Fluent软件学习

Fluent软件学习
Fluent软件学习

第5卷 第11期 中 国 水 运 Vol.5 No.11 2007年 11月 China Water Transport November 2007

收稿日期:2007-9-28

作者简介:杨 鹏 武汉理工大学工程流体力学研究所 (430063) 研究方向:气泡减阻、障碍物绕流、带自由面问题的数值模拟

Fluent 软件学习心得与体会

杨 鹏 郑伟涛 吴静萍

摘 要:CFD(Computational Fluid Dynamics) 技术,即计算流体力学技术。随着计算机技术的推广普及和计算方法的新发展,几十年来取得了蓬勃的发展。由于数值模拟相对于实验研究有很独特的优点,比如成本低,周期短,能获得完整的数据,能模拟出实际运行过程中各种所测数据状态,对于设计、改造等商业或实验室应用起到重要的指导作用,故而CFD 技术得到了越来越多的应用。通过几年对fluent 软件的学习,结合自己几年的工作经验,将自己学习fluent 软件的心得呈现给读者,希望对各个领域初学该软件的朋友有所帮助。 关键词:fluent 计算流体力学 学习心得

中图分类号:G640 文献标识码:A 文章编号:1006-7973(2007)11-0220-02

一、引言

Fluent 公司是全球最大的计算流体力学(CFD)软件供应商和技术服务商。Fluent 公司设计的fluent 软件是基于CFD 软件群的思想,针对各种复杂流动的物理现象,FLUENT 软件采用的数值解法,以期在计算速度、稳定性和精度等方面达到优化组合,从而高效地解决各个领域的复杂流动计算问题,模拟流动、传热和化学反应等物理现象。并且由于采用了统一的前、后置处理工具,在各种软件之间可以方便地进行数据交换[2]。

因为fluent 软件强大的数值模拟功能,越来越多的研究生开始学习这个软件。但是由于研究生三年学习时间有限,其帮助文件就有几千页,很多研究生在众多参考书和文献中,更不知道何从下手,经常是事倍功半。本文将针对这个问题给广大研究生梳理出一个学习该软件的思路。

二、准备阶段

在学习软件之前,我们要搞清楚软件的组成结构以及安装方法。

1.Fluent 软件的结构组成 (1)前处理器:gambit

Fluent 软件包的前处理器是gambit,gambit 具有前处理器建模及网格划分的功能,是进行数值模拟计算前处理器的首选。但是,gambit 适合于简单模型的建立,对于复杂模型,可以采用pre、ug 等软件进行建模,复杂模型建模完成后,可以导入gambit 软件再进行网格划分。网格划分完成后保存dbs 文件和输出msh 文件。

前处理阶段需要用户进行如下操作: 定义计算域、绘制简化物理模型 对计算域进行网格划分 定义域边界单元的边界条件 定义流体的属性参数 (2)求解器:fluent

Fluent 求解是fluent 的核心部分,数值方法是基于有限体积法。它的求解步骤大致如下:

输入网格并检查网格 选择求解器(2D 或3D)

选择求解方程:层流或者湍流、化学组分或者化学反应、传热模型等。

确定流体的材料属性 确定边界类型及边界条件 计算中控制参数的设置 流场的初始化 求解计算 保存结果及后处理

(3)后处理器:fluent 或tecplot

Fluent 软件有自带的后处理功能,有的朋友更倾向用tecplot 对fluent 结果进行后处理,因为tecplot 易学并且功能也很强大,操作界面非常友好。

后处理的功能包括: 计算域的几何模型及网格显示 矢量图(如速度矢量图) 等值线图

填充型的等值线图(云图) XY 散点图 粒子轨迹图

图像处理功能(缩小、放大、旋转等)

借助后处理功能,还可以动态模型流动效果,直观地了解CFD 的计算结果。

2.Fluent 软件的安装

FLUENT 软件的安装,需要安装的软件:Exceed、Gambit、Fluent。安装顺序:首先安装Exceed,再装Gambit 和Fluent。最后不要忘了把安装文件Fluent 下的license 复制到系统盘根目录下C:\FLUENT.INC\license。安装完

第11期 杨 鹏等:基于ANSYS平台的搭接接头工作应力及应力集中系数的研究 221

成后,你可以分别双击FLUENT.INC\ntbin\ntx86 文件夹下的Gambit和Fluent 的图标,来运行它们。一般情况下,我们可以把它们拖到桌面。

Gambit 运行过程中常遇到的一个问题是:在Gambit 建模过程中出现界面突然跳出,并且下次运行Gambit时,界面调不出来,这时只需删去Gambit 工作目录下的(默认的工作目录为\FLUENT.INC\ntbin\ntx86)后缀为*.lok 的文件,就会恢复正常。

除了会安装Fluent软件,我们还要搞清楚三者之间的关系:Gambit 是Fluent 的前处理软件,用来为Fluent 划分网格,而Gambit 必须在unix 环境下才可以运行,Exceed就是在Windows 环境下模拟unix 的软件。所以进行数值模拟时,首先用gambit 划分网格,这时会自动运行exceed 来模拟unix 环境。划分好网格后导入fluent,就可以进行数值模拟了。

三、入门阶段

攻读硕士和博士期间,真正让自己学软件的时间不多,如何做才能够较快地实现fluent软件的入门呢?

1.学习专业知识,奠定基石

弄清楚了软件的用途以及安装方法之后,网格生成技巧和流体力学基础知识是学习该软件的基础。做CFD模拟的人都知道,好的网格质量非常有利于得出正确的结论,对于复杂的物理模型,好质量网格的生成可能要占整个计算的70%的时间,因此,网格生成技巧的学习非常重要。要做CFD 模拟,一定的流体力学知识是基础,只有这样,才能正确构建求解思路并判断结果的可信度,同时为数学模型的建立奠定基础。关于网格的生成现在似乎愈来愈成为制约CFD 推广的一个瓶劲,当然由于商业软件的大量投入使用,使得个人在网格生成方面所发费的精力有所改善。商业软件固然容易上手,但是要做到灵活应用于不同场合,则还是需要基本的几何拓扑方面的知识。

2.学习算例及帮助文件,事半功倍

和众多其它软件一样,帮助文件是最有效的文件之一。但是fluent的中文帮助文件多是国内优秀论坛成员翻译而成,里面的错误非常之多;如果看英文帮助文件则比较吃力,并且会花大量的时间,并且看了之后,经常会有不知所云的感觉。这个时候,我觉得看算例能够达到事半功倍的效果。

文献[4]和[6]是国内唯一出版的两本中文算例书。文献[4]的算例多是从工程角度出发,操作几遍就可以了,以后遇到熟悉的问题可以联想到书中的算例,并且对照着能进行操作计算就可以了;文献[6]的算例相对比较简单易学,适合软件的学习。学习文献[6]的时候最好有一定的算例基础。

两本书因为都是国内仅出版的两本中文教材书,里面的错误也非常多,学习过程中,遇到不通的地方,读者可以跳过算例,有一定基础之后,再来研究错误地方的错误原因,这对于软件的提高也很有帮助。算例要一个一个地啃通,并且经常做笔记有利于积累和提高。

看了一定的算例之后,再回过头来看帮助文件,会觉得非常地轻松,保持一个愉快的心态非常有助于对软件的学习。

四、提高阶段

有了一定的算例基础入门之后,如何实现进一步的提高呢?

1.参加讨论会和浏览各相关论坛,为我所用

看算例,始终是跟着人家的思路在走,按照人家设置好了的参数进行设置,这个过程看起来是很简单的过程,但是实际上是需要花很大功夫的一个过程。

有了算例基础之后,这个时候要尝试自己来计算问题和解决问题,文献[5]中的大量算例可以拿来自己来练习计算,它里面的解答过程写得相对分散和简略,非常适合有一定基础之后的同学进行练习,自己尝试计算和解决问题。这个过程对自己的提高是相当巨大的。

在自己独立计算的过程中,不可避免地会遇到不懂或者不会解决的问题,这个时候可以参加小范围的讨论,如加入软件交流群或者向相关优秀论坛进行发帖请教。推荐的优秀论坛包括:仿真论坛、振动论坛、清洁能源网、流体中文网等。

每计算完一个算例,最好认真进行小结。在和同学一起讨论交流的时候,可以通过人家的操作和讲解,可以省去很多看冗长帮助文件的时间。讨论交流的氛围非常有利于软件的学习,会议讨论的问题和解决方法最好记录备案,如形成会议纪要的形式,这样不但可以方便自己的学习,对后来学习者也是一笔省时省力的巨大财富。

2.弄清原理,一通百通

在自己算算例的过程中,会遇到各种各样的问题,最常见的是网格质量的问题,各参数如何进行设置的问题?

如何建立较好的网格质量模型,一是可以去图书馆查阅相关的书籍,二是可以去优秀论坛和斑竹一起同步进行网格划分的练习。

对于计算过程中,对各参数的设置问题是计算的核心所在,这个时候应该加大对文献[5]的阅读力度。原理的东西对于初学者相对较难,但是随着逐步学习的经验积累以及不断对该文献的翻阅弄通,在逐步熟悉了原理之后,你会发现计算越来越简单,你的软件应用能力也会明显越来越强。

3.看论文,写论文,理顺思路

在原理逐渐弄通之后,如何再提高呢?

这个时候,应该多看别人论文,可以计算人家论文的模型,发现问题之后自己加以改进,或者自己选择自己的模型进行计算,将自己计算的经验和结论整理成文进行发表,这样可以理顺自己软件学习的思路,是再提高的非常好的办法之一。随着你原理的逐渐弄懂,你会发现写论文会变得越来越简单。

参考文献

[1] 刘 霞.FLUENT 软件及其在我国的应用.东南大学热能

研究所.2003.

[2] 郭菁.FLUNET—CFD 的领跑者.北京海基科技发展有限

责任公司.2007.

[3] 朱自强.应用计算流体力学.北京航空航天大学出版

社.1998.

fluent 软件介绍

百科名片 Fluent是目前国际上比较流行的商用CFD软件包,在美国的市场占有率为60%,凡是和流体、热传递和化学反应等有关的工业均可使用。它具有丰富的物理模型、先进的数值方法和强大的前后处理功能,在航空航天、汽车设计、石油天然气和涡轮机设计等方面都有着广泛的应用。 简介 Fluent算例 CFD商业软件FLUENT,是通用CFD软件包,用来模拟从不可压缩到高度可压缩范围内的复杂流动。由于采用了多种求解方法和多重网格加速收敛技术,因而FLUENT能达到最佳的收敛速度和求解精度。灵活的非结构化网格和基于解的自适应网格技术及成熟的物理模型,使FLUENT在转换与湍流、传热与相变、化学反应与燃烧、多相流、旋转机械、动/变形网格、噪声、材料加工、燃料电池等方面有广泛应用。 基本特点 FLUENT软件具有以下特点: FLUENT软件采用基于完全非结构化网格的有限体积法,而且具有基于网格节点和网格单元的梯度算法; 定常/非定常流动模拟,而且新增快速非定常模拟功能; Fluent 前处理网格划分 FLUENT软件中的动/变形网格技术主要解决边界运动的问题,用户只需指定初始网格和运动壁面的边界条件,余下的网格变化完全由解算器自动生成。网格变形方式有三种:弹簧压缩式、动态铺层式以及局部网格重生式。其局部网格重生式是FLUENT所独有的,而

且用途广泛,可用于非结构网格、变形较大问题以及物体运动规律事先不知道而完全由流动所产生的力所决定的问题; FLUENT软件具有强大的网格支持能力,支持界面不连续的网格、混合网格、动/变形网格以及滑动网格等。值得强调的是,FLUENT软件还拥有多种基于解的网格的自适应、动态自适应技术以及动网格与网格动态自适应相结合的技术; FLUENT软件包含三种算法:非耦合隐式算法、耦合显式算法、耦合隐式算法,是商用软件中最多的; FLUENT软件包含丰富而先进的物理模型,使得用户能够精确地模拟无粘流、层流、湍流。湍流模型包含Spalart-Allmaras模型、k-ω模型组、k-ε模型组、雷诺应力模型(RSM)组、大涡模拟模型(LES)组以及最新的分离涡模拟(DES)和V2F模型等。另外用户还可以定制或添加自己的湍流模型; 适用于牛顿流体、非牛顿流体; 含有强制/自然/混合对流的热传导,固体/流体的热传导、辐射; 化学组份的混合/反应; 自由表面流模型,欧拉多相流模型,混合多相流模型,颗粒相模型,空穴两相流模型,湿蒸汽模型; 融化溶化/凝固;蒸发/冷凝相变模型; 离散相的拉格朗日跟踪计算; 非均质渗透性、惯性阻抗、固体热传导,多孔介质模型(考虑多孔介质压力突变); 风扇,散热器,以热交换器为对象的集中参数模型; 惯性或非惯性坐标系,复数基准坐标系及滑移网格; 动静翼相互作用模型化后的接续界面; 基于精细流场解算的预测流体噪声的声学模型; 质量、动量、热、化学组份的体积源项; 丰富的物性参数的数据库; 磁流体模块主要模拟电磁场和导电流体之间的相互作用问题; 连续纤维模块主要模拟纤维和气体流动之间的动量、质量以及热的交换问题; 高效率的并行计算功能,提供多种自动/手动分区算法;内置MPI并行机制大幅度提高并行效率。另外,FLUENT特有动态负载平衡功能,确保全局高效并行计算; FLUENT软件提供了友好的用户界面,并为用户提供了二次开发接口(UDF); FLUENT软件采用C/C++语言编写,从而大大提高了对计算机内存的利用率。 在CFD软件中,Fluent软件是目前国内外使用最多、最流行的商业软件之一。Fluent 的软件设计基于"CFD计算机软件群的概念",针对每一种流动的物理问题的特点,采用适合于它的数值解法在计算速度、稳定性和精度等各方面达到最佳。由于囊括了Fluent Dynamical International比利时PolyFlow和Fluent Dynamical International(FDI)的全部技术力量(前者是公认的在黏弹性和聚合物流动模拟方面占领先地位的公司,后者是基于有限元方法CFD软件方面领先的公司),因此Fluent具有以上软件的许优点 软件简介

十款制作影视特效的优秀软件介绍

十款制作影视特效的优秀软件介绍 相信很多影视制作初学者在看到市场上那些琳琅满目的制作软件一定是头晕脑胀,不知道用哪种制作软件比较好,下面给大家介绍十款影视制作的软件,一起来看看吧。 1、RealFlow 是由西班牙Next Limit公司出品的流体动力学模拟软件。它是一款独立的模拟软件,可以计算真实世界中运动物体的运动,包括液体。RealFlow提供给艺术家们一系列精心设计的工具,如流体模拟(液体和气体)、网格生成器、带有约束的刚体动力学、弹性、控制流体行为的工作平台和波动、浮力(以前在RealWave 中具有浮力功能)。你可以将几何体或场景导入RealFlow来设置流体模拟。在模拟和调节完成后,将粒子或网格物体从RealFlow导出到其他主流3D软件中进行照明和渲染。 2、Houdini (电影特效魔术师) Side Effects Software的旗舰级产品,是创建高级视觉效果的有效工具,因为它有横跨公司的整个产品线的能力,Houdini Master为那些想让电脑动画更加精彩的动画制作家们提供了空前的能力和工作效率。 3、lightwave LightWave是一个具有悠久历史和众多成功案例的为数不多的重量级3D软件之一。由美国NewTek公司开发的LightWave3D是一款高性价比的三维动画制作

软件,它的功能非常强大,是业界为数不多的几款重量级三维动画软件之一。LightWave3D从有趣的AMIGA开始,发展到今天的8.5版本,已经成为一款功能非常强大的三维动画软件,支持Windows98/NT/2000/Me,MACOS9/Xp。 4、Combustion 是一种三维视频特效软件,基于PC或苹果平台的Combustion软件是为视觉特效创建而设计的一整套尖端工具,包含矢量绘画、粒子、视频效果处理、轨迹动画以及3D效果合成等五大工具模块。软件提供了大量强大且独特的工具,包括动态图片、三维合成、颜色矫正、图像稳定、矢量绘制和旋转文字特效短格式编辑、表现、flash输出等功能;另外还提供了运动图形和合成艺术新的创建能力,交互性界面的改进;增强了其绘画工具与3ds max软件中的交互操作功能;可以通过cleaner编码记录软件使其与flint、flame、inferno、fire和smoke同时工作。 5、Softimage 公司曾经是加拿大Avid公司旗下的子公司。SOFTIMAGE 3D曾经是专业动画设计师的重要工具。用SOFTIMAGE 3D创建和制作的作品占据了娱乐业和影视业的主要市场,《泰坦尼克号》、《失落的世界》、《第五元素》等电影中的很多镜头都是由SOFTIMAGES 3D制作完成的,创造了惊人的视觉效果。 6、DFusion DFusion是一个高端的、用于影视后期、独立的图象处理的特效的合成平

FLUENT数值模拟离散笔记

一旦使用了离散相模型,下面的模型将不能使用: ● 选择了离散相模型后,不能再使用周期性边界条件 ● 可调整时间步长方法不能与离散相模型同时使用 ● 预混燃烧模型中只能使用非反应颗粒模型 ● 同时选择了多参考坐标系与离散相颗粒模型时,在缺省情况下,颗粒轨道的显示失却了其原有意义;同样,相间耦合计算是没有意义的。 FLUENT 提供的离散相模型选择如下: ● 对稳态与非稳态流动,可以应用拉氏公式考虑离散相的惯性、曳力、重力 ● 预报连续相中,由于湍流涡旋的作用而对颗粒造成的影响 ● 离散相的加热/冷却 ● 液滴的蒸发与沸腾 ● 颗粒燃烧模型,包括挥发份析出以及焦炭燃烧模型(因而可以模拟煤粉燃烧) ● 连续相与离散相间的耦合 ● 液滴的迸裂与合并 热泳力(热致迁移力或辐射力) Saffman 升力 在附加力中也可以考虑由于横向速度梯度(剪切层流动)引致的Saffman 升力。 离散相边界条件 当颗粒与壁面发生碰撞时,将会发生下述几种情况: l 颗粒发生弹性或非弹性碰撞反射 l 穿过壁面而逃逸(颗粒的轨道计算在此处终止) l 在壁面处被捕集。非挥发性颗粒在此处终止计算;颗粒或液滴中的挥发性物质在此处 被释放到气相中 l 穿过内部的诸如辐射或多孔介质间断面区域 !!如果选择了Spalart-Allmaras 湍流模型,那么,轨道计算中就不能包含颗粒的湍流扩散。 颗粒类型 l 惯性颗粒(``inert'')是服从力平衡(方程19.2-1)以及受到加热/冷却影响(由定律1 确定,请参阅19.3.2)的一种离散相类型(颗粒、液滴或气泡)。在FLUENT 任何模型 中,惯性颗粒总是可选的。 2液滴(``droplet'')是一种存在于连续相气流中的液体颗粒。它服从力的平衡并受到加热/冷却的影响(由定律1 确定)。此外,他还由定律2 和3 确定自身的蒸发与沸腾(请参阅19.3.3、19.3.4)。只有传热选项被激活并且至少两种化学组份在计算中是被激活的,或者已经选择了非预混燃烧或部分预混燃烧模型,液滴类型才是可选的。当选择了液滴 类型之后,用户应该使用理想气体定律来定义气相密度(在Materials panel,面板里,可参阅19.25 节)。 3 燃烧(``combusting'')颗粒是一种固体颗粒,它遵从由方程19.2-1 所确定的受力平衡、 由定律1 所确定的加热冷却过程、由定律4 所确定的挥发份析出过程(19.3.5 节)以及 由定律5 所确定的异相表面反应机制(19.3.6 节)。最后,当颗粒的挥发份完全析出之后,非挥发份的运动、变化由定律6 所确定。在Set Injection Properties panel 面板中选 定Wet Combustion 选项,用户可以在燃烧颗粒中包含有可蒸发物质。这样,颗粒的可 蒸发物质可在挥发份开始析出之前,经历由定律2、3 所确定的蒸发与沸腾过程。只有在模

FLUENT中文全教程1-250

FLUENT 教程 赵玉新 I、目录 第一章、开始 第二章、操作界面 第三章、文件的读写 第四章、单位系统 第五章、读入和操作网格 第六章、边界条件 第七章、物理特性 第八章、基本物理模型 第九章、湍流模型 第十章、辐射模型 第十一章、化学输运与反应流 第十二章、污染形成模型 第十三章、相变模拟 第十四章、多相流模型 第十五章、动坐标系下的流动 第十六章、解算器的使用 第十七章、网格适应 第十八章、数据显示与报告界面的产生 第十九章、图形与可视化 第二十章、Alphanumeric Reporting 第二十一章、流场函数定义 第二十二章、并行处理 第二十三章、自定义函数 第二十四章、参考向导 第二十五章、索引(Bibliography) 第二十六章、命令索引 II、如何使用该教程 概述 本教程主要介绍了FLUENT 的使用,其中附带了相关的算例,从而能够使每一位使用 者在学习的同时积累相关的经验。本教程大致分以下四个部分:第一部分包括介绍信息、用户界面信息、文件输入输出、单位系统、网格、边界条件以及物理特性。第二和第三部分包含物理模型,解以及网格适应的信息。第四部分包括界面的生成、后处理、图形报告、并行处理、自定义函数以及FLUENT 所使用的流场函数与变量的定义。 下面是各章的简略概括 第一部分: z开始使用:本章描述了FLUENT 的计算能力以及它与其它程序的接口。介绍了如何对具体的应用选择适当的解形式,并且概述了问题解决的大致步骤。在本章中,我们给出

了一个可以在你自己计算机上运行的简单的算例。 z使用界面:本章描述了用户界面、文本界面以及在线帮助的使用方法。同时也提供了远程处理与批处理的一些方法。(请参考关于特定的文本界面命令的在线帮助) z读写文件:本章描述了FLUENT 可以读写的文件以及硬拷贝文件。 z单位系统:本章描述了如何使用FLUENT 所提供的标准与自定义单位系统。 z读和操纵网格:本章描述了各种各样的计算网格来源,并解释了如何获取关于网格的诊断信息,以及通过尺度化(scale)、分区(partition)等方法对网格的修改。本章还描述了非一致(nonconformal)网格的使用. z边界条件:本章描述了FLUENT 所提供的各种类型边界条件,如何使用它们,如何定义它们and how to define boundary profiles and volumetric sources. z物理特性:本章描述了如何定义流体的物理特性与方程。FLUENT 采用这些信息来处理你的输入信息。 第二部分: z基本物理模型:本章描述了FLUENT 计算流体流动和热传导所使用的物理模型(包括自然对流、周期流、热传导、swirling、旋转流、可压流、无粘流以及时间相关流)。以及在使用这些模型时你需要输入的数据,本章也包含了自定义标量的信息。 z湍流模型:本章描述了FLUENT 的湍流模型以及使用条件。 z辐射模型:本章描述了FLUENT 的热辐射模型以及使用条件。 z化学组分输运和反应流:本章描述了化学组分输运和反应流的模型及其使用方法。本章详细的叙述了prePDF 的使用方法。 z污染形成模型:本章描述了NOx 和烟尘的形成的模型,以及这些模型的使用方法。 第三部分: z相变模拟:本章描述了FLUENT 的相变模型及其使用方法。 z离散相变模型:本章描述了FLUENT 的离散相变模型及其使用方法。 z多相流模型:本章描述了FLUENT 的多相流模型及其使用方法。 z Flows in Moving Zones(移动坐标系下的流动):本章描述了FLUENT 中单一旋转坐标系,多重移动坐标系,以及滑动网格的使用方法。 z Solver 的使用:本章描述了如何使用FLUENT 的解法器(solver)。 z网格适应:本章描述了explains the solution-adaptive mesh refinement feature in FLUENT and how to use it 第四部分: z显示和报告数据界面的创建:本章描述了explains how to create surfaces in the domain on which you can examine FLUENT solution data z图形和可视化:本章描述了检验FLUENT 解的图形工具 z Alphanumeric Reporting:本章描述了如何获取流动、力、表面积分以及其它解的数据。 z流场函数的定义:本章描述了如何定义FLUENT 面板内出现的变量选择下拉菜单中的流动变量,并且告诉我们如何创建自己的自定义流场函数。 z并行处理:本章描述了FLUENT 的并行处理特点以及使用方法 z自定义函数:本章描述了如何通过用户定义边界条件,物理性质函数来形成自己的FLUENT 软件。 如何使用该手册 z根据你对CFD 以及FLUENT 公司的熟悉,你可以通过各种途径使用该手册 对于初学者,建议如下:

(完整版)《FLUENT中文手册(简化版)》

FLUENT中文手册(简化版) 本手册介绍FLUENT的使用方法,并附带了相关的算例。下面是本教程各部分各章节的简略概括。 第一部分: ?开始使用:描述了FLUENT的计算能力以及它与其它程序的接口。介绍了如何对具体的应用选择适当的解形式,并且概述了问题解决的大致步骤。在本章中给出了一个简单的算例。 ?使用界面:描述用户界面、文本界面以及在线帮助的使用方法,还有远程处理与批处理的一些方法。?读写文件:描述了FLUENT可以读写的文件以及硬拷贝文件。 ?单位系统:描述了如何使用FLUENT所提供的标准与自定义单位系统。 ?使用网格:描述了各种计算网格来源,并解释了如何获取关于网格的诊断信息,以及通过尺度化(scale)、分区(partition)等方法对网格的修改。还描述了非一致(nonconformal)网格的使用. ?边界条件:描述了FLUENT所提供的各种类型边界条件和源项,如何使用它们,如何定义它们等 ?物理特性:描述了如何定义流体的物理特性与方程。FLUENT采用这些信息来处理你的输入信息。 第二部分: ?基本物理模型:描述了计算流动和传热所用的物理模型(包括自然对流、周期流、热传导、swirling、旋转流、可压流、无粘流以及时间相关流)及其使用方法,还有自定义标量的信息。 ?湍流模型:描述了FLUENT的湍流模型以及使用条件。 ?辐射模型:描述了FLUENT的热辐射模型以及使用条件。 ?化学组分输运和反应流:描述了化学组分输运和反应流的模型及其使用方法,并详细叙述了prePDF 的使用方法。 ?污染形成模型:描述了NOx和烟尘的形成的模型,以及这些模型的使用方法。 第三部分: ?相变模拟:描述了FLUENT的相变模型及其使用方法。 ?离散相变模型:描述了FLUENT的离散相变模型及其使用方法。 ?多相流模型:描述了FLUENT的多相流模型及其使用方法。 ?移动坐标系下的流动:描述单一旋转坐标系、多重移动坐标系、以及滑动网格的使用方法。 ?解法器(solver)的使用:描述了如何使用FLUENT的解法器。 ?网格适应:描述了如何优化网格以适应计算需求。 第四部分: ?显示和报告数据界面的创建:本章描述了explains how to create surfaces in the domain on which you can examine FLUENT solution data ?图形和可视化:本章描述了检验FLUENT解的图形工具 ?Alphanumeric Reporting:本章描述了如何获取流动、力、表面积分以及其它解的数据。 ?流场函数的定义:本章描述了如何定义FLUENT面板内出现的变量选择下拉菜单中的流动变量,并且告诉我们如何创建自己的自定义流场函数。 ?并行处理:本章描述了FLUENT的并行处理特点以及使用方法 ?自定义函数:本章描述了如何通过用户定义边界条件,物理性质函数来形成自己的FLUENT软件。 如何使用该手册 对于初学者,建议从阅读“开始”这一章起步。 对于有经验的使用者,有三种不同的方法供你使用该手册:按照特定程序的步骤从按程序顺序排列的目录列表和主题列表中查找相关资料;从命令索引查找特定的面板和文本命令的使用方法;从分类索引查找特定类别信息(在线帮助中没有此类索引,只能在印刷手册中找到它)。 什么时候使用Support Engineer:Support Engineer能帮你计划CFD模拟工程并解决在使用FLUENT 中所遇到的困难。在遇到困难时我们建议你使用Support Engineer。但是在使用之前有以下几个注意事项:●仔细阅读手册中关于你使用并产生问题的命令的信息 ●回忆导致你产生问题的每一步 ●如果可能的话,请记下所出现的错误信息 ●对于特别困难的问题,保存FLUENT出现问题时的日志以及手稿。在解决问题时,它是最好的资源。

FLUENT软件介绍文稿

FLUENT软件介绍文稿 第十一小组

第一章 Fluent软件介绍 FLUENT软件是目前市场上最流行的CFD软件,它在美国的市场占有率达到60%。FLUENT在中国也是得到最广泛使用的CFD软件。它用数值方法模拟一个流场包括网格划分、选择计算方法、选择物理模型、设定边界条件、设定材料属性和对计算结果进行后处理几大部分。 1.1fluent软件基本情况 1.1.1 fluent软件网格划分技术 在使用商用CFD软件的工作中,网格划分需要的时间长,其能力的高低是决定了工作效率。FLUENT软件采用非结构网格与适应性网格相结合的方式进行网格划分。与结构化网格和分块结构网格相比,非结构网格划分便于处理复杂外形的网格划分,而适应性网格则便于计算流场参数变化剧烈、梯度很大的流动,同时这种划分方式也便于网格的细化或粗化,使得网格划分更加灵活、简便。它可以划分二维的三角形和四边形网格,三维的四面体网格、六面体网格、金字塔型网格、楔型网格以及由上述网格类型构成的混合型网格。

1.1.2fluent软件基本组成

Mixsim 针对搅拌混合问题的专用CFD软件 Icepak 专用的热控分析CFD软件 1.1.3 fluent适用领域 (1)任意复杂外形的二维/三维流动 (2)可压、不可压流 (3)定常、非定常流 (4)无粘流、层流和湍流 (5)顿、非牛顿流体流动 (6)对流传热包括自然对流和强迫对流 (7)热传导和对流传热相耦合的传热计算 (8)辐射传热计算 (9)惯性、静止、坐标、非惯性旋转坐标下中流场计算(10)多层次移动参考系问题 (11)化学组元混合与反应计算 (12)源项体积任意变化的计算 (13)颗粒、水滴和气泡等弥散相的轨迹计算 (14)多孔介质流动计算 (15)用一维模型计算风扇和换热器的性能。 (16)两相流 (17)复杂表面问题中带自由面流动的计算 1.1.4系统要求 硬件要求

FLUENT软件简介

FLUENT软件包简介 FLUENT通用CFD软件包,用来模拟从不可压缩到高度可压缩范围内的复杂流动。由于采用了多种求解方法和多重网格加速收敛技术,因而FLUENT能达到最佳的收敛速度和求解精度。灵活的非结构化网格和基于解的自适应网格技术及成熟的物理模型,使FLUENT在转捩与湍流、传热与相变、化学反应与燃烧、多相流、旋转机械、动/变形网格、噪声、材料加工、燃料电池等方面有广泛应用。 FLUENT软件具有以下特点: ☆FLUENT软件采用基于完全非结构化网格的有限体积法,而且具有基于网格节点和网格单元的梯度算法; ☆定常/非定常流动模拟,而且新增快速非定常模拟功能; ☆FLUENT软件中的动/变形网格技术主要解决边界运动的问题,用户只需指定初始网格和运动壁面的边界条件,余下的网格变化完全由解算器自动生成。网格变形方式有三种:弹簧压缩式、动态铺层式以及局部网格重生式。其局部网格重生式是FLUENT所独有的,而且用途广泛,可用于非结构网格、变形较大问题以及物体运动规律事先不知道而完全由流动所产生的力所决定的问题; ☆FLUENT软件具有强大的网格支持能力,支持界面不连续的网格、混合网格、动/变形网格以及滑动网格等。值得强调的是,FLUENT软件还拥有多种基于解的网格的自适应、动态自适应技术以及动网格与网格动态自适应相结合的技术;☆FLUENT软件包含三种算法:非耦合隐式算法、耦合显式算法、耦合隐式算法,是商用软件中最多的; ☆FLUENT软件包含丰富而先进的物理模型,使得用户能够精确地模拟无粘流、层流、湍流。湍流模型包含Spalart-Allmaras模型、k-ω模型组、k-ε模型组、雷诺应力模型(RSM)组、大涡模拟模型(LES)组以及最新的分离涡模拟(DES)和V2F模型等。另外用户还可以定制或添加自己的湍流模型; ☆适用于牛顿流体、非牛顿流体; ☆含有强制/自然/混合对流的热传导,固体/流体的热传导、辐射; ☆化学组份的混合/反应; ☆自由表面流模型,欧拉多相流模型,混合多相流模型,颗粒相模型,空穴两相流模型,湿蒸汽模型; ☆融化溶化/凝固;蒸发/冷凝相变模型; ☆离散相的拉格朗日跟踪计算; ☆非均质渗透性、惯性阻抗、固体热传导,多孔介质模型(考虑多孔介质压力突变); ☆风扇,散热器,以热交换器为对象的集中参数模型; ☆惯性或非惯性坐标系,复数基准坐标系及滑移网格; ☆动静翼相互作用模型化后的接续界面; ☆基于精细流场解算的预测流体噪声的声学模型;

工程使用有限元软件大全

ANSYS产品: Ansys v9.0 +SP1 Ansys WorkBench Suite v9.0+SP1(Ansys协同仿真环境) Ansys 9.0 Ansys 9.0 for Linux Ansys WorkBench Suite 9.0(Ansys协同仿真环境) Ansys Heal 8.1(Ansys Automatic Geometry Healing模块,必须先安装Ansys8.1) Ansys ParaMesh 3.0(网格处理软件包) Ansys EMAX 8.0(ANSYS公司专为电子工业而发展的高频电磁分析软件;针对电子工程师在进行RF/微波被动组件与电路的设计、电磁场干扰与协调性(EMI/EMC)天线设计与对象识别;需要先安装Ansys8.0) Ansys AI Enviroment 2.0(机械工程新一代的通用前后处理工具) Ansys AI Nastran 1.0 Ansys UIDL Visual Builder AutoCAD图形转化为Ansys工具 Ansys Workbench 8.0 分析培训教材及实例 2004 Ansys 8.2 机械设计高级应用实例 1CD Ansys Conference 2004-ISO 1CD Ansys LS-Dyna 分析指南(简体中文,Ansys公司的正版培训教程扫描书,96.7MB) Ansys 耦合场分析指南(简体中文,Ansys公司的正版培训教程扫描书) Ansys LS-Dyna Exercise 6CD Ansys 7.0 Training Guides 1CD Ansys 5.7.Professional.Excercise.CD 1CD Ansys 5.7简体中文教程 Ansys Theory 1CD Ansys 混凝土结构计算论文集 Ansys 工程计算应用教程(简体中文) Ansys 工程应用实例解析 1CD 显示动力学与Ansys LS-Dyna中文培训教程 Ansys 2004 中国用户论文集 1CD CFX v5.7.1 for windows-ISO 1CD(大型商业CFD软件) CFX v5.7.1 for linux-ISO 1CD CFX v5.7.1 SP2 update only for windows(升级文件) CFX v4.4-ISO 1CD CFX Rif v1.4.1-ISO 1CD(用于燃烧工艺的建模,是建立稳态flamelet库:可用于CFX-TASCflow2.12或CFX-5分析紊流燃烧的理想工具,CFX-RIF可自动创建先期整合式flamelet库) CFX BladeGen plus v4.1.10(交互式涡轮机械叶片设计工具) CFX TASCflow 2.12.2.NT 1CD(旋转机械气动、水动力学分析和设计,必须先安装Exceed 3D 7.1)

fluent学习笔记

fluent技术基础与应用实例 4.2.2 fluent数值模拟步骤简介 主要步骤: 1、根据实际问题选择2D或3Dfluent求解器从而进行数值模拟。 2、导入网格(File→Read→Case,然后选择有gambit导出的.msh文件) 3、检查网格(Grid→Check)。如果网格最小体积为负值,就要重新 进行网格划分。 4、选择计算模型。 5、确定流体物理性质(Define→Material)。 6、定义操作环境(Define→operating condition) 7、制定边界条件(Define→Boundary Conditions) 8、求解方法的设置及其控制。 9、流场初始化(Solve→Initialize) 10、迭代求解(Solve→Iterate) 11、检查结果。 12、保存结果,后处理等。 具体操作步骤: 1、fluent2d或3d求解器的选择。 2、网格的相关操作 (1)、读入网格文件 (2)、检查网格文件 文件读入后,一定要对网格进行检查。上述的操作可以得到网格信息,从中看出几何区域的大小。另外从minimum volume 可以知道最小网格的体积,若是它的值大于零,网格可以用于计算,否则就要重新划 分网格。 (3)、设置计算区域 在gambit中画出的图形是没有单位的,它是一个纯数量的模型。故 在进行实际计算的时候,要根据实际将模型放大或缩小。方法是改变fluent总求解器的单位。 (4)、显示网格。 Display→Grid 3、选择计算模型

(1)、基本求解器的定义 Define→Models→Solver Fluent中提供了三种求解方法: ·非耦合求解 segregated ·耦合隐式求解 coupled implicit ·耦合显示求解 coupled explicit 非耦合求解方法主要用于不可压缩流体或者压缩性不强的流体。 耦合求解方法用在高速可压缩流体 fluent默认设置是非耦合求解方法,但对于高速可压缩流动,有强的体积力(浮力或离心力)的流动,求解问题时网格要比较密集,建 议采用耦合隐式求解方法。耦合能量和动量方程,可以较快的得到收敛值。耦合隐式求解的短板:运行所需要的存比较大。若果必须要耦合求解而机器存不够用,可以考虑采用耦合显示求解方法。盖求解方法也耦合了动量,能量和组分方程,但是存却比隐式求解方法要小。 需要指出的是,非耦合求解器的一些模型在耦合求解器里并不一定都有。耦合求解器里没有的模型包括:多相流模型、混合分数/PDF燃烧模型、预混燃烧模型。污染物生成模型、相变模型、Rosseland辐射模型、确定质量流率的周期性流动模型和周期性换热模型。 %%%有点重复,但是可以看看加深理解 Fluent提供三种不同的求解方法;分离解、隐式耦合解、显示耦合解。分理解和耦合解的主要区别在于:连续方程、动量方程、能量方程和 组分方程解的步骤不同。 分离解按照顺序解,耦合解是同时解。两种解法都是最后解附加的标量方程。隐式解和显示解的区别在于线性耦合方程的方式不同。 Fluent默认使用分离求解器,但是对于高速可压流动,强体积力导致 的强烈耦合流动(流体流动耦合流体换热耦合流体的混合,三者相互耦合的过程—文档整理者注)(浮力或者旋转力),或者在非常精细的网格上的流动,需要考虑隐式解。这一解法耦合了流动和能量方程, 收敛很快。%%% (2)、其他求解器的选择 在实际问题中,除了要计算流场,有时还要计算温度场或者浓度场等,因此还需要其他的模型。主要的模型有: Multiphase(多相流动)viscous(层流或湍流)energy(是否考虑传热)species(反应及其传热相关) (3)操作环境的设置 Define→operation→condition

fluent学习笔记

fluent技术基础与应用实例 fluent数值模拟步骤简介 主要步骤: 1、根据实际问题选择2D或3Dfluent求解器从而进行数值模拟。 2、导入网格(File→Read→Case,然后选择有gambit导出的.msh文件) 3、检查网格(Grid→Check)。如果网格最小体积为负值,就要重新进行网格划分。 4、选择计算模型。 5、确定流体物理性质(Define→Material)。 6、定义操作环境(Define→operating condition) 7、制定边界条件(Define→Boundary Conditions) 8、求解方法的设置及其控制。 9、流场初始化(Solve→Initialize) 10、迭代求解(Solve→Iterate) 11、检查结果。 12、保存结果,后处理等。 具体操作步骤: 1、fluent2d或3d求解器的选择。 2、网格的相关操作 (1)、读入网格文件 (2)、检查网格文件 文件读入后,一定要对网格进行检查。上述的操作可以得到网格信息,从中看出几何区域的大小。另外从minimum volume 可以知道最小网格的体积,若是它的值大于零,网格可以用于计算,否则就要重新划分网格。 (3)、设置计算区域 在gambit中画出的图形是没有单位的,它是一个纯数量的模型。故在进行实际计算的时候,要根据实际将模型放大或缩小。方法是改变fluent总求解器的单位。 (4)、显示网格。 Display→Grid 3、选择计算模型 (1)、基本求解器的定义 Define→Models→Solver Fluent中提供了三种求解方法:

·非耦合求解segregated ·耦合隐式求解coupled implicit ·耦合显示求解coupled explicit 非耦合求解方法主要用于不可压缩流体或者压缩性不强的流体。 耦合求解方法用在高速可压缩流体 fluent默认设置是非耦合求解方法,但对于高速可压缩流动,有强的体积力(浮力或离心力)的流动,求解问题时网格要比较密集,建议采用耦合隐式求解方法。耦合能量和动量方程,可以较快的得到收敛值。耦合隐式求解的短板:运行所需要的内存比较大。若果必须要耦合求解而机器内存不够用,可以考虑采用耦合显示求解方法。盖求解方法也耦合了动量,能量和组分方程,但是内存却比隐式求解方法要小。 需要指出的是,非耦合求解器的一些模型在耦合求解器里并不一定都有。耦合求解器里没有的模型包括:多相流模型、混合分数/PDF燃烧模型、预混燃烧模型。污染物生成模型、相变模型、Rosseland辐射模型、确定质量流率的周期性流动模型和周期性换热模型。 %%%有点重复,但是可以看看加深理解 Fluent提供三种不同的求解方法;分离解、隐式耦合解、显示耦合解。 分理解和耦合解的主要区别在于:连续方程、动量方程、能量方程和组分方程解的步骤不同。分离解按照顺序解,耦合解是同时解。两种解法都是最后解附加的标量方程。隐式解和显示解的区别在于线性耦合方程的方式不同。 Fluent默认使用分离求解器,但是对于高速可压流动,强体积力导致的强烈耦合流动(流体流动耦合流体换热耦合流体的混合,三者相互耦合的过程—文档整理者注)(浮力或者旋转力),或者在非常精细的网格上的流动,需要考虑隐式解。这一解法耦合了流动和能量方程,收敛很快。%%% (2)、其他求解器的选择 在实际问题中,除了要计算流场,有时还要计算温度场或者浓度场等,因此还需要其他的模型。主要的模型有: Multiphase(多相流动)viscous(层流或湍流)energy(是否考虑传热)species(反应及其传热相关) (3)操作环境的设置 Define→operation→condition 该项设置所考虑的主要内容为外部环境对内部反应的影响 4、定义流体的物理性质 5、设置边界条件 Define→boundary condition (1)、设置流体区域(fluid)的边界条件

FLUENT教程

◆Fluent 软件应用 gambit单独的完整的CFD前处理器 ●建立几何体和导入几何体 ●生成网格 ●检查网格质量 ●设置边界类型和介质类型 Grid ●在已知边界网格(由GAMBIT或者第三方CAD/CAE软件产生的)产生三角网格,四面体网格或者混合网格 用其他软件(ANSYS) 一、利用GAMBIT建立计算区域和指定边界条件类型 gambit单独的完整的CFD前处理器 1.启动GAMBIT软件(窗口布局) 2.创建控制点

3.创建边 (Ctrl+鼠标左键拖动)

4.创建面 5.划分网格

◆ 在几何形状复杂的区域上要生成好的网格相当困难 ◆ Meshing grid number grid quality ◆ 超过90%的精力要用在生成合适的网格上 ◆ 网格生成质量对计算精度与稳定性影响极大。 策略 ◆ Boundary layers ◆ Pre-meshing ◆ Sizing functions ◆ 为降低离散误差,减少单元数量,最好使用hex(六面体网格) ◆ 对形状复杂的几何体可分解成几个简单几何体再用六面体网格 ◆ Gambit 可读入其它CFD 软件生成的图形 ◆ 也可读入autocad proE 等cad 软件生成的图形 ◆ CAD 中创建的图形要输出为.sat 文件,要满足一定的条件。 ● 对于二维图形来说,它必须是一个region ,也就是说要求是一个联通域。 ● 对于三维图形而言,要求其是一个ASCI body ◆ 由于各软件设置的最小识别尺寸不同, 导入后的几何体可能会出现: ● 不完整、有缝隙的几何体 ● 有一些CFD 分析时不需要的一些细小的几何结构 ◆ 清理过程主要采用gambit 中的虚几何操作。 Example : unconnected real edges/faces connected virtual edges/faces

FLUENT软件简单介绍

标题: FLUENT软件简单介绍 作者: zhaoweiguo 时间: 2007-7-21 11:09 标题: FLUENT软件简单介绍FLUENT软件简单介绍FLUENT软件是美国FLUENT公司开发的通用CFD流场计算分析软件,囊括了Fluent Dynamic International、比利时Polyflow和Fluent Dynamic International(FDI)的全部技术力量(前者是公认的粘弹性和聚合物流动模拟方面占领先地位的公司,而后者是基于有限元方法CFD 软件方面领先的公司)。 FLUENT是用于计算流体流动和传热问题的程序。它提供的非结构网格生成程序,对相对复杂的几何结构网格生成非常有效。可以生成的网格包括二维的三角形和四边形网格;三维的四面体、六面体及混合网格。FLUENT还可根据计算结果调整网格,这种网格的自适应能力对于精确求解有较大梯度的流场有很实际的作用。由于网格自适应和调整只是在需要加密的流动区域里实施,而非整个流场,因此可以节约计算时间。 一、程序的结构 FLUENT程序软件包由以下几个部分组成: (1)GAMBIT——用于建立几何结构和网格的生成。 (2)FLUENT——用于进行流动模拟计算的求解器。 (3)prePDF——用于模拟PDF燃烧过程。 (4)TGrid——用于从现有的边界网格生成体网格。 (5)Filters(Translators)—转换其他程序生成的网格,用于FLUENT计算。可以接口的程序包括:ANSYS,I-DEAS,NASTRAN,PATRAN等。 附图1 基本程序结构示意图 利用FLUENT软件进行流体流动与传热的模拟计算流程如附图2-1所示。首先利用GAMBIT进行流动区域几何形状的构建、边界类型以及网格的生成,并输出用于FLUENT求解器计算的格式;然后利用FLUENT求解器对流动区域进行

流体力学虚拟仿真实验教学云平台-浙江大学与杭州源流科技联合研发

在普通本科高等学校开展示范性虚拟仿真实验教学项目建设工作,是目前高校迫在眉睫的重要实验室建设任务。杭州源流科技毛根海教授团队研发的流体力学虚拟仿真实验平台,具有典型性和统一性,值得兄弟院校借鉴和引用。 毛根海教授团队研发的基于WEB的流体力学虚拟仿真实验平台主要包含项目如下: MGH-RJ 6-2-1基于WEB的流体力学虚拟仿真实验平台-流体静水力学实验软件MGH-RJ 6-2-2基于WEB的流体力学虚拟仿真实验平台-能量方程实验软件 MGH-RJ 6-2-3基于WEB的流体力学虚拟仿真实验平台-文丘里实验软件 MGH-RJ 6-2-4基于WEB的流体力学虚拟仿真实验平台-雷诺实验软件 MGH-RJ 6-2-5基于WEB的流体力学虚拟仿真实验平台-动量定律实验软件 MGH-RJ 6-2-6基于WEB的流体力学虚拟仿真实验平台-孔口管嘴实验软件 MGH-RJ 6-2-7基于WEB的流体力学虚拟仿真实验平台-局部水头损失实验软件MGH-RJ 6-2-8基于WEB的流体力学虚拟仿真实验平台-沿程水头损失实验软件MGH-RJ 6-2-9基于WEB的流体力学虚拟仿真实验平台-毕托管测速实验软件MGH-RJ 6-2-10基于WEB的流体力学虚拟仿真实验平台-泵特性曲线实验软件

MGH-RJ 6-2-11基于WEB的流体力学虚拟仿真实验平台-泵特性综合实验软件MGH-RJ 6-3-1 基于WEB云平台的水面曲线实验虚拟仿真CAI软件 MGH-RJ 6-3-2 基于WEB云平台的堰流实验虚拟仿真CAI软件 MGH-RJ 6-3-3 基于WEB云平台的水跃实验虚拟仿真CAI软件 MGH-RJ 6-3-4 基于WEB云平台的消能池实验虚拟仿真CAI软件 MGH-RJ 6-3-5 基于WEB云平台的消能坎实验虚拟仿真CAI软件 MGH-RJ 6-3-6 基于WEB云平台的挑流消能实验虚拟仿真CAI软件 WEB网络版实验虚拟仿真CAI软件的技术特性如下: 1、基于互联网+,电脑、IPAD、手机都可通过其上的WEB浏览器访问云平台网站做实验,不需下载APP,网上实验真正做到了24小时全开放,方便学生实验虚实结合,随时随地进行实验预习和复习。 2、无需下载APP,直接通过客户端的IE浏览器上网,登录流体力学实验虚拟仿真CAI网站云平台即可操作虚拟仿真实验,并具备使用用户名、密码登录界面

fluent读书笔记

《Fluent简明教程》 1。用fluent解决问题: a定义模型目标~从CFD模型中需要得到什么样的结果?从模型中需要得到什么样的精度。 b选择计算模型~如何隔绝所要的模拟系统,计算区域的起点和终点是什么?在模型的边界处理处使用什么样的边界条件?二维还是三维问题?什么样的网格拓扑结构适合解决问题? c物理模型的选取:无粘,层流还是湍流?定常还是非定常?可压流还是不可压流?是否否需要应用其它的物理模型? d 确定解得程序:问题是否可以简化?是否可以使用确使用缺省的解得格式与参数值?采用哪种解格式可以加速收敛?使用多重网格计算机的内存是否够用?得到收敛解需要多久的时间? 2.解决问题的步骤:a 创建网格 b 选择合适的计算器:2D、3D、2DDP、3DDP c 输入网格 d 检查网格 e 选择解得格式 f 选择需要解得基本方程:层流还是湍流(无粘)、化学成分还是化学反应、热传导模型等。 g确定所需要附加的模型:风扇、热交换、多孔介质等。 H 指定材料的物理性质 I 指定边界条件 J 调节解得控制参数 K初始化流场 L 计算解 M 检查结果 N保存结果 O必要的话,细化网格,改变物理模型。 3。非耦合求解方法主要用于不可压缩或压缩性不强的流体流动。耦合求解则可以用在高速可压缩性流动。耦合隐式求解能较快的得到收敛解,但所需内存较大,在内存不顾的情况下可以考虑用耦合显示求解,但收敛时间较长。 4。对于所有流动,Fluent都需要求解质量和动量守恒方程,对于包含传热和可压缩性流动,还需要能量守恒方程。如果是湍流,还要相应的输运方程。 5。如果流动和传热不是耦合的,那么我们可以先求解绝热流动场,然后加进能量方程。即:可以先关闭动量或者能量方程中的一个,先求解另外一个。如果流动和温度是耦合的,那么可以先求解流动方程,收敛后在激活能量方程,在一起求解。Coupled solver总是同时求解流动和能量方程。 6。湍流模型:大致分为三类:第一类是湍流输运系数模型。模型的任务是给出计算湍流粘性系数μ的方法。根据建立模型所需要的微分方程数目,可分为零方程模型,单方程模型和双方程模型。第二类是抛弃了湍流输运系数的概念,直接建立湍流应力和其它二阶关联量的输运方程。第三类是大涡模拟。

fluent介绍

fluent 目录 简介 基本特点 优点 其他相关 编辑本段简介 CFD商业软件介绍之一——Fluent 通用CFD软件包,用来模拟从不可压缩到高度可压缩范围内的复杂流动。由于采用了多种求解方法和多重网格加速收敛技术,因而FLUENT能达到最佳的收敛速度和求解精度。灵活的非结构化网格和基于解的自适应网格技术及成熟的物理模型,使FLUENT在转捩与湍流、传热与相变、化学反应与燃烧、多相流、旋转机械、动/变形网格、噪声、材料加工、燃料电池等方面有广泛应用。 编辑本段基本特点 FLUENT软件具有以下特点: ☆FLUENT软件采用基于完全非结构化网格的有限体积法,而且具有基于网格节点和网格单元的梯度算法; ☆定常/非定常流动模拟,而且新增快速非定常模拟功能; ☆FLUENT软件中的动/变形网格技术主要解决边界运动的问题,用户只需指定初始网格和运动壁面的边界条件,余下的网格变化完全由解算器自动生成。网格变形方式有三种:弹簧压缩式、动态铺层式以及局部网格重生式。其局部网格重生式是FLUENT所独有的,而且用途广泛,可用于非结构网格、变形较大问题以及物体运动规律事先不知道而完全由流动所产生的力所决定的问题; ☆FLUENT软件具有强大的网格支持能力,支持界面不连续的网格、混合网格、动/变形网格以及滑动网格等。值得强调的是,FLUENT软件还拥有多种基于解的网格的自适应、动态自适应技术以及动网格与网格动态自适应相结合的技术; ☆FLUENT软件包含三种算法:非耦合隐式算法、耦合显式算法、耦合隐式算法,是商用软件中最多的;

☆FLUENT软件包含丰富而先进的物理模型,使得用户能够精确地模拟无粘流、层流、湍流。湍流模型包含Spalart-Allmaras模型、k-ω模型组、k-ε模型组、雷诺应力模型(RSM)组、大涡模拟模型(LES)组以及最新的分离涡模拟(DES)和V2F模型等。另外用户还可以定制或添加自己的湍流模型; ☆适用于牛顿流体、非牛顿流体; ☆含有强制/自然/混合对流的热传导,固体/流体的热传导、辐射; ☆化学组份的混合/反应; ☆自由表面流模型,欧拉多相流模型,混合多相流模型,颗粒相模型,空穴两相流模型,湿蒸汽模型; ☆融化溶化/凝固;蒸发/冷凝相变模型; ☆离散相的拉格朗日跟踪计算; ☆非均质渗透性、惯性阻抗、固体热传导,多孔介质模型(考虑多孔介质压力突变); ☆风扇,散热器,以热交换器为对象的集中参数模型; ☆惯性或非惯性坐标系,复数基准坐标系及滑移网格; ☆动静翼相互作用模型化后的接续界面; ☆基于精细流场解算的预测流体噪声的声学模型; ☆质量、动量、热、化学组份的体积源项; ☆丰富的物性参数的数据库; ☆磁流体模块主要模拟电磁场和导电流体之间的相互作用问题; ☆连续纤维模块主要模拟纤维和气体流动之间的动量、质量以及热的交换问题; ☆高效率的并行计算功能,提供多种自动/手动分区算法;内置MPI并行机制大幅度提高并行效率。另外,FLUENT特有动态负载平衡功能,确保全局高效并行计算; ☆FLUENT软件提供了友好的用户界面,并为用户提供了二次开发接口(UDF); ☆FLUENT软件采用C/C++语言编写,从而大大提高了对计算机内存的利用率。 在CFD软件中, Fluent软件是目前国内外使用最多、最流行的商业软件之一。Fluent的软件设计基于"CFD计算机软件群的概念" ,针对每一种流动的物理问题的特点,采用适合于它的数值解法在计算速度、稳定性和精度等各方面达到最佳。由于囊括了Fluent Dynamical International比利时PolyFlow和Fluent Dynamical International(FID)的全部技术力量(前者是公认的在黏弹性和聚合物流动模拟方面占领先地位的公司,后者是基于有限元方法CFD软件方面领先的公司),因此Fluent软件具有如下优点 编辑本段优点 (1 )功能强,适用面广。包括各种优化物理模型,如:计算流体流动和热传导模型(包括自然对流、定常和非定常流动,层流,湍流,紊流,不可压缩和可压缩流动,周期流,旋转流及时间相关流等) ;辐射模型,相变模型,离散相变模型,多相流模型及化学组分输运和反应流模型等。对每一种物理问题的流动特点,有适合它的数值解法,用户可对显式或隐式差分格式进行选择,以期在计算速度、稳定性和精度等方面达到最佳。 (2 )高效,省时。Fluent将不同领域的计算软件组合起来,成为CFD计算机软件群,软件之间可以方便地进行数值交换,并采用统一的前、后处理工具,这就省却了科研

相关文档
最新文档