USB3.1 Type-C接口定义

USB3.1 Type-C接口定义
USB3.1 Type-C接口定义

USB Type-C是什么?

感谢把我给崩了的投递时间:2015-03-14 来源:三联

北京时间3月10日凌晨,苹果在美国旧金山芳草地艺术中心发布了新款Macbook,它的轻薄给无数消费者留下了深刻的印象。再一次,追求极致的苹果对 Macbook 12上的各种接口挥起了屠刀,在砍掉原有全部接口的情况下,向我们介绍了一种如 Lightning 接口般轻薄小巧的新型 USB 接口:USB Type-C。

那么问题来了,USB Type-C是什么?为什么苹果会选择 USB 而不是力推多年的Thunderbolt,USB Type-C是何方神圣?下面百事网小编为大家详细介绍下下。

USB Type-C是什么?

USB Type-C简称为USB-C,它的诞生并不久远,早在13年12月,USB 3.0推广团队就已经公布了下一代USB Type-C连接器的渲染图,在2014年8月发布的USB 3.1标准中才刚刚定稿。它是一种新型 USB 线缆及连接器的规范,定义了包括连接器、端口、容器和线缆等在内的一整套全新的USB物理规格。

USB Type-C是一种和iPhone手机中Lightning接口般轻薄小巧的新型USB接口,可以扩展成电源/USB传输/VGA或HDMI三个接口,通过适配器,还可以兼容USB3.0、USB2.0等上一代接口。

USB Type-C具有全新的接口尺寸和略显酷炫的名称,非常容易使第一次听到这个名词的消费者以为这是一种全新的USB标准,但实际上并不是。USB Type-C 只是 USB 3.1 标准的一部分,而不是一个新的标准。另外,需要说明的是,与常见的 USB 2.0 类似,USB 3.1 标准仍有

Type-A(常见于电脑主机)和 Micro-B(常见于安卓手机)等接口,Type-C 并不是消费者享受 USB 3.1 高速数据传输的唯一选择。

苹果Mac 12单USB-C接口揭秘

为什么USB组织需要推出一种新的物理接口规范呢?随着越来越多新型设备对于轻量化小型化的追求,传统 USB 接口的“庞大”尺寸已经很难满足设备生产厂商和消费者的需求。同时,传统 USB 接口中需要反复拔插、寻找“正确”方向的问题已经被消费者广为诟病,用户迫切需要一种类似Lighting 接口般正反面均可插入的接口,特别是在手机等需要频繁大量连接数据线的设备中,每天一到两次插错接口的体验绝不友好。

基于这些问题,USB 标准的制订者们推出 Type-C 物理接口规范,在规范中引入了几大特性:

●纤薄

与生活中常见的传统 Type-A 接口不同,新型的 Type-C 接口在尺寸上进行了极大的瘦身,仅为 8.3*2.5mm,更适合在日益小型化的计算设备中使用。

●无方向性

与苹果Lightning接口类似,Type-C接口没有方向性上的要求,即正反面插入都可以完成配对,这极大提高了USB接口的易用性。

Thunderbolt 接口

回头再来讲讲苹果的 Thunderbolt 接口。Thunderbolt 是苹果与 Intel 公司深度合作推出的一种技术,它融合了传统的 PCIe 数据传输技术和 DisplayPort 显示技术。Thunderbolt 接口于2011 年被苹果应用于 Macbook Pro 笔记本中。

它的主要优点是:带宽大,传输速度快。经过改造后的新版 Thunderbolt 2 接口,可以实现双向 20Gbps 的理论传输速度,远高于 USB 3.1 的 10Gbps 理论传输速度。

在此次发布会之前,Thunderbolt 一直被认为是被苹果和 Intel 看重并将大力推广的接口规范。那为什么苹果会最终选择在新款 Macbook 中采用 USB Type-3 呢?

通过对比两种接口规格的相关信息,我们谨慎猜测可能有以下几个方面的原因:

接口尺寸:相比USB Type-C的纤细(2.5mm),Thunderbolt接口在尺寸上并不占有任何优势。

成本控制:在Intel的强力控制下,Thunderbolt接口芯片的价格多年来居高不下,对各种相关设备的制造成本和零售价格带来非常大的压力;而USB Type-C芯片的售价相对低廉很多,可以极大帮助苹果控制硬件成本。

供电能力:Thunderbolt接口仅能提供最大10W的功率输出,而USB 3.1 Type-C接口可以提供高达100W的功率输出,即可以通过Typc-C接口无需任何适配器直接为另外一部笔记本电脑或智能手机进行充电。

扩展能力:USB 3.1拥有广泛的扩展空间,包括4K影像的DisplayPort输出也可通过USB 3.1轻松实现。

实际上,苹果并不是唯一选择 USB Type-C 的设备制造商,甚至不是第一个。今年1月刚刚在中国发布的 Nokia N1平板电脑也异曲同工的选择了 USB Type-C 作为其唯一的数据接口。我们相信,基于其卓越的数据传输性能、纤薄的接口尺寸和低廉的价格,加上苹果设备等明星产品的推波助澜,USB Type-C 应该能在接下来的几年时间里迅速普及,在新的移动化时代中大放异彩。

USB接口的中文全称是通用串行总线,是在 1994 年由微软、英特尔、IBM 等 7 家科技公司组成的非营利性组织所制定的一种标准。最初的目的是为了帮助外部设备更好的与计算机进行连接和数据交换。经过 20 多年的发展,USB 标准已经经历了从 1.x、2.0、3.0 到 3.1 多个版本的发展,数据传输速率上取得了长足的进步。

除了本次赚足了眼球的 Type-C,USB 其实还有非常丰富的其他类型连接器(包括很多未经USB 组织认证但却标准化的连接器),上图简单展示了常见的 3 类 6 种接口:Standard 接口、Mini 接口和 Micro 接口。

usb1.0-3.1速率对比

Type-A:标准版USB接口

USB Type-A 是我们日常生活中最常见的一种 USB 接口类型,一般情况下在连接线上

Type-A 的这一端会被连接在电脑上。但它有一些比较显著的问题:首先它有一定的方向性要求,用户必须从某个特定的方向才能将接头(公口)插入接口(母口),但由于 USB 公口的两面外形非常接近,这个插入的过程经常出错;另外,Type-A 的尺寸实在是太大了,在追求便携的设备上几乎不可能出现 Type-A 接口。也正因为此,Micro 型和 Mini 型接口应运而生,并在便携式设备中发扬光大。

有趣的一点是,传统情况下 USB 线缆工作的模型是一个端点为 Type-A 类型(用于连接电脑),另一个端点为 Type-B 类型(用于连接设备);所以在生活中很少能看到两头都是 Type-A 的线缆;

而 USB Type-C 是一种可以被同时应用于主设备(host)和从设备(device)的接口类型。

Micro-B:移动设备的USB标准

值得一提的是,当前大部分安卓手机中采用的是 Micro USB 接口(即 USB Micro-B),这种接口在 2007 年由包括诺基亚、三星、摩托罗拉等公司组成的开放移动终端平台组织推出并逐步推广开来,至今以被广泛的应用于各种移动便携式设备。

可以预见的是,随着USB Type-C技术的成熟,未来的各种笔记本、平板电脑甚至是智能手机都会开始普及USB Type-C接口。

新一代USB Type-C接口:10Gbit/秒、无正反

发表于2014-08-13 10:03| 24104次阅读| 来源CSDN| 46条评论| 作者钱曙光

USBType-C数据线Lightning

摘要:USB推广团队日前宣布已完成了下一代USB Type-C连接器的设计,该连接器具有以下特点:尺寸约为8.3mm×2.5mm、可承受1万次反复插拔、无正反、最大数据传输速度达到10Gbit/秒和可通过3A电流等。

北京时间8月13日消息,据国外科技媒体ArsTechnica报道,USB 推广团队(USB 3.0 Promoter Group)日前宣布已完成了下一代USB Type-C连接器的设计,该连接器能够完全取代目前市面上所有的USB接口,也就是说它将横扫一切杂牌接口。USB 推广团队还表示,USB Type-C 连接器已经准备好大规模量产,这意味着不久的未来,电脑/平板/手机上的接口很可能就全是这种样子。

USB Type-C具有以下特性:

1. Type-C接口插座端的尺寸与原来的Micro USB规格一样小,约为8.3mm×

2.5mm;

2. 可承受1万次反复插拔;

3. 支持从正反两面均可插入的“正反插”功能(类似苹果Lightning接口);

4. 纤薄设计;

5. 最大数据传输速度达到10Gbit/秒,也是USB 3.1的标准;

6. 配备Type-C连接器的标准规格连接线可通过3A电流,同时还支持超出现有USB供电能力

的“USB PD”,可以提供最大100W 的电力。

在苹果lightning接口出现以前,我们也许从未想过输入/输出(I/O)接口可以正反随便插,随着Type-C 连接器的到来,这一切都将发生改变,即使普及速度注定会十分缓慢,可至少这一天已经不那么遥不可及了。

最近Nokia N1的发布,让大家一度为诺基亚的重返消费电子市场而兴奋不已,但同时也严重忽略了Nokia N1平板电脑上发生的两个重大改变——采用64位Intel CPU、第一个采用了USB Type-c接口。关于Intel的64位CPU意义,猎云网已进行过详细分析,大家可以移步这里。今天猎云网要跟大家说说USB Type-c的意义。

USB Type-c,是伴随着USB3.1标准所一起问世的,就是USB3.1下的一种接口型号。作为最新的USB规范,USB3.1这项由英特尔等大公司所发起的规范将数据传输速度提升至10Gbps,新技术还使用了一个更高效的数据编码系统,并提供有效数据吞吐率,完全向下兼容现有的USB连接器和线缆,它同时兼容现有的USB3.0软件堆栈和设备协议、5Gbps的集线器与设备、USB 2.0产品。

这样的传输性能完全可以替代HDMI、VGA等等专业的显示传输接口,轻松驱动1080P的显示屏幕。换句话说,未来用了这种借口的手机可以轻松带动电脑、电视显示屏。而不再需要什么主机了。

由于接口规格和引脚定义的变化,周边标准自然跟随发生部分变动。例如与USB连为一体的MHL移动终端高清影音标准接口。作为接口变化首先受到影响的周边标准,MHL这种连接便携式电子装置的影音标准接口仅使用一条信号电缆,通过标准 HDMI 输入接口即可呈现于高清电视上。

它运用了现有的 Micro USB接口,不论是手机、数码相机、数字摄影机和便携式多媒体播放器,皆可将完整的媒体内容直接传输到电视上且不损伤影片高分辨率的效果。目前MHL联盟针对于此发布了MHL Alternate Mode,其旨在让这种正反插口能够进行MHL信息传输。

USB Type-C接口适用于USB 3.1,最大带宽10Gbps,最高支持100W电力,兼容USB 2.0,尺寸和目前的USB 2.0 Micro-A/B型接口(也就是我们常见的MicroUSB)类似,而不会像现在的USB 3.0 Micro-B那么长。可以说是性能强大、体积更小。

另外未来的USB设备也统一使用这种接口的话,笔记本电脑和平板电脑也可以做得更薄了。高效适用于移动设备的USB Type-C可以对传统的电子产品的生态系统产生巨大的颠覆作用。

对于那些对电脑没有强需的用户,基于USB3.1接口的手机完全可以取代这些电子设备。其支持10gbit/秒的传输速度,最高可以支持3A电流的强大特点足够支持目前4K 电视的USB解码4K超高清视频。

未来,我们使用带有这种接口的智能手机,直接与支持同样协议的笔记本连接,就大可以省去运算核心,只保留一个显示器与键盘、电池的壳就可以使用。一部智能手机完全可以满足我们的需要,驱动我们所有的电子设备。

由于媲美HDMI、VGA等等专业的电视、电脑显示器的数据传输速度,未来足可以把这些接口全部替代。

这种未来广泛普及后能做到极为廉价高效的输入输出设备,将为外设输入市场提供了更为广阔的功能发展空间。要知道鼠标键盘、触摸屏已经为人类做出了两次颠覆的范例。

而未来,这种颠覆的成本因为这个接口的出现,将会大为降低。

USB Type-C详解

自从Apple发布了新MacBook,就一堆人在说USB Type-C。我来从硬件角度解析下这个USB Type-C,顺便解惑。

特色

尺寸小,支持正反插,速度快(10Gb)。这个小是针对以前电脑上的USB接口说的,实际相对android机上的microUSB还大了点:

USB Type-C:8.3mmx2.5mm

microUSB:7.4mmx2.35mm

而lightning:7.5mmx2.5mm

所以,从尺寸上我看不到USB Type-C在手持设备上的优势。而速度,只能看视频传输是否需要了。

引脚定义

可以看到,数据传输主要有TX/RX两组差分信号,CC1和CC2是两个关键引脚,作用很多:

? 探测连接,区分正反面,区分DFP和UFP,也就是主从

? 配置Vbus,有USB Type-C和USB Power Delivery两种模式

? 配置Vconn,当线缆里有芯片的时候,一个cc传输信号,一个cc变成供电Vconn ? 配置其他模式,如接音频配件时,dp,pcie时

电源和地都有4个,这就是为什么可以支持到100W的原因。

不要看着USB Type-C好像能支持最高20V/5A,实际上这需要USB PD,而支持USB PD需要额外的pd芯片,所以不要以为是USB Type-C接口就可以支持到20V/5A。

当然,以后应该会出现集成到一起的芯片。

辅助信号sub1和sub2(Side band use),在特定的一些传输模式时才用。

d+和d-是来兼容USB之前的标准的。

这里说一下,USB3.0只有一组RX/TX,速度是5Gb,USB Type-C为了保证正反都可以插就用了两组,但实际上数据传输还是只用了一组RX/TX,速度就已经达到10Gb 了。如果后面升级协议,两组都传的话就和DisplayPort一样20Gb了。

工作流程

上图DFP (Downstream Facing Port)也就是主,UFP (Upstream Facing Port)为从。除了DFP、UFP,还有个DRP (Dual Role port),DRP可以做DFP也可以做UFP。当DPR 接到UFP,DRP转化为DFP。当DRP接到DFP,DRP转化为UFP。两个DRP接在一起,这时就是任意一方为DFP,另一方为UFP。

在DFP的CC pin有上拉电阻Rp,在UFP有下拉电阻Rd。未连接时,DFP的VBUS 是无输出的。连接后,CC pin相连,DFP的CC pin会检测到UFP的下拉电阻Rd,说明连接上了,DFP就打开Vbus电源开关,输出电源给UFP。而哪个CC pin(CC1,CC2)检测到下拉电阻就确定接口插入的方向,顺便切换RX/TX。

电阻Rd=5.1k,电阻Rp为不确定的值,根据前面的图看到USB Type-C有几种供电模式,靠什么来甄别?就靠Rp的值,Rp的值不一样,CC pin检测到的电压就不一样,然后来控制DFP端执行哪种供电模式。

需要注意的是,上图里画了两个CC,实际上在不含芯片的线缆里只有一根cc线。

含芯片的线缆也不是两根cc线,而是一根cc,一根Vconn,用来给线缆里的芯片供电(3.3V或5V),这时就cc端没有下拉电阻Rd,而是下拉电阻Ra,800-1200欧。

当CC pin两个都接了下拉电阻<=Ra,DFP进入音频配件模式,左右声道,mic都俱全,如上图。

USB Type-C和DisplayPort,PCIE

USB PD是BMC编码的信号,而之前的USB则是FSK,所以存在不兼容,不知道目前市面上有没有能转换的产品。

USB PD是在CC pin上传输,PD有个VDM (Vendor defined message)功能,定义了装置端ID,读到支持DP或PCIe的装置,DFP就进入替代(alternate)模式。

如果DFP认到device为DP,便切换MUX/Configuration Switch,让Type-C USB3.1信号脚改为传输DP信号。AUX辅助由Type-C的SBU1,SUB2来传。HPD是检测脚,和CC差不多,所以共用。

而DP有lane0-3四组差分信号,Type-C有RX/TX1-2也是四组差分信号,所以完全替代没问题。而且在DP协议里的替代模式,可以USB信号和DP信号同时传输,RX/TX1传输USB数据,RX/TX2替换为lane0,1两组数据传输,此时可支持到4k。

如果DFP认到device为DP,便切换MUX/Configuration Switch,让Type-C USB3.1信号脚改为传输PCIe信号。同样的,PCIe使用RX/TX2和SBU1,SUB2来传输数据,RX/TX1传输USB数据。

这样的好处就是一个接口同时使用两种设备,当然了,转换线就可以做到,不用任何芯片。

总结

USB Type-C终结了长期以来USB插来插去的缺陷,节省了人们大量的时间,换一次方向至少2s吧,按全球10亿人每天插拔一次USB,50%概率插错,共耗时277000多小时,约为31年,太恐怖了。

一个接口搞定了音视频数据三种,体积还算小。可以预见,以后安卓机可以改为USB Type-C接口了,如果只需要USB2.0的话,只需要重做线缆,不用芯片,成本上完全可以忽略不计。

至于Thunderbolt,lightning,该怎样还是怎样吧,毕竟百花齐放才是五彩的世界。

USB 3.1 Type-C标准正式公布横扫一切杂牌接口

在本次Intel Developer Forum 2014(IDF14)展会上,专为USB 3.1规格设计的USB Type-C数据线正式对外公开。它拥有超过10Gbps的传输速率,能传送视频等多种内容,将横扫一切杂牌接口。未来,你的电脑/平板/手机上的接口很可能就全是这种样子了。

先简单说说USB 3.1,此次英特尔的规格更新重新定义了传输速度等级,修正过去的错误强化了性能,达到10Gbps的传输速度。虽然速度迅捷,但定位于USB 3.1时代的USB Type-C数据线,接口占地面积却比USB 2.0 Micro-B更小,预计尺寸在8.3×2.5mm以下,还拥有可插拔1万次以上的耐久性,对EMI和RFI的耐性更强。

为了应对移动时代,USB 3.1 Type-C还专门强化了充电功能,其数据线部分支持3A、接口支持5A电流,为移动设备提供充沛能源。而且最重要的是,USB 3.1 Type-C接口部分正反两边都一样,各位粗心的同学再也不会遇到插不进去的问题了。USB 3.1所拥有的10Gbps宽带被称为USB AV规格,数据传输率已经接近于HDMI 1.4(10.2Gbps),可以毫无负担的直接传输4K/30p的影像文件,还支持HDCP,以后连HDMI接口都有淘汰的危险。

用USB传输影像,听起来不可思议,实现却很简单——通过USB AV这个规范,USB线的输入最终变换为Display和HDMI,和现在DisplayLink一样,硬件部分的规格也重新做了调整,以便于直接传输。

新接口带来了怎样的提升?

USB接口标准规范已经发展了很多代,目前最常见的当然还是USB 2.0和正在全面普及的

USB 3.0,而最新的 MacBook面世让我们了解到了USB 3.1,笔记本整个机身没有任何的其余接口,只带了一个USB Type-C接口,不得不让我们对其产生了好奇。其实早在2013年末USB3.1规范即面世,在2014年8月正式发布。而到了今年的CES2015展会上,我们已看到了USB3.1 Type- C接口设备成爆发趋势,搭载Type-C接口的平板、移动硬盘、U盘、读卡器等陆续登场,下面我们就来一起了解一下这个规范及接口的用途和提升。

USB 3.1版本号提升很小,但变化很大。需要注意的是,USB Type-C只是USB 3.1标准的一部分,而不是一个新的标准,并且USB 3.1标准仍有Type-A(常见于电脑主机)和Micro-B(常见于安卓手机)等接口。

USB Type-C相较于原USB接口,体积上缩减不少,长0.83cm、宽0.26cm(老式USB端口长1.4cm、宽0.65cm)。USB Type-C主要面向更轻薄、更纤细的设备,增强可用性,并为未来USB版本的性能增强铺好路。

USB 3.1则主要是针对传输速度的最新定义,在理论上USB3.1端口的最高传输速率为每秒10GB,根据外媒的一些测试结果来看,实际使用过程中传输速度可达800M/s。

USB Type-C的另一个特点是,它和苹果的Lightning接口一样,无需分正反面,完全可以做到“盲插”。另外在数据段,也不像老款USB端口,功率只能单向传输,USB Type-C型端口的功率传输是双向的,这也意味着它可以拥有两种发送功率方式。

加入了Type C扩展之后,新接口的意义远不止于正反面随便插入,还可以通过USB总线传输音频、视频、PCI-E信号等。

USB Type-C可以与旧标准USB兼容(USB3.0和USB2.0的接口),但需要购买转换线,即Type-A 公TO Type-C 公。USB 3.1可以提供最高100W的电力,而且支持双向供电,一个USB接口既能给自己充电,也能对外给设备供电。目前可以肯定的是,新接口可加快充电时间。

总的来说,此次USB 3.1最大的变化有两个,一是传输速度提升,二是引入新的Type C型接口。

有哪些产品使用新接口?

有哪些产品使用新接口?

诺基亚N1平板

诺基亚N1平板

其实,我们已经在Nokia N1这台安卓平板上就率先见到了USB Type-C 接头,Nokia N1 勇于第一个吃螃蟹着实让外界感到惊喜,但似乎缺没有引领 USB 革命。主要原因是平板上的 Type-C接口仅支持 USB 2.0,这意味着最高传输速率被限制在 600Mbps(理论值约 60MB/s)。

新MacBook

新MacBook(图片来源于网络)

最新发布的MacBook端口进行了改变,整个机子只带了一个USB Type-C接口,这一个接口将完成充电、数据传输和链接外部显示器等基本笔记本所带接口的所有功能,这也或许意味着苹果未来产品也会转换为USB Type-C接口。

新Chromebook Pixel

新Chromebook Pixel(图片来源于网络)

在苹果发布12英寸Macbook之后,Google也带来了第二代Chromebook Pixel笔记本。虽然外观变化不大,但配置进行了全面升级,而且和12英寸Macbook一样增加了USB Type-C接口。Chrome Pixel提供了两个USB Type-C接口,但并非最新的USB 3.1,而是USB 3.0的。

谷歌新品

谷歌产品经理近日表示谷歌对USB Type-C接口充满信心,并且USB Type-C接口也将很快出现在Android智能手机。虽然谷歌并没有透露具体哪款设备将率先搭载,从分析猜测来看预计是下一代Nexus设备。

不仅手机平板等厂商在发力,存储厂商也不甘示弱,它们表示在今年到明年推出一些配备USB 3.1接口的存储产品,但具体情况暂时没有披露。

新MacBook让我们认识了USB Type-C接口,也让我们看到了未来设备的发展趋势,在接下来的日子里,USB Type-C 设备绝对是争先恐后的不断面世。虽然说USB 3.1接口的速度优势越发明显,还做了很多人性化改进,不过想要得到普及还需要几年的时间。USB Type-C 接口无疑将在未来几年内逐渐普及,最终像USB 3.0取代USB 2.0那样取代USB 3.0。除此之外需要思考的是,USB Type-C 的大小已经接近手机的传输接口,未来是否会替代micro B呢?值得我们深思。

苹果在3月9日的春季发布会上不仅发布了备受期待的苹果手表,还发布了最新的12英寸MacBook。对于新的12吋Macbook,最大的焦点莫过于USB Type-C接口(USB C 型接口),该接口其将电源接口、USB接口和HDMI接口等统一用USB Type-C承载,该接口最大特点是正反两面都可以插入。Type-C接口具备高快传输速度、多功能合一的特点。但现在就有人发现,这个Type-C插槽实际上只有USB 3.0的传输速度,比USB 3.1标准认定少了一半。

12吋Macbook(图片来自arstechnica)

苹果明确宣布他们的USB-C接口支持USB 3.1的同时速度却是5Gbps的,只有USB 3.1标准10Gbps的一半。造成这个原因在于,USB 3.1是从3.0进化而来的规格,中间有一个过渡规格称为「USB 3.1 Gen 1」,就是MacBook Type-C插孔所使用,传输效能同等于USB 3.0 5Gbps,但能兼具充电、影音输出和资料传输等复合功能。

常用液晶屏接口定义(精)

常用液晶屏接口定义 20PIN单6定义: 3.3V 3.3V 1:电源2:电源3:地4:地5:R0- 6:R0+ 7:地8:R1- 9:R1+ 10:地11:R2- 12:R2+ 13:地14:CLK- 15:CLK+ 16空17空18空19 空20空 每组信号线之间电阻为(数字表100欧左右)指针表20 -100欧左右(4组相同阻值) 20PIN双6定义: 1:电源2:电源3:地4:地5:R0- 6:R0+ 7:R1- 8:R1+ 9:R2- 10:R2+ 11:CLK- 12:CLK+ 13:RO1- 14:RO1+ 15:RO2- 16:RO2+ 17:RO3- 18:RO3+ 19:CLK1- 20:CLK1+ 每组信号线之间电阻为(数字表100欧左右)指针表20 -100欧左右(8组相同阻值) 20PIN单8定义: 1:电源2:电源3:地4:地5:R0- 6:R0+ 7:地8:R1- 9:R1+ 10:地11:R2- 12:R2+ 13:地14:CLK- 15:CLK+ 16:R3- 17:R3+ 每组信号线之间电阻为(数字表100欧左右)指针表20 -100欧左右(5组相同阻值) 30PIN单6定义: 1:空2:电源3:电源4:空5:空6:空7:空8:R0- 9:R0+ 10:地11:R1- 12:R1+ 13:地14:R2- 15:R2+ 16:地17:CLK- 18:CLK+ 19:地20:空- 21:空22:空23:空24:空25:空26:空27:空28空29空30空每组信号线之间电阻为(数字表100欧左右)指针表20 -100欧左右(4组相同阻值) 30PIN单8定义: 1:空2:电源3:电源4:空5:空6:空7:空8:R0- 9:R0+ 10:地11:R1- 12:R1+ 13:地14:R2- 15:R2+ 16:地17:CLK- 18:CLK+ 19:地20:R3- 21:R3+ 22:地23:空&nbs 20PIN单6定义: 3.3V 3.3V 1:电源2:电源3:地 4:地 5:R0- 6:R0+ 7:地 8:R1- 9:R1+ 10:地 11:R2- 12:R2+ 13:地 14:CLK- 15:CLK+ 16空 17空 18空 19 空 20空每组信号线之间电阻为(数字表100欧左右)指针表20 -100欧左右(4组相同阻值) 20PIN双6定义: 1:电源2:电源3:地 4:地 5:R0- 6:R0+ 7:R1- 8:R1+ 9:R2- 10:R2+ 11:CLK- 12:CLK+ 13:RO1- 14:RO1+ 15:RO2- 16:RO2+ 17:RO3- 18:RO3+ 19:CLK1- 20:CLK1+

RS-232C、RS-422、RS-485串口引脚定义

RS-232C、RS-422、RS-485串口引脚定义 从前面的内容中,知道了串口外形,就可以继续了解其每个引脚的定义,这是做线的基础。无论是RS-232C、RS-422,还是RS-485,串口接口的外形、尺寸都是相同的,部件间可以通用互换,但其引脚的定义却各不相同,因此要了解串口做线,首先要知道串口各引脚的定义。 观察一个标准的串口,会发现串口无论是9针的标准串口物理外形(如图3.4所示),还是25针串口物理外形(如图3.6所示),如果横着看,都显示两排引脚。除了两排引脚这一特征之外,还有就是无论是公头,还是母头,两个引脚的外围呈现一边大、一边小的“等腰梯形”的形状(俗称“D形”)。9针引脚中,大的一边有5个引脚,小的一边有4个引脚。 本章除非专门说明,否则所有引脚线序都是指串口外侧的线序,各引脚编号及意义如图3.40所示。 根据图3.40的引脚顺序号,如果是作为RS-232C接口,则各引脚定义如表3.2所示。 表3.2 RS-232C引脚意义表 各引脚的电气特性为: 在TxD和RxD上,逻辑“1”为-3V~-15V;逻辑“0”为+3V~+15V。 在RTS、CTS、DSR、DTR和DCD等控制线上,信号有效为+3V~+15V;信号无效为-3V~-15V。 对于数据信号,逻辑“1”为低于-3V,逻辑“0”为高于+3V;对于控制信号,接通ON为低于-3V;断开OFF为高于+3V;-3V~+3V、低于-15V、高于+15V都表示电压无意义。 作为RS-232C接口,其各引脚由标准文档进行定义,所以也可以称为“标准引脚定义”。而作为RS-422和RS-485接口,则没有“标准”引脚定义的说法,因为RS-422和RS-485连通常的标准接口也没有,具体采用什么接口,接口中使用哪些引脚,完全取决于设备设计生产商自己的定义。不过,作为RS-422和RS-485标准本身,定义了按照这两个标准进行通信时,所必须提供的信号线,

LED显示屏单元板上控制信号分布及走向分析

LED显示屏单元板上控制信号分布及走向分析 【字体:大中小】 图1 单元板背面图 单元板芯片分析说明 1、图中红色为HC245芯片,起到信号放大的作用。其中芯片1放大单元板上半部分的信号,即第一组RGB数据和第二组RGB数据。芯片2放大单元板下半部分的信号,即第三组RGB数据和第四组RGB数据。芯片3放大ABCD行信号,CLK信号,SC锁存信号,OE控制信号。芯片4将所有信号放大送至单元板输出接口。 2、图中蓝色为LED灯的驱动芯片,可以是TB62726,MBI5024等芯片。主要功能是控制单元板上的列显示,图中为TB62726,第1和4列蓝色是控制红灯,第2和5列蓝色是控制绿灯,第3和6列是控制蓝灯。1个TB62726控制16列,一组有3个TB62726,分别对应红绿蓝3种led灯。 3、图中绿色为4953芯片。主要功能是控制单元板上的行显示,1个4953控制2行,8个控制16行。 信号走向分析

1、CLK信号,SC锁存信号,OE控制信号走向:输入—同时进入红色芯片3、芯片4—同时进入芯片 2、芯片1—并联接入每个TB62726芯片。 2、ABCD行信号走向:输入—同时进入红色的芯片 3、芯片4—芯片3输出接到4个绿色的4953芯片,芯片4输出接到4个绿色的4953芯片。 3、RGB数据信号走向:输入—第一组RGB数据和第二组RGB数据进入芯片1,第三组RGB数据和第四组RGB数据进入芯片2—第一组RGB数据中R1数据串行进入蓝色的芯片1,芯片4;G1数据串行进入蓝色芯片2,芯片5。B1数据串行进入到蓝色芯片3,芯片6。其它组的RGB数据依次类推。 图2 接口定义图

常用的LCD液晶屏之中的接口定义

比较常用的一些LCD液晶屏接口定义 20PIN 单6的定义: 3.3V 3.3V 1:电源2:电源3:地4:地5:R0- 6:R0+ 7:地8:R1- 9:R1+ 10:地11:R2- 12:R2+ 13:地14:CLK- 15:CLK+ 16空17空18空19 空20空 每一组的信号线之间的电阻是(数字表大概100欧左右)指针表20 -100欧左右(4组相同阻值) 20PIN双6的定义: 1:电源2:电源3:地4:地5:R0- 6:R0+ 7:R1- 8:R1+ 9:R2- 10:R2+ 11:CLK- 12:CLK+ 13:RO1- 14:RO1+ 15:RO2- 16:RO2+ 17:RO3- 18:RO3+ 19:CLK1- 20:CLK1+ 每一组的信号线之间的电阻是(数字表大概100欧左右)指针表20 -100欧左右(8组相同阻值) 20PIN单8的定义: 1:电源2:电源3:地4:地5:R0- 6:R0+ 7:地8:R1- 9:R1+ 10:地11:R2- 12:R2+ 13:地14:CLK- 15:CLK+ 16:R3- 17:R3+ 每一组的信号线之间的电阻是(数字表大概100欧左右)指针表20 -100欧左右(5组相同阻值) 30PIN单6的定义: 1:空2:电源3:电源4:空5:空6:空7:空8:R0- 9:R0+ 10:地11:R1- 12:R1+ 13:地14:R2- 15:R2+ 16:地17:CLK- 18:CLK+ 19:地20:空- 21:空22:空23:空24:空25:空26:空27:空28空29空30空 每一组的信号线之间的电阻是(数字表大概100欧左右)指针表20 -100欧左右(4组相同阻值) 30PIN单8的定义: 1:空2:电源3:电源4:空5:空6:空7:空8:R0- 9:R0+ 10:地11:R1- 12:R1+ 13:地14:R2- 15:R2+ 16:地17:CLK- 18:CLK+ 19:地20:R3- 21:R3+ 22:地23:空24:空25:空26:空27:空28空29空30空 每一组的信号线之间的电阻是(数字表大概100欧左右)指针表20 -100欧左右(5组相同阻值) 30PIN双6的定义: 1:电源2:电源3:地4:地5:R0- 6:R0+ 7:地8:R1- 9:R1+ 10:地11:R2- 12:R2+ 13:地14:CLK- 15:CLK+ 16:地17:RS0- 18:RS0+ 19:地20:RS1- 21:RS1+ 22:地23:RS2- 24:RS2+ 25:地26:CLK2- 27:CLK2+ 30PIN双8的定义: 1:电源2:电源3:电源4:空5:空6:空7:地8:R0- 9:R0+ 10:R1- 11:R1+ 12:R2- 13:R2+ 14:地15:CLK- 16:CLK+ 17:地18:R3- 19:R3+ 20:RB0- 21:RB0+ 22:RB1- 23:RB1+ 24:地25:RB2- 26:RB2+ 27:CLK2- 28:CLK2+ 29:RB3- 30:RB3+ 每一组的信号线之间的电阻是(数字表大概100欧左右)指针表20 -100欧左右(10组相同阻值) 一般14PIN、20PIN、30PIN为LVDS接口,

常用液晶屏接口定义

各种液晶屏接口定义 资料从屏的接口样式简单区分屏接口类型的方法 接口, 类型, 样式 从屏的接口样式简单区分屏接口类型的方法 (1)TTL屏接口样式: D6T(单6位TTL):31扣针,41扣针。对应屏的尺寸主要为笔记本液晶屏(8寸,10寸,11寸,12寸),还有部分台式机屏15寸为41扣针接口。 S6T(双6位TTL):30+45针软排线,60扣针,70扣针,80扣针。主要为台式机的14寸,15寸液晶屏。 D8T(单8位TTL):很少见 S8T(双8位TTL):有,很少见80扣针(14寸,15寸) (2)LVDS屏接口样式: D6L(单6位LVDS):14插针,20插针,14片插,30片插(屏显基板100欧姆电阻的数量为4个)主要为笔记本液晶屏(12寸,1 3寸,14寸,15寸) D8L(单8位LVDS):20插针(5个100欧姆)(15寸) S6L(双6位LVDS):20插针,30插针,30片插(8个100欧姆)(14寸,15寸,17寸) S8L(双8位LVDS):30插针,30片插(10个100欧姆电阻)(17寸,18寸,19寸,20寸,21寸) (3)RSDS屏接口样式: 50排线,双40排线,30+50排线。主要为台式机(15寸,17寸)液晶屏。 常用液晶屏接口定义 20PIN单6定义: 1:电源2:电源3:地4:地5:R0- 6:R0+ 7:地8:R1- 9:R1+ 10:地11:R2- 12:R2+ 13:地14:CLK- 15:CLK+ 16空17空18空19 空20空 每组信号线之间电阻为(数字表100欧左右)指针表20 -100欧左右(4组相同阻值) 20PIN双6定义: 1:电源2:电源3:地4:地5:R0- 6:R0+ 7:R1- 8:R1+ 9:R2- 10:R2+ 11:CLK- 12:CLK+ 13:RO1- 14:R O1+ 15:RO2- 16:RO2+ 17:RO3- 18:RO3+ 19:CLK1- 20:CLK1+ 每组信号线之间电阻为(数字表100欧左右)指针表20 -100欧左右(8组相同阻值) 20PIN单8定义: 1:电源2:电源3:地4:地5:R0- 6:R0+ 7:地8:R1- 9:R1+ 10:地11:R2- 12:R2+ 13:地14:CLK- 15:CLK+ 16:R3- 17:R3+ 每组信号线之间电阻为(数字表100欧左右)指针表20 -100欧左右(5组相同阻值) 30PIN单6定义: 1:空2:电源3:电源4:空5:空6:空7:空8:R0- 9:R0+ 10:地11:R1- 12:R1+ 13:地14:R2- 15:R2+ 16:地17:CLK- 18:CLK+ 19:地20:空- 21:空22:空23:空24:空25:空26:空27:空28空29空30空每组信号线之间电阻为(数字表100欧左右)指针表20 -100欧左右(4组相同阻值) 30PIN单8定义: 1:空2:电源3:电源4:空5:空6:空7:空8:R0- 9:R0+ 10:地11:R1- 12:R1+ 13:地14:R2- 15:R2+ 16:地17:CLK- 18:CLK+ 19:地20:R3- 21:R3+ 22:地23:空24:空25:空26:空27:空28空29空30空

LED单元板尺寸

《与LED行业相关知识》常见型号及尺寸: ●室内点阵单双色 ●室外点阵单双色

● ●室内全彩模组

室外全彩模组

一:如何计算显示屏的尺寸和分辨率?(按单元板计算的方法) 例如墙体尺寸,长:3.8米,高:1.6米。如何计算室内P7.62全彩屏的尺寸? 1:已知单元板最小尺寸:244m m×122mm;单元板最小分辨率:32×16. 2:长单元板个数取整:3800mm÷244mm=15/16 高单元板个数取整:1600mm÷122mm=13/14 3: 显示屏尺寸:长 244mm×15=3660mm=3.66m 或者244mm×16=3904mm=3.9m 高 122mm×13=1586mm=1.586m 或者122mm×14=1708mm=1.708m 显示屏尺寸:长×高 3.66m×1.586m 或者3.9m×1.708m 4:屏体分辨率:长32×15=480 高 16×13=208 5:显示屏像素点数:480×208=99804 6:显示屏的比例最好是:16/9 9÷16=0.5625

二:产品分类 1:按显示颜色分:单红色,单绿色,红绿双基色,红绿蓝三色。 2:按使用功能分:图文显示屏,多媒体视频显示屏,行情显示屏,条形显示屏。 3:按使用环境分:室内显示屏,室外显示屏,半户外显示屏。 4:按发光点直径分:∮3.0,∮3.7,∮4.8,∮5.0,∮8.0。P8, P10 , P16, P20等。 三:三合一与三拼一的区别 ●三合一是指将:红,绿,蓝三种不同颜色的LED晶片封装在同一个胶体内。 优点是:显示效果好。 缺点是:分光分色难,成本高。 ●三拼一(又称三分离)是指将:红,绿,蓝三种独立封装的SMT灯按照一定的间距垂直并列在一起。优点是:性价比好。

lvds液晶屏幕接口详细讲解

1.LVDS输出接口概述 液晶显示器驱动板输出的数字信号中,除了包括RGB数据信号外,还包括行同步、场同步、像素时钟等信号,其中像素时钟信号的最高频率可超过28MHz。采用TTL接口,数据传输速率不高,传输距离较短,且抗电磁干扰(EMI)能力也比较差,会对RGB数据造成一定的影响;另外,TTL多路数据信号采用排线的方式来传送,整个排线数量达几十路,不但连接不便,而且不适合超薄化的趋势。采用LVDS输出接口传输数据,可以使这些问题迎刃而解,实现数据的高速率、低噪声、远距离、高准确度的传输。 那么,什么是LVDS输出接口呢?LVDS,即Low Voltage Differential Signaling,是一种低压差分信号技术接口。它是美国NS公司(美国国家半导体公司)为克服以TTL电平方式传输宽带高码率数据时功耗大、EMI电磁干扰大等缺点而研制的一种数字视频信号传输方式。 LVDS输出接口利用非常低的电压摆幅(约350mV)在两条PCB走线或一对平衡电缆上通过差分进行数据的传输,即低压差分信号传输。采用LVDS输出接口,可以使得信号在差分PCB线或平衡电缆上以几百Mbit/s的速率传输,由于采用低压和低电流驱动方式,因此,实现了低噪声和低功耗。目前,LVDS输出接口在17in及以上液晶显示器中得到了广泛的应用。 2.LVDS接口电路的组成 在液晶显示器中,LVDS接口电路包括两部分,即驱动板侧的LVDS输出接口电路(LVDS发送器)和液晶面板侧的LVDS输入接口电路(LVDS接收器)。LVDS发送器将驱动板主控芯片输出的17L电平并行RGB数据信号和控制信号转换成低电压串行LVDS信号,然后通过驱动板与液晶面板之间的柔性电缆(排线)将信号传送到液晶面板侧的LVDS接收器,LVDS接收器再将串行信号转换为TTL电平的并行信号,送往液晶屏时序控制与行列驱动电路。图1所示为LVDS接口电路的组成示意图。

RS-422接口知识

RS-422接口知识 RS-422接口是一种单机发送、多机接收的单向、平衡传输规范,被命名为TIA/EIA-422-A标准。为扩展应用范围,EIA又于1983年在RS422接口基础上制定了RS-485标准,增加了多点、双向通信能力,即允许多个发送器连接到同一条总线上,同时增加了发送器的驱动能力和冲突保护特性,扩展了总线共模范围,后命名为TIA/EIA-485-A标准。由于EIA提出的建议标准都是以“RS”作为前缀,所以在通讯工业领域,仍然习惯将上述标准以RS作前缀称谓。 RS422接口标准全称是“平衡电压数字接口电路的电气特性”,它定义了接口电路的特性。实际上还有一根信号地线,共5根线。由于接收器采用高输入阻抗和发送驱动器比RS232更强的驱动能力,故允许在相同传输线上连接多个接收节点,最多可接10个节点。即一个主设备(Master),其余为从设备(Salve),从设备之间不能通信,所以RS422接口支持点对多的双向通信。接收器输入阻抗为4k,故发端最大负载能力是10×4k+100Ω(终接电阻)。RS422接口四线接口由于采用单独的发送和接收通道,因此不必控制数据方向,各装置之间任何必须的信号交换均可以按软件方式(XON/XOFF握手)或硬件方式(一对单独的双绞线)。 RS422接口的最大传输距离为4000英尺(约1219米),最大传输速率为10Mb/s。其平衡双绞线的长度与传输速率成反比,在100kb/s速率以下,才可能达到最大传输距离。只有在很短的距离下才能获得最高速率传输。一般100米长的双绞线上所能获得的最大传输速率仅为1Mb/s。 RS422接口需要一终接电阻,要求其阻值约等于传输电缆的特性阻抗。在矩距离传输时可不需终接电阻,即一般在300米以下不需终接电阻。终接电阻接在传输电缆的最远端。 下面是关于RS-422线的接法:

液晶显示屏接口

1.LVDS接口概述 液晶显示器驱动板输出的数字信号中,除了包括RGB数据信号外,还包括行同步、场同步、像素时钟等信号,其中像素时钟信号的最高频率可超过28MHz。采用TTL接口,数据传输速率不高,传输距离较短,且抗电磁干扰(EMI)能力也比较差,会对RGB数据造成一定的影响;另外,TTL多路数据信号采用排线的方式来传送,整个排线数量达几十路,不但连接不便,而且不适合超薄化的趋势。采用LVDS输出接口传输数据,可以使这些问题迎刃而解,实现数据的高速率、低噪声、远距离、高准确度的传输。 那么,什么是LVDS输出接口呢?LVDS,即LowVoltageDifferentialSignaling,是一种低压差分信号技术接口。它是美国NS公司(美国国家半导体公司)为克服以TTL电平方式传输宽带高码率数据时功耗大、EMI电磁干扰大等缺点而研制的一种数字视频信号传输方式。 LVDS输出接口利用非常低的电压摆幅(约350mV)在两条PCB走线或一对平衡电缆上通过差分进行数据的传输,即低压差分信号传输。采用LVDS输出接口,可以使得信号在差分PCB线或平衡电缆上以几百Mbit/s的速率传输,由于采用低压和低电流驱动方式,因此,实现了低噪声和低功耗。目前,LVDS输出接口在17in及以上液晶显示器中得到了广泛的应用。 2.LVDS接口电路的组成 在液晶显示器中,LVDS接口电路包括两部分,即驱动板侧的LVDS输出接口电路(LVDS发送器)和液晶面板侧的LVDS输入接口电路(LVDS接收器)。LVDS发送器将驱动板主控芯片输出的17L电平并行RGB数据信号和控制信号转换成低电压串行LVDS信号,然后通过驱动板与液晶面板之间的柔性电缆(排线)将信号传送到液晶面板侧的LVDS 接收器,LVDS接收器再将串行信号转换为TTL电平的并行信号,送往液晶屏时序控制与行列驱动电路。图1所示为LVDS接口电路的组成示意图。 图1LVDS接口电路的组成示意图 在数据传输过程中,还必须有时钟信号的参与,LVDS接口无论传输数据还是传输时钟,都采用差分信号对的形式进行传输。所谓信号对,是指LVDS接口电路中,每一个数据传输通道或时钟传输通道的输出都为两个信号(正输出端和负输出端)。 需要说明的是,不同的液晶显示器,其驱动板上的LVDS发送器不尽相同,有些LVDS 发送器为一片或两片独立的芯片(如DS90C383),有些则集成在主控芯片中(如主控芯片gm5221内部就集成了LVDS发送器)。 3.LVDS输出接口电路类型 与TTL输出接口相同,LVDS输出接口也分为以下四种类型: (l)单路6位LVDS输出接口 这种接口电路中,采用单路方式传输,每个基色信号采用6位数据,共18位RGB数据,因此,也称18位或18bitLVDS接口。此,也称18位或18bitLVDS接口。 (2)双路6位LVDS输出接口 这种接口电路中,采用双路方式传输,每个基色信号采用6位数据,其中奇路数据为18位,偶路数据为18位,共36位RGB数据,因此,也称36位或36bitLVDS接口。

液晶屏线定义

液晶屏线定义 LVDS接口又称RS-644总线接口,是20世纪90年代才出现的一种数据传输和接口技术。LVDS即低电压差分信号,这种技术的核心是采用极低的电压摆幅高速差动传输数据,可以实现点对点或一点对多点的连接,具有低功耗、低误码率、低串扰和低辐射等特点,其传输介质可以是铜质的PCB连线,也可以是平衡电缆。LVDS在对信号完整性、低抖动及共模特性要求较高的系统中得到了越来越广泛的应用。目前,流行的LVDS技术规范有两个标准:一个是TIA/EIA(电讯工业联盟/电子工业联盟)的ANSI/TIA/EIA-644标准,另一个是IEEE 1596.3标准。 20PIN单6定义: 1:电源2:电源3:地4:地5:R0- 6:R0+ 7:地8:R1- 9:R1+ 10:地11:R2- 12:R2+ 13:地14:CLK- 15:CLK+ 16空17空18空19 空20空 每组信号线之间电阻为(数字表120欧左右) 20PIN双6定义: 1:电源2:电源3:地4:地5:R0- 6:R0+ 7:R1- 8:R1+ 9:R2- 10:R2+ 11:CLK- 12:CLK+ 13:RO1- 14:RO1+ 15:RO2- 16:RO2+ 17:RO3- 18:RO3+ 19:CLK1- 20:CLK1+ 每组信号线之间电阻为(数字表120欧左右) 20PIN单8定义: 1:电源2:电源3:地4:地5:R0- 6:R0+ 7:地8:R1- 9:R1+ 10:地11:R2- 12:R2+ 13:地14:CLK- 15:CLK+ 16:R3- 17:R3+ 每组信号线之间电阻为(数字表120欧左右) 30PIN单6定义: 1:空2:电源3:电源4:空5:空6:空7:空8:R0- 9:R0+ 10:地11:R1- 12:R1+ 13:地14:R2- 15:R2+ 16:地17:CLK- 18:CLK+ 19:地20:空- 21:空22:空23:空24:空25:空26:空27:空28空29空30空 每组信号线之间电阻为(数字表120欧左右) 30PIN单8定义: 1:空2:电源3:电源4:空5:空6:空7:空8:R0- 9:R0+ 10:地11:R1- 12:R1+ 13:地14:R2- 15:R2+ 16:地17:CLK- 18:CLK+ 19:地20:R3- 21:R3+ 22:地23:空24:空25:空26:空27:空28空29空30空 每组信号线之间电阻为(数字表120欧左右) 30PIN双6定义: 1:电源2:电源3:地4:地5:R0- 6:R0+ 7:地8:R1- 9:R1+ 10:地11:R2- 12:R2+ 13:地14:CLK- 15:CLK+ 16:地17:RS0- 18:RS0+ 19:地20:RS1- 21:RS1+ 22:地23:RS2- 24:RS2+ 25:地26:CLK2- 27:CLK2+ 每组信号线之间电阻为(数字表120欧左右) 30PIN双8定义: 1:电源2:电源3:电源4:空5:空6:空7:地8:R0- 9:R0+ 10:R1- 11:R1+ 12:R2- 13:R2+ 14:地15:CLK- 16:CLK+ 17:地18:R3- 19:R3+ 20:RB0-21:RB0+ 22:RB1- 23:RB1+ 24:地25:RB2- 26:RB2+ 27:CLK2- 28:CLK2+ 29:

LED显示屏各芯片管脚定义汇总

一、1.2 LED板的芯片功能 74HC245的作用:信号功率放大。 第1脚DIR,为输入输出转换端口,当DIR=“1”高电平(接VCC)时信号由“A” 端输入“B”端输出,DIR=“0”低电平(接GND)时信号由“B”端输入“A”端输出。 第19脚G,使能端,若该脚为“1”A/B端的信号将不导通,只有为“0”时A/B 端才被启用,该脚也就是起到开关的作用. 第2~9脚“A”信号输入\输出端,A1=B1、、、、、、A8=B8,A1与B1是一组,如果DIR=“1”G=“0”则A1输入B1输出,其它类同。如果DIR=“0”G=“0”则B1输入A1输出,其它类同。 第11~18脚“B”信号输入\输出端,功能与“A”端一样。 第10脚GND,电源地。 第20脚VCC,电源正极。 74HC595的作用:LED驱动芯片,8位移位锁存器。 第8脚GND,电源地。 第16脚VCC,电源正极 第14脚DATA,串行数据输入口,显示数据由此进入,必须有时钟信号的配合才能移入。 QA~QH的输出由输入的数据控制。

第12脚STB,锁存端,当输入的数据在传入寄存器后,只有供给一个锁存信号才能将移入的数据送QA~QH口输出。 第11脚CLK,时钟端,每一个时钟信号将移入一位数据到寄存器。 第10脚SCLR,复位端,只要有复位信号,寄存器内移入的数据将清空,显示屏不用该脚,一般接VCC。 第9脚DOUT,串行数据输出端,将数据传到下一个。 第15、1~7脚,并行输出端也就是驱动输出端,驱动LED。 HC16126\TB62726的作用:LED驱动芯片,16位移位锁存器。 备注:HC16126驱动芯片定义和5020,5024,2016等芯片一样 第1脚GND,电源地。 第24脚VCC,电源正极 第2脚DATA,串行数据输入 第3脚CLK,时钟输入 第4脚STB,锁存输入 第23脚输出电流调整端,接电阻调整 第22脚DOUT,串行数据输出 第21脚EN,使能输入 其它功能与74HC595相似,只是TB62726是16位移位锁存器,并带输出电流调整功能,但在并行输出口上不会出现高电平,只有高阻状态和低电平状态。74HC595并行输出口有高电平和低电平输出。TB62726与5026的引脚功能一样,结构相似。

rs422接口定义-通信

RS422接口定义 RS-422接口是一种单机发送、多机接收的单向、平衡传输规范,被命名为TIA/EIA-422-A标准。为扩展应用范围,EIA又于1983年在RS422接口基础上制定了RS-485标准,增加了多点、双向通信能力,即允许多个发送器连接到同一条总线上,同时增加了发送器的驱动能力和冲突保护特性,扩展了总线共模范围,后命名为TIA/EIA-485-A标准。由于EIA提出的建议标准都是以“RS”作为前缀,所以在通讯工业领域,仍然习惯将上述标准以RS作前缀称谓。 RS422接口标准全称是“平衡电压数字接口电路的电气特性”,它定义了接口电路的特性。实际上还有一根信号地线,共5根线。由于接收器采用高输入阻抗和发送驱动器比RS232更强的驱动能力,故允许在相同传输线上连接多个接收节点,最多可接10个节点。即一个主设备(Master),其余为从设备(Salve),从设备之间不能通信,所以RS422接口支持点对多的双向通信。接收器输入阻抗为4k,故发端最大负载能力是10×4k+100Ω(终接电阻)。RS 422接口四线接口由于采用单独的发送和接收通道,因此不必控制数据方向,各装置之间任何必须的信号交换均可以按软件方式(XON/XOFF握手)或硬件方式(一对单独的双绞线)。 RS422接口的最大传输距离为4000英尺(约1219米),最大传输速率为10Mb/s。其平衡双绞线的长度与传输速率成反比,在100kb/s速率以下,才可能达到最大传输距离。只有在很短的距离下才能获得最高速率传输。一般100米长的双绞线上所能获得的最大传输速率仅为1Mb/s。 RS422接口需要终接电阻,要求其阻值约等于传输电缆的特性阻抗。在矩距离传输时可不需终接电阻,即一般在300米以下不需终接电阻。终接电阻接在传输电缆的最远端。 先我们了解一下RS485/RS422针脚定义: 1.英式标识为TDA(-) 、TDB(+) 、RDA(-) 、RDB(+) 、GND 2.美式标识为Y 、Z 、A 、B 、GND 3.中式标识为TXD(+)/A 、TXD(-)/B 、RXD(-) 、RXD(+)、GND rs485两线一般定义为:

P10单元板故障分析及维修步骤

第一章数字电路简介 为了让读者对LED显示屏采用的控制电路进行深入的分析了解,进而掌握LED显示屏模组的维修技术,这里有必要对数字电路的基础简单介绍一下。 电灯只有亮和灭两种状态,如果我们把灯亮用1表示,灭用0表示,那么1和0就是表示状态的数字量。一连串的1和0就构成了数字信号,完成对数字量进行算术运算和逻辑运算的电路称为数字电路。数字电路是以二进制逻辑代数为数学基础,使用二进制数字信号,既能进行算术运算又能方便地进行逻辑运算(与、或、非、判断、比较、处理等),因此极其适合于运算、比较、存储、传输、控制、决策等应用,由于它具有逻辑运算和逻辑处理功能,所以又称数字逻辑电路。 在具体的应用中1表示为高电平,0表示为低电平。数字电路的工作信号在时间上和数值上是不连续变化的。数字信号反映在电路上只有高电平和低电平两种状态,高电平通常为+3.5 v左右,低电平通常为+0.3 v左右。这两种状态很方便地用二极管或三极管的导通、截止即开、关状态来实现。分别用1和0表示这两个状态,就可以用二进制数进行信息的传输和处理。 数字电路研究的主要问题是输入信号的状态(0或1)与输出信号的状态(0或1)之间的因果关系,称为逻辑关系,也就是电路的逻辑功能。它只规定高电平的下限和低电平的上限值,凡大于高电平下限值的都认为是高电平1;凡小于低电平上限值的都认为是低电平0,而不着重研究它们的具体数值 刚才提到的一连串的1和0,连着8位1和0的列如:0110 0101叫8位数字处理电路,通常最靠右边的第一位叫低位,上列中低位数据是1,是高电平。在P10模组中使用的74HC 245就是一种八位移位寄存器,。 现代的数字电路由半导体工艺制成的若干数字集成器件构造而成。逻辑门是数字逻辑电路的基本单元。存储器是用来存储二值数据的数字电路。从整体上看,数字电路可以分为组合逻辑电路和时序逻辑电路两大类。 1、组合逻辑电路 简称组合电路,它由最基本的的逻辑门电路组合而成。特点是:输出值只与当时的输入值有关,即输出惟一地由当时的输入值决定。电路没有记忆功能,输出状态随着输入状态的变化而变化,类似于电阻性电路,如加法器、译码器、编码器、数据选择器等都属于此类。LED显示屏就是组合逻辑电路的典型应用, 2、时序逻辑电路

笔记本液晶屏接口定义

1 所有TFT-LCD的数据接口种类: 单TTL6位(8位)双TTL6位(8位)单LVDS6位(8位)双LVDS6位(8位)单TMDS6位(8 位)双TMDS6位(8位) 还有最新出来的标准RSDS 6位和8位是用来表示屏能显示颜色多少,6位屏可以显示颜色为2的6次方X2的6次方X2的6次 方分别代表R G B 三基色,算下来 6位屏最多可以显示的颜色为262144种颜色,8位屏为16777216种颜色。屏显示颜色的多少只 和屏的位数有关。我们本本用的屏 一般都是6位的。 早期的本本都是用12寸以下的屏,该种屏分辩率一般为640X480(VGA)800X600(SVGA),采用的接口为单TTL6位,屏上接 针脚为41针和31针,12寸以41针居多(800X600),10寸以31针居多(640X480)。TTL信号是TFT-LCD能识别的标准信号,就算是以后用到的LVDS TMDS 都是在它的基础上编码 得来的。TTL信号线一共有22根(最 少的,没有算地和电源的)分另为R G B 三基色信号,两个HS VS 行场同步信号,一个数据 使能信号DE 一个时钟信号CLK, 其中R G G三基色中的每一基色又根据屏的位数不同,而有不同的数据线数(6位,和8位之 分)6位屏和8位屏三基色分别有R0-- R5(R7)G0--G5(G7)B0--B5(B7)三基色信号是颜色信号,接错会使屏显示的颜色错乱。另外的4根信号(HS VS DE CLK) 是控制信号,接错会使屏点不亮,不能正常显示。 由于TTL信号电平有3V左右,对于高速率的长距离传输影响很大,且抗干扰能力也比较差。 所以之后又出现了LVDS接口的屏, 只要是XGA以上分辩率的屏都是用LVDS方式。LVDS也分单通道,双通道,6位,8位,之分, 原理和TTL分法是一样的。 LVDS(低压差分信号)的工作原理是用一颗专门的IC,把输入的TTL信编码成LVDS 信号,6 位为4组差分,8位为5组差分,数据线 名称为0- 0+ 1- 1+ 2- 2+ CK- CK+ 3- 3+ 其中如果是6位屏就没有3- 3+这一组信号,这个 编码过程是在我们电脑主板 上完成的。在屏的另一边,也有一颗相同功能的解码IC,把LVDS信号变成TTL信号,屏最终 用的还是TTL信号,因为LVDS信号电平 为1V左右,而且-线和+线之间的干扰还能相互抵消。所以抗干扰能力非常强。很适合用在高 分辩率所带来高码率的屏上。

RS232、RS422与RS485标准及应用

RS-232、RS-422与RS-485标准及应用  一、RS-232、RS-422与RS-485的由来  RS-232、RS-422与RS-485都是串行数据接口标准,最初都是由电子工业协会(EIA)制订并发布的,RS-232在1962年发布,命名为EIA-232-E,作为工业标准,以保证不同厂家产品之间的兼容。RS-422由RS-232发展而来,它是为弥补RS-232之不足而提出的。为改进RS-232通信距离短、速率低的缺点,RS-422定义了一种平衡通信接口,将传输速率提高到10Mb/s,传输距离延长到4000英尺(速率低于100kb/s时),并允许在一条平衡总线上连接最多10个接收器。RS-422是一种单机发送、多机接收的单向、平衡传输规范,被命名为TIA/EIA-422-A标准。为扩展应用范围,EIA又于1983年在RS-422基础上制定了RS-485标准,增加了多点、双向通信能力,即允许多个发送器连接到同一条总线上,同时增加了发送器的驱动能力和冲突保护特性,扩展了总线共模范围,后命名为TIA/EIA-485-A标准。由于EIA提出的建议标准都是以“RS”作为前缀,所以在通讯工业领域,仍然习惯将上述标准以RS作前缀称谓。  RS-232、RS-422与RS-485标准只对接口的电气特性做出规定,而不涉及接插件、电缆或协议,在此基础上用户可以建立自己的高层通信协议。因此在视频界的应用,许多厂家都建立了一套高层通信协议,或公开或厂家独家使用。如录像机厂家中的Sony与松下对录像机的RS-422控制协议是有差异的,视频服务器上的控制协议则更多了,如Louth、Odetis协议是公开的,而ProLINK则是基于Profile上的。 二、RS-232串行接口标准  目前RS-232是PC机与通信工业中应用最广泛的一种串行接口。RS-232被定义为一种在低速率串行通讯中增加通讯距离的单端标准。RS-232采取不平衡传输方式,即所谓单端通讯   图1   收、发端的数据信号是相对于信号地,如从DTE设备发出的数据在使用DB25连接器时是2脚相对7脚(信号地)的电平,DB25各引脚定义参见图1。典型的RS-232信号在正负电平之间摆动,在发送数据时,发送端驱动器输出正电平在+5~+15V,负电平在-5~-15V电平。当无数据传输时,线上为TTL,从开始传送数据到结束,线上电平从TTL电平到RS-232电平再返回TTL电平。接收器典型的工作电平在+3~+12V与-3~-12V。由于发送电平与接收电平的差仅为2V至3V左右,所以其共模抑制能力差,再加上双绞线上的分布电容,其传送距离最大为约15米,最高速率为20kb/s。RS-232是为点对点(即只用一对收、发设备)通讯而设计的,其驱动器负载为3~7kù。所以RS-232适合本地设备之间的通信。其有关电气参数参见表1。 规定 RS232 RS422 R485  工作方式 单端 差分 差分  节点数 1收、1发 1发10收 1发32收 最大传输电缆长度 50英尺 400英尺 400英尺  最大传输速率 20Kb/S 10Mb/s 10Mb/s  最大驱动输出电压 +/-25V -0.25V~+6V -7V~+12V  负载 +/-5V~+/-15V +/-2.0V +/-1.5V 驱动器输出信号电平

P10单元板技术参数及介绍

P10单元板技术参数及介绍 P10双色方案 P10双色模组(显示屏)方案 像素管:346 物理点间距:10mm 物理密度:10000点/m2 像素管产地:红:台湾光磊蓝管:士兰发光点颜色:1R1G 基色:纯红+纯绿板子尺寸:320mm×160mm 模组行列数:32点×16点物理分辨率:512点/模组 模组重量:650g 每平米20个模组,200W电源带组6-8个 最佳视距:15~500m 最佳视角:水平140度,垂直90度 驱动扫描:1/4扫描接口方式:12接口 环境温度:存贮-35℃~+85℃工作-20℃~+50℃ 相对湿度:≤90~95% 屏体厚度:≤12cm+维护厚度70CM 工作电压:220 平均功率:800/m2,最大:1200W/m2 操作系统:WIN 98/ 2000/ NT/XP 控制方式:脱机、同步控制显示卡:DVI显卡编辑卡:PCTV卡 1)驱动器件:采用LED专用驱动器件2)驱动方式:恒流驱动5026 3)扫描频率:≥480帧/秒4)刷新频率:≥180帧/秒 5)灰度/颜色:4096级,可显示16.7M颜色6)白平衡亮度:≥6000cd/m2 7)亮度调节方式:软件调节16级可8)视频信号:PAL/NTSC 9)视频输入/输出方式:八路输入/八路输出 10)控制系统采用:PCTV非线性编辑卡+DVI显卡+全彩控制卡+光纤传输 11)平均无故障时间:≥10000小12)寿命:10万小时 13)平整度:任意相邻像素间≤0.5mm;模块拼接间隙<1mm ; 14)均匀性:像素光强、模块亮度均匀15)电源开关:自动开关 16)开关电源负荷:5V/40A 17)计算机显示模式:800×600;1024×768 18)超长传输距离:传输最大达170米(实测),保证传输140米≥2000m(光纤传输)更多详情请致电:137********QQ360695218 ,马S P10半户外单元板(红色)带排线电源线42元1张 P10半户外单元板(绿色)带排线电源线75元1张 P10半户外单元板(蓝色)带排线电源线75元1张 P10半户外单元板(黄色)带排线电源线55元1张 P10半户外单元板(白色)带排线电源线75元1张 室内3.75单色75,双色135;室内5.0单色135双色195 P10户外单元板,带排线电源线在半户外价格的基础上加10元。 户外P16全彩静态150元;户外P10全彩1/4扫120元 P16双色户外65元1张,P10户外双色123元1张,配排线电源线 室内表贴三合一P6, P7.62三合一全彩0.23元一个点

教你区分LVDS屏线及屏接口定义(精)

教你区分 LVDS 屏线及屏接口定义 现在碰到液晶屏大多是 LVDS 屏线 , 经常碰到什么单 6, 双 6 单 8双 8. 如何区分呢 ? 我以前也不知道 , 后在网上收集学习后才弄明白 方法 1 数带“ +-”的这种信号线一共有几对,有 10对的减 2对就是双 8, 有 8对的减 2对就是双 6。有 5对的减掉 1对是单 8, 有 4对的减掉 1对是单 6,数 +/-线一共有多少对。说通俗点就是 4对————单 6 5对————单 8 8对————双 6 10对————双 8 方法 2 拧开螺丝看看主板里面的电路,一般每对数据线之间都有一个 100欧姆的电阻,看到 4个的话就是单 6位的屏,看到 8个的话就是双六位, 5个的话一般是单 8位, 有10个一般就是双 8位,当然有资料的话就不用这么麻烦, 也有 TMDS 也用这种 20PIN 的连接头的,比如 LG 的 LP141X1,不过基本上很少 lvds 的接口的定义 20PIN 单 6定义: 1:电源 2:电源 3:地 4:地 5:R0- 6:R0+ 7:地 8:R1- 9:R1+ 10:地 11:R2- 12:R2+ 13:地14:CLK- 15:CLK+ 16空 17空 18空 19 空 20空

每组信号线之间电阻为(数字表 120欧左右 ,20PIN 双 6定义 1:电源 2:电源 3:地 4:地 5:R0- 6:R0+ 7:R1- 8:R1+ 9:R2- 10:R2+ 11:CLK- 12:CLK+ 13:RO1- 14:RO1+ 15: RO2- 16:RO2+ 17:RO3- 18:RO3+; 19:CLK1- 20:CLK1+ 每组信号线之间电阻为(数字表 120欧左右 20PIN 单 8定义: 1:电源 2:电源 3:地 4:地 5:R0- 6:R0+ 7:地 8:R1- 9:R1+ 10:地 11:R2- 12:R2+ 13:地14:CLK- 15:CLK+ 16:R3- 17:R3+ 每组信号线之间电阻为(数字表 120欧左右 30PIN 单 6定义: 1:空 2:电源 3:电源 4:空 5:空 6:空 7:空 8:R0- 9: R0+ 10:地 11:R1- 12:R1+ 13:地14:R2- 15:R2+ 16:地 17:CLK- 18:CLK+ 19:地 20:空 - 21:空 22:空 23:空 24:空 25:空26:空 27:空 28空 29空 30空 每组信号线之间电阻为(数字表 120欧左右 30PIN 单 8定义: 1:空 2:电源 3:电源 4:空 5:空 6:空 7:空 8:R0- 9: R0+ 10:地 11:R1- 12:R1+ 13:地14:R2- 15:R2+ 16:地 17:CLK- 18:CLK+ 19:地 20:R3- 21:R3+ 22:地 23:空 24:空 25:空26:空 27:空 28空 29空 30空 每组信号线之间电阻为(数字表 120欧左右

相关文档
最新文档