤波器的设计10学时线性相位FIR滤波器的条件和特性概述 窗函数法 频率取样法 FIR数字滤波器的优化设计 FIR数字滤波器的实现结构 6.多速率信号的处理基础8学时抽取和内插的时域和变换域描述 抽取滤波器和内插滤波器 多相分解 正交镜像滤波器组 双通道滤波器组 实验教学(8学时)

数字信号处理课设共18页文档

数字信号处理课程设计 姓名:刘倩 学号:201014407 专业:信息与计算科学 实验一:常见离散信号产生和实现 一、实验目的: 1、加深对常用离散信号的理解; 2、掌握matlab 中一些基本函数的建立方法。 二、实验原理: 1.单位抽样序列 在MATLAB 中可以利用zeros()函数实现。 如果)(n δ在时间轴上延迟了k 个单位,得到)(k n -δ即: 2.单位阶越序列 在MATLAB 中可以利用ones()函数实现。 3.正弦序列 在MATLAB 中 4.复指数序列 在MATLAB 中 5.指数序列 在MATLAB 中

实验内容:由周期为10的正弦函数生成周期为20的余弦函数。 实验代码: n=0:30; y=sin(0.2*pi*n+pi/2); y1=sin(0.1*pi*n+pi/2); subplot(121) stem(n,y); xlabel ('时间序列n');ylabel('振幅');title('正弦函数序列y=sin(0.2*pi*n+pi/2)'); subplot(122) stem(n,y1); xlabel ('时间序列n');ylabel('振幅'); title('正弦函数序列y=sin(0.2*pi*n+pi/2)'); 实验结果: 实验二:离散系统的时域分析 实验目的:加深对离散系统的差分方程、冲激响应和卷积分析方法的理解。实验原理:离散系统 其输入、输出关系可用以下差分方程描述: 输入信号分解为冲激信号, 记系统单位冲激响应 则系统响应为如下的卷积计算式:

当N k d k ,...2,1,0==时,h[n]是有限长度的(n :[0,M]),称系统为FIR 系统;反之,称系统为IIR 系统。 在MATLAB 中,可以用函数y=filter(p,d,x)实现差分方程的仿真,也可以用函数 y=conv(x,h)计算卷积,用y=impz(p,d,N)求系统的冲激响应。 实验内容:用MATLAB 计算全解 当n>=0时,求用系数差分方程y[n]+y[n-1]-6y[n-2]=x[n]描述的一个离散时间系统对阶跃输入x[n]=8μ[n]的全解。 实验代码: n=0:7; >> [y,sf]=filter(1,[1 1 -6],8*ones(1,8),[-7 6]); >> y1(n+1)=-1.8*(-3).^n+4.8*(2).^n-2; >> subplot(121) >> stem(n,y); >> title('由fliter 函数计算结果'); >> subplot(122) >> stem(n,y1); >> title('准确结果'); 实验结果: 结果分析:有图可得由fliter 函数得出的结果与计算出的准确结果完全一致。 实验三FFT 算法的应用

信号处理-习题(答案)

数字信号处理习题解答 第二章 数据采集技术基础 2.1 有一个理想采样系统,其采样角频率Ωs =6π,采样后经理想低通滤波器H a (j Ω)还原,其中 ?? ???≥Ω<Ω=Ωππ 3032 1 )(,,j H a 现有两个输入,x 1(t )=cos2πt ,x 2(t )=cos5πt 。试问输出信号y 1(t ), y 2(t )有无失真?为什么? 分析:要想时域采样后能不失真地还原出原信号,则采样角频率Ωs 必须大于等于信号谱最高角频率Ωh 的2倍,即满足Ωs ≥2Ωh 。 解:已知采样角频率Ωs =6π,则由香农采样定理,可得 因为x 1(t )=cos2πt ,而频谱中最高角频率ππ π32 621 =< =Ωh , 所以y 1(t )无失真; 因为x 2(t )=cos5πt ,而频谱中最高角频率ππ π32 652 => =Ωh , 所以y 2(t )失真。 2.2 设模拟信号x (t )=3cos2000πt +5sin6000πt +10cos12000πt ,求: (1) 该信号的最小采样频率; (2) 若采样频率f s =5000Hz ,其采样后的输出信号; 分析:利用信号的采样定理及采样公式来求解。 ○ 1采样定理 采样后信号不失真的条件为:信号的采样频率f s 不小于其最高频

率f m 的两倍,即 f s ≥2f m ○ 2采样公式 )()()(s nT t nT x t x n x s === 解:(1)在模拟信号中含有的频率成分是 f 1=1000Hz ,f 2=3000Hz ,f 3=6000Hz ∴信号的最高频率f m =6000Hz 由采样定理f s ≥2f m ,得信号的最小采样频率f s =2f m =12kHz (2)由于采样频率f s =5kHz ,则采样后的输出信号 ? ?? ? ????? ??-???? ????? ??=? ??? ????? ??+???? ????? ??-???? ????? ??=? ??? ????? ??++???? ????? ??-+???? ????? ??=? ??? ????? ??+???? ????? ??+???? ????? ??=? ?? ? ??====n n n n n n n n n n n f n x nT x t x n x s s nT t s 522sin 5512cos 13512cos 10522sin 5512cos 35112cos 105212sin 5512cos 3562cos 10532sin 5512cos 3)()()(πππππππππππ 说明:由上式可见,采样后的信号中只出现1kHz 和2kHz 的频率成分, 即 kHz f f f kHz f f f s s 25000200052150001000512211 ======,, 若由理想内插函数将此采样信号恢复成模拟信号,则恢复后的模拟信号

数字信号处理课程实验报告4

数字信号处理课程实验报告 实验名称FIR数字滤 班级姓名 波器设计 教师姓名实验地点实验日期 一、实验内容 1、设计一个最小阶次的低通FIR数字滤波器,性能指标为:通带0Hz~1500Hz,阻带截 止频率2000Hz,通带波动不大于1%,阻带波动不大于1%,采样频率为8000Hz; 2、用一个仿真信号来验证滤波器的正确性(注意:要满足幅度要求和线性相位特性)。 二、实验目的 1、利用学习到的数字信号处理知识解决实际问题; 2、了解线性相位滤波器的特殊结构; 3、熟悉FIR数字滤波器的设计方法。 三、涉及实验的相关情况介绍(包含使用软件或实验设备等情况) 计算机一台(安装MATLAB6.5版本或以上版本) 四、实验记录(以下1~5项必须完成,第6项为选择性试做) 1.原理基础 令希望设计的滤波器的传输函数是H(ejw,hd(n)是与其对应的单位脉冲响应。一般情况下,由Hd(ejw)求出hd(n),然后由Z变换求出滤波器的系统函数。但是通常Hd(ejw)在边界频率处有不连续点,这使得hd(n)是无限长的非因果序列,所以实际是不能实现的。为了构造一个长度为N的线性相位滤波器,可以将hd(n)截取一段来近似,并且根据线性相位的特点,需要保证截取后的序列关于(N-1)/2对称。设截取的一段为h(n),则 Wr(n)称为矩形窗函数。 当hd(n的对称中心点取值为(N-1)/2时,就可以保证所设计的滤波器具有线性相位。 2 实验流程

1.信号的谱分析 2.信号的采样 3.信号的恢复 3源程序代码 clc; clear all; close all; fs=700;%采样频率 f=[30 40];%截止频率 a=[1 0]; dev=[0.01 0.1]; % dev纹波 [n,fo,ao,w]=remezord(f,a,dev,fs);%n滤波器阶数fo过渡带起止频率ao频带内幅度————firpmord b=remez(n,fo,ao,w);%firpm b=b.*blackman(length(b))'; b=b; a=1; figure(1) % [H,W]=freqz(b,1,1024,Fs); % plot(W,20*log10(abs(H))); freqz(b,1,1024,fs);grid title('滤波器') grid %%%%%%%%%%%%%%%% fc=28; fcl1=50; fcl2=100; fcl3=150; N=1024; n=1:N; % x=2*cos(2*pi*fc/fs*n)+j*2*sin(2*pi*fc/fs*n)+cos(2*pi*fcl/fs*n)+j*sin(2*pi*fcl/fs*n)+1*r and(1,N); xc=2*cos(2*pi*fc/fs*n); x=2*cos(2*pi*fc/fs*n)+2*cos(2*pi*fcl1/fs*n)+2*cos(2*pi*fcl2/fs*n)+0.1*rand(1,N); % x=2*cos(2*pi*fc/fs*n); xfft=abs(fft(x,N));

数字信号处理课程设计教学大纲1213261

数字信号处理课程设计教学大纲 课程设计编码:1213261 周数:1 学分:1 适用专业:通信工程、电子信息工程 一、课程设计的性质与任务 1.课程性质: 《数字信号处理》是电子信息工程专业本科学生的集中实践教学环节之一。主要在掌握数字信号基本概念、性质以及数字信号处理的基本方法的基础上,利用自己在数字信号处理课程中所学的知识进行数字滤波器的综合设计。 2.课程设计的目的 通过对常用数字滤波器的设计和实现,掌握数字信号处理的工作原理及设计方法;掌握利用数字滤波器对信号进行滤波的方法。并能够对设计结果加以分析。 3.课程任务: 通过对本门课程设计的学习,使学生深刻掌握数字信号处理的基本原理和基本实现方法;要让学生能够通过动手设计掌握数字信号处理基本实现方法,能够作到举一反三,触类旁通,并为将来的毕业设计作准备。 二、课程设计的内容及其要求 课程设计的主要内容: 1、设计一个数字滤波器(低通、高通、带通、带阻均可)。 2、将待处理信号送入数字滤波器。 3、观察滤波结果。 4、将滤波结果与预期结果比较。 5、分析结果与预期有差异的原因并提出解决方法。 本次课程设计的具体求为: 1、根据具体任务确定自己要设计的数字滤波器的类别; 2、根据具体任务确定所设计的数字滤波器的具体参数指标; 3、根据拟定的滤波器类别和指标设计数字滤波器; 4、利用所设计的数字滤波器对滤波对象进行滤波并检验滤波结果; 设计时可以根据课题需要,要求学生独立完成或分组完成设计任务,至少完成上述内容中的前四项的数字滤波器设计、调试。要求数字滤波器必需能够对待处理信号进行相应的处理,其整个处理过程要能够正确演示,并提交包括下述内容的课程设计总结报告: 1、用户手册:说明如何设计的数字滤波器;

数字信号处理基础书后题答案中文版

Chapter 2 Solutions 2.1 最小采样频率为两倍的信号最大频率,即44.1kHz 。 2.2 (a)、由ω = 2πf = 20 rad/sec ,信号的频率为f = 3.18 Hz 。信号的奈奎斯特采样频率为6.37 Hz 。 (b)、3 5000π=ω,所以f = 833.3 Hz ,奈奎斯特采样频率为1666.7 Hz 。 (c)、7 3000π=ω,所以f = 214.3 Hz ,奈奎斯特采样频率为428.6 Hz 。 2.3 (a) 1258000 1f 1T S S ===μs (b)、最大还原频率为采样频率的一半,即4000kHz 。 2.4 ω = 4000 rad/sec ,所以f = 4000/(2π) = 2000/π Hz ,周期T = π/2000 sec 。因此,5个周期为5π/2000 = π/400 sec 。对于这个信号,奈奎斯特采样频率为2(2000/π) = 4000/π Hz 。所以采样频率为f S = 4(4000/π) = 16000/π Hz 。因此5个周期收集的采样点为(16000/π samples/sec )(π/400 sec) = 40。 2.5 ω = 2500π rad/sec ,所以f = 2500π/(2π) = 1250 Hz ,T = 1/1250 sec 。因此,5个周期为5/1250 sec 。对于这个信号,奈奎斯特采样频率为2(1250) = 2500 Hz ,所以采样频率为f S = 7/8(2500) = 2187.5 Hz 。采样点数为(2187.5 点/sec)(5/1250 sec) = 8.75。这意味着在模拟信号的五个周期内只有8个点被采样。事实上,对于这个信号来说,在整数的模拟周期中,是不可能采到整数个点的。 2.6 2.7 信号搬移发生在kf S ± f 处,换句话说,频谱搬移发生在每个采样频率的整数倍 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 频率/kHz

(完整word版)《信号与系统》教学大纲

《信号与系统》教学大纲 通信工程教研室 电子信息科学与技术教研室 课内学时:54学时 学分:3 课程性质:学科平台课程 开课学期:3 课程代码:181205 考核方式:闭卷 适用专业:通信工程,电子信息工程,电子信息科学与技术,电子科学与技术,物联网工程开课单位:通信工程专业教研室,电子信息科学与技术专业教研室 一、课程概述 《信号与系统》是电子信息类各专业的学科平台课程,该课程的基本任务在于学习信号与系统理论的基本概念和基本分析方法。主要包括信号的属性、描述、频谱、带宽等概念以及信号的基本运算方法;包括系统的属性、分类、幅频特性、相频特性等概念以及系统的时域分析、傅里叶分析和复频域分析的方法;包括频域分析在采样定理、调制解调、时分复用、频分复用等方面的应用等。使学生掌握从事信号及信息处理与系统分析工作所必备的基础理论知识,为后续课程的学习打下坚实的基础。 二、课程基本要求 1、要求对信号的属性、描述、分类、变换、取样、调制等内容有深刻的理解,重点掌握冲击信号、阶跃信号的定义、性质及和其它信号的运算规则;重点掌握信号的频谱、带宽等概念。 2、掌握信号的基本运算方法,重点掌握卷积运算、正交分解、傅里叶级数展开方法、傅里叶变换及逆变换的运算、拉普拉斯变换及逆变换的运算等。 3、对系统的属性、分类、描述等概念有深刻的理解,重点掌握线性非时变系统的性质,系统的电路、微分方程、框图、流图等描述方法;重点掌握系统的冲击响应、系统函数、幅频特性以及相频特性等概念。 4、对系统的各种分析方法有深刻的理解,重点掌握系统的频域分析方法;重点掌握频域分析方法在采样定理、调制解调、时分复用、频分复用、电路分析、滤波器设计、系统稳定性判定等实际方面的应用。 5、了解信号与系统方面的新技术、新方法及新进展,尤其是时频分析、窗口傅里叶变换以及小波变换的基本概念,适应这一领域日新月异发展的需要。 三、课程知识点与考核目标 1.信号与系统的基本概念 1)要点: (1)信号的定义及属性; (2)信号的描述方法; (3)信号的基本分类方法; (4)几种重要的典型信号的特性; (5)信号的基本运算、分解和变换方法; (6)系统的描述、性质、及分类 (7)线性非时变系统的概念及性质。 2)考核目标: 熟悉信号与系统的基本概念,熟悉信号与系统的基本描述及分类方法,掌握冲击信号及线性

数字信号处理课程设计

数字信号处理 课 程 设 计 院系:电子信息与电气工程学院 专业:电子信息工程专业 班级:电信班 姓名: 学号: 组员:

摘要 滤波器设计在数字信号处理中占有极其重要的地位,FIR数字滤波器和IIR 滤波器是滤波器设计的重要组成部分。利用MATLAB信号处理工具箱可以快速有效地设计各种数字滤波器。课题基于MATLAB有噪音语音信号处理的设计与实现,综合运用数字信号处理的理论知识对加噪声语音信号进行时域、频域分析和滤波。通过理论推导得出相应结论,再利用 MATLAB 作为编程工具进行计算机实现。在设计实现的过程中,使用窗函数法来设计FIR数字滤波器,用巴特沃斯、切比雪夫和双线性变法设计IIR数字滤波器,并利用MATLAB 作为辅助工具完成设计中的计算与图形的绘制。通过对对所设计滤波器的仿真和频率特性分析,可知利用MATLAB信号处理工具箱可以有效快捷地设计FIR和IIR数字滤波器,过程简单方便,结果的各项性能指标均达到指定要求。 关键词数字滤波器 MATLAB 窗函数法巴特沃斯

目录 摘要 (1) 1 引言 (1) 1.1课程设计目的 (1) 1.2 课程设计内容及要求 (1) 1.3课程设计设备及平台 (1) 1.3.1 数字滤波器的简介及发展 (1) 1.3.2 MATLAB软件简介 (2) 2 课程设计原理及流程 (4) 3.课程设计原理过程 (4) 3.1 语音信号的采集 (4) 3.2 语音信号的时频分析 (5) 3.3合成后语音加噪声处理 (7) 3.3.1 噪声信号的时频分析 (7) 3.3.2 混合信号的时频分析 (8) 3.4滤波器设计及消噪处理 (10) 3.4.1 设计IIR和FIR数字滤波器 (10) 3.4.2 合成后语音信号的消噪处理 (13) 3.4.3 比较滤波前后语音信号的波形及频谱 (13) 3.4.4回放语音信号 (15) 3.5结果分析 (15) 4 结束语 (15) 5 参考文献 (16)

数字信号处理基础书后题答案中文版

数字信号处理基础书后题答案中文版

Chapter 2 Solutions 2.1 最小采样频率为两倍的信号最大频率,即44.1kHz 。 2.2 (a)、由ω = 2πf = 20 rad/sec ,信号的频率为f = 3.18 Hz 。信号的奈奎斯特采样频率为6.37 Hz 。 (b)、35000π =ω,所以f = 833.3 Hz ,奈奎斯特采样频率为1666.7 Hz 。 (c)、7 3000π =ω,所以f = 214.3 Hz ,奈奎斯特采样频率为428.6 Hz 。 2.3 (a) 1258000 1f 1T S S === μs (b)、最大还原频率为采样频率的一半,即4000kHz 。 2.4 ω = 4000 rad/sec ,所以f = 4000/(2π) = 2000/π Hz ,周期T = π/2000 sec 。因此,5个周期为5π/2000 = π/400 sec 。对于这个信号,奈奎斯特采样频率为2(2000/π) = 4000/π Hz 。所以采样频率为f S = 4(4000/π) = 16000/π Hz 。因此5个周期收集的采样点为(16000/π samples/sec )(π/400 sec) = 40。 2.5 ω = 2500π rad/sec ,所以f = 2500π/(2π) = 1250 Hz ,T = 1/1250 sec 。因此,5个周期为5/1250 sec 。对于这个信号,奈奎斯特采样频率为2(1250) = 2500 Hz ,所以采样频率为f S = 7/8(2500) = 2187.5 Hz 。采样点数为(2187.5 点/sec)(5/1250 sec) = 8.75。这意味着在模拟信号的五个周期内只有8个点被采样。事实上,对于这个信号来说,在整数的模拟周期中,是不可能采到整数个点的。 2.7 信号搬移发生在kf S ± f 处,换句话说,频谱搬移发生在每个采样频率的整数 倍 -200 200 400 600 800 1000 1200 0.10.20.30.40.50.60.70.80.91 幅度 频

数字信号处理教学大纲

《数字信号处理》课程教学大纲 课程编号: 英文译名:Digital Signal Processing 适用专业:通信工程,电子信息工程,自动化 开课教研室:通信教研室 学分数:3 学时数:51 先修课程:信号与系统、电路分析、高等数学、 概率统计、积分变换、复变函数等 教材:《数字信号处理》(第三版)(丁玉美、高西全) 西安电子科技大学出版社 (普通高校“十一五”国家级规划教材) 参考书目: 1.丁玉美等,《数字信号处理》(第二版)西安电子科技大学出版社 2. 程佩青,《数字信号处理》(第二版)清华大学出版社 3. 胡广书, 《数字信号处理——理论、算法与实现》(第二版) 清华大学出版社,2003.8 4. 高西全等,《数字信号处理(第二版)学习指导》, 西安电子科技大学出版社,2001 一、本课程的性质、目的和任务 数字信号处理是用数字或符号的序列来表示信号,通过数字计算机去处理这

些序列,提取其中的有用信息。例如,对信号的滤波,增强信号的有用分量,削弱无用分量;或是估计信号的某些特征参数等。总之,凡是用数字方式对信号进行滤波、变换、增强、压缩、估计和识别等都是数字信号处理的研究对象。 数字信号处理课程是电子信息工程、通信工程和自动化等学科专业本科生必修的专业基础课程。本课程介绍了数字信号处理的基本概念、基本分析方法和处理技术。主要讨论离散时间信号和系统的基础理论、离散傅立叶变换DFT 理论及其快速算法FFT 、IIR 和FIR 数字滤波器的设计。通过本课程的学习使学生掌握利用DFT 理论进行信号谱分析,以及数字滤波器的设计原理和实现方法,为学生进一步学习有关信息、通信等方面的课程打下良好的理论基础。 二、教学要求 本课程是在学生学完了信号与系统的课程后,进一步为学习专业知识打基础的课程。本课程将通过讲课、练习、仿真使学生掌握数字信号处理的基本理论和方法。以下是各章节知识要求: 1、绪论 (讲课1学时) 重点介绍数字信号处理的基本概念和特点,与传统的模拟技术相比存在哪些优点。数字信号处理的应用领域。 2、时域离散信号和时域离散系统(讲课6学时) 复习信号与系统的相关知识,引入离散时间信号、离散系统等概念,介绍线性卷积和差分方程等相关知识,为数字信号处理的学习打基础。 主要知识点要求: ⑴正确理解和区分模拟信号、时域离散信号和数字信号 ⑵掌握时域离散信号的三种表示方法:集合、公式、图形 ⑶掌握常用典型序列 :六种 ()()()()sin()(cos())n j n N n u n R n a u n A n A n e ωδωθωθ++ 周期序列 ⑷掌握正弦(包括余弦和复指数)序列的周期的计算方法:判断2πω/ ⑸理解如何将任意序列表示为单位采样序列的移位加权和 ⑹掌握序列的基本运算:加法和乘法、移位、翻转、尺度 ⑺能够正确判断时域离散系统的线性、时不变性、因果性、稳定性 ⑻正确理解并能熟练运用序列的线性卷积公式,掌握卷积的性质 服从交换律、结合律、分配率 ⑼能够用串、并联分系统的单位脉冲响应表示该系统的总单位脉冲响应 ⑽掌握用N 阶线性常系数差分方程表示系统的输入输出关系 ⑾了解用递推法求解差分方程 ⑿了解用递推法由差分方程求系统的单位脉冲响应 ⒀掌握采样定理的内容,理解推导方法 ()()()m x n x m n m δ∞=?∞ =?∑()()*()()()m y n x n h n x m h n m ∞ =?∞==?∑

数字信号处理习题及答案

==============================绪论============================== 1. A/D 8bit 5V 00000000 0V 00000001 20mV 00000010 40mV 00011101 29mV ==================第一章 时域离散时间信号与系统================== 1. ①写出图示序列的表达式 答:3)1.5δ(n 2)2δ(n 1)δ(n 2δ(n)1)δ(n x(n)-+---+++= ②用δ(n) 表示y (n )={2,7,19,28,29,15} 2. ①求下列周期 ) 5 4sin( )8 sin( )4() 51 cos()3() 54sin()2() 8sin( )1(n n n n n π π π π - ②判断下面的序列是否是周期的; 若是周期的, 确定其周期。 (1)A是常数 8ππn 73Acos x(n)??? ? ??-= (2))8 1 (j e )(π-=n n x 解: (1) 因为ω= 73π, 所以314 π2=ω, 这是有理数, 因此是周期序列, 周期T =14。 (2) 因为ω= 81, 所以ω π2=16π, 这是无理数, 因此是非周期序列。 ③序列)Acos(nw x(n)0?+=是周期序列的条件是是有理数2π/w 0。

3.加法 乘法 序列{2,3,2,1}与序列{2,3,5,2,1}相加为__{4,6,7,3,1}__,相乘为___{4,9,10,2} 。 移位 翻转:①已知x(n)波形,画出x(-n)的波形图。 ② 尺度变换:已知x(n)波形,画出x(2n)及x(n/2)波形图。 卷积和:①h(n)*求x(n),其他0 2 n 0n 3,h(n)其他03n 0n/2设x(n) 例、???≤≤-=???≤≤= }2 3 ,4,7,4,23{0,h(n)*答案:x(n)= ②已知x (n )={1,2,4,3},h (n )={2,3,5}, 求y (n )=x (n )*h (n ) x (m )={1,2,4,3},h (m )={2,3,5},则h (-m )={5,3,2}(Step1:翻转) 解得y (n )={2,7,19,28,29,15} ③(n)x *(n)x 3),求x(n)u(n u(n)x 2),2δ(n 1)3δ(n δ(n)2、已知x 2121=--=-+-+= }{1,4,6,5,2答案:x(n)= 4. 如果输入信号为 ,求下述系统的输出信号。

《数字图像处理》教学大纲

《数字图像处理》课程教学大纲 Digital Image Processing 一、课程说明 课程编码:045236001 课程总学时(理论总学时/实践总学时):51(42/9),周学时:3,学分:3,开课学期:第6学期。 1.课程性质:专业选修课 2.适用专业:电子信息与技术专业 3.课程教学目的和要求 《数字图像处理》是信号处理类的一门重要的专业选修课,通过本课程的学习,应在理论知识方面了解和掌握数字图像的概念、类型,掌握数字图像处理的基本原理和基本方法:图像变换、图像增强、图像编码、图像的复原和重建。并通过实验加深理解数字图像处理的基本原理。 4.本门课程与其他课程关系 本课程的先修课程为:数字信号处理和应用 5.推荐教材及参考书 推荐教材: 阮秋琦,《数字图像处理学》(第二版),电子工业出版社,2007年 参考书 (1)姚敏等,《数字图像处理》,机械工业出版社,2006年 (2)何东健,《数字图像处理》(第二版),西安电子工业出版社,2008年 (3)阮秋琦,《数字图像处理基础》,清华大学出版社,2009年 (4)(美)Rafael C. Gonzalez著,阮秋琦译,《数字图像处理》(第二版),电子工业出版社,2007年 6.课程教学方法与手段 主要采用课堂教学的方式,通过多媒体课件进行讲解,课外作业,答疑辅导。并辅以适当的实验加深对数字图像处理的理解。 7.课程考核方法与要求 本课程为考查课 课程的实验成绩占学期总成绩的50%,期末理论考查占50%; 考查方式为笔试。 8.实践教学内容安排 实验一:图像处理中的正交变换 实验二:图像增强 实验三:图像复原

设计数字信号处理课程设计

语音信号滤波去噪报告书 课程:数字信号处理 指导老师: 完成组员: 完成日期: 2013.01.05

摘要本课程设计主要是下载一段语音信号,绘制其波形并观察其频谱。然后在该语言信号中加一个噪音,利用布莱克曼和矩形窗窗设计一个FIR滤波器,对该语音信号进行虑噪处理,然后比较滤波前后的波形与频谱。在本课程设计中,是用MATLAB的集成环境完成一系列的设计。首先对加噪的语音信号进行虑波去噪处理,再比较滤波前后的频率响应曲线,若一样则满足所设计指标,否则不满足。也可以调用函数sound听滤波前后其语音信号是否带有噪声。若无噪声也说明该滤波器的设置也是成功的。 关键词语音信号;MATLAB; FIR滤波器;滤波去噪; 1 引言 人们在语音通信的过程中将不可避免的会受到来自周围环境的干扰,例如传输媒介引入的噪声,通信设备内部的电噪声,乃至其他讲话者的话音等。正因为有这些干扰噪声的存在,接受者接受到的语音已不是原始的纯净语音信号,而是受噪声干扰污染的带噪声语音信号。而本课程设计就是利用MATLAB集成环境用布莱克曼窗的方法设计一个FIR滤波器,对语音信号进行滤波去噪处理,并将虑噪前后的频谱图进行对比。 1.1 课程设计目的 数字信号处理课程设计是数字信号处理课程的重要实践性环节,是学生在校期间一次较全面的工程师能力训练,在实现学生总体培养目标中占有重要地位。综合运用本课程的理论知识进行频谱分析以及滤波器设计,通过理论推导得出相应结论,并利用MATLAB作为编程工具进行计算机实现,从而复习巩固了课堂所学的理论知识,提高了对所学知识的综合应用能力,并从实践上初步实现了对数字信号的处理。本课程设计能使学生对通信工程领域各种技术的DSP实现的设计有较熟练的掌握。且通过自身的实践,对DSP的设计程序、内容和方法有更深入的掌握,提高实际运用的能力。并可综合运用这些知识解决一定

数字信号处理习题集附答案)

第一章数字信号处理概述简答题: 1.在A/D变换之前和D/A变换之后都要让信号通过一个低通滤波器,它们分别起什么作用? 答:在A/D变化之前让信号通过一个低通滤波器,是为了限制信号的最高频率,使其满足当采样频率一定时,采样频率应大于等于信号最高频率2倍的条件。此滤波器亦称位“抗折叠”滤波器。 在D/A变换之后都要让信号通过一个低通滤波器,是为了滤除高频延拓谱,以便把抽样保持的阶梯形输出波平滑化,故友称之为“平滑”滤波器。 判断说明题: 2.模拟信号也可以与数字信号一样在计算机上进行数字信号处理,自己要增加一道采样的工序就可以了。()答:错。需要增加采样和量化两道工序。 3.一个模拟信号处理系统总可以转换成功能相同的数字系统,然后基于数字信号处理 理论,对信号进行等效的数字处理。() 答:受采样频率、有限字长效应的约束,与模拟信号处理系统完全等效的数字系统未必一定能找到。因此数字信号处理系统的分析方法是先对抽样信号及系统进行分析,再考虑幅度量化及实现过程中有限字

长所造成的影响。故离散时间信号和系统理论是数字信号处理的理论基础。 第二章 离散时间信号与系统分析基础 一、连续时间信号取样与取样定理 计算题: 1.过滤限带的模拟数据时,常采用数字滤波器,如图所示,图中T 表示采样周期(假设T 足够小,足以防止混迭效应),把从)()(t y t x 到的整个系统等效为一个模拟滤波器。 (a ) 如果kHz rad n h 101,8)(=π截止于,求整个系统的截止频率。 (b ) 对于kHz T 201=,重复(a )的计算。 解 (a )因为当0)(8=≥ω πωj e H rad 时,在数 — 模变换中 )(1)(1)(T j X T j X T e Y a a j ωω=Ω= 所以)(n h 得截止频率8πω=c 对应于模拟信号的角频率c Ω为 8 π = ΩT c 因此 Hz T f c c 625161 2==Ω= π

郑州大学数字信号处理课程设计报告

实验一:基于DFT的数字谱分析以及可能出现的问题 一、实验目的: 1.进一步加深对DFT的基本性质的理解。 2.掌握在MATLAB环境下采用FFT函数编程实现DFT的语句用法。 3.学习用DFT进行谱分析的方法,了解DFT谱分析中出现的频谱泄露和栅栏效应现 象,以便在实际中正确应用DFT。 二、实验步骤: 1.复习DFT的定义、物理含义以及主要性质。 2.复习采用DFT进行谱分析可能出现的三个主要问题以及改善方案。 3.按实验内容要求,上机实验,编写程序。 4.通过观察分析实验结果,回答思考题,加深对DFT相关知识的理解。 三、上机实验内容: 1.编写程序产生下列信号供谱分析用: 离散信号: x1=R10(n) x2={1,2,3,4,4,3,2,1},n=0,1,2,3,4,5,6,7 x3={4,3,2,1, 1,2,3,4},n=0,1,2,3,4,5,6,7 连续信号: x4=sin(2πf1t)+sin(2πf2t) f1=100Hz, f2=120Hz,采样率fs=800Hz 2.对10点矩形信号x1分别进行10点、16点、64点和256点谱分析,要求256点 频谱画出连续幅度谱,10点、16点和64点频谱画出离散幅度谱,观察栅栏效应。 3.产生信号x2和x3分别进行8点、16点谱分析,画出离散幅度谱,观察两个信 号的时域关系和幅度谱的关系。 4.对双正弦信号x4以采样率fs=800Hz抽样,生成离散双正弦信号并画出连续波形; 对离散双正弦信号进行时域截断,截取样本数分别为1000、250、50。对不同样本的双正弦信号分别进行1024点谱分析,画出连续幅度谱,观察频谱泄露现象。

数字信号处理教学大纲_张培珍

GDOU-B-11-213 《数字信号处理》教学大纲 课程编号 1610056 总学时 54 理论44 实验/上机 10 学分 3 开课单位 信息学院 开课系电子信息工程修订时间 2006年1 月1 日 课 程 简 介 教学内容 本课程将通过讲课、练习、实验使学生掌握数字信号处理的基本理论和方法。课程内容包括:离散时间信号与系统;离散变换及其快速算法;熟练掌握是数字滤波器的基本理论和设计方法;初步掌握是数字信号处理软、硬件实现的技术。培养学生能够从数学概念、物理概念及工程概念去分析问题和解决问题。 修读专业:电子信息工程、通信信息工程专业、自动化类专业等 先修课程:高等数学、信号与系统、概率论与数理统计、Matlab等 教材:丁玉美主编. 数字信号处理, 西安电子科技大学出版社.2001.1 一、课程的性质与任务 数字信号处理课程是电子信息工程、通信工程等学科专业本科生必选的专业方向课程。本课程介绍了数字信号处理的基本概念、基本分析方法和处理技术。主要讨论离散时间信号和系统的基础理论、离散傅里叶变换DFT理论及其快速算法FFT、IIR和FIR数字滤波器的设计以及有限字长效应。通过本课程的学习使学生掌握利用DFT理论进行信号谱分析,以及数字滤波器的设计原理和实现方法,为学生进一步学习有关信息、通信等方面的课程打下良好的理论基础。 二、课程的基本要求 通过该课程的学习,使学生了解及掌握以下内容: (1)数字信号处理系统的基本概念、典型组成与应用; (2)时域离散信号和时域离散系统基本概念、基本运算以及基本性质; (3)时域离散信号、系统的频域分析工具-序列的傅里叶变换及其基本性质,Z

相关文档
最新文档