凝胶纺丝制备高性能纤维的原理及实例

凝胶纺丝制备高性能纤维的原理及实例
凝胶纺丝制备高性能纤维的原理及实例

凝胶纺丝制备高性能纤维的原理及其

应用于聚合物纤维上的实例

1背景介绍

高性能纤维是指与传统的棉、毛、丝、麻等天然纤维及涤纶、锦纶、丙纶、腈纶等合成纤维相比,具有高弹性系数、高强度、耐热性、耐摩擦性、耐化学药品性和电绝缘性的新型化学纤维,并对外部的作用不易产生反应。高性能纤维最初出现是基于军事装备和宇宙开发等尖端科学的需要。随着高科技产业的发展以及大型航空器材、海洋开发、超高层建筑、医疗、环境保护、体育和休闲业的兴起,大力促进了高性能纤维的发展。获得高强纤维的工艺可以有三条路线1:

⑴制备分子量足够高的刚性分子, 利用分子本身刚性, 通过液晶纺丝来得到伸展链结构。Kevlar就是这样一个例子。

⑵通过半刚性分子的高倍拉伸, 如日本的Techonra。

⑶通过柔性链制备伸展链结构, 其中一种方法为凝胶纺丝, 即利用超高分子量的柔性链分子, 在稀溶液中解去缠结, 然后纺丝、结晶, 再通过高倍拉伸得到伸展链。

凝胶纺丝方法与生产芳香族聚酰胺不一样, 可以应用的原料众多且不难合成,不需要采用任何化学反应和复杂的加工方式,只需经过简单的凝胶纺丝就能够大幅度提高纤维的力学性能,日益受到国内外研究者的关注和重视,逐渐成为制备高性能纤维的重要方法。

2原理及工艺介绍2

2.1凝胶纺丝的基本原理

凝胶纺丝又称冻胶纺丝,属溶液纺丝范畴。纺丝时,利用超高分子量的柔性链分子,在半稀溶液中解去缠结,然后纺丝、结晶,再通过高倍拉伸得到伸展链。纺丝原液在凝固成形过程中基本没有溶剂扩散,仅发生热交换,因而初生纤维含有大量溶剂,呈凝胶态,这种初生纤维经过超倍热拉伸(>20 倍) 成为超高强高模纤维。

从分子结构上看,相对分子质量极高的柔性链聚合物,经溶解成半稀溶液,大分子链之间的缠结大幅度减小,纺丝后骤冷使这种大分子链间的解缠状态得以保持在制备的凝胶原丝中,通过超倍热拉伸,提高纤维结晶度和取向度,使呈折叠链的片晶向伸直链转化,从而获得超高强高模纤维。

从纤维微观形态看,凝胶纺丝原液溶剂和固化溶剂为同一有机溶剂,纺丝原液由喷丝头挤出,在空气段能初步形成三维网络结构,然后进入凝固浴,急剧冷却使其凝胶化成为“均匀的凝胶丝”后再开始脱溶剂,这样易得到正圆形截面、结构均匀的纤维,且在热处理等后阶段工序中纤维分子的取向和结晶过程能比较均匀地进行,更易制备高性能纤维。

2.2凝胶纺丝的工艺

凝胶纺丝工艺分为纺丝原液制备、拉制凝胶丝条、萃取干燥和拉伸定形四道工序,如图2- 1所示,各段工艺对纤维结构和性能均有重要影响。

图2- 1 凝胶纺丝工艺流程图

2.2.1凝胶纺丝原液制备

纤维分子链末端受外力作用时易发生应力集中从而使纤维断裂,因此成纤聚合物相对分子质量越高,末端缺陷越少,越有利于完善纤维的微观结构,从而为高倍拉伸提供有利的条件。

采用凝胶纺丝时,纺丝液的凝胶质量分数对纤维加工、结构性能及成本等有直接影响。凝胶质量分数较低时,大分子取向度低,凝胶强度低,丝条稳定性差,纤维强度低,萃取干燥负荷较大,生产成本提高。凝胶质量分数较高时,凝胶强度较高,丝条稳定性较好,萃取干燥负荷较低,生产成本较低。

2.2.2凝胶丝凝固条件

凝胶纺丝的特点是所制备的初生丝条具有均匀疏松的网络结构,大分子链间缠结少,可进行高倍拉伸。将无规取向的大分子立体网络转变成沿纤维轴取向的连续原纤微晶结构,有助于提高其强度和模量。因此凝胶纺丝工艺的关键在于获得一个理想的凝胶化结构,而凝固成形工序是形成凝胶的重要过程之一。

2.2.3萃取干燥工序

经凝胶纺丝制备的初生丝是一种高度溶胀的凝胶体,内含大量高沸点溶剂使大分子链溶剂化,降低了链间的次价键力和缠结点密度。溶剂化作用使大分子链的松弛活化能降低,活动性增加,在承受张力时,尤其在高温下拉伸时相对滑移,降低了纤维的强度和模量,因此必须除去溶济。除去凝胶丝条中高沸点溶剂可采用“萃取+干燥”的方式,这一过程将提高凝胶原丝的超倍热拉伸稳定性和有效拉伸性。

2.2.4拉伸工序

凝胶原丝先经萃取、干燥,再经高倍热拉伸,使纤维的结晶度和取向度提高,且使大分子链由原来的折叠链向伸直链结晶结构转变,增强了大分子链间的相互作用力,更利于分子链的伸展,从而使纤维的强度和模量有很大提高。原丝的低缠结状态为超倍拉伸提供了必要条件。凝胶纺丝的超拉伸工艺常采用多级拉伸形式,拉伸温度和拉伸倍数是超倍拉伸的两大重要工艺参数,决定了凝胶纤维的最终拉伸强度与模量。

2.3凝胶纺丝的特点

凝胶纺丝与常规的湿法、干法溶液纺的主要区别有以下几方面:①以超高分子量聚合体为原料,分子量越大,链末端造成纤维结构的缺陷就越少,越有利于纤维强度的提高,同时初生丝条能承受的拉伸倍数也越大,所得成品纤维的强

度也就越高;②用半稀溶液作为纺丝原液,便于超高分子量原料的溶解和柔性链大分子缠结的拆开,亦提高了纺丝原液的流动性和可纺性;③进行超倍热拉伸,使大分子高度取向,并促使大分子应力诱导结晶,原折叠链结晶逐渐解体成伸直链结晶,使成品纤维具有很高的取向度和结晶度。

3凝胶纺丝法的应用实例

3.1超高分子量聚乙烯(UHMWPE)纤维的凝胶纺丝

凝胶纺技术最早用于开发高强高模聚乙烯纤维,2008年,全球产量1. 45 万t /a,2008 年,中国总产能约为6 000 t /a,产量约为4 200 t。

3.1.1工艺3

聚乙烯的凝胶纺丝基本工艺如错误!未找到引用源。所示。

图3- 1 凝胶纺丝的基本工艺流程图

原料的选择,凝胶纺聚乙烯纤维原料的相对分子质量为5×105~5×106。聚合物相对分子量较小时, 大分子链的长度十分有限,使纤维中的分子末端增多, 由分子末端造成纤维结构上的微小缺陷也必然增多。当纤维受到较大张力作用时, 微原纤之间总是会产生相对滑移, 大分子端部微小缺陷会不断扩大而最后导致

断裂。因此, 若提高聚合物相对分子质量,减少末端造成的微小缺陷,必然会有助于纤维强度的提高。

溶剂选择,目前, 在市场上的产品主要是美国AL-LIED 公司的Spectra系列、日本TO YOBOO和荷兰DSM 公司建立联合公司的Dyneema系列及日本MITSUI公司的Tekmilon 系列。所用的溶剂、萃取剂及产量如表3- 1所示。

表3- 1 凝胶纺丝聚乙烯的主要生产厂、溶剂、萃取剂及产量

总的说来,国内外各厂家多用十氢萘、石蜡油、石蜡和煤油为溶剂,其中以十氢萘为最佳。但十氢萘价格昂贵,我国又无大量生产,不宜选为工艺路线的溶剂生产PE 纤维。以烷烃类溶剂取代十氢萘可降低生产成本, 但烷烃类溶剂馏程高, 在拉伸中难以去除, 必须增加萃取工艺。通过萃取剂与包含在凝胶原丝中的溶剂相互扩散和渗透,将溶剂从凝胶原丝中置换出来,并使其降低至较少的程度。为了提高凝胶纺聚乙烯纤维的强度和模量, 选择良好的溶剂和萃取剂体系至关重要。溶剂的不同导致不同的纺丝工艺以高挥发性溶剂(十氢萘基) 为基础的干凝胶纺丝生产线,即干法纺丝;另一种是以低挥发性溶剂(矿物油基、白油等)为基础的湿凝胶纺丝生产线,即湿法纺丝。干法纺丝的工艺具有流程短、对环境友好等优点,生产的纤维溶剂含量少、强度高、具有良好抗蠕变性,而且往往在高端产品中使用。

丝条的形成,选择适当的溶剂将UHMWPE溶解,形成具有流动性和可纺性的纺丝原液, 这是纺丝成形的必要条件。凝胶纺中, 还需要通过溶解达到使体系中大部分分子解除缠结的目的。通过DSC 实验发现: 即使在溶剂存在的条件下, PE大分子解缠结所需能量高于晶体熔融。因此,溶解温度应高于PE结晶熔点。凝胶纺丝采用的浓度介于稀溶液和浓液之间, 称为半稀溶液。只有这样冷却形成的凝胶丝条中才含有适量缠结, 使张力的传递能顺利进行,达到超倍拉伸的目的。另外,在凝胶纺丝中, 固化动力学由流动溶液向固态凝胶的转变来控制。凝胶温度必须高于周围环境温度而低于挤出温度, 挤出温度的上限由溶液的热力学温度来决定, 下限则与由粘弹机理控制的可纺性相联系,凝结速率对温度、聚合物浓度及溶剂组成非常敏感。与可纺性有关第一个问题与浓溶液中的长松弛时间相联系, 在凝胶纺丝中很可能会出现喷丝头出来的液体的不规则流动。此处对温度的控制是关键。

萃取及干燥工艺,经凝胶纺丝得到的初生丝是一种高度溶胀的凝胶体,内含的大量高沸点溶剂使PE大分子溶剂化, 降低了链间的次价力和缠结点密度。溶剂化作用使大分子链的松弛活化能降低, 活动性增加, 在承受张力时, 尤其在高温下拉伸时相对滑移, 导致拉伸应力下降。实践证明, 通过适当的萃取干燥处理除去凝胶丝内的高沸点溶剂,使凝胶丝网络结构均匀致密化,显著提高拉伸倍数, 从而提高纤维的强度和模量。当然, 影响拉伸倍数的关键因素不是溶剂的存在,而是大分子解缠的程度;微量溶剂的存在对拉伸倍数的提高也是有益的, 它的增塑作用能降低大分子链节跃迁的活化能。另外, 含有大量溶剂的凝胶丝条如直接进行超高倍拉伸,则溶剂的大量挥发会恶化环境。在萃取和干燥阶段,萃取方式、时

间、温度、浴比和萃取剂的选择及干燥的时间和温度的控制都极其重要。

丝条的超倍拉伸,对经过萃取干燥处理的凝胶丝的拉伸进行仔细研究,发现

超倍拉伸大致分为三个阶段:进行分离的微纤和折叠链片晶的运动; 片晶开始熔化, 微纤聚集, 纤维变形的能量壁垒上升; 分子运动激烈,微纤分裂,折叠链片晶解体重排为伸直链结晶。另外,通过DSC 测试,发现有效拉伸超过20倍时, 纤维便有了第二个结晶熔融峰,并且随着拉伸倍数的提高,第一个结晶熔融峰(146 ℃) 的积逐渐减少,第二个结晶熔融峰(152 ℃) 的面积不断增加。估计第一个结晶

熔融峰是PE折叠链结晶熔融面积逐渐减少,第二个结晶熔融峰是伸直链结晶的熔融。通过多年的研究表明4,就UHMWPE凝胶丝来讲,随着拉伸温度提高,拉伸比、双折射、晶体取向指数、熔化温度、结晶度、抗张模量及抗张强度提高。降低拉伸速度,上述性能也提高。最佳的拉伸参数为: 拉伸应力20MPa , 拉伸温度为128 ℃,速度为1mm/ min。凝胶纺超高相对分子质量聚丙烯腈及超高相对分子质量聚乙烯醇纤维的力学性能要差一些,可能相比于聚乙烯,大分子链上侧基数

目太多致使纤维的致密度降低之故。

3.1.2凝胶纺超高分子量聚乙烯纤维性能的影响因素

刘海等人5的研究发现冷却成型温度, 萃取时间, 延伸速率和延伸温度为都

能影响延伸性,见图3-2,3,4。

图3- 2 冷却温度对UHMWPE 纤维可延伸比的影响

图3- 3 萃取时间对UHMWPE 纤维可延伸比的影响

图3- 4 延伸速率延伸温度对UHMWPE 纤维可延伸比的影响(□、☆、△、○、+、╳、◇依次为10、20、30、50、100、200、300mm/min)

在采用凝胶法纺丝时,凝胶的质量分数对纤维加工、纤维结构性能及加工成本等均有直接影响6。凝胶质量分数较低时,由于缺乏必要的分子缠结,大分子取向度低,且凝胶强度低,丝条稳定性差, 因此纤维强度低;而且,由于凝胶初生纤维中含有大量溶剂,因此凝胶纤维的萃取干燥负荷较大, 使纤维生产成本提高. 凝胶质量分数较高时,凝胶强度较高,丝条稳定性较好,萃取干燥负荷较低,纤维生产成本较低。然而, 高质量分数凝胶纤维中大分子缠结严重, 使纤维无法进行高倍后拉伸, 致使纤维强度和模量的降低.。工程实践表明, 由于UHMWPE 分子质量极大,因此凝胶质量分数即使进行很小的改变都需要对整个生产工艺进行全面调整。据了解,目前国内UHMWPE 纤维主要生产厂家采用的凝胶质量

分数在5%~ 10% 之间。

3.2 聚丙烯睛(PAN)纤维的凝胶纺丝7

聚合体的分子量是影响成品纤维的物理机器性能的重要参数。通常用于纺制服用纤维的聚丙烯睛聚合体的分子量为50000~70000,所得纤维强度一般2.0~3.7 cN/dtex,模量为37~48cN/dtex。如果选用较高分子量的聚合体, 则可得到较高强

度的纤维。表2- 1列出了在最佳条件下所制得的聚丙烯睛纤维的分子量与机械性能之间的关系。

表2- 1聚丙烯睛纤维的分子量与机械性能之间的关系

随着凝胶纺丝工艺的开发成功,将超高分子量聚合体纺制成纤维的技术取得了巨大进展,在超高分子获得成功后,世界上一些主要的纤维厂商将这一工艺用于具有柔性链的其它聚合体纤维,首先是聚丙烯睛纤维。以高分子量聚丙烯精为原料,采用凝胶纺丝工艺,是完全能够得到高强高模纤维的。

从事丙烯睛凝胶纺丝研究的公司有Allied-Signal、Hoechst、Starmicarbon、Exlon、东丽、东洋纺、三菱以及可乐丽等。典型的工艺流程安排为纺丝、凝胶化、萃取、水洗及多级拉伸。图2- 2为Allied-Signal的工艺流程示意图。

图2- 2 聚丙烯腈凝胶纺丝工艺流程示意图

1一混合槽;2一丙烯睛聚合体加料器;3一溶剂加料器;4一

强化混合槽;5一螺杆挤出机;6一齿轮泵;7一纺丝头;8一气

隙;9一凝胶纤维;10一冷却浴;11一溶剂萃取装置;12一烘

干装置;13一加热管;14一加热管;15一卷取辊

3.2.1纺丝液的配制

当聚丙烯睛的分子量大于5×105时即可采用凝胶纺丝, 一般控制在1×

106~4×106范围内。与常规纺丝大致相同, 采用不挥发或极少挥发的剂,NaSCN 水溶液,DMF,DMSO,DMAC,δ-丁内酯。在凝胶纺丝中, 这种用于溶解聚合体的溶剂称为第一种溶剂。溶液的浓度则要根据所采用的溶剂种类、聚合体的分子量和工艺过程,控制在2~15%之间。一般说来, 较稀的溶液,可以获得较高强度的纤维。由凝胶纺丝工艺制得的纤维结构致密化程度相当高, 以致染液无法渗人纤维之中, 因而具有不可染色性。如在聚丙烯睛中引入少量共聚单体(如苯乙烯磺酸钠和二丙, 烯酞胺一二甲丙烷磺酸)就可使纤维具有一定的可染性。凝胶纺丝工艺的一个重要特点是纺丝液中需加入二价金属Zn、Ca等的氯化物或溴化物, 最好是加入ZnCl2,加入量为每摩尔丙烯睛中加入0.01~0.2摩尔。其作用防止纤维的凝胶化过程中发生相分离, 并能提高萃取后的干凝胶纤维对拉伸和取向的

敏感度。超高分子量聚合体在溶解过程中会发生剧烈的溶胀作用, 从而使溶剂较能渗入聚合体颗粒中。因此超高分子量聚丙烯睛溶解时, 必须在160~180℃的高温中进行较长时间的剧烈搅拌。这种溶解方法会使聚合体发生一定程度的分解, 并将大量空气带入溶液中, 影响可纺性。日本东洋纺开发成功了一种新工艺, 使搅拌时间从几小时减少到1小时。

3.2.2纺丝

搅拌后的聚丙烯睛被分散成1mm左右含溶剂的凝胶粒子,溶剂含量达90%

以上可用于纺丝。将上述粒子于室温下储存在纺丝进料斗中,在挤出机内加热到180℃即得到均匀的溶液,可直接供给喷丝头纺丝。也可以将此粒子冻干成粗粒粉状的干凝胶,然后储存任意长的时间。这种粉末易在室温下吸收溶剂, 能喂入普通的螺杆挤出机在室温下纺丝。凝胶纺丝工艺所采用的纺丝孔一般较大,孔径约0.25~2.0mm,长径比至少为15。纺丝溶液通过这种形状的喷丝孔时其粘弹性不会受到影响。凝胶纺丝工艺所采用的喷头拉伸比相当低, 通常不超过10, 因此, 丝束在第一导丝辊上的速度低于10m/min。纺丝头与冷却浴之间的气隙中充填惰性气体,高度为5~50m。冷却浴温度低达0~50℃。其成份包括豆油、矿物油或水与纺丝溶剂的混合液,也有报导以正丁醇为冷却浴,温度低达-30℃。冷却后,初生纤维的液态细流凝固成机械性能较为稳定的凝胶纤维。凝胶纤维所含的溶剂量与纺丝原液几乎相同,萃取浴中含有的第二种溶剂可以是具挥发性的乙二醇、丙三醇、丙酮等, 其含量应与凝胶纤维中所含的第一种溶剂的量相等。纤维经过萃取溶后,第二种溶剂取代了第一种溶剂, 再经干燥装置时, 第二种溶剂被蒸发去除。所得纤维被称为干凝胶纤维。

3.2.3超倍拉伸

经过超倍热拉伸, 凝胶纤维才能获得高强高模, 完全是柔性链的聚乙烯纤维的拉伸倍数一般大于50。凝胶纺聚丙烯睛纤维是分几个阶段, 以凝胶态和干凝

胶态拉伸的总的拉伸比通常高于10:1,最好选择为20:1。多级拉伸的拉伸温度在各阶段是不同的,从130~200℃,逐级升高。加热可以为热水、热空气、预热蒸汽, 也可以是用热板加热。以NaNCS水溶液代替有机溶剂的凝胶纺聚丙烯睛的拉伸条件要求比较缓和。如日本Exlon公司用50:50的NaNCS的水溶液作溶剂、聚丙烯睛浓度为5%的纺丝液纺丝,高浓度NaNCS溶液为冷却浴, 出冷却

浴的纤维经水洗后, 分别在20℃、85℃的热水中各拉伸2倍, 再在沸水中拉伸2.5倍。再次水洗后, 在130℃的乙二醇中拉伸1.8倍, 在160℃的丙三醇中拉伸1.6倍。总拉伸倍数达28.8倍。在这一工艺过程中聚丙烯腈的分子量分布系数不应大于7,选用分子量为2.28×106的聚丙烯腈为原料,纤维强度高达22.2

cN/dtex。

3.2.4性能及应用优势

由凝胶纺丝工艺所制得的聚丙烯腈纤维疵点少、取向度高,因而具有高强高模的特点,强度至少在7 cN/dtex以上,一般可达20 cN/dtex,初始模量在200

cN/dtex左右。就强度而言, 凝胶纺聚丙烯睛纤维可与芳族聚酸胺和碳纤维相比, 但不如超高分子量聚乙烯纤维。在热稳定性方面, 此种纤维比芳族聚酞胺纤维、碳纤维及玻璃纤维差, 但比聚乙烯纤维强得多。在140℃以上的温度中, 聚乙烯纤维的强度全部丧失, 而在此温度中, 时间再长, 聚丙烯睛的强度也不受影响。

该纤维的另一个重要特点是具有较高的热稳定性,可用于轮胎帘子布、输送带、传动带等。利用其优异的抗强碱性, 可用作混凝土和其它水泥物系的增强材料, 制成建筑构件。如同其它高性能纤维一样, 凝胶纺聚丙烯睛纤维可以用作以有机树脂为主的复合材料的增强物;制造机动车辆上的离合器摩擦片、抛光轮、研磨盘和制动衬带;其机织物、针织物或非织布可广泛用于过滤工程, 特别是化学工业的干法和湿法过滤, 热气体中粉尘的分离;该纤维编织物或非织造布还可用作化工设备的密封填料;用作石棉代用品和作为优质碳纤维的原丝。

4未来展望

有机柔性链高聚物有很多种, 已用凝胶纺成功地开发的有聚乙烯、聚乙烯醇、聚丙烯腈及纤维素酯等,其中市面上最主要的产品是高强高模聚乙烯纤维。这种纤维密度小(0. 97g/ m3 ) ,而且力学性能、电性能、耐冲击性能、耐光性、耐化学腐蚀性及加工性能均十分优良。因此一经研制成功,便广泛用作绳索、缆绳、渔网、防弹织物及复合材料用增强材料。但PE纤维熔点太低(134 ℃) 且不耐蠕变。如果能用凝胶纺成功制取高强高模Nylon 和高强高模PET 纤维,将会有更大的市场前景。聚四氟乙烯( PTFE) 纤维,俗称为氟纶或特氟纶,具有耐热、耐化学腐蚀等优良特性,被广泛应用于滤材、垃圾焚烧炉及航天航空等领域,但是由于PTFE稳定性高,熔点为327 ℃,迄今尚无合适的溶剂溶解,不能用传统的纺

丝方法成型,如果能成功开发聚四氟乙烯的凝胶纺丝工艺,则将提高四氟乙烯纤维的强度,扩展其应用领域。

1 胡学超.凝胶纺丝的发展和我们的任务[J]. 功能高分子学报.1992年6月第五卷第二期

2 崔福兴,赵兴波,党婧. 高性能纤维加工技术———凝胶纺丝[J]. 玻璃钢/ 复合材料. 2011 年第4 期

3 郑晓秧,于俊荣,刘兆峰.凝胶纺UHMWPE 纤维工艺及原理浅析[J].高科技纤维及应用.2000. 25(3):29~34

4 J I B. C. ETAL , J . of Federation of Asian Professional Associations [J ] , 1998 , (2) : 58~87.

5 刘海,周玉惠,胡晓方,孙艳斌,伍冬瑞,叶正涛.凝胶纺丝法制备超高分子量聚乙烯纤维延伸性能的研究[J].胶体与聚合物,2008年3月第26卷第1期

6 赵国,徐静.凝胶质量分数对超高分子质量聚乙烯纤维加工及结构性能的影响[J]. 北京服装学院学报,2009年4月第9卷第2期

7 陈念.聚丙烯睛纤维的凝胶纺丝.

涤纶长纤和涤纶短纤定义(精)

涤纶长纤和涤纶短纤定义、种类及特点应用 涤纶长纤种类和特点已及应用 涤纶长丝的品种: 初生丝, 未拉伸丝(常规纺丝UDY 半预取向丝(中速纺丝MOY 预取向丝(高速纺丝POY 高取向丝(超高速纺丝HOY 拉伸丝, 拉伸丝(低速拉伸丝DY 全拉伸丝(纺丝拉伸一步法FDY 全取丝(纺丝一步法FOY 变形丝:常规变形丝(DY拉伸变形丝(DTY空气变形丝(ATY 1.涤纶全牵伸丝(FDY 特性:强度高、丝筒成型好、纤度、强度、伸长不均率小,染色均匀等优点。 用途:适合高速整经机及高速无梭织机的要求,直接用于针织和经编。广泛运用在春亚纺、摇粒绒、单面绒、金光绒、丝光绒、灯芯绒、花点绒、经编拉毛绒、经编短毛绒、经编条绒、经编平绒、经编网眼布、经编丝光绸、圈绒、平绒、五枚缎、涤塔夫、丝光绸、喷水轻盈纺(仿真丝、喷水八枚缎、纬条牛津布、套格牛津布、提花窗帘、印花窗帘等面料。 2.涤纶预取向丝(POY/高速纺卷绕丝 / 高速纺 性能:预取向度高,性质稳定,力学性能好,均匀性高,有良好的加工性能。 用途:本产品可通过进行牵伸、加弹、空气变形等工序,分别制成牵伸丝、加弹丝、空气变形丝等不同性能的产品,制成各种仿毛、仿麻、仿真丝制品,适用于机织、针织行业。 3.涤纶低弹丝(DTY/ 拉伸变形丝 / 假捻变形丝 性能:纱线是弯曲的,是经假捻变形加工后可以赋予丝蓬松效果

用途:涤纶低弹丝是针织(纬编、经编或机织加工的理想原料,适宜制作服装面料(如西服、衬衫、床上用品(如被面、床罩、蚊帐及装饰用品(如窗帘布、沙发布、贴墙布、汽车内装饰布等。 4.涤纶拉伸丝(DT/ 拉伸加捻丝 特性:能够生产各种织物,并具有不同的手感和真丝般外观,质轻透气的特性 用途:家庭装饰、服饰、产业用织物和汽车用织物,用于织造各种仿真丝绸织物等 涤纶短纤的分类及其特点 1.“大化纤”产品指的是用相对精良的进口和国产生产设备,采用聚酯熔体直接纺丝方法或聚酯切片间接纺丝方法而纺制出的涤纶短纤维。由于“大化纤”产品使用的原料基本上都是合格等级品,因而其正规产品的各项质量指标均为上乘。“大化纤”涤纶短纤维是棉纺织行业主导原料。“大化纤”生产设备是吃“细粮”的设备。 2.“中化纤”产品和“小化纤”产品生产设备采用的绝大多数是国产小化纤机械厂生产的。这类生产设备不论在规模上还是在质量上与“大化纤”所使用的生产设备都有较大的距离,所以使用这类设备生产出来的产品和“大化纤”生产出来的产品也有明显的质量差别。“中化纤”和“小化纤”使用的设备基本上是相同的。它们的主要区别在于,“中化纤”一般使用的是正规聚酯切片生产厂生产的等外产品和经过很好处理的国外进口聚酯回收瓶片。而“小化纤”使用的原料基本上就是一般的回收聚酯瓶片、聚酯回收废丝和废料、聚酯泡泡料等。 正因为此,“中化纤”和“小化纤”设备一般使用等外聚酯切片和回收后经过处理的聚酯瓶片、泡泡料作为涤纶短纤维的原料。“中化纤”和“小化纤”生产设备是吃“粗粮”的设备。 几种涤纶长纤的生产 POY:Preoriented yarn /partially oriented yarn 预取向丝。当高速纺丝的速度为

(工艺技术)电镀工艺基础知识

2、电镀新工艺介绍 2 .1合金电镀 合金电镀一直是电镀新工艺开发的重要领域。以往为取代昴贵的镀镍而开发的铜锡合金,就曾经是一种新工艺。现在的代镍和节镍镀层,也都是各种合金。因为合金可以综合单一金属的优点,并具有单一金属所不具备的新的特性,比如硬度、耐腐蚀性、功能性等。现在已经认识到,电镀作为一种湿法冶金技术,能生产出用电、热方法做不到的新合金。包括在制作非晶态材料和纳米材料方面,电镀技术都是有优势的。合金电镀的原理在传统的理论中是要求两种共沉积的金属的电极电位要接近,如果一个的电位较正,另一个的电位较负,就要采用络合剂将正电位的金属的离子络合,使之放电电位向负的方向移动,与另一金属的电位相近,达到共沉积的目的。这在现在也仍然对合金新工艺的开发有指导意义。但是现在越来越多的合金中的另一种成分的量非常小,就是这种少量的金属分散在另一金属中,却改变了金属的性能。用传统冶金学的观点是这些掺入的金属是占据在主体金属的某些晶格位上,从而改变了金属的物理性能。但实际上,用火法冶金很难把微量金属分散到另一金属中去,而采用电镀的方法则比较容易做到。不过电镀方法得到的合金的结构是否符合冶金学的原理,则是值得探讨的课题。现在已经得到应用的新合金工艺有锌系列,镍系列,铜系列,锡系列,银系列等。锌作为钢铁的优良廉价的防护性镀层被广泛地采用 , 但是自从日本汽车打进欧洲和北美市场,汽车的耐盐防护性就提到了议事日程。〈1〉在开展高耐蚀性镀层的研究中,锌合金的研究引人注目。最先出现的是锡锌合金,这种合金的含锌量在30%左右时耐盐水喷雾时间最长,出现红锈的时间可达1500个小时以上。最开始进入实用化的工艺是70年代末的有机羧酸的中性镀液,后来有柠檬酸镀液,现在我公司已经开发出硫酸盐光亮镀锡锌工艺。在锡锌工艺之后出现的是锌镍工艺。这种工艺由于含镍量在5-10%,成本比锡锌要低,因此很快得到普及。最先出现的是用于钢板连续电镀的硫酸盐工艺,这大约在1982年前后。以后开发出氯化铵型工艺,现在比较成熟的是碱性锌酸盐工艺。这种工艺的特点是抗腐蚀性能特别好,不经钝化的镀层耐盐雾到出现红锈的时间在150小时以上。在高温下也仍能维持其优良的防护性能。因此在汽车等行业有较多应用。 在锌镍开发之后两年,锌铁工艺就进入了实用化。锌铁与前面的工艺不同的是铁的含量很小,只在 0.2 到0.6 左右。虽然以前有用于钢板电镀的锌铁合金,其含铁量在10-20%,但现在进入实用的还是这种低铁含量的镀层。比较成熟的有锌酸盐工艺。其耐蚀性也很好,但一定要经过钝化才能有高的耐蚀性,当含铁量在 0. 4 左右时,出现红锈的盐水喷雾时间可达1500小时以上。现在,我公司已经开发出氯化钠型锌铁新工艺,并有黄色、彩色等高耐蚀性的钝化产品。 在欧洲还有用锌钴合金工艺的,这种工艺与锌铁一样,可以不用银盐做出黑色钝化膜。含钴量也仅在1%左右. 镍一直是电镀加工工业中的重要镀种,由于镍资源的紧张和价格昂贵,开发镍合金电镀是节镍的一种选择。同时,有些镍合金的功能性能也是市场所需要的,因此,镍基合金的应用也很广泛。镍铁合金不仅可节约部分镍,而且镀层性能也比纯镍镀层要好。这种镀层的含铁量在 7%-30% 左右,镀层中的含铁量与镀液中的镍铁比例成正比。也有采用镍锰铁合金电镀工艺的报导。 <2 >用于装饰的镍合金更多,特别是黑色镀层方面,不少是用的镍合金,比如镍锡,镍钴,镍镉等。铜镍合金更是在装饰电镀中有较多的应用。 <3 >铜合金如铜锡合金,铜锌合金,很早就有大量的应用。这方面的新工艺的主攻方向是以非氰化物络合物来取代氰化物,比如焦磷酸盐,柠檬酸盐镀铜合金等。锡作为钎焊性镀层主要是用在电子电镀行业,但也可以用在装饰和防护方面,比如代银的锡合金,用于罐头盒防腐的镀锡工艺等。但主要还是电子工业中有大量应用,现在用得最多的仍然是锡铅合金。也有锡铈,锡铋等。当前的趋势是采用无氟和无铅的新工艺取代老工艺。<4 >其它贵金属的合金主要是用在装饰和功能性方面,这里就不一一加以介绍。正如前面讲到的,由于合金电镀技术的开发可能产生出一些新的合金,这不仅在表面处理业有重要意义,对材料学科也有重要意义。因此,在新世纪,对合金电镀的研究仍会加紧进行。 特别是在多元合金,包括三元、四元合金等的开发上还有很大的空间 2.2电子电镀 如前所述,21世纪被称为高信息化世纪。所谓高信息化世纪就是以因特网为传播工具的信息爆炸的世纪。在这个世纪内,电子产品的品种和产量将有更快更大的发展,这给电子电镀业也带来很大的机遇和挑战。因此,现在新工艺的开发有很大的比重将放在电子电镀方面。 所谓电子电镀就是用于电子产品或电子工业的电镀技术。用于电子行业的镀层有很多,包括导电性镀层,钎焊性镀层,信息载体镀层,电磁屏蔽镀层,电子功能性镀层,印刷电路板电镀,电子构件防护性镀层,电子产品装饰性镀层等。电子电镀工艺除了少数是利用了传统的工艺以外,大多数是近几十年开发的新工艺。比如非金属电镀新工艺,化学镀新工艺,贵金属电镀新工艺,合金电镀新工艺等。 以印刷线路板的电镀为例,它是以孔金属化为中心的综合了前处理、化学镀、电镀、退镀等技术的工艺。印

涤纶短纤维、涤纶长丝生产安全生产要点(2021新版)

涤纶短纤维、涤纶长丝生产安全生产要点(2021新版) The safety operation procedure is a very detailed operation description of the work content in the form of work flow, and each action is described in words. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0301

涤纶短纤维、涤纶长丝生产安全生产要点 (2021新版) 1工艺简述 1.1生产涤纶短纤维是以聚酯(PET)融体为原料送入纺丝机;或以聚酯切片为原料,经干燥、熔融后送入纺丝机,再经集束、拉伸、定型、卷曲、切断、打包、得到涤纶短纤维。 1.2生产涤纶化丝是以聚酯切片为原料,经干燥、熔融后送入纺丝机;或以聚酯融体为原料送入纺丝机,经不同的后处理得到拉伸加捻纱、拉伸变形纱、空气变形纱、全牵伸纱。 涤纶短纤维、涤纶长丝可燃。热载体联苯可燃、可爆、有毒。 2安全要点 2.1控制好切片干燥和熔融纺丝的操作,促进持平稳运行。 2.2螺杆挤压熔融纺丝是用联苯热载体加热。当联苯升温时需要

排气,排气要缓慢,以免将联苯带出;排气时严禁明火接近,不得排入室内,以免发生着火、中毒。 该岗位气温高,要做好防署降温工作。 2.3卷绕机卷绕速度很高,在操作中稍有不慎易将钩子带入,造成飞钩伤人。因此要教育操作者集中精力操作,站在有利的安全位置,以免飞钩伤害。 向废丝辊上绕丝时,如果辊上已绕有几束丝,再绕丝时应用一只手扶住原有丝束,以免丝束将钩子卷入而造成飞钩。 当割去废丝辊上废丝时,一定要用脚踏住刹闸装置,待停稳后用打结刀割去废丝。 2.4在升、降集束架时,架下严禁站人。 2.5在处理牵伸缠辊时,一定要降速或停车处理。钩丝时,集中精力,在出口处钩丝,以防钩手。 2.6注意油剂不能溢出,一旦溅出地面要及时冲洗,以防行走滑倒。 2.7切断机在开机升头时,手握丝头送入切断钩轮,如果配合不

熔体纺丝成型

熔体纺丝成型 一、实验目的 了解熔体纺丝机的各部分组成,掌握螺杆挤压机、计量泵的工作原理,了解纺丝工艺条件和工艺流程,设计出合理的纺丝工艺,纺制出合格的纤维 二、实验原理 一)螺杆挤压机的工作原理和结构 1、工作原理 物料从加料口进到螺杆的螺槽中,由于螺杆的转动,把切片向前推进。切片不断吸收加热装置供给的热能;另一方面因切片和切片、切片与螺杆及套筒的摩擦及液层之间的剪切作用,而由一部分机械能转化成热能,切片在前进过程中温度不但升高而逐渐熔化成熔体。熔化过程聚合物在温度、压力、粘度和形态等方面发生变化,由固态(玻璃态)转变为高弹态,随温度的进一步提高,出现塑性流动,成为粘流体(粘流态)。粘流态的聚合物经螺杆的推进和螺杆出口的阻力作用,以一定的压力向熔体管道输送 2、挤压机的结构 螺杆挤压机主要由四部分组成(见图1) 高聚物熔融装置:主要由螺杆和套筒组成,其作用是将固体的物料挤压,外加热,使其熔融成均匀的熔体,并以一定的温度、压力和排出量从螺杆头部挤出,经过熔体管道送至纺丝装置进行纺丝。按物料在螺杆中的输送、压缩和熔融等过程,一般将螺杆的的工作长度分为进料段、压缩段和计量段;根据物料在螺杆中的物理状态,将螺杆分为固体区、熔融区和熔体区。 加热和冷却系统:主要是由铝套加热器和水冷却夹套组成,其作用是通过对套筒的加热和冷却保证高聚物在工艺要求的温度范围内挤出。 传动系统:主要由变速电动机和齿轮箱组成,其作用是保证螺杆以需要的扭矩和转速稳定而均匀的工作。 电器控制系统:由温度、压力和转速控制系统构成,一方面通过熔体压力传感器控制电动机按所需要的转速运转,另一方面通过测温单元控制加热、冷却系统按设定温度工作。 二)计量泵的工作原理和结构 计量泵的作用是精确计量、连续输送成纤高聚物熔体或溶液,并于喷丝头组件结合产生预定的压力,保证纺丝流体通过滤层到达喷丝板,以精确的流量从喷丝孔喷出。 1、计量泵的结构 计量泵为外啮合齿轮泵,它由一对相等齿数的齿轮、三块泵板、两根轴和一副联轴器以及若干螺栓组成(见图2). 2、工作原理

溶胶。凝胶法的基本原理及应用

溶胶.凝胶法的基本原理及应用现状 溶胶.凝胶法(SOI. Gel法,简称S. G法)就是以无机物或金属醇盐作前驱体,在液相将这些原料均匀混合,并进行水解、缩合化学反应,在溶液中形成稳定透 明溶胶体系,溶胶经陈化,胶粒间缓慢聚合,形成三维空间网络结构的凝胶,凝胶网络间充满了失去流动性的溶剂,形成凝胶。凝胶经过干燥、烧结固化制备出 分子乃至纳米亚结构的材料。溶胶.凝胶法就是将含高化学活性组分的化合物经过溶液、溶胶、凝胶而固化,再经热处理而成的氧化物或其它化合物固体的方法。近年来,溶胶-凝胶技术在玻璃、氧化物涂层和功能陶瓷粉料,尤其是传统方法难以制备的复合氧化物材料、高临界温度(P)氧化物超导材料的合成中均得到成功的应 1 .基本原理 S01. Gel法的基本反应步骤如下: 1)溶剂化:金属阳离子M'吸引水分子形成溶剂单元M(H20): +,为保持其配位数,具有强烈释放H+勺趋势。 2)水解反应:非电离式分子前驱物,如金属醇盐 M(OR。与水反应。 3)缩聚反应:按其所脱去分子种类,可分为两类 a)失水缩聚 b)失醇缩聚 2. 应用 由于溶胶.凝胶技术在控制产品的成分及均匀性方面具有独特的优越性,近年来已用该技术制成Li ' ra02、“ NbO、PbTjO,、Pb(Zj 孙)03 和BaTjO,, 等各种电子陶瓷材料。特别是制备出形状各异的超导薄膜n0],高温超导纤维??… 等。在光学方面该技术已被用于制备各种光学膜如高反射膜、减反射膜等和光导 纤维、折射率梯度材料、有机染料掺杂型非线性光学材料等以及波导光栅、稀土发光材料等。在热学方面用该技术制备的SiO:一Ti0 :玻璃非常均匀,热膨胀系数很小,化学稳定性也很好;已制成的InO,. SnQ (ITO)大面积透明导电薄膜具有很好的热镜性能;制成的si02气凝胶具有超绝热性能等特点。 4研究展望 3. 目前,对溶胶一凝胶法的研究主要集中在以下几个方面: 1)在工艺方面值得进一步探索的问题:较长的制备周期;应力松弛,毛细管力的产生和消除,孔隙尺寸及其分布对凝胶干燥方法的影响;在凝胶干燥过程中加入化学添加剂的考察,非传统干燥方法探索;凝胶烧结理论与动力学以及对最佳工艺(干燥、烧结工艺)的探索。 2)和自蔓延法连用制备常规方法较难制备的新型纳米材料。例如 S01. Gel. ElsA(evaporati 彻.induced se堆鹬sembly)制备一些具有纳米结构的功能性材料㈦。随着人们对溶胶.凝胶法的迸一步研究,溶胶.凝胶法一定能得到更为广泛的应用,在各个方面取得更大的进展。

涤纶短纤区别

涤纶短纤区别 大化纤:CHEMICAL FIBER用PET切片纺或者熔体直纺的短纤维 特点,色泽好,批号大,强力稳定,疵点少,可纺性好 小化纤:SMALL CHEMICAL FIBER用PET回料纺 特点:价格和质量参次不齐,适合国情,出口到一些质量要求不是太高的市场和领域(如填充料等) “大化纤”、“中化纤”和“小化纤” 首先这是市场上的通俗说法,不一定有准确的定义。三者都是针对聚酯短纤维(涤纶短纤维)而言的,其它的化纤产品种类暂时还不包括在内。 区别是:简单的说:“大化纤”一般规模较大的化纤企业用质量较好的切片直接生产的纤维,工艺比较先进,设备多为进口,产品质量指标比较理想,而且稳定,可纺性能比较高。反之目前市场上不少小化纤在生产中掺用可乐瓶等回收原料制作的切片,同时工艺比较落后,设备多为国产,纤维质量明显受到影响,但成本比大化纤低的多,有些质量要求不高的纱线可以混用一些小化纤。 1.“大化纤”产品指的是用相对精良的进口和国产生产设备,采用聚酯熔体直接纺丝方法或聚酯切片间接纺丝方法而纺制出的涤纶短纤维。由于“大化纤”产品使用的原料基本上都是合格等级品,因而其正规产品的各项质量指标均为上乘。“大化纤”涤纶短纤维是棉纺织行业主导原料。“大化纤”生产设备是吃“细粮”的设备。 2.“中化纤”产品和“小化纤”产品生产设备采用的绝大多数是国产小化纤机械厂生产的。这类生产设备不论在规模上还是在质量上与“大化纤”所使用的生产设备都有较大的距离,所以使用这类设备生产出来的产品和“大化纤”生产出来的产品也有明显的质量差别。正因为此,“中化纤”和“小化纤”设备一般使用等外聚酯切片和回收后经过处理的聚酯瓶片、泡泡料作为涤纶短纤维的原料。“中化纤”和“小化纤”生产设备是吃“粗粮”的设备。 3.“中化纤”和“小化纤”使用的设备基本上是相同的。它们的主要区别在于,“中化纤”一般使用的是正规聚酯切片生产厂生产的等外产品和经过很好处理的国外进口聚酯回收瓶片。而“小化纤”使用的原料基本上就是一般的回收聚酯瓶片、聚酯回收废丝和废料、聚酯泡泡料等。 由于生产设备投资的差异、原料价格方面的差异和产品质量方面的差异,从目前的价格看,一般情况下,“大化纤”涤纶短纤维产品与“中化纤”涤纶短纤维产品相差2000元/吨左右,“中化纤”涤纶短纤维产品与“小化纤”涤纶短纤维产品相差1000元/吨上下。 产品用途 “大化纤”产品应用面比较宽。“中化纤”产品在有些应用方面可以替代“大化纤”产品使用,从而为下游产品提供较大的利润空间。“小化纤”产品一般使用在对短纤维质量要求不高的领域,生产档次比较低的产品(比30s更粗的纱、喷胶棉和填充材料等)。 “中化纤”和“小化纤”涤纶短纤维产品由于设备投资相对较小,原料价格相对低廉,而且在一些应用领域可以替代“大化纤”产品使用,因而具有较大的利润空间,深受下游产品生产厂家的欢迎。 怎么区分: 可以漂一下,看看颜色,大化颜色鲜艳中化就差些,大化上色好;再就是看有没有荧光,大化是没有的.

电镀作用、原理及方

电镀diàndù (Electroplating) 电镀的概述:利用电解作用使金属或其它材料制件的表面附着一层金属膜的工艺。可以起到防止腐蚀,提高耐磨性、导电性、反光性及增进美观等作用 电镀的主要用途是什么? 1、提高金属制品或者零件的耐蚀性能。例如钢铁制品或者零件表面镀锌。 2、提高金属制品的防护-装饰性能。例如钢铁制品表面镀铜、镀镍镀铬等。 3、修复金属零件尺寸。例如轴、齿轮等重要机械零件使用后磨损,可采用镀铁、镀铬等祸福其尺寸。 4、电镀还可赋予某种制品或零件某种特殊的功能。例如镀硬铬可提高其耐磨性能等。 电镀的概念 就是利用电解原理在某些金属表面上镀上一薄层其它金属或合金的过程。电镀时,镀层金属做阳极,被氧化成阳离子进入电镀液;待镀的金属制品做阴极,镀层金属的阳离子在金属表面被还原形成镀层。为排除其它阳离子的干扰,且使镀层均匀、牢固,需用含镀层金属阳离子的溶液做电镀液,以保持镀层金属阳离子的浓度不变。电镀的目的是在基材上镀上金属镀层,改变基材表面性质或尺寸.电镀能增强金属的抗腐蚀性(镀层金属多采用耐腐蚀的金属)、增加硬度、防止磨耗、提高导电性、润滑性、耐热性、和表面美观。 电镀作用 利用电解作用在机械制品上沉积出附着良好的、但性能和基体材料不同的金属覆层的技术。电镀层比热浸层均匀,一般都较薄,从几个微M到几十微M 不等。通过电镀,可以在机械制品上获得装饰保护性和各种功能性的表面层,还可以修复磨损和加工失误的工件。镀层大多是单一金属或合金,如钛靶、锌、镉、金或黄铜、青铜等;也有弥散层,如镍-碳化硅、镍-氟化石墨等;还有覆合层,如钢上的铜-镍-铬层、钢上的银-铟层等。电镀的基体材料除铁基的铸铁、钢和不锈钢外,还有非铁金属,如ABS塑料、聚丙烯、聚砜和酚醛塑料,但塑料电镀前,必须经过特殊的活化和敏化处理。 电镀原理 在盛有电镀液的镀槽中,经过清理和特殊预处理的待镀件作为阴极,用镀覆金属制成阳极,两极分别与直流电源的负极和正极联接。电镀液由含有镀覆金属的化合物、导电的盐类、缓冲剂、pH调节剂和添加剂等的水溶液组成。通电后,电镀液中的金属离子,在电位差的作用下移动到阴极上形成镀层。阳极的金属形成金属离子进入电镀液,以保持被镀覆的金属离子的浓度[1]。在有些情况下,如镀铬,是采用铅、铅锑合金制成的不溶性阳极,它只起传递电子、导通电流的作用。电解液中的铬离子浓度,需依靠定期地向镀液中加入铬化合物来维

电镀基本原理

电镀基本原理 电镀是一种电化学过程,也是一种氧化还原过程.电镀的基本过程是将零件浸在金属盐的溶液中作为阴极,金属板作为阳极,接直流电源后,在零件上沉积出所需的镀层. 例如:镀镍时,阴极为待镀零件,阳极为纯镍板,在阴阳极分别发生如下反应: 阴极(镀件):Ni2++2e→Ni (主反应) 2H++e→H2↑ (副反应) 阳极(镍板):Ni -2e→Ni2+ (主反应) 4OH--4e→2H2O+O2+4e (副反应) 不是所有的金属离子都能从水溶液中沉积出来,如果阴极上氢离子还原为氢的副反应占主要地位,则金属离子难以在阴极上析出.根据实验,金属离子自水溶液中电沉积的可能性,可从元素周期表中得到一定的规律,如表1.1所示 阳极分为可溶性阳极和不溶性阳极,大多数阳极为与镀层相对应的可溶性阳极,如:镀锌为锌阳极,镀银为银阳极,镀锡-铅合金使用锡-铅合金阳极.但是少数电镀由于阳极溶解困难,使用不溶性阳极,如酸性镀金使用的是多为铂或钛阳极.镀液主盐离子靠添加配制好的标准含金溶液来补充.镀铬阳极使用纯铅,铅-锡合金,铅-锑合金等不溶性阳极. ★电镀基本工艺及各工序的作用 2.1 基本工序 (磨光→抛光)→上挂→脱脂除油→水洗→(电解抛光或化学抛光)→酸洗活化→(预镀)→电镀→水洗→(后处理)→水洗→乾燥→下挂→检验包装 2.2 各工序的作用 2.2.1 前处理:施镀前的所有工序称为前处理,其目的是修整工件表面,除掉工件表面的油脂,锈皮,氧化膜等,为后续镀层的沉积提供所需的电镀表面.前处理主要影响到外观,结合力,据统计,60%的电镀不良品是由前处理不良造成,所以前处理在电镀工艺中占有相当重要的地位.在电镀技术发达的国家,非常重视前处理工序,前处理工序占整个电镀工艺的一半或以上,因而能得到表面状况很好的镀层和极大地降低不良率. 喷砂:除去零件表面的锈蚀,焊渣,积碳,旧油漆层,和其它干燥的油污;除去铸件,锻件或热处理后零件表面的型砂和氧化皮;除去零件表面的毛刺和和方向性磨痕;降低零件表明的粗糙度,以提高油漆和其它涂层的附著力;使零件呈漫反射的消光状态 磨光:除掉零件表明的毛刺,锈蚀,划痕,焊缝,焊瘤,砂眼,氧化皮等各种宏观缺陷,以提高零件的平整度和电镀质量. 抛光:抛光的目的是进一步降低零件表面的粗糙度,获得光亮的外观.有机械抛光,化学抛光,电化学抛光等方式. 脱脂除油:除掉工件表面油脂.有有机溶剂除油,化学除油,电化学除油,擦拭除油,滚筒除油等手段. 酸洗:除掉工件表面锈和氧化膜.有化学酸洗和电化学酸洗. 2.2.2 电镀 在工件表面得到所需镀层,是电镀加工的核心工序,此工序工艺的优劣直接影响到镀层的各种性能.此工序中对镀层有重要影响的因素主要有以下几个方面: 2.2.2.1主盐体系 每一镀种都会发展出多种主盐体系及与之相配套的添加剂体系.如镀锌有氰化镀锌,锌酸盐镀锌,氯化物镀锌(或称为钾盐镀锌),氨盐镀锌,硫酸盐镀锌等体系. 每一体系都有自己的优缺点,如氰化镀锌液分散能力和深度能力好,镀层结晶细致,与基体结合力好,耐蚀性好,工艺范围宽,镀液稳定易操作对杂质不太敏感等优点.但是剧毒,严

静电纺丝技术的工艺原理及应用

静电纺丝技术的工艺原理及应用 静电纺丝技术是目前制备纳米纤维最重要的基本方法。这一技术的核心是使带电荷流体在静电场中流动与变形,最终得到纤维状物质,从而为高分子成为纳米功能材料提供了一种新的加工方法。由于纳米纤维具有许多特性,例如纤维纤度细、比表面积大、孔隙率高,因而具有广泛的应用。 1、静电纺技术 静电纺是一项简单方便、廉价而且对环境无污染的纺丝技术。早在20世纪30年代,Formals A就已经在其专利中报道了利用高压静电纺丝,但是直到近些年,由于对纳米科技研究的迅速升温,激起了人们对这种可制备纳米尺寸纤维的纺丝技术进行深入研究的浓厚兴趣。 1.1 静电纺技术的基本原理 静电纺丝技术(Electrospinning fiber technique)是使带电的高分子溶液(或熔体)在静电场中流动变形,经溶剂蒸发或熔体冷却而固化,从而得到纤维状物质的一种方法。对聚合物纤维电纺过程的图式说明见图1。 静电纺丝机的基本组成主要有3个部分:静电高压电源、液体供给装置、纤维收集装置。静电高压电源根据电流变换方式可以分成DC/DC和AC/DC两种类型,实验中多用IX;/DC电源。液体供给装置是一端带有毛细管的容器(如注射器),其中盛 有高分子溶液或熔体,将一金属线的一端伸进容器中,使液体与高压电发生器的正极相连。纤维收集装置是在毛细管相对端设置的技术收集板,可以是金属类平面(如锡纸)或者是旋转的滚轮等。收集板用导线接地,作为负极,并与高压电源负极相连。另外随着对实验要求的提高,液体流量控制系统也被渐渐的采用,这样可以将液体的流速控制得更准确。电场的大小与毛细管口聚合物溶液的表面张力有关。由于电场的作用,聚合物溶液表面会产生电荷。电荷相互排斥和相反电荷电极对表面电荷的压缩,均会直接产生一种与表面张力相反的力。当电场强度增加时,毛细管口的流体半球表面会被拉成锥形,称为Taylor锥。进一步增加电场强度,是用来克服表面张力的静电排斥力到达一个临界值,此时带电射流从Taylor锥尖喷射出来。带电后的聚合物射流经过不稳定拉伸过程,

电镀工艺

电镀工艺

————————————————————————————————作者:————————————————————————————————日期:

电镀知识 一.电镀工艺的分类: 酸性光亮铜电镀电镀镍/金电镀锡 二.工艺流程: 浸酸→全板电镀铜→图形转移→酸性除油→二级逆流漂洗→微蚀→二级 →浸酸→镀锡→二级逆流漂洗 逆流漂洗→浸酸→图形电镀铜→二级逆流漂洗 →镀镍→二级水洗→浸柠檬酸→镀金→回收→2-3级纯水洗→烘干三.流程说明: (一)浸酸 ①作用与目的: 除去板面氧化物,活化板面,一般浓度在5%,有的保持在10%左右,主要是防止水分带入造成槽液硫酸含量不稳定; ②酸浸时间不宜太长,防止板面氧化;在使用一段时间后,酸液出现浑浊或铜含量太高时应及时更换,防止污染电镀铜缸和板件表面; ③此处应使用C.P级硫酸; (二)全板电镀铜:又叫一次铜,板电,Panel-plating ①作用与目的: 保护刚刚沉积的薄薄的化学铜,防止化学铜氧化后被酸浸蚀掉,通过电镀将其加后到一定程度

②全板电镀铜相关工艺参数:槽液主要成分有硫酸铜和硫酸,采用高酸低铜配方,保证电镀时板面厚度分布的均匀性和对深孔小孔的深镀能力;硫酸含量多在180克/升,多者达到240克/升;硫酸铜含量一般在75克/升左右,另槽液中添加有微量的氯离子,作为辅助光泽剂和铜光剂共同发挥光泽效果;铜光剂的添加量或开缸量一般在3-5ml/L,铜光剂的添加一般按照千安小时的方法来补充或者根据实际生产板效果;全板电镀的电流计算一般按2安/平方分米乘以板上可电镀面积,对全板电来说,以即板长dm×板宽dm×2×2A/ DM2;铜缸温度维持在室温状态,一般温度不超过32度,多控制在22度,因此在夏季因温度太高,铜缸建议加装冷却温控系统; ③工艺维护: 每日根据千安小时来及时补充铜光剂,按100-150ml/KAH补充添加;检查过滤泵是否工作正常,有无漏气现象;每隔2-3小时应用干净的湿抹布将阴极导电杆擦洗干净;每周要定期分析铜缸硫酸铜(1次/周),硫酸(1次/周),氯离子(2次/周)含量,并通过霍尔槽试验来调整光剂含量,并及时补充相关原料;每周要清洗阳极导电杆,槽体两端电接头,及时补充钛篮中的阳极铜球,用低电流0。2—0。5ASD电解6—8小时;每月应检查阳极的钛篮袋有无破损,破损者应及时更换;并检查阳极钛篮底部是否堆积有阳极泥,如有应及时清理干净;并用碳芯连续过滤6—8小时,同时低电流电解除杂;每半年左右具体根据槽液污染状况决定是否需要大处理(活性炭粉);每两周要更换过滤泵的滤芯;]

涤纶长纤和涤纶短纤定义、种类及特点应用

涤纶长纤种类和特点已及应用 涤纶长丝的品种: 初生丝, 未拉伸丝(常规纺丝)UDY 半预取向丝(中速纺丝)MOY 预取向丝(高速纺丝)POY 高取向丝(超高速纺丝)HOY 拉伸丝, 拉伸丝(低速拉伸丝)DY 全拉伸丝(纺丝拉伸一步法)FDY 全取丝(纺丝一步法)FOY 变形丝:常规变形丝(DY)拉伸变形丝(DTY)空气变形丝(ATY) 1.涤纶全牵伸丝(FDY) 特性:强度高、丝筒成型好、纤度、强度、伸长不均率小,染色均匀等优点。 用途:适合高速整经机及高速无梭织机的要求,直接用于针织和经编。广泛运用在春亚纺、摇粒绒、单面绒、金光绒、丝光绒、灯芯绒、花点绒、经编拉毛绒、经编短毛绒、经编条绒、经编平绒、经编网眼布、经编丝光绸、圈绒、平绒、五枚缎、涤塔夫、丝光绸、喷水轻盈纺(仿真丝)、喷水八枚缎、纬条牛津布、套格牛津布、提花窗帘、印花窗帘等面料。 2.涤纶预取向丝(POY)/高速纺卷绕丝/ 高速纺 性能:预取向度高,性质稳定,力学性能好,均匀性高,有良好的加工性能。 用途:本产品可通过进行牵伸、加弹、空气变形等工序,分别制成牵伸丝、加弹丝、空气变形丝等不同性能的产品,制成各种仿毛、仿麻、仿真丝制品,适用于机织、针织行业。 3.涤纶低弹丝(DTY)/ 拉伸变形丝/ 假捻变形丝 性能:纱线是弯曲的,是经假捻变形加工后可以赋予丝蓬松效果 用途:涤纶低弹丝是针织(纬编、经编)或机织加工的理想原料,适宜制作服装面料(如西服、衬衫)、床上用品(如被面、床罩、蚊帐)及装饰用品(如窗帘布、沙发布、贴墙布、汽车内装饰布)等。 4.涤纶拉伸丝(DT)/ 拉伸加捻丝 特性:能够生产各种织物,并具有不同的手感和真丝般外观,质轻透气的特性。 用途:家庭装饰、服饰、产业用织物和汽车用织物,用于织造各种仿真丝绸织物等 涤纶短纤的分类及其特点 1.“大化纤”产品指的是用相对精良的进口和国产生产设备,采用聚酯熔体直接纺丝方法或聚酯切片间接纺丝方法而纺制出的涤纶短纤维。由于“大化纤”产品使用的原料基本上都是合格等级品,因而其正规产品的各项质量指标均为上乘。“大化纤”涤纶短纤维是棉纺织行业主导原料。“大化纤”生产设备是吃“细粮”的设备。 2.“中化纤”产品和“小化纤”产品生产设备采用的绝大多数是国产小化纤机械厂生产的。这

溶胶凝胶法制备纳米材料

利用溶胶凝胶法制备纳米材料的基本原理 学院:材料学院班号:1109102 学号:1110910209 姓名:袁皓 摘要:本文介绍了纳米材料的性能用途以及制备方法,主要是新兴的制备纳米材料低温工艺——溶胶凝胶法,在文中详细说明了溶胶凝胶法的类型和特征,重点描述了利用溶胶凝胶法制备纳米材料的类型,基本原理以及简略的操作流程。 关键词:纳米材料溶胶凝胶基本原理 一溶胶凝胶法的基本原理 溶胶凝胶(sol-gel)法是一种制备超细粉末的一种湿化学法,它是以液体的化学试剂配制成金属有机或无机化合物或者是金属醇盐前驱物,前驱物溶于溶剂中形成均匀的溶液,溶质与溶剂产生水解或是醇解反应,反应生成物在液相下均匀混合,均匀反应,生成稳定且无沉淀的溶胶体系,放置一段时间后或是干燥处理溶胶之后转变为凝胶,在凝胶中通常含有大量的液相物质,需要利用萃取或蒸发除去液体介质,并在远低于传统的烧结温度下热处理,最后形成相应物质化合物粉体,利用溶胶凝胶法还可以制备其他形态的材料包括单晶、纤维、图层、薄膜材料等。 表2-1 对于制备纳米材料的溶胶凝胶法类型和特征 1.1 溶剂化 能电离的前驱物-金属盐的金属阳离子M z+吸引水分子形成溶剂单元(M(H2O)n)z+(z 为M 离子的价数),为保持它的配位数而具有强烈的释放H+的趋势。 (M(H2O)n)z+==(M(H2O)n-1(OH))(z-1)++H+ 1.2 水解反应 非电离式分子前驱物,如金属醇盐M(OR)n(n 为金属M 的原子价,R 代表烷基),与水反应,反应可延续进行,直至生成M(OH)n。 M(OR)n+xH2O→M(OH)x(OR)n-x+xROH 1.3 缩聚反应 可分为失水缩聚:-M-OH+HO-M→M-O-M-+H2O 失醇缩聚:-M-OR+HO-M→-M-O-M+ROH

涤纶短纤维的生产

涤纶短纤维的生产·环境管理体系审核·指导书 1 范围 本审核指导书提出了涤纶短纤维企业按照GB/T24001-20004标准建立的环境管理体系审核的要点。 作业指导书是以―涤纶短纤维‖为基本素材编制的,其工艺以―废PET瓶片清洗、再生短纤维‖为主,其他合成纤维的现场审核也可参照使用。 2 引用文件 GB/T 24001-2004 idt ISO 14001:2004《环境管理体系要求及使用指南》 GB/T 19011-2003 idt ISO 19011:2002 《质量和(或)环境管理体系审核指南》 3 定义 PET –聚酯材料 4 产品/服务范围、特点与专业代码 涤纶短纤维主要供给纺织行业企业,用途十分广泛,服装类可用于制作各仿丝、仿毛服装和饰品,装饰类用做沙发、家具、窗帘、贴墙、地毯、雨披、伞面等织物和汽车内部装饰布,其主要质量特性指标有线密度、线密度变异系数、断裂强度、断裂强度变异系数、断裂伸长率、断裂伸长率变异系数等。 专业代码:12.06.00 5 业务/服务流程 5.1工艺流程说明 以―废PET瓶片清洗、再生短纤维‖为主的涤纶短纤维生产,主要工艺过程是:PET切片经干燥、熔解进入纺丝箱体,均匀地送到装有过滤网的纺丝组件中,滤去杂质后从喷丝板中喷出,形成初生纤维。初生纤维经环型次风冷却,通过纺丝通道进入卷绕面板,经上油轮上油后集束进入喂入轮,铺入盛丝桶内。初生纤维丝束通过导丝机引导,进入浸油槽,浸油后第一牵伸机和第二牵伸机之间进行第二次牵伸,完成总牵伸倍数的80%。在第二牵伸机和第三牵伸机之间进行第二次牵伸,完成总牵伸倍数的20%,通过两次牵伸后,纤维获得了充分的取向结构。

《安全操作规程》之涤纶短纤维、涤纶长丝生产安全生产要点

涤纶短纤维、涤纶长丝生产安全生产要点 1工艺简述 1.1生产涤纶短纤维是以聚酯(PET)融体为原料送入纺丝机;或以聚酯切片为原料,经干燥、熔融后送入纺丝机,再经集束、拉伸、定型、卷曲、切断、打包、得到涤纶短纤维。 1.2生产涤纶化丝是以聚酯切片为原料,经干燥、熔融后送入纺丝机;或以聚酯融体为原料送入纺丝机,经不同的后处理得到拉伸加捻纱、拉伸变形纱、空气变形纱、全牵伸纱。涤纶短纤维、涤纶长丝可燃。热载体联苯可燃、可爆、有毒。2安全要点 2.1控制好切片干燥和熔融纺丝的操作,促进持平稳运行。 2.2螺杆挤压熔融纺丝是用联苯热载体加热。当联苯升温时需要排气,排气要缓慢,以免将联苯带出;排气时严禁明火接近,不得排入室内,以免发生着火、中毒。该岗位气温高,要做好防署降温工作。 2.3卷绕机卷绕速度很高,在操作中稍有不慎易将钩子带入,造成飞钩伤人。因此要教育操作者集中精力操作,站在有利的安全位置,以免飞钩伤害。向废丝辊上绕丝时,如果辊上已绕有几束丝,再绕丝时应用一只手扶住原有丝束,以免丝束将钩子卷入而造成飞钩。当割去废丝辊上废丝时,一定要用脚踏住刹闸装置,待停稳后用打结刀割去废丝。 2.4在升、降集束架时,架下严禁站人。 2.5在处理牵伸缠辊时,一定要降速或停车处理。钩丝时,集中精力,在出口处钩丝,以防钩手。 2.6注意油剂不能溢出,一旦溅出地面要及时冲洗,以防行走滑倒。 2.7切断机在开机升头时,手握丝头送入切断钩轮,如果配合不当,易发生手尚未离开,操作台已开机,将手带入,造成割手事故。因此切断机的操作,必须密切配合,一定在手离开后再开机。 2.8在打包过程中,要在停机时将主压盖包皮布上好,然后再上升主压盖。千万不要在上升压盖时上主压盖包皮布,以防造成挤手。 2.9要做好纤维库房的防火工作。 2.10不准

第三章熔体纺丝工艺原理总结

第三章熔体纺丝工艺原理总结 概述 熔体纺丝属于聚合物直接纺丝方法,相对于溶液纺丝方法而言,工艺简单,速度快,对环境影响较小,适合于几乎所有热塑性聚合物的纺丝。溶液纺丝分为干法纺丝(使用挥发性溶剂)和湿法纺丝(采用非挥发性溶剂)两种方法。由于涉及到溶剂的回收和物质交换,因此纺丝速度低于熔体纺丝,而且溶液纺丝成形过程中丝条所经受的拉伸少,纤维强力低,因此应用很少,只有少数聚合物纺丝使用。 PP、PE、PA 和PET一般采用熔体纺丝;醋酯、聚氨酯和一部分PAN采用干法纺丝;粘胶纤维、维纶、铜氨纤维和大部分PAN纤维采用湿法纺丝。 思考题:试比较熔体纺丝、干法纺丝和湿法纺丝法的工艺特征和产品特征。 第一节熔体纺丝成网工艺原理 聚合物切片送入螺杆挤出机,经熔融、挤压、过滤、计量后,由喷丝孔喷出,长丝丝束经气流冷却牵伸后,均匀铺放在凝网帘上,形成的长丝纤网经固网工序(热粘合、化学粘合、水刺或针刺)加固后成为熔体纺丝成网法非织造材料。 1、工艺流程为: 聚合物切片→切片烘燥→熔融挤压→纺丝→冷却→牵伸→分丝→铺网→加固→切边→卷绕 2、纺粘非织造工艺参数:聚合物种类、熔融挤压条件、纺丝孔尺寸、冷却空气、拉伸/牵伸方式、固网方法(重点掌握热轧粘合工艺参数对纺粘非织造布结构和性能的影响)。 思考题:试画出化纤长丝生产和纺粘非织造布生产工艺流程图,并标出每个工艺步骤的名称和作用。 一、熔体纺丝工艺特点 熔体纺丝工艺具有过程简单和纺丝速度高的特点,在熔体纺丝过程中,成纤高聚物经历了两种变化,即几何形状的变化和物理状态的变化。 几何形状的变化是指成纤高聚物经过喷丝孔挤出和拉长而形成连续细丝的过程;物理变化即先将高聚物变为易于加工的流体,挤出后为保持已经改变了的几何形状和取得一定的化纤结构,使高聚物又变为固态。

熔体纺丝工艺要点

·概述 ·熔体纺丝工艺原理 ·装置纺丝工艺流程及特点简介·附加和辅助设备简介 第一篇 涤纶短纤维纺丝工艺部分 第一章合成纤维概述 合成纤维即用石油、天然气、煤及农副产品等为原料,经一系列的化学反应,制成合成高分子化合物,再经加工而制成的纤维。其生产始于本世纪30年代中期,由于其性能优良,用途广泛,原料来源丰富,生产又不受气候或土壤条件的影响,所以合成纤维工业自建立以来,发展十分迅速。在品种方面,占主导地位的是涤纶、锦纶和晴纶。 合成纤维的纺丝成型方法主要有熔体纺丝法和溶液纺丝法两种。溶液纺丝是化学纤维传统的成型工艺,根据纺丝原液细流的凝固方式不同,又分为湿法纺丝和干法纺丝。 湿法纺丝是指纺丝溶液经混合、过滤和脱泡等纺前准备,送至纺丝机,通过计量泵、过滤器、连接管,进入喷丝头,从喷丝头毛细孔中压出的原液细流进入凝固浴,原液细流中的溶剂向凝固浴扩散,浴中的沉淀剂向细流扩散,高聚物在凝固浴中析出而形成纤维。湿法纺丝中的扩散和凝固是一些物理化学过程,但在某些化学纤维(如粘胶纤维)的湿法纺丝过程中,还同时发生化学变化,因此,湿法纺丝的成形过程是比较复杂的。 干法纺丝是指从喷丝头毛细孔中压出的原液细流不是进入凝固浴,而是进入纺丝甬道中。由于通入甬道中的热空气流的作用,使原液细流中的溶剂快速挥发,挥发出来的溶剂蒸汽被热空气流带走。在逐渐脱去溶剂的同时,原液细流凝固并伸长变细而形成初生纤维。在干法纺丝过程中,纺丝原液与凝固介质(空气)之间只有传热和传质过程,不发生任何化学变化。干法纺丝的成形过程与熔体纺丝有某些相似之处,它们都是在纺丝甬道中使高聚物液流的粘度达到某一极限值来实现凝固的,所不同的在于熔体纺丝时,这个过程是借温度下降而达到,而干法纺丝则是通过高聚物浓度的不断增大而完成的。 熔体纺丝是指成纤高聚物在高于其熔点10—40 C的熔融状态下,形成较稳定的纺丝熔体,然后通过喷丝孔挤出成型,熔体射流在空气或液体介质中冷却凝固,形成半成品纤维,再经过拉伸、热定型等后处理工序,即成为成品纤维。在纤维成形过程中,只发生熔体细流与周围空气的热交换,而没有传质过程,故熔体纺丝法较为简单。合成纤维的主要品种中,涤纶、锦纶和丙纶等均是以熔体纺丝法生产的。因此,熔体纺丝是合成纤维纺丝成型中最重要的方法。

相关文档
最新文档