牛顿二项式定理的证明及其应用

牛顿二项式定理的证明及其应用
牛顿二项式定理的证明及其应用

牛顿第二定律的系统表达式及应用一中

牛顿第二定律的系统表达式 一、整体法和隔离法处理加速度相同的连接体问题 1.加速度相同的连接体的动力学方程: F 合 = (m 1 +m 2 +……)a 分量表达式:F x = (m 1 +m 2 +……)a x F y = (m 1 +m 2 +……)a y 2. 应用情境:已知加速度求整体所受外力或者已知整体受力求整体加速度。 例1、如图,在水平面上有一个质量为M的楔形木块A,其斜面倾角为α,一质量为m的木块B放在A的斜面上。现对A施以水平推力F, 恰使B与A不发生相对滑动,忽略一切摩擦,则B对 A的压力大小为( BD ) A 、 mgcosα B、mg/cosα C、FM/(M+m)cosα D、Fm/(M+m)sinα ★题型特点:隔离法与整体法的灵活应用。 ★解法特点:本题最佳方法是先对整体列牛顿第二定律求出整体加速度,再隔离B受力分析得出A、B之间的压力。省去了对木楔受力分析(受力较烦),达到了简化问题的目的。 例2.质量分别为m1、m2、m3、m4的四个物体彼此用轻绳连接,放在光滑的桌面上,拉力F1、F2分别水平地加在m1、m4上,如图所示。求物体系的加速度a和连接m2、m3轻绳的张力F。(F1>F2) 例3、两个物体A和B,质量分别为m1和m2,互相接触放在光滑水平面上,如图所示,对物体A施以水平的推力F,则物体A对B的作用力等于 ( ) A.F F F F 3、B 解析:首先确定研究对象,先选整体,求出A、B共同的加速度,再单独研究B,B 在A施加的弹力作用下加速运动,根据牛顿第二定律列方程求解. 将m1、m2看做一个整体,其合外力为F,由牛顿第二定律知,F=(m1+m2)a,再以m2为研究对象,受力分析如右图所示,由牛顿第二定律可得:F12=m2a,以上两式联立可得:F12= ,B正确. 例4、在粗糙水平面上有一个三角形木块a,在它的两个粗糙斜面上分别放有质量为m1和m2的两个木块b和c,如图1所示,已知m1>m2,三木块均处于静止, 则粗糙地面对于三角形木块( D ) A.有摩擦力作用,摩擦力的方向水平向右。B.有摩擦力作用,摩擦力的方向水平向左。C.有摩擦力作用,组摩擦力的方向不能确定。D.没有摩擦力的作用。 二、对加速度不同的连接体应用牛顿第二定律1.加速度不同的连接体的动力学方程:b c a

二项式定理的十大应用

二项式定理的十方面应用 一、利用二项式定理求展开式的某一项或指定项的系数 1.(2012年高考安徽卷理科7)(x2+2)( 1 x2-1)5的展开式的常数项是() (A)-3(B)-2(C)2(D)321世纪教【答案】D 【解析】第一个因式取x2,第二个因式取 1 x2得:1?C1(-1)4=5 5 第一个因式取2,第二个因式取(-1)5得:2?(-1)5=-2展开式的常数项是5+(-2)=3. 2.(2012年高考天津卷理科5)在(2x2- 1 x )5的二项展开式中,x的系数为() (A)10(B)-10(C)40(D)-40 点评:利用二项式定理求展开式的某一项或指定项的系数,实际上就是对二项展开式的通项公式的考查,此类问题是高考考查的重点. 3.在二项式(x-1)11的展开式中,系数最小的项的系数是 解:ΘT r+1 =C r x11-r(-1)r 11 ∴要使项的系数最小,则r必为奇数,且使C r为最大,由此得r=5,从而可知最小项的 11 系数为C5(-1)5=-462 11 二、利用二项式定理求展开式的系数和 1、若(1-2x)2013=a+a x+a x2+...+a 0122013 x2013(x∈R), 则(a+a)+(a+a)+(a+a)+Λ+(a+a 010******** )=_______。(用数字作答) 解析:在(1-2x)2013=a+a x+a x2+...+a 0122013 x2013中,令x=0,则a=1, 令x=1,则a+a+a+a+Λ+a 01232004 =(-1)2013=1 故(a+a)+(a+a)+(a+a)+Λ+(a+a 0102030 精品资料 2013 )

高中数学专题讲义-二项式定理的应用 证明整除或求余数

1.二项式定理 ⑴二项式定理 () ()011222...n n n n n n n n n n a b C a C a b C a b C b n --*+=++++∈N 这个公式表示的定理叫做二项式定理. ⑵二项式系数、二项式的通项 011222...n n n n n n n n n C a C a b C a b C b --++++叫做()n a b +的二项展开式,其中的系数 ()0,1,2,...,r n C r n =叫做二项式系数,式中的r n r r n C a b -叫做二项展开式的通项,用1r T +表示, 即通项为展开式的第1r +项:1r n r r r n T C a b -+=. ⑶二项式展开式的各项幂指数 二项式()n a b +的展开式项数为1n +项,各项的幂指数状况是 ①各项的次数都等于二项式的幂指数n . ②字母a 的按降幂排列,从第一项开始,次数由n 逐项减1直到零,字母b 按升幂排列,从第一项起,次数由零逐项增1直到n . ⑷几点注意 ①通项1r n r r r n T C a b -+=是()n a b +的展开式的第1r +项,这里0,1,2,...,r n =. ②二项式()n a b +的1r +项和()n b a +的展开式的第1r +项r n r r n C b a -是有区别的,应用二项式 定理时,其中的a 和b 是不能随便交换的. ③注意二项式系数(r n C )与展开式中对应项的系数不一定相等,二项式系数一定为正,而项的系数有时可为负. 知识内容 证明整除或求余数

④通项公式是()n a b +这个标准形式下而言的,如()n a b -的二项展开式的通项公式是 ()11r r n r r r n T C a b -+=-(只须把b -看成b 代入二项式定理)这与1r n r r r n T C a b -+=是不同的,在这 里对应项的二项式系数是相等的都是r n C ,但项的系数一个是()1r r n C -,一个是r n C ,可看出,二项式系数与项的系数是不同的概念. ⑤设1,a b x ==,则得公式:()12211......n r r n n n n x C x C x C x x +=++++++. ⑥通项是1r T +=r n r r n C a b -()0,1,2,...,r n =中含有1,,,,r T a b n r +五个元素, 只要知道其中四个即可求第五个元素. ⑦当n 不是很大,x 比较小时可以用展开式的前几项求(1)n x +的近似值. 2.二项式系数的性质 ⑴杨辉三角形: 对于n 是较小的正整数时,可以直接写出各项系数而不去套用二项式定理,二项式系数也可以直接用杨辉三角计算. 杨辉三角有如下规律:“左、右两边斜行各数都是1.其余各数都等于它肩上两个数字的和.” ⑵二项式系数的性质: () n a b +展开式的二项式系数是:012,,,...,n n n n n C C C C ,从函数的角度看r n C 可以看成是r 为自 变量的函数()f r ,其定义域是:{}0,1,2,3,...,n . 当6n =时,()f r 的图象为下图: 这样我们利用“杨辉三角”和6n =时()f r 的图象的直观来帮助我们研究二项式系数的性质. ①对称性:与首末两端“等距离”的两个二项式系数相等.

高考数学 考点23 两个计数原理、排列、组合及其应用、

考点23 两个计数原理、排列、组合及其应用、 二项式定理及应用 1.(2010·湖北高考文科·T6)现有6名同学去听同时进行的5个课外知识讲座,每名同学可自由选择其中的一个讲座,不同选法的种数是( ) (A)65(B)56(C)565432 2 ????? (D)6543 ????2 【命题立意】本题主要考查分类和分步计数原理,考查考生的逻辑推理能力. 【思路点拨】因每名同学可自由选择其中的一个讲座,故6名同学的安排可分6步进行,每步均有5种选择,由分步计数原理即可得出答案. 【规范解答】选A.每名同学可自由选择5个讲座中的其中一个讲座,故6名同学的安排可分6步进行,每步均有5种选择,因此共有65种不同选法. 【方法技巧】本题每名同学可自由选择其中的一个讲座,故每位同学的选择都有5种,共有65种不同选法.若将“每名同学可自由选择其中的一个讲座”改为“每一个讲座都至少有一位同学去听”,它就是一个典型的不同元素的分组问题.利用“先分堆,再分配”的思想将6名同学分为5堆,再分给5个不同的讲座, 有 25 65 1800 C A= 1 800种不同选法. 2.(2010·湖北高考理科·T8)现安排甲、乙、丙、丁、戊5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加.甲、乙不会开车但能从事其他三项工作,丙、丁、戊都能胜任四项工作,则不同安排方案的种数是() (A)152 (B)126 (C)90 (D)54 【命题立意】本题主要考查分类和分步计数原理,考查排列、组合知识的应用,考查考生的运算求解能力.【思路点拨】由甲、乙不会开车但能从事其他三项工作,丙、丁、戊都能胜任四项工作知,司机工作很特殊.按安排几个人担任司机工作可分为两类:①司机只安排1人;②司机安排2人,然后将其余的人安排到其他三个不同的位置. 【规范解答】选B.当司机只安排1人时,有 123 343 C C A =108(种);当司机安排2人时有 23 33 C A =18(种).由分类 计数原理知不同安排方案的种数是108+18=126(种). 【方法技巧】本题要求每项工作至少有一人参加,因此属于不同元素的分组问题,解题时往往采用“先分堆,再分配”的办法.若去掉“每项工作至少有一人参加”的限制,则甲、乙二人各有3种选择,丙、丁、 戊各有4种选择,因此共有33444576 ????=(种)安排方案. 3.(2010·全国高考卷Ⅱ理科·T6)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的放法共有( ) (A)12种(B)18种(C)36种(D)54种 【命题立意】本题考查了排列、组合的知识. 【思路点拨】运用先选后排解决,先从3个信封中选取一个放入标号为1,2的2张卡片,然后剩 余的2个信封分别放入2张卡片. 【规范解答】选B.标号为1,2的卡片放法有A 1 3种,其他卡片放法有 2 2 2 4 C C种,所以共有A132 2 2 4 C C=18 (种). 【方法技巧】先排列特殊元素是解决排列、组合问题的常用方法.

二项式定理练习题

10.3二项式定理 【考纲要求】 1、能用计数原理证明二项式定理. 2、会用二项式定理解决与二项展开式有关的简单问题. 【基础知识】 1、二项式定理:n n n r r n r n n n n n n n n b C b a C b a C b a C a C b a ++++++=+---ΛΛ222110)( 二项式的展开式有1n +项,而不是n 项。 2、二项式通项公式:r r n r n r b a C T -+=1 (0,1,2,,r n =???) (1)它表示的是二项式的展开式的第1r +项,而不是第r 项 (2)其中r n C 叫二项式展开式第1r +项的二项式系数,而二项式展开式第1r +项的 系数是字母幂前的常数。 (3)注意0,1,2,,r n =??? 3、二项式展开式的二项式系数的性质 (1)对称性:在二项展开式中,与首末两项“等距离”的两项的二项式系数相等。即 m n C =m n n C - (2)增减性和最大值:在二项式的展开式中,二项式系数先增后减,且在中间取得最大值, 如果二项式的幂指数是偶数,中间一项的二项式系数最大;如果二项式的幂指数是奇数,中间两项的二项式系数相等且最大。 (3)所有二项式系数的和等于2n ,即n n n n n n n n n n C C C C C C 212210=++++++--ΛΛ 奇数项的二项式系数和与偶数项的二项式系数和相等,即 15314202-=+++=+++n n n n n n n C C C C C C ΛΛΛΛ 4.二项展开式的系数0123,,,,n a a a a a ???的性质: 对于2012()n n f x a a x a x a x =++++g g g 0123(1)n a a a a a f ++++???+=, 0123(1)(1)n n a a a a a f -+-+???+-=- 5、证明组合恒等式常用赋值法。 【例题精讲】 例1 若,,......)21(2004200422102004R x x a x a x a a x ∈++++=-求(10a a +)+(20a a +)+……+(20040a a +) 解:对于式子:,,......)21(2004200422102004R x x a x a x a a x ∈++++=- 令x=0,便得到:0a =1

最新二项式定理应用常见题型大全(含答案)

二项式定理应用常见题型大全 一.选择题(共21小题) 1.(2012?重庆)的展开式中常数项为() .C D 2.(2012?桃城区)在的展开式中,有理项共有() 2012 4.(2008?江西)展开式中的常数项为() n*5 6.(2006?重庆)若的展开式中各项系数之和为64,则展开式的常数项为() 88 29211 2006 10.(2004?福建)若(1﹣2x)9展开式的第3项为288,则的值是() D. 11.若则二项式的展开式中的常数项为() 12.(a>0)展开式中,中间项的系数为70.若实数x、y满足则z=x+2y的最小值是()

C 10 14.的展开式中第三项的系数是() .C. 4n+1 n 17.设f(x)等于展开式的中间项,若f(x)≤mx在区间[,]上恒成立,则m的取值范围是 [[,[ 18.在的展开式中系数最大的项是() 6 8 2010

参考答案与试题解析 一.选择题(共21小题) 1.(2012?重庆)的展开式中常数项为() .C D 的展开式通项公式中,令 的展开式通项公式为 = 2.(2012?桃城区)在的展开式中,有理项共有() ??, 2012

+ 4.(2008?江西)展开式中的常数项为() 的展开式的通项为 的展开式的通项为= 的通项为= ,时,展开式中的项为常数项 n*5

6.(2006?重庆)若的展开式中各项系数之和为64,则展开式的常数项为() 则展开式的常数项为 88 29211 2006

分别取, 时,有)( 时,有)( ( 10.(2004?福建)若(1﹣2x)9展开式的第3项为288,则的值是() D. 中,化简可得答案. , x= =2 11.若则二项式的展开式中的常数项为() ∴二项式的通项为 的展开式中的常数项为=160

二项式定理习题精选精讲

例说二项式定理的常见题型及解法 二项式定理的问题相对较独立,题型繁多,解法灵活且比较难掌握。二项式定理既是排列组合的直接应用,又与概率理论中的三大概率分布之一的二项分布有着密切联系。二项式定理在每年的高考中基本上都有考到,题型多为选择题,填空题,偶尔也会有大题出现。本文将针对高考试题中常见的二项式定理题目类型一一分析如下,希望能够起到抛砖引玉的作用。 一、求二项展开式 1.“n b a )(+”型的展开式 例1.求4)13(x x +的展开式; 解:原式=4 )1 3( x x += 24)13(x x + = ])3()3()3()3([144342 243144042C C C C C x x x x x ++++ =)112548481(12 342++++x x x x x =54112848122 ++++x x x x 小结:这类题目一般为容易题目,高考一般不会考到,但是题目解决过程中的这种“先化简在展开”的思想在高考题目中会有体现的。 ) 2. “n b a )(-”型的展开式 例2.求4)13 (x x - 的展开式; 分析:解决此题,只需要把4)13 (x x - 改写成4)]1(3[x x - +的形式然后按照二项展开式的格式展开即可。本 题主要考察了学生的“问题转化”能力。 3.二项式展开式的“逆用” 例3.计算c C C C n n n n n n n 3)1( (279313) 2 1 -++-+-; 解:原式= n n n n n n n n C C C C C )2()31()3(....)3()3()3(3 33 22 11 -=-=-++-+-+-+ 小结:公式的变形应用,正逆应用,有利于深刻理解数学公式,把握公式本质。 二、通项公式的应用 1.确定二项式中的有关元素 例4.已知9)2( x x a -的展开式中3x 的系数为4 9,常数a 的值为 】 解:923 92999 12)1()2 ()(----+???-=-=r r r r r r r r r x a C x x a C T 令 392 3 =-r ,即8=r 依题意,得 4 9 2)1(894889= ??---a C ,解得1-=a 2.确定二项展开式的常数项 例5.103 )1( x x -展开式中的常数项是 解:r r r r r r r x C x x C T 6 5510 3 1010 1 )1()1() (--+?-=-= 令06 5 5=- r ,即6=r 。 所以常数项是210 )1(6 106=-C

牛顿第二定律的应用

牛顿第二定律的应用 Prepared on 22 November 2020

寒假作业4 (考查:牛顿第二定律的应用) 一、选择题(1-12单选,13-22多选) 1.如图,水平面上一个物体向右运动,将弹簧压缩,随后又被弹回直到离开弹簧,则该物体从接触弹簧到离开弹簧的这个过程中,下列说法中正确的是( ) A. 若接触面光滑,则物体加速度的大小是先减小后增大 B. 若接触面光滑,则物体加速度的大小是先增大后减小再增大 C. 若接触面粗糙,则物体加速度的大小是先减小后增大 D. 若接触面粗糙,则物体加速度的大小是先增大后减小再增大 2.静止在光滑的水平面上的物体,在水平推力F的作用下开始运动,推力F 随时间t变化的规律如图所示,则物体在 1 0~t时间内( ) A. 速度一直增大 B. 加速度一直增大 C. 速度先增大后减小 D. 位移先增大后减小 3.质量为M的木块位于粗糙水平桌面上,若用大小为F的水平恒力拉木块时,其加速度为a,当拉力方向不变,大小变为2F时,木块的加速度大小为a′,则 () A. 2a>a′ B. 2a

二项式定理的推广与应用

二项式定理的推广及应用 曲靖市麒麟高级中学 车保勇 [摘 要] 二项式定理是在处理有关两个元素和的方幂问题时常常考虑到的一个重要公式.深入研究二项式定理的推广及其用途,巧妙应用,能为许多数学问题提供另类解法,同时解决一些难度较大的问题.因此,进一步探讨二项式定理的推广及应用仍是一项有意义的工作.但前人得出的应用范围仅局限于求值、近似计算、整除、求余数、证明不等式等方面,而且在推广方面不够完善,笔者对二项式定理的推广作进一步完善,系统整理已有用途,并给出一种前人尚未提及的用途:即用二项式定理处理特殊极限问题.纵观全文,深入研究二项式定理的用途,不仅为一些数学问题提供了另类解法,更重要的是拓宽了二项式定理的应用范围. [关键词] 二项式定理 推广 方幂 应用 1 引言 二项式定理是在处理有关两个元素和的方幂问题时常常考虑到的一个重要公式.数式二项式定理表述为:() 0,(,,0)n n r n r r n r a b C a b n r N r n -=+=∈≤≤∑.它有着十分广泛的应用,遍及初等数学和高等数学领域[1] .认真研究问题的条件和结构,把一些表面与二项式定理或推广定理无关的问题作适当变形,构造出二项式定理或推广定理,再用其求解(证明),可使解题简洁明快.巧妙应用二项式定理或推广定理,不仅为许多问题提供另类解法,还能解决一些难度较大的数学问题.因此,把二项式定理进一步推广完善,并充分研究其用途,拓宽其应用范围,仍是一件有意义的工作.

2 问题的提出 虽然学者们对二项式定理的推广及应用的研究取得了丰硕的成果,但已有成果都存在两个不足方面:一是推广不够完善;二是应用范围不够广.针对此情况,笔者试图将其推广进一步完善,系统整理已有用途,并提出新的用途,拓宽其应用范围. 3 二项式定理的推广 二项式定理是在处理有关两个元素和的方幂问题时常常考虑到的一个重要公式.数式二项式定理表述为: 011r n r r n n ()n n n n n n n a b C a C a b C a b C b --+=++ ++ +0 ,(,,0)n r n r r n r C a b n r N r n -==∈≤≤∑ 其中r n r r r 1T n C a b -+=叫做二项式的通项公式,()!!! r n n C r n r =-叫做二项式系数. 若令 -n r q =, 则 ! !! r n n C r q = ,(,,r q n)n r N ∈且+=. 3.1 推广一 在实际应用中,除遇到二项式外还常常遇到多项式问题,为便于应用,现将其作推广. 先考察三项式()()n a b c n N ++∈的展开式: ()[()]n n a b c a b c ++=++ ()n r r r n C a b c -=+++ ( )r q n r q q r n n r C C a b c ---= ++++ r q n r q q r n n r C C a b c ---= ++ 若令n r q p --=,便得到三项式()()n a b c n N ++∈展开式通项公式: (,,p q r n)r q p q r n n r C C a b c p q r N -∈且++=, 其中()()!(r)!! !!q!q !!q!p! r q n n r n n n C C r n r n r r --==---叫三项式系数.[2] 类似地可得四项式(d)()n a b c n N +++∈通项公式为 ! (,,,)!!!s! p q r s n a b c d p q r s N p q r ∈且p+q+r+s=n , 其中 ! !!!s! n p q r 称四项式系数.于是猜想m项式定理为: 定理112()n m a a a +++12 121212!!! !m m i i i m i i i n m n a a a i i i +++==∑,(,,1,2,,)k i n N k m ∈=.

二项式定理

二项式定理 编写人:王超 审核人:高三数学组 时间:2019.3.14 典例1 的展开式中, 的系数为 A .60 B .-60 C .240 D .-240 典例2 若a =d x (e 为自然对数的底数),则二项式(x-)6的展开式中的常数项为 A .-160 B .160 C .20 D .-20 典例3 已知关于x 的二项式(ax- )n 展开式的二项式系数之和为256,常数项为112,则a 的值为 A .1 B .±1 C .2 D .±2 1.( -2x )6 的展开式中x 2 项的系数为 A .240 B .-240 C .160 D .-160 2.已知二项式 (n (a >0)的展开式的第五、六项的二项式系数相等且最大,展开式中x 2 项的系数为84,则a 的值为 A .1 B . C .2 D . 3 .在二项式n 的展开式中,前三项系数的绝对值成等差数列. (1)求展开式的第四项; (2)求展开式的常数项. 典例4 若(x 2+1)(x-3)9=a 0+a 1(x-2)+a 2(x-2)2+a 3(x-2)3+…+a 11(x-2)11,则a 1+a 2+…+a 11的值为 A .0 B .-5 C .5 D .255 典例5 已知(1-2x )n 的展开式中的二项式系数的和是64,则n = ;若(1-2x )n =a 0+a 1x+a 2x 2+a 3x 3+…+a n x n ,则|a 0|+|a 1|+|a 2|+|a 3|+…+|a n |= .

典例6 在二项式 n 的展开式中, (1)若所有二项式系数之和为,求展开式中二项式系数最大的项. (2)若前三项系数的绝对值成等差数列,求展开式中各项的系数和. 4.在的展开式中,各项系数和与二项式系数和之比为32,则的系数为A.50 B.70 C.90 D.120 5.已知(1-x)4+4(1-x)3+6(1-x)2-4x+5=a0+a1x+a2x2+a3x3+a4x4,那么a2+a4的值为A.9 B.18 C.25 D.41 6.已知二项式且. (1)若,展开式中含项的系数为960,求的值; (2)若展开式中各项系数和为,且,求展开式的所有二项式系数之和. 典例7 利用二项式定理证明2n+2·3n+5n-4(n* ∈N)能被25整除. 7.被49除所得的余数是 A.-14 B.0 C.14 D.35 1.(1+x)7的展开式中x2的系数是 A.42 B.35 C.28 D.21 2.二项式 6 2 x x ?? - ? ?? 的展开式的第二项是 A.6x4B.﹣6x4 C.12x4D.﹣12x4 3.若实数a=2-,则a10-2a9+22a8- (210) A.32 B.-32 C.1024 D.512 4.已知x (x-)5的展开式中含x4项的系数为30,则a= A.B.-C.-6 D.6

二项式定理二项式定理的应用教案

排列、组合、二项式定理·二项式定理的应用·教案 教学目标 1.利用二项式定理及二项式系数的性质解决某些关于组合数的恒等式的证明;近似计算;求余数或证明某些整除或余数的问题等. 2.渗透类比与联想的思想方法,能运用这个思想处理问题. 3.培养学生运算能力,分析能力和综合能力. 教学重点与难点 数学是一门工具,学数学的目的就是为了应用.怎样建立起要解决的问题与数学知识之间的联系(如一个近似计算问题与二项式定理有没有联系,怎样联系),是这节课的难点,也是重点所在. 教学过程设计 师:我们已经学习了二项式定理及二项式系数,请大家用6分时间完成以下三道题: (1)在(1-x3)(1+x)10的展开式中,x5的系数是多少? (2)求(1+x-x2)6展开式中含x5的项. (全体学生参加笔试练习) 6分钟后,用投影仪公布以上三题的解答: (1)原式=(1+x)10-x3(1+x)10,可知x5的系数是(1+x) (2)原式=[1+(x-x2)]6=1+6(x-x2)+15(x-x2)2+20(x-x2)3+15(x-x2)4+6(x-x2)5+(x-x2)6. 其中含x5的项为:20·3x5+15(-4)x5+6x5=6x5.

师:解(1),(2)两题运用了变换和化归思想,第(2)题把三项式化为二项式,创造了使用二项式定理的条件. 第(3)题的解法是根据恒等式的概念,a,b取任何数时,等式都成立.根据习题结构特征选择a,b的取值.这种用概念解题的思想经常使用. 下面我们看二项式定理的一些应用. 师:请同学们想一想,例1怎样解? 生甲:从结构上观察,则与练习的第(3)题有相似之处,只是组合数的系数成等 比数列,是否根据二项式定理令a=1,b=3,即可得到证明. 师:请同学们根据生甲所讲,写出证明. (找一位同学板演) 证明:在(a+b)n的展开式中令a=1,b=3得: 师:显然,适当选取a,b之值是解这一类题的关键,再看练习题. 练习 生乙:这题与例1类比有共同点,仍是组合数的运算,不同点是缺

人教版高中数学二项式定理教学设计全国一等奖

二项式定理(第1课时) 一、容和容解析 容:二项式定理的发现与证明. 容解析:本节是高中数学人教A版选修2-3第一章第3节的容.二项式定理是多项式乘法的特例,是初中所学多项式乘法的延伸,此容安排在组合数模型之后,随机变量及其分布之前,既是组合计数模型的一个应用,也是为学习二项分布作准备.另外,由于二项式系数是一些特殊的组合数,由二项式定理可以导出一些组合数的恒等式,这对深化组合数的认识有好处。 由于二项式定理的发现,可以通过从特殊到一般进行归纳概括,在归纳概括过程中还可以用到组合计数模型,因此,这部分容对于培养学生数学抽象与数学建模素养有着不可忽略的价值.教学中应当引起充分重视. 二、学情分析 这一堂课是面对高二学生。学生已经初步具备了多项式乘法,同类项合并,排列计数原理,组合数计数原理以及归纳推理等知识储备。能够在教师的引导下理解并掌握本节课中的推理演绎过程。但是,学生的自我探究,归纳,分析的能力还有待提高。 三、课程学习目标 (1)知识目标:使学生掌握二项式定理及推导方法,二项式展开式、通项公式的特点,并能利用二项式定理计算或证明一些简单问题。 (2)能力目标:在学生对二项式定理形成的参与讨论过程中,培养学生观察、猜想、归纳的能力,以及学生的化归意识及知识迁移能力。 (3)情感目标:通过二项式定理的学习,培养学生解决数学问题的兴趣和信心,让学生感受数学在的和谐、对称美及数学符号应用的简洁美。 四、设计思想: 本课采用合作探究、自主学习、合作交流的研究性学习方式,重点放在定理的形成、证明的探究及定理基本应用上,在知识的形成、发展过程中展开思维,逐步培养学生发现问题、探索问题、解决问题的能力和创造性思维的能力。 目标解析: (1)二项式展开式是依多项式乘法获得的特殊形式,因此从多项式乘法出发去发现二

牛顿第二定律及其应用 知识讲解 基础篇

物理总复习:牛顿第二定律及其应用 【考纲要求】 1、理解牛顿第二定律,掌握解决动力学两大基本问题的基本方法; 2、了解力学单位制; 3、掌握验证牛顿第二定律的基本方法,掌握实验中图像法的处理方法。 【知识网络】 牛顿第二定律内容:物体运动的加速度与所受的合外力成正比,与物体的质量成反比,加速度的方向与合外力相同。 解决动力学两大基本问题 (1)已知受力情况求运动情况。 (2)已知物体的运动情况,求物体的受力情况。 运动=F ma ???→←??? 合力 加速度是运动和力之间联系的纽带和桥梁 【考点梳理】 要点一、牛顿第二定律 1、牛顿第二定律 牛顿第二定律内容:物体运动的加速度与所受的合外力成正比,与物体的质量成反比,加速度的方向与合外力相同。 要点诠释:牛顿第二定律的比例式为F ma ∝;表达式为F ma =。1 N 力的物理意义是使质量为m=1kg 的物体产生21/a m s =的加速度的力。 几点特性:(1)瞬时性:牛顿第二定律是力的瞬时作用规律,力是加速度产生的根本原因,加速度与力同时存在、同时变化、同时消失。 (2)矢量性: F ma =是一个矢量方程,加速度a 与力F 方向相同。 (3)独立性:物体受到几个力的作用,一个力产生的加速度只与此力有关,与其他力无关。 (4)同体性:指作用于物体上的力使该物体产生加速度。 要点二、力学单位制 1、基本物理量与基本单位 力学中的基本物理量共有三个,分别是质量、时间、长度;其单位分别是千克、秒、米;其表示的符号分别是kg 、s 、m 。 在物理学中,以质量、长度、时间、电流、热力学温度、发光强度、物质的量共七个物理量 作为基本物理量。以它们的单位千克(kg )、米(m )、秒(s )、安培(A )、开尔文(K )、坎 德拉(cd )、摩尔(mol )为基本单位。 2、 基本单位的选定原则 (1)基本单位必须具有较高的精确度,并且具有长期的稳定性与重复性。 (2)必须满足由最少的基本单位构成最多的导出单位。 (3)必须具备相互的独立性。 在力学单位制中选取米、千克、秒作为基本单位,其原因在于“米”是一个空间概念;“千克”是一个表述质量的单位;而“秒”是一个时间概念。三者各自独立,不可替代。 例、关于力学单位制,下列说法正确的是( ) A .kg 、m/s 、N 是导出单位 B .kg 、m 、s 是基本单位 C .在国际单位制中,质量的单位可以是kg ,也可以是g D .只有在国际单位制中,牛顿第二定律的表达式才是 F ma = 【答案】BD

二项式定理及数学归纳法

二项式定理及数学归纳法 【真题体验】 1.(2012·苏北四市调研)已知a n =(1+2)n (n ∈N *) (1)若a n =a +b 2(a ,b ∈Z ),求证:a 是奇数; (2)求证:对于任意n ∈N *都存在正整数k ,使得a n =k -1+k . 证明 (1)由二项式定理,得a n =C 0n +C 1n 2+C 2n (2)2+C 3n (2)3+…+C n n (2)n , 所以a =C 0n +C 2n (2)2+C 4n (2)4+…=1+2C 2n +22C 4n +…, 因为2C 2n +22C 4n +…为偶数,所以a 是奇数. (2)由(1)设a n =(1+2)n =a +b 2(a ,b ∈Z ),则(1-2)n =a -b 2, 所以a 2-2b 2=(a +b 2)(a -b 2)=(1+2)n (1-2)n =(1-2)n , 当n 为偶数时,a 2=2b 2+1,存在k =a 2,使得a n =a +b 2=a 2+2b 2=k +k -1, 当n 为奇数时,a 2=2b 2-1,存在k =2b 2,使得a n =a +b 2=a 2+2b 2=k -1+k , 综上,对于任意n ∈N *,都存在正整数k ,使得a n =k -1+k . 2.(2010·江苏,23)已知△ABC 的三边长都是有理数. (1)求证:cos A 是有理数; (2)求证:对任意正整数n ,cos nA 是有理数. (1)证明 设三边长分别为a ,b ,c ,cos A =b 2+c 2-a 2 2bc , ∵a ,b ,c 是有理数, b 2+ c 2-a 2是有理数,分母2bc 为正有理数,又有理数集对于除法具有封闭性, ∴b 2+c 2-a 2 2bc 必为有理数,∴cos A 是有理数. (2)证明 ①当n =1时,显然cos A 是有理数; 当n =2时,∵cos 2A =2cos 2A -1,因为cos A 是有理数, ∴cos 2A 也是有理数; ②假设当n ≤k (k ≥2)时,结论成立,即cos k A 、cos(k -1)A 均是有理数. 当n =k +1时,cos(k +1)A =cos k A cos A -sin k Asin A =cos k A cos A -12 [cos(k A -A )-cos(k A +A )] =cos k A cos A -12cos(k -1)A +12 cos(k +1)A 解得:cos(k +1)A =2cos k A cos A -cos(k -1)A ∵cos A ,cos k A ,cos(k -1)A 均是有理数,

牛顿二项式定理的证明

编号0005、 设a [n]=a(a-h)……[a-(n-1)h]及a [0]=1,求证: (a +b)[n]=∑C n m a [n?m]b [m]n m=0 其中C n m 是由n 个元素中选取m 个元素的组合数, 由此推出牛顿二项式公式。 提示: 1、可以用数学归纳法; 2、h 为排列数的步长。 证:当n=1时,由于[a+b][1]=a+b 及∑C 1m a [1?m]b [m]1m=0=a+b,所以等式成立 设n=k 时,等式成立,即(a +b)[k]=∑C k m a [k?m]b [m]k m=0 (1) 则对于n=k+1时,有[a+b] [k+1]= [a+b][a+b-h][a+b-2h]……{a+b-[(k+1)-1]h}整理即, [a+b] [k+1]= [a+b] [k][a+b-kh] (2) 将式(1)代入式(2)得 (a +b)[k+1]=(a +b ?k?)∑C k m a [k?m]b [m]k m=0 展开得: =(a +b ?k?){C k 0a [k ]b [0]+C k 1a [k?1]b [1]+?+C k k a [0]b [k]} 凑式子: ={(a ?k?)+b}C k 0a [k ]b [0]+{[a ?(k ?1)?]+(b ??)}C k 1a [k?1]b [1]+?+{a +(b ?k?)}C k k a [0]b [k] 分开各自相乘,裂为两项: =C k 0a [k+1]b [0]+C k 0a [k ]b [1]+C k 1a [k ]b [1]+C k 1a [k+1]b [2]+?+C k k a [1]b [k ]+C k k a [0]b [k+1] 提取公因式: =C k+10a [k+1]b [0]+(C k 0+C k 1)a [k ]b [1]+?+(C k k?1+C k k )a [1]b [k ]+C k+1k+1a [0]b [k+1] 利用组合数的性质: =C k+10a [k+1]b [0]+C k+11a [k ]b [1]+?+C k+1k a [1]b [k ]+C k+1k+1a [0]b [k+1] 得出式子: =∑C k+1m a [k+1?m]b [m]k+1m=0 故由(a +b)[k]=∑C k m a [k?m]b [m]k m=0可推得下式成立: (a +b)[k+1]=∑C k+1m a [k+1?m]b [m]k+1 m=0 即对于n=k+1时,等式也成立。 于是,对于任何正整数n ,有(a +b)[n]=∑C n m a [n?m]b [m]n m=0 (3) 在式子a [n]=a(a-h)……[a-(n-1)h]中,令h=0,即得a [n]=a n (4) 将式(4)代入式(3),得牛顿二项式公式(a +b)n =∑C n m a n?m b m n m=0

(精) 牛顿第二定律的应用

图 3 F 1 牛顿第二定律的应用检测题 (以下各题取2/10s m g ) 第一类:由物体的受力情况确定物体的运动情况 1,如图1所示,用F = 5.0 N 的水平拉力,使质量m = 5.0 kg 的物体由静止开始沿光滑水平面做匀加速直线运动.求: (1)物体加速度a 的大小; (2)物体开始运动后t = 2.0 s 内通过的位移x . 2,如图2所示,用F = 6.0 N 的水平拉力,使质量m = 2.0 kg 的物体由静止开 始沿光滑水平面做匀加速直线运动。 (1)求物体的加速度a 的大小; (2)求物体开始运动后t = 4.0 s 末速度的大小; 3.如图3所示,用F 1 = 16 N 的水平拉力,使质量m = 2.0 kg 的物体由静止开始沿水平地面做匀加速直线运动。已知物体所受的滑动摩擦力F 2 = 6.0 N 。求: (1)物体加速度a 的大小; (2)物体开始运动后t=2.0 s 内通过的位移x 。 4.如图4所示,用F =12 N 的水平拉力,使物体由静止开始沿水平地面做匀加速直线运动. 已知物体的质量m =2.0 kg ,物体与地面间的动摩擦因数μ=0.30. 求: (1)物体加速度a 的大小; (2)物体在t =2.0s 时速度v 的大小. 5,一辆总质量是4.0×103kg 的满载汽车,从静止出发,沿路面行驶,汽车的牵引力是6.0×103N ,受到的阻力为车重的0.1倍。求汽车运动的加速度和20秒末的速度各是多大? 图1 F 图 2 F 图 4 F

6.如图6所示,一位滑雪者在一段水平雪地上滑雪。已知滑雪者与其全部装备的总质量m = 80kg ,滑雪板与雪地之间的动摩擦因数μ=0.05。从某时刻起滑雪者收起雪杖自由滑行,此时滑雪者的速度v = 5m/s ,之后做匀减速直线运动。 求: (1)滑雪者做匀减速直线运动的加速度大小; (2)收起雪杖后继续滑行的最大距离。 7,如图7所示,一个质量为m=20kg 的物块,在F=60N 的水平拉力作用下,从静止开始沿水平地面向右做匀加速直线运动,物体与地面之间的动摩擦因数为0.10, (1)画出物块的受力示意图 (2)求物块运动的加速度的大小 (3)求物块速度达到s m v /0.6 时移动的距离 第二类:由物体的运动情况确定物体的受力情况 1、列车在机车的牵引下沿平直铁轨匀加速行驶,在100s 内速度由5.0m/s 增加到15.0m/s. (1)求列车的加速度大小. (2)若列车的质量是1.0×106 kg ,机车对列车的牵引力是1.5×105 N ,求列车在运动中所受的阻力大小. 2,静止在水平地面上的物体,质量为20kg ,现在用一个大小为60N 的水平力使物体做匀加速直线运动,当物体移动9.0m 时,速度达到6.0m/s ,求: 图6 图7 F

二项式定理

二项式定理 学习目标:能利用计数原理证明二项式定理;理解并掌握二项式定理,并能简单应用. 学习重点:探究并归纳用计数原理分析3)(b a +的展开式的形成过程,并依此方法得到二项式定 理. 二项式定理研究的是n b a )(+的展开式,如何利用两个计数原理得到2)(b a +, 3)(b a +,4)(b a +的展开式?你能由此猜想一下n b a )(+的展开式是什么? 学习任务:阅读课本P 29~P 35. 问题1. 用乘法法则展开3)(b a +,合并同类项之前展开式有多少项?合并同类项后会有几项?其 中b a 2的系数是多少?用两个计数原理分析。 问题2. 回答P 30探究。 问题3. n b a )(+的展开式按照a 的降幂排列,共有多少项?其中,含有k k n b a -的项是第几项?这 一项的项数是多少?利用计数原理分析。 问题4. 通过教材例1和例2学习,熟悉二项式定理二项式系数,二项展开式的通项中a ,b ,n , k 的具体含义。 问题5. 回答P 32探究。 问题6. 如果把n b a )(+的展开式的二项式系数看成函数的话,它是一个定义域在自然数内的离散 函数),2,1,0()(n n C r f r n ???==,请通过“杨辉三角”计算n = 6时的二项式系数,并画出 )6,2,1,0()(6???==r C r f r 的图象,由图象得出函数值怎样的分布特点?试着由此总结二项式 系数的性质。 问题7. 仔细阅读例3,体会“赋值法”的应用。 必做题 A 级 P 31 1~4 P 35 1~3 B 级 习题1.3 A 组 B 组. 选做题 1. 7 3 )2(x x +的展开式的第4项是 ;第4项的二项式系数是 ;第4项的系数 是 . 2. 求10 3 )1()1(x x +-的展开式中5 x 的系数. 3. 对于二项展开式1 2) (+-n b a ,下列结论中成立的是( ) A.中间一项的二项式系数最大 B.中间两项的二项式系数相等且最大 C.中间两项的二项式系数相等且最小 D.中间两项的二项式系数互为相反数 4.(1)4)(x y y x -的展开式中33y x 的系数是 . (2)6 )212(x x - 的展开式的常数项是 . 5. 533)1()21(x x -+的展开式中x 的系数是( ) A. -4 B. -2 C. 2 D. 4 6. 在1003)52(+的展开式中,有理项的个数是多少? 7. 求10 2)11(x x + +的展开式中的常数项. 8.(1)6364364164C C C +???++ = . (2)612512C C += . 9. 求n x x x )1()1()1(43++???++++的展开式中2x 的系数. 10. 已知2010201021020102)21(x a x a x a a x +???+++=-. (1)求2010210a a a a +???+++的值. (2)求20102008420a a a a a ++???+++的值. 11.(1)n n n n n n C C C C 1321242-+???++等于( ) A. n 3 B. 13-n C. 2 1 3-n D. 12 3-n (2)已知7292222332210=+???+++n n n n n n n C C C C C ,则n n n n n C C C C +???+++321等于( ) A.63 B.64 C.31 D.32 12. 若n x x )1(23+ 的展开式中第6项系数最大,则其中的常数项为( ) A.210 B.10 C.462 D.252 13. 若443322104)32(x a x a x a x a a x ++++=+,则 (1)43210a a a a a ++++ = . (2)4321a a a a +++ = . (3)2312420)()(a a a a a +-++ = .

相关文档
最新文档