机械制图符号资料

机械制图符号资料
机械制图符号资料

机械制图符号

1表面粗糙度符号

表面粗糙度是对机械加工过程中,产品的表面粗糙程度的数值,数值越小产品表面越光滑。

基本符号,表示表面可以用任何方法获得。当不加上注粗糙度参数值或有关说明(例如:表面处理、局部热处理状况等)时,仅适用代号标注。

基本符号加一划,表示表面是用去除材料的方法获得。例如:车、铣、钻、磨、剪切、抛光、腐蚀、电火花加工、气割等。

基本符号加一小圆,表示表面是用不去除材料的方法获得。例如:铸、锻、冲压变形、热轧、冷轧、粉末冶金等或者是用于保持原供应状况的表面(包括保持上道工序的状况)。

在上述三个符号的长边上均可加一横线,用于标注有关参数和说明。

在上述三个符号上均可加一小圆,表示所有表面具有相同的表面粗糙度要求。

举例:

代号意义代号意义

用任何方法获得的表面粗糙度,粗糙度的上限制为3.2um 用任何方法获得的表面粗糙度,粗糙度的最大值为

3.2um

用去除材料方法获得的表面粗糙度粗糙度的上限制为3.2um 用去除材料方法获得的表面粗糙度,粗糙度最大值为3.2um

用不去除材料方法获得的表面粗糙度,粗糙度的上限制为3.2um 用不去除材料方法获得的表面粗糙度,粗糙度最大值为3.2um

用去除材料方法获得的表面粗糙度,粗糙度的上限制为3.2um,粗糙度的下限值为

1.6um 用去除材料方法获得的表面粗糙度,粗糙度的最大值为3.2um,粗糙度的最小值为1.6um

表面粗糙度Ra的上限值:是说允许表面粗糙度Ra的实测值超过该上限值,但只允许少于占总实测值个数的16%的实测值超过该上限值。

表面粗糙度Ra的最大值:是说不允许任何一次的实测值超过该最大值。

2形状公差和位置公差符号

特征项目符号定义示例说明

直线度实际线对理想

直线所允许的

最大变动量圆柱面上任一素线必须位于距离公差值为0.02mm的两平面直线之间

平面度实际表面对平

面所允许的最

大变动量被测平面必须位于距离为公差值0.03 mm的两平面内

圆度实际圆对理想

圆所允许的最

大变动量被测圆锥面任一正截面上的圆周必须位于半径差为0.02 mm的两同心圆之间

圆柱度实际圆柱面对

理想圆柱面所

允许的最大变

动量圆柱面必须位于半径差为公差值0.05 mm的两同轴圆柱面之间

线轮廓度非圆曲线的实

际轮廓线的允

许变动量非圆曲线必须位于直径公差值为0.1的圆的两包络线之间的区域

面轮廓度非圆曲面的实

际轮廓线,对

理想轮廓面的

允许变动量非圆曲面必须位于直径公差值为0.1的圆球的两包络线之间的区域

平行度被测要素的实

际方向,与基

准相平行的理

想方向之间所

允许的最大变

动量上表面必须位于直径为公差值

0.05mm,且平行于基准平面A的两平行平面之间

垂直度被测要素的实

际方向,对于

基准相垂直的

理想方向之

间,所允许的

最大变动量

左侧端面必须位于

距离为公差值0.05

mm,且垂直与基

本轴线A的两平行

平面之间

倾斜度被测要素的实

际方向,对于

基准成任意给

定角度的理想

方向之间所允

许的最大变动

端面必须位于相对

基准平面倾斜一定

角度,夹在相隔

0.5mm的2个平面

之间的区域内

位置度被测要素的实

际位置相对于

理想位置所允

许的最大变动

φD的轴线必须位

于直径为公差值

1.0

φmm,且相对于

A、B基准平面的理

论正确尺寸所确定

的理想位置为轴线

的圆柱面内

同轴度被测实际轴线

相对于基准轴

线所允许的变

动量

φ60的轴线必须位

于直径为公差值

1.0

φmm,且与公共

基准轴线A-B同轴

的圆柱面内

对称度实际要素的对

称中心面(或

中心线、轴线)

对理想对称平

面所允许的变

动量

键槽的中心平面必

须位于距离公差值

0.1mm的两平行面

之间,该两平行平

面对称配置于基准

轴线的两侧

圆跳动被测实际要素

绕基准轴线,

无轴向移动地

旋转一整圈

时,在限定的

测量范围内,

所允许的最大

变动量

被测面围绕基准轴

线旋转一周时,在

任一测量圆柱面内

轴向跳动量均不得

大于0.05mm

全跳动被测实际要素

绕基准轴线连

续的旋转,同

时指示器沿其

理想轮廓相对

移动时,所允

许的最大跳动

被测面围绕基准轴

线连续旋转时,在

任一测量圆柱面内

轴向跳动量均不得

大于0.05mm

3焊接符号

焊接的基本符号不需要每个都记住,因为它的符号形状跟焊缝的形状基本上是一样的,所以看到焊接符号的形状是怎样,那么焊缝的形状大致就是怎样,下面是焊缝基本符号的介绍。

3.1焊接基本符号

基本符号

名称示意图符号

卷边焊缝

(卷边完全熔化)

I形焊缝

V形焊缝

单边V形焊缝

角焊缝

带钝边V形焊缝

带钝边单边V形焊缝

带钝边U形焊缝

带钝J形焊缝

封底焊缝

塞焊缝或槽焊缝

点焊缝

缝焊缝

3.2焊接补充符号

补充符号

名称示意图符号说明例子三面焊缝符号表示按开口方向三面焊缝

周围焊缝符号O表示环绕工件周围施焊

带垫板符号表示焊缝底部有垫板

尾部符号表示相同焊缝的数目例子中n表示有n条相同的焊缝

3.3焊接辅助符号

辅助符号

名称示意图符号说明例子平面符号—焊缝表面齐平

凹陷符号焊缝表面凹陷

凸起符号焊缝表面突起

3.4焊缝的基本符号相对基准线的位置说明

(图3.1)焊接符号基准线

焊缝的基本符号相对基准线的位置如下:

(图3.2)(图3.3)(图3.4)

如焊缝在图3.2所在位置时

①当焊缝在箭头所指的一侧时,应将基本符号标注在实线基准线一侧,如图3.3所示。

②当焊缝在非箭头所指的一侧时,应将基本符号标注在虚线基准线一侧,如图3.4所示。

3.5箭头线相对焊缝的位置说明

箭头线相对焊缝的位置如下

(图3.5)图(3.6)

如图3.5,当焊缝中有单边坡口时,箭头线应指向如图3.6带有坡口一侧的工件。

3.6焊接符号标注示例:

下图中涂黑部分为需要焊缝的位置

焊缝形式标注示例说明

4为焊脚尺寸,表示焊脚

高度为4mm,表示焊

缝表面突起,表示双面

角焊缝

表示按开口方向三面

焊缝,3为焊脚尺寸,表

示焊脚高度为3mm,

表示单面角焊缝;表

示有2条相同焊缝

O表示环绕工件周围施

焊,表示单面角焊缝

放在了虚线基准线

上,说明单面角焊缝在非

箭头所指一侧

表示V型焊缝,"—"

表示表面磨平。

表示两处焊缝要

求一样,3表示焊脚高度

为3mm,表示双面角

焊缝

4其他符号

4.1剖面符号

剖面图的意义及用途:如果物体內部构造复杂,绘制平面视图時会产生很多虚线,容易造成识图难画、难读、难标注尺度的缺点,為了解決此一问题,可以假设将物体切开,将靠近观察者的部分移去,使物体內部呈现出來,再依正投影原理將其绘制成视图;如此原來不可见部分变成可见形狀,亦即原來要画虚线改為实线,这种视图称为剖面视图。

剖面图最主要的特征是剖开后带有斜斜的剖面线,如图4.1所示。

4.1.1全剖面图

将一個物体从中间全部剖开两部分,移去前面部分,剩下1/2個物體,使其內部构造完全呈现出來,这种画法称为全剖面/全剖视图。

如图4.1中,为剖开线,A-A为全剖面图。

(图4.1)

4.1.2局部剖视图

当只需要了解物体某一個部分的內部构造,將此部分剖切开移除,這種只画出所要观察某一部分的剖視图称为局部剖视图。

如图4.2,直接在图上局部剖开,画上剖面线的,就是局部剖面图。

(图4.2)

4.2局部放大符号

将机件的部分结构用大于原图形所采用的比例画出的图形,称为局部放大图。

如图4.3,在图中用圈圈起或用框框起的,就是局部放大的地方。

(图4.3)

4.3三视图

三视图是观测者从三个不同位置观察同一个空间几何体(零件)而画出的图形。就是主视图、俯视图、左视图的总称。

由前向后投射在正面上所得的视图叫主视图

由上向下投射在水平面面上所得的视图叫俯视图

由左向右投射在侧面上所得的视图叫左视图

三视图如图4.4所示。

(图4.4)

但是我们平时画图不一定把三视图都画出来,只要能把零件的几何尺寸全部表示出来即可,如图4.5所示。

(图4.5)

机械制图全部符号及表示含义

2D Solid 二维实体 2D 实面 2D Wireframe 二维线框 3D Array 三维阵列 3D 阵列 3D Dynamic View 三维动态观察 3D 动态检视 3d objects 三维物体 3D 物件 3D Orbit 三维轨道 3D 动态 3D Orbit 三维动态观察 3D 动态 3D Studio 3D Studio 3D Studio 3D Viewpoint 三维视点 3D 检视点 3dpoly 三维多段线 3D 聚合线 3dsin 3DS 输入 3D 实体汇入 3DSolid 三维实体 3D 实体 3dsout 3DS 输出 3D 实体汇出 abort 放弃中断 abort 中断中断 absolute coordinates 绝对坐标绝对座标 abut 邻接相邻 accelerator key 加速键快速键 access 获取存取 acisin ACIS 输入 ACIS 汇入 acisout ACIS 输出 ACIS 汇出 action 操作动作 active 活动(的)作用中 adaptive sampling 自适应采样最适取样 add 添加加入 Add a Printer 添加打印机新增印表机 Add mode 添加模式 Add Plot Style Table 添加打印样式表 Add Plot Style Table 添加打印样式表 Add Plotter 添加打印机 Add Plotter 添加打印机 Add to Favorites 添加到收藏夹加入我的最爱 ADI ADI(Autodesk 设备接口) ADI (Autodesk 设备介面) adjacent 相邻相邻 Adjust 调整调整 Adjust Area fill 调整区域填充调整区域填满 AdLM (Autodesk License Manager) AdLM(Autodesk 许可管理器)Administration dialog box 管理对话框管理对话方块Advanced Setup Wizard 高级设置向导进阶安装精灵 Aerial View 鸟瞰视图鸟瞰视景 affine calibration 仿射校准关系校正 alert 警告警示 alias 别名别名 aliasing 走样锯齿化 align 对齐对齐 aligned dimension 对齐标注对齐式标注 alignment 对齐(方式) 对齐 allocate 分配配置 Altitude 标高高度

机械图纸中常见的符号及意义

机械图纸中常见的符号及意义 《机械识图》根据最新的中等职业学校机械制图教学大纲,针对中等职业学校学生在识图知识与技能方面的就业需求编写而成,注重对中等职业学校学生的识图能力培养。《图文对半,直观形象,方便教学。全书共分9个项目:抄画平面图形,三视图的形成与投影作图,基本几何体的视图,绘制与识读组合体视图,识读视图、剖视图和断面图,识读轴套类零件图,识读盘盖轮类零件图,识读叉架类和箱壳类零件图,识读装配图。通过这9个项目将知识点与任务有机地结合,由浅入深,循序渐进,使学生完成技能的训练,达到学以致用的目的。 自劳动开创人类文明史以来,图形与语言、文字一样,是人们认识自然、表达和交流思想的基本工具,在图学发展的历史长河中,经过不断地完善和发展得到了广泛的应用。在现代工业生产中,机械、化工或建筑都是根据图样进行制造和施工的。设计者通过图样表达设计意图;制造者通过图样了解设计要求、组织制造和指导生产;使用者通过图样了解机器设备的结构和性能,进行操作、维修和保养。因此机械图样是交流传递技术信息、思想的媒介和工具,是工程界通用的技术语言。作为职业技术教育培养目标的生产第一线的现代新型技能型人才,必须学会并掌握这种语言,具备识读和绘制机械图样的基本能力。从以下几方面可以体现其重要性: 从事机械制造行业就须掌握机械制图 ,学习机械制图感到抽象、困难,其原因之一是习惯于在平面上思考问题,缺乏空间思维能力。在学习过程中教师要有针对性地借助各种媒体,直观、形象地引导学生建立起空间概念,由平面思维转换到空间思维。把物体的投影与实际零件结构紧密联系,不断地“由物画图”和“由图画物”,既要想象物体的形状,又要思考图形间的投影规律,步提高空间想象和思维能力。有了这种能力,在实际工作时,才会通过二维的平面图——零件图(或装配图)想象出来三维的空间物体——实际零件(装配体),只有掌握这种 技能,才能顺利完成零件加工或机器装配的工作。所以,空间想象能力是学习机械制图的核心内容。《机械制图》的基本原理,制图标准、及相关规则,严肃体现出国家标准的统一性,无论谁都必须严格遵照执行。随着我国各个领域与国际接轨的今天,在机械制造行业,国家标准与国际标准也会逐步一致,使我国机械制造行业技术人才能更好的与之交流,那么就必须熟 练地掌握这门技术语言,更便于同行业间进行技术探讨和技术革新,但是前提条件是必须精 通机械制图这门课程以及相关的国家标准,并且反复强调标准规定的严谨性、权威性和法制性,使技术人员较好地确立标准化意识。 机械制图对解决实际问题和创新能力的影响《机械制图》课除了如何使他们很好地建立空间想象能力、掌握投影规律及国家标准,还必须具有机械专业的相关知识,如金属工艺学、机械制造工艺学、机械零件与机械原理、公差配合与技术测量等,这些知识在机械制图中的零件结构、表面质量、加工方法、材料选择、技术要求、连接装配关系等方面都要用到。也不是只局限于了解制图上的一些概念、定义和规则,还会学习和掌握到其它相关领域的各种知识,并且会正确、合理、全面地应用好机械制图这门工具,是现代化生产中技术人才最基本的要求,通过机械制图的学习,就要求具备这种让机械制图与实际结合起来,解决实际工作 中存在的各方面的问题的能力。《机械制图》是人们进行技术革新、技术改造的工具,是对新设计、新构思、新工艺研究探索,反映和表达高新技术、发明创造新生事物的载体。大胆地在该课程教学中融进新思想、新设计、探索和创新,是知识经济时代向我们提出的新课题、

形位公差的全部符号和机械制图的常用符号

求形位公差的全部符号和机械制图的常用符号 一直线度—无 二平行度‖ 有 三垂直度⊥ 有 四圆度○ 无倾斜度∠ 有 五线轮廓度⌒ 有或无同轴度◎ 有 六圆跳动↗ 有 一,1) 直线度 表2-2为几种直线度公差在图样上标注的方式.形位公差在图样上用框格注出,并用带箭头的指引线将框格与被测要素相连,箭头指在有公差要求的被测要素上.一般来说,箭头所指的方向就是被测要素对理想要素允许变动的方向.通常形状公差的框格有两格,第一格中注上某项形状公差要求的符号,第二格注明形状公差的数值. 2) 平面度 表2-3为平面度公差要求的标注方式.平面度公差带只有一种,即由两个平行平面组成的区域,该区域的宽度即为要求的公差值. 3) 圆度 表2-4表示圆度公差在图样上的标注方式. 在圆度公差的标注中,箭头方向应垂直于轴线或指向圆心. 4) 圆柱度 如表2-5所示,由于圆柱度误差包含了轴剖面和横剖面两个方面的误差,所以它在数值上要比圆度公差为大.圆柱度的公差带是两同轴圆柱面间的区域,该两同轴圆柱面间的径向距离即为公差值. 3,定向公差有哪些,各自的含义是什么,如何标注 答:定向公差有平行度,垂直度和倾斜度.其含义和标注如下: 二,1) 平行度 对平行度误差而言,被测要素可以是直线或平面,基准要素也可以是直线或平面,所以实际组成平行度的类型较多.表2-7中表示出一些标注平行度公差要求的示例.其中,基准符号是用一粗短划线和带圆圈的字母标注,字母方向始终是正位,基准是中心要素时,粗短划线的引出线必须和有关尺寸线对齐. 三,2) 垂直度 垂直度和平行度一样,也属定向公差,所以在分析上这两种情况十分相似.垂直度的被测和基准要素也有直线和平面两种.表2-8是几种垂直度标注的示例. 3) 倾斜度 倾斜度也是定向公差.由于倾斜的角度是随具体零件而定的,所以在倾斜度的标注中,总需用将要求倾斜的角度作为理论正确角度标注出,这是它的特点.表2-9举出了一些零件标注倾斜度公差的示例. 4,定位公差有哪些,各自的含义是什么,如何标注 答:定位公差有同轴度,对称度,位置度,圆跳动和全跳动.其含义和标注如下: 四,1) 同轴度 同轴度是定位公差,理论正确位置即为基准轴线.由于被测轴线对基准轴线的不

机械制图符号

机械制图符号 直线度(-)——是限制实际直线对理想直线直与不直的一项指标。 平面度——符号为一平行四边形,是限制实际平面对理想平面变动量的一项指标。它是针对平面发生不平而提出的要求。 圆度(○)——是限制实际圆对理想圆变动量的一项指标。它是对具有圆柱面(包括圆锥面、球面)的零件,在一正截面(与轴线垂直的面)内的圆形轮廓要求。 圆柱度(/○/)——是限制实际圆柱面对理想圆柱面变动量的一项指标。它控制了圆柱体横截面和轴截面内的各项形状误差,如圆度、素线直线度、轴线直线度等。圆柱度是圆柱体各项形状误差的综合指标。 线轮廓度(⌒)——是限制实际曲线对理想曲线变动量的一项指标。它是对非圆曲线的形状精度要求。 面轮廓度——符号是用一短线将线轮廓度的符号下面封闭,是限制实际曲面对理想曲面变动量的一项指标。它是对曲面的形状精度要求。 定向公差——关联实际要素对基准在方向上允许的变动全量。 定向公差包括平行度、垂直度、倾斜度。 平行度(‖)——用来控制零件上被测要素(平面或直线)相对于基准要素(平面或直线)的方向偏离0°的要求,即要求被测要素对基准等距。 垂直度(⊥)——用来控制零件上被测要素(平面或直线)相对于基准要素(平面或直线)的方向偏离90°的要求,即要求被测要素对基准成90°。 倾斜度(∠)——用来控制零件上被测要素(平面或直线)相对于基准要素(平面或直线)的方向偏离某一给定角度(0°~90°)的程度,即要求被测要素对基准成一定角度(除90°外)。 定位公差——关联实际要素对基准在位置上允许的变动全量。 定位公差包括同轴度、对称度和位置度。 同轴度(◎)——用来控制理论上应该同轴的被测轴线与基准轴线的不同轴程度。 对称度——符号是中间一横长的三条横线,一般用来控制理论上要求共面的被测要素(中心平面、中心线或轴线)与基准要素(中心平面、中心线或轴线)的不重合程度。 位置度——符号是带互相垂直的两直线的圆,用来控制被测实际要素相对于其理想位置的变动量,其理想位置由基准和理论正确尺寸确定。 跳动公差——关联实际要素绕基准轴线回转一周或连续回转时所允许的最大跳动量。 跳动公差包括圆跳动和全跳动。 圆跳动——符号为一带箭头的斜线,圆跳动是被测实际要素绕基准轴线作无轴向移动、回转一周中,由位置固定的指示器在给定方向上测得的最大与最小读数之差。 全跳动——符号为两带箭头的斜线,全跳动是被测实际要素绕基准轴线作无轴向移动的连续回转,同时指示器沿理想素线连续移动,由指示器在给定方向上测得的最大与最小读数之差。 H7/m6 根据你的加工的基本尺寸,按你的尺寸大小,内孔选择H7第七级,上偏差为0,下偏差为H7的间隙配合,外圆选择m6的过盈配合尺寸,上偏差按m6,下偏差为0。 1 |评论

机械制图符号及表示含义

机械制图符号及表示含义 Solid 二维实体2D 实面 2D Wireframe 二维线框 3D Array 三维阵列3D 阵列 3D Dynamic View 三维动态观察3D 动态检视 3d objects 三维物体3D 物件 3D Orbit 三维轨道3D 动态 3D Orbit 三维动态观察3D 动态 3D Studio 3D Studio 3D Studio 3D Viewpoint 三维视点3D 检视点 3dpoly 三维多段线3D 聚合线 3dsin 3DS 输入3D 实体汇入 3DSolid 三维实体3D 实体 3dsout 3DS 输出3D 实体汇出 abort 放弃中断 abort 中断中断 absolute coordinates 绝对坐标绝对座标 abut 邻接相邻 accelerator key 加速键快速键 access 获取存取 acisin ACIS 输入ACIS 汇入 acisout ACIS 输出ACIS 汇出 action 操作动作 active 活动(的)作用中 adaptive sampling 自适应采样最适取样 add 添加加入 Add a Printer 添加打印机新增印表机 Add mode 添加模式 Add Plot Style Table 添加打印样式表 Add Plot Style Table 添加打印样式表 Add Plotter 添加打印机 Add Plotter 添加打印机 Add to Favorites 添加到收藏夹加入我的最爱 ADI ADI(Autodesk 设备接口) ADI (Autodesk 设备介面) adjacent 相邻相邻 Adjust 调整调整 Adjust Area fill 调整区域填充调整区域填满 AdLM (Autodesk License Manager) AdLM(Autodesk 许可管理器)Administration dialog box 管理对话框管理对话方块 Advanced Setup Wizard 高级设置向导进阶安装精灵 Aerial View 鸟瞰视图鸟瞰视景 affine calibration 仿射校准关系校正

机械制图焊缝标注方法

机械制图焊缝标注方法 2015-10-26机械加工在线机械编辑:古月 来源:机械设计网 1、焊缝标注方法 图样上焊缝有两种表示方法,即符号法和图示法。 焊缝标注以符号标注法为主,在必要时允许辅以图示法。比如用连续或断续的粗线表示连续或断续焊缝;在需要时绘制焊缝局部剖视图或放大图表示焊缝剖面形状;用细实线绘制焊前坡口形状等等。符号标注法:通过焊缝符号和指引线表明焊缝形式的标注方法。 2、符号标注法的要素

焊缝符号标注中有许多要素,其中焊缝基本符号和指引线构成了焊缝的基本要素,属于必须标注的内容。除焊缝基本要素外,在必要时还应加注其他辅助要素,如辅助符号、补充符号、焊缝尺寸符号及焊接工艺等内容。 3、焊缝符号及其标注 (1)焊缝基本符号是表示焊缝横断面形状的符号,共有13个(详见GB/324-88),例如: (2)辅助符号是表示焊缝表面形状特征的符号。不需要确切地说明焊缝的表面形状时可以不加注辅助符号。辅助符号配置在基本符号固定位置。辅助符号有3个。

(3)补充符号是为了补充说明焊缝的某些特征而采用的符号,一共有5个。 (4)特殊符号是为了满足某些特殊情况而规定的焊缝符号,共有4个。

4、指引线及其标注 指引线由箭头线和基准线组成。 (1)箭头线:箭头可指向接头侧和非接头侧;箭头线相对焊缝的位置一般没有特殊要求;允许箭头线弯折一次。

(2)基准线基准线含有实线基准线和虚线基准线。虚线基准线可画在实线基准线的上方或下方; 焊缝符号标注在实线基准线上说明焊缝在箭头侧,标注在虚线基准线上说明焊缝在非箭头侧; 标注双面或对称焊缝时可不加虚线。 5、焊缝尺寸符号及其标注 (1)焊缝标注有必要时可附带有焊缝尺寸符号及数据。焊缝尺寸符号共有16个(详见GB/324-88),例如:

机械制图常用形位公差符号表示方法

机械制图常用形位公差符号表示方法

一、形位公差 零件加工时,不仅会产生尺寸误差,还会产生形状和位置误差。零件表面的实际形状对其理想形状所允许的变动量,称为形状误差。零件表面的实际位置对其理想位置所允许的变动量,称为位置误差。形状和位置公差简称形位公差。 二、形位公差符号 标注符号 直线度(-)——是限制实际直线对理想直线直与不直的一项指标。 平面度——符号为一平行四边形,是限制实际平面对理想平面变动量的一项指标。它是针对平面发生不平而提出的要求。 圆度(○)——是限制实际圆对理想圆变动量的一项指标。它是对具有圆柱面(包括圆锥面、球面)的零件,在一正截面(与轴线垂直的面)内的圆形轮廓要求。圆柱度(/○/)——是限制实际圆柱面对理想圆柱面变动量的一项指标。它控制了圆柱体横截面和轴截面内的各项形状误差,如圆度、素线直线度、轴线直线度等。圆柱度是圆柱体各项形状误差的综合指标。 线轮廓度(⌒)——是限制实际曲线对理想曲线变动量的一项指标。它是对非圆曲线的形状精度要求。 面轮廓度——符号是用一短线将线轮廓度的符号下面封闭,是限制实际曲面对理想曲面变动量的一项指标。它是对曲面的形状精度要求。

定向公差——关联实际要素对基准在方向上允许的变动全量。 定向公差包括平行度、垂直度、倾斜度。 平行度(‖)——用来控制零件上被测要素(平面或直线)相对于基准要素(平面或直线)的方向偏离0°的要求,即要求被测要素对基准等距。 垂直度(⊥)——用来控制零件上被测要素(平面或直线)相对于基准要素(平面或直线)的方向偏离90°的要求,即要求被测要素对基准成90°。 倾斜度(∠)——用来控制零件上被测要素(平面或直线)相对于基准要素(平面或直线)的方向偏离某一给定角度(0°~90°)的程度,即要求被测要素对基准成一定角度(除90°外)。 定位公差——关联实际要素对基准在位置上允许的变动全量。 定位公差包括同轴度、对称度和位置度。 同轴度(◎)——用来控制理论上应该同轴的被测轴线与基准轴线的不同轴程度。对称度——符号是中间一横长的三条横线,一般用来控制理论上要求共面的被测要素(中心平面、中心线或轴线)与基准要素(中心平面、中心线或轴线)的不重合程度。 位置度——符号是带互相垂直的两直线的圆,用来控制被测实际要素相对于其理想位置的变动量,其理想位置由基准和理论正确尺寸确定。 跳动公差——关联实际要素绕基准轴线回转一周或连续回转时所允许的最大跳动量。 跳动公差包括圆跳动和全跳动。 圆跳动——符号为一带箭头的斜线,圆跳动是被测实际要素绕基准轴线作无轴向移动、回转一周中,由位置固定的指示器在给定方向上测得的最大与最小读数之差。 全跳动——符号为两带箭头的斜线,全跳动是被测实际要素绕基准轴线作无轴向移动的连续回转,同时指示器沿理想素线连续移动,由指示器在给定方向上测得的最大与最小读数之差

机械制图中各种符号的含义

机械制图中各种符号的含义 1. 光洁度( ) ,表示要加工面的光洁度 2. 直线度(-) ,是限制实际直线对理想直线变动量的一项指标。它是针对直线发生不直 而提出的要求。 3. 平面度( ) ,是限制实际平面对理想平面变动量的一项指标。它是针对平面发生不平 而提出的要求。 4. 圆度(○) ,是限制实际圆对理想圆变动量的一项指标。它是对具有圆柱面(包括圆锥 面、球面)的零件,在一正截面(与轴线垂直的面)内的圆形轮廓要求。 5. 圆柱度(/○/) ,是限制实际圆柱面对理想圆柱面变动量的一项指标。它控制了圆柱体横 截面和轴截面内的各项形状误差,如圆度、素线直线度、轴线直线度等。圆柱度是圆柱 体各项形状误差的综合指标。 6. 线轮廓度(⌒) ,是限制实际曲线对理想曲线变动量的一项指标。它是对非圆曲线的形 状精度要求。 7. 面轮廓度( ) ,是限制实际曲面对理想曲面变动量的一项指标,它是对曲面的形状精 度要求。 8. 平行度(‖) ,用来控制零件上被测要素(平面或直线)相对于基准要素(平面或直线) 的方向偏离 0°的要求,即要求被测要素对基准等距。 9. 垂直度(⊥) ,用来控制零件上被测要素(平面或直线)相对于基准要素(平面或直线) 的方向偏离 90°的要求,即要求被测要素对基准成 90°。 10. 倾斜度(∠) ,用来控制零件上被测要素(平面或直线)相对于基准要素(平面或直线) 的方向偏离某一给定角度(0°~90°) 的程度, 即要求被测要素对基准成一定角度除 90° 外)。 11. 同轴度(◎) ,用来控制理论上应该同轴的被测轴线与基准轴线的不同轴程度。 12. 对称度( ) ,一般用来控制理论上要求共面的被测要素(中心平面、中心线或轴线) 与基准要素(中心平面、中心线或轴线)的不重合程度。 13. 位置度( ) ,用来控制被测实际要素相对于其理想位置的变动量,其理想位置由基准 和理论正确尺寸确定。 14. 圆跳动( ) ,圆跳动是被测实际要素绕基准轴线作无轴向移动、回转一周中,由位置 固定的指示器在给定方向上测得的最大与最小读数之差。 15. 全跳动( ) ,全跳动是被测实际要素绕基准轴线作无轴向移动的连续回转,同时指示 器沿理想素线连续移动,由指示器在给定方向上测得的最大与最小读数之差。 16. ?25H8,是所标位置的直径为 25 毫米,“H”说明是标的孔的偏差(极限偏差)。 其中 H8 代表的数值,对于直径 25 来说,是上偏差为 33 微米(0.03 毫米),下偏差为 0。 综合所述:?25H8 的意思是孔的直径范围为 25.000--25.033。

机械制图符号表

直线度(-)——是限制实际直线对理想直线直与不直的一项指标。 平面度——符号为一平行四边形,是限制实际平面对理想平面变动量的一项指标。它是针对平面发生不平而提出的要求。 圆度(○)——是限制实际圆对理想圆变动量的一项指标。它是对具有圆柱面(包括圆锥面、球面)的零件,在一正截面(与轴线垂直的面)内的圆形轮廓要求。圆柱度(/○/)——是限制实际圆柱面对理想圆柱面变动量的一项指标。它控制了圆柱体横截面和轴截面内的各项形状误差,如圆度、素线直线度、轴线直线度等。圆柱度是圆柱体各项形状误差的综合指标。 线轮廓度(⌒)——是限制实际曲线对理想曲线变动量的一项指标。它是对非圆曲线的形状精度要求。 面轮廓度——符号是用一短线将线轮廓度的符号下面封闭,是限制实际曲面对理想曲面变动量的一项指标。它是对曲面的形状精度要求。 定向公差——关联实际要素对基准在方向上允许的变动全量。 定向公差包括平行度、垂直度、倾斜度。 平行度(‖)——用来控制零件上被测要素(平面或直线)相对于基准要素(平面或直线)的方向偏离0°的要求,即要求被测要素对基准等距。 垂直度(⊥)——用来控制零件上被测要素(平面或直线)相对于基准要素(平面或直线)的方向偏离90°的要求,即要求被测要素对基准成90°。 倾斜度(∠)——用来控制零件上被测要素(平面或直线)相对于基准要素(平面或直线)的方向偏离某一给定角度(0°~90°)的程度,即要求被测要素对基准成一定角度(除90°外)。 定位公差——关联实际要素对基准在位置上允许的变动全量。

定位公差包括同轴度、对称度和位置度。 同轴度(◎)——用来控制理论上应该同轴的被测轴线与基准轴线的不同轴程度。对称度——符号是中间一横长的三条横线,一般用来控制理论上要求共面的被测要素(中心平面、中心线或轴线)与基准要素(中心平面、中心线或轴线)的不重合程度。 位置度——符号是带互相垂直的两直线的圆,用来控制被测实际要素相对于其理想位置的变动量,其理想位置由基准和理论正确尺寸确定。 跳动公差——关联实际要素绕基准轴线回转一周或连续回转时所允许的最大跳动量。 跳动公差包括圆跳动和全跳动。 圆跳动——符号为一带箭头的斜线,圆跳动是被测实际要素绕基准轴线作无轴向移动、回转一周中,由位置固定的指示器在给定方向上测得的最大与最小读数之差。 全跳动——符号为两带箭头的斜线,全跳动是被测实际要素绕基准轴线作无轴向移动的连续回转,同时指示器沿理想素线连续移动,由指示器在给定方向上测得的最大与最小读数之差。

机械制图标注常用符号大全

机械制图标注常用符号 机械制图尺寸标注常用标准符号

汇编人:质管办标准化管理员郑家贵2011年8月25日 机械制图基础知识 一、.图线GB/T 4457.4-2002 GB/T 17450-1998 注:粗虚线和粗点画线的选用 (1)两种粗线都用来指示零件上的某一部分有特殊要求。但应用场合不尽相同。粗虚线专门用于指示该表面有表面处理要求。(表面处理包括镀(涂)覆、化学处理和冷作硬化处理。) (2)粗点画线是限定范围的表示线常见于以下场合: a.限定局部热处理的范围(如上图) b.限定不镀(涂)范围(如下左图) c.限定形位公差的被测要素和基准要素的范围(如下右图) 二、视图GB/T 17451-1998 GB/T 4458.1-2002 1.按第一角法配置的六个基本视图 2.局部视图 1)按基本视图的配置形式配置 2)按向视图的配置形式配置

不要 “向”字 三、剖视图

及剖面区域的表示法GB/T 17452~17453-1998 GB/T 4458.6-2002 图形不对称时, 移出断面不得画 在中断处

四、简化画法GB/T 16675.1-1996 1.管子 1)可仅在端部画出部分形状,其余用细点画线画出其中心线 2)可用与管子中心线重合的单根粗实线表示。 2. 五、螺纹及螺纹紧固件表示法GB/T 4459.1-1995 GB/T 197-2003 无论是外螺纹或内螺纹,在剖视或剖面图中的剖面线都应画到粗实线。 根据GB/T 197-2003的规定,将普通螺纹的标记方法介绍如下: 六、弹簧表示法GB/T 4459.4-2003 七、尺寸注法GB/T 4458.4-2003 GB/T 19096-2003 1.在光滑过渡处标注尺寸时,应用细实线将轮廓线延长,从它们的交点处引出尺寸界线。(如下图) 2.标注角度的尺寸界线应沿径向引出(图5),标注弦长的尺寸界线应平行于该弦的垂直平分线(图6),标注弧长的尺寸界线应平行于该弧所对圆心角的角平分线(图7),但当弧度较大时,可沿径向引出(图8)。 3.当对称机件的图形只画出一半或略大于一半时,尺寸线应略超过对称中心线或断裂处的边界,此时仅在尺寸线的一端画出箭头。 尺寸数字: 标注尺寸的符号及缩写词 (如上图)

机械制图符号和公差符号的意思

机械制图符号和公差符号 直线度(-)——是限制实际直线对理想直线直与不直的一项指标。 平面度——符号为一平行四边形,是限制实际平面对理想平面变动量的一项指标。它是针对平面发生不平而提出的要求。 圆度(○)——是限制实际圆对理想圆变动量的一项指标。它是对具有圆柱面(包括圆锥面、球面)的零件,在一正截面(与轴线垂直的面)内的圆形轮廓要求。圆柱度(/○/)——是限制实际圆柱面对理想圆柱面变动量的一项指标。它控制了圆柱体横截面和轴截面内的各项形状误差,如圆度、素线直线度、轴线直线度等。圆柱度是圆柱体各项形状误差的综合指标。 线轮廓度(⌒)——是限制实际曲线对理想曲线变动量的一项指标。它是对非圆曲线的形状精度要求。 面轮廓度——符号是用一短线将线轮廓度的符号下面封闭,是限制实际曲面对理想曲面变动量的一项指标。它是对曲面的形状精度要求。 定向公差——关联实际要素对基准在方向上允许的变动全量。 定向公差包括平行度、垂直度、倾斜度。 平行度(‖)——用来控制零件上被测要素(平面或直线)相对于基准要素(平面或直线)的方向偏离0°的要求,即要求被测要素对基准等距。 垂直度(⊥)——用来控制零件上被测要素(平面或直线)相对于基准要素(平面或直线)的方向偏离90°的要求,即要求被测要素对基准成90°。 倾斜度(∠)——用来控制零件上被测要素(平面或直线)相对于基准要素(平面

或直线)的方向偏离某一给定角度(0°~90°)的程度,即要求被测要素对基准成一 定角度(除90°外)。 定位公差——关联实际要素对基准在位置上允许的变动全量。 定位公差包括同轴度、对称度和位置度。 同轴度(◎)——用来控制理论上应该同轴的被测轴线与基准轴线的不同轴程度。对称度——符号是中间一横长的三条横线,一般用来控制理论上要求共面的被测要素(中心平面、中心线或轴线)与基准要素(中心平面、中心线或轴线)的不重合程度。 位置度——符号是带互相垂直的两直线的圆,用来控制被测实际要素相对于其理想位置的变动量,其理想位置由基准和理论正确尺寸确定。 跳动公差——关联实际要素绕基准轴线回转一周或连续回转时所允许的最大跳动量。跳动公差包括圆跳动和全跳动。 圆跳动——符号为一带箭头的斜线,圆跳动是被测实际要素绕基准轴线作无轴向移动、回转一周中,由位置固定的指示器在给定方向上测得的最大与最小读数之差。全跳动——符号为两带箭头的斜线,全跳动是被测实际要素绕基准轴线作无轴向移动的连续回转,同时指示器沿理想素线连续移动,由指示器在给定方向上测得的最大与最小读数之差 补充:

机械制图全部符号及表示含义

机械制图全部符号及表示含义:你可以安装一个中文版的AUTO CAD不就好了吗? 不过你需要我还是把英文的给你好了,当作翻译自己看吧。 这个软件还是很好用的。 2D Solid 二维实体2D 实面 2D Wireframe 二维线框 3D Array 三维阵列3D 阵列 3D Dynamic View 三维动态观察3D 动态检视 3d objects 三维物体3D 物件 3D Orbit 三维轨道3D 动态 3D Orbit 三维动态观察3D 动态 3D Studio 3D Studio 3D Studio 3D Viewpoint 三维视点3D 检视点 3dpoly 三维多段线3D 聚合线 3dsin 3DS 输入3D 实体汇入 3DSolid 三维实体3D 实体 3dsout 3DS 输出3D 实体汇出 abort 放弃中断 abort 中断中断 absolute coordinates 绝对坐标绝对座标 abut 邻接相邻 accelerator key 加速键快速键 access 获取存取 acisin ACIS 输入ACIS 汇入 acisout ACIS 输出ACIS 汇出 action 操作动作 active 活动(的)作用中 adaptive sampling 自适应采样最适取样 add 添加加入 Add a Printer 添加打印机新增印表机 Add mode 添加模式 Add Plot Style Table 添加打印样式表 Add Plot Style Table 添加打印样式表 Add Plotter 添加打印机 Add Plotter 添加打印机 Add to Favorites 添加到收藏夹加入我的最爱 ADI ADI(Autodesk 设备接口) ADI (Autodesk 设备介面) adjacent 相邻相邻 Adjust 调整调整 Adjust Area fill 调整区域填充调整区域填满 AdLM (Autodesk License Manager) AdLM(Autodesk 许可管理器)Administration dialog box 管理对话框管理对话方块 Advanced Setup Wizard 高级设置向导进阶安装精灵 Aerial View 鸟瞰视图鸟瞰视景

机械制图中公差符号和表示的意思

机械制图的符号及代表意义 要素——构成零件几何特征的点、线、面。 要素可从不同的角度分类: (1)按存在的状态可分为理想要素和实际要素 理想要素——具有几何意义的要素,设计者在图样上给出的均为理想要素,它没有形位误差。 实际要素——零件上实际存在的要素,测量时由测得的要素来代替,由于测量误差的存在,实际要素并非要素的真实状况。(2)按在形位公差中所处的地位可分为被测要素和基准要素。 被测要素——在图样上给出了形状或(和)位置公差的要素。 基准要素——用来确定被测要素方向或(和)位置的要素。 被测要素按其功能关系又可分为单一要素和关联要素。 单一要素——仅给出形状公差要求的要素。 关联要素——对其它要素有功能关系的要素。 (3)按要素的几何特征可分为轮廓要素(如圆柱面、圆锥面、平面、素线、曲线、曲面等)和中心要素(如轴线、球心、圆心、两平行平面的中心平面等)。 形状公差——单一实际要素的形状所允许的变动全量。 形状公差包括直线度、平面度、圆度、圆柱度、线轮廓度和面轮廓度。 直线度(-)——是限制实际直线对理想直线变动量的一项指标。它是针对直线发生不直而提出的要求。 平面度——符号为一平行四边形,是限制实际平面对理想平面变动量的一项指标。它是针对平面发生不平而提出的要求。

圆度(○)——是限制实际圆对理想圆变动量的一项指标。它是对具有圆柱面(包括圆锥面、球面)的零件,在一正截面(与轴线垂直的面)内的圆形轮廓要求。 圆柱度(/○/)——是限制实际圆柱面对理想圆柱面变动量的一项指标。它控制了圆柱体横截面和轴截面内的各项形状误差,如圆度、素线直线度、轴线直线度等。圆柱度是圆柱体各项形状误差的综合指标。 线轮廓度(⌒)——是限制实际曲线对理想曲线变动量的一项指标。它是对非圆曲线的形状精度要求。 面轮廓度——符号是用一短线将线轮廓度的符号下面封闭,是限制实际曲面对理想曲面变动量的一项指标。它是对曲面的形状精度要求。 定向公差——关联实际要素对基准在方向上允许的变动全量。 定向公差包括平行度、垂直度、倾斜度。 平行度(‖)——用来控制零件上被测要素(平面或直线)相对于基准要素(平面或直线)的方向偏离0°的要求,即要求被测要素对基准等距。 垂直度(⊥)——用来控制零件上被测要素(平面或直线)相对于基准要素(平面或直线)的方向偏离90°的要求,即要求被测要素对基准成90°。 倾斜度(∠)——用来控制零件上被测要素(平面或直线)相对于基准要素(平面或直线)的方向偏离某一给定角度(0°~90°)的程度,即要求被测要素对基准成一定角度(除90°外)。 定位公差——关联实际要素对基准在位置上允许的变动全量。 定位公差包括同轴度、对称度和位置度。 同轴度(◎)——用来控制理论上应该同轴的被测轴线与基准轴线的不同轴程度。

机械图纸中的符号意义

机械图纸中的符号意义 机械图纸中常见的符号及意义《机械识图》根据最新的中等职业学校机械制图教学大纲,针对中等职业学校学生在识图知识与技能方面的就业需求编写而成,注重对中等职业学校学生的识图能力培养。《图文对半,直观形象,方便教学。全书共分9个项目:抄画平面图形,三视图的形成与投影作图,基本几何体的视图,绘制与识读组合体视图,识读视图、剖视图和断面图,识读轴套类零件图,识读盘盖轮类零件图,识读叉架类和箱壳类零件图,识读装配图。通过这9个项目将知识点与任务有机地结合,由浅入深,循序渐进,使学生完成技能的训练,达到学以致用的目的。自劳动开创人类文明史以来, 图形与语言、文字一样, 是人们认识自然、表达和交流思想的基本工具, 在图学发展的历史长河中, 经过不断地完善和发展得到了广泛的应用。在现代工业生产中, 机械、化工或建筑都是根据图样进行制造和施工的。设计者通过图样表达设计意图; 制造者通过图样了解设计要求、组织制造和指导生产; 使用者通过图样了解机器设备的结构和性能, 进行操作、维修和保养。因此机械图样是交流传递技术信息、思想的媒介和工具, 是工程界通用的技术语言。作为职业技术教育培养目标的生产第一线的现代新型技能型人才, 必须学会并掌握这种语言, 具备识读和绘制机械图样的基本能力。从以下几方面可以体现其重要性: 从事机械制造行业就须掌握机械制图,学习机械制图感到抽象、困难, 其原因之一是习惯于在平面上思考问题, 缺乏空间思维能力。在学

习过程中教师要有针对性地借助各种媒体, 直观、形象地引导学生建立起空间概念, 由平面思维转换到空间思维。把物体的投影与实际零件结构紧密联系, 不断地“由物画图”和“由图画物”, 既要想象物体的形状, 又要思考图形间的投影规律, 步提高空间想象和思维能力。有了这种能力, 在实际工作时, 才会通过二维的平面图——零件图(或装配图) 想象出来三维的空间物体——实际零件(装配体), 只有掌握这种技能, 才能顺利完成零件加工或机器装配的工作。所以, 空间想象能力是学习机械制图的核心内容。《机械制图》的基本原理, 制图标准、及相关规则, 严肃体现出国家标准的统一性, 无论谁都必须严格遵照执行。随着我国各个领域与国际接轨的今天, 在机械制造行业, 国家标准与国际标准也会逐步一致, 使我国机械制造行业技术人才能更好的与之交流, 那么就必须熟练地掌握这门技术语言, 更便于同行业间进行技术探讨和技术革新, 但是前提条件是必须精通机械制图这门课程以及相关的国家标准, 并且反复强调标准规定的严谨性、权威性和法制性, 使技术人员较好地确立标准化意识。 机械制图对解决实际问题和创新能力的影响《机械制图》课除了如何使他们很好地建立空间想象能力、掌握投影规律及国家标准, 还必须具有机械专业的相关知识, 如金属工艺学、机械制造工艺学、机械零件与机械原理、公差配合与技术测量等, 这些知识在机械制图中的零件结构、表面质量、加工方法、材料选择、技术要求、连接装配关系等方面都要用到。也不是只局限于了解制图上的一些概念、定义和规则, 还会学习和掌握到其它相关领域的各种知识, 并且会正确、合理、全面地

机械图纸的常见符号

机械图纸的常见符号 《机械识图》根据最新的中等职业学校机械制图教学大纲,针对中等职业学校学生在识图知识与技能方面的就业需求编写而成,注重对中等职业学校学生的识图能力培养。《图文对半,直观形象,方便教学。全书共分9个项目:抄画平面图形,三视图的形成与投影作图,基本几何体的视图,绘制与识读组合体视图,识读视图、剖视图和断面图,识读轴套类零件图,识读盘盖轮类零件图,识读叉架类和箱壳类零件图,识读装配图。通过这9个项目将知识点与任务有机地结合,由浅入深,循序渐进,使学生完成技能的训练,达到学以致用的目的。 自劳动开创人类文明史以来,图形与语言、文字一样,是人们认识自然、表达和交流思想的基本工具,在图学发展的历史长河中,经过不断地完善和发展得到了广泛的应用。在现代工业生产中,机械、化工或建筑都是根据图样进行制造和施工的。设计者通过图样表达设计意图;制造者通过图样了解设计要求、组织制造和指导生产;使用者通过图样了解机器设备的结构和性能,进行操作、维修和保养。因此机械图样是交流传递技术信息、思想的媒介和工具,是工程界通用的技术语言。作为职业技术教育培养目标的生产第一线的现代新型技能型人才,必须学会并掌握这种语言,具备识读和绘制机械图样的基本能力。从以下几方面可以体现其重要性: 从事机械制造行业就须掌握机械制图 ,学习机械制图感到抽象、困难,其原因之一是习惯于在平面上思考问题,缺乏空间思维能力。在学习过程中教师要有针对性地借助各种媒体,直观、形象地引导学生建立起空间概念,由平面思维转换到空间思维。把物体的投影与实际零件结构紧密联系,不断地“由物画图”和“由图画物”,既要想象物体的形状,又要思考图形间的投影规律,步提高空间想象和思维能力。有了这种能力,在实际工作时,才会通过二维的平面图——零件图(或装配图)想象出来三维的空间物体——实际零件(装配体),只有掌握这种 技能,才能顺利完成零件加工或机器装配的工作。所以,空间想象能力是学习机械制图的核心内容。《机械制图》的基本原理,制图标准、及相关规则,严肃体现出国家标准的统一性,无论谁都必须严格遵照执行。随着我国各个领域与国际接轨的今天,在机械制造行业,国家标准与国际标准也会逐步一致,使我国机械制造行业技术人才能更好的与之交流,那么就必须熟 练地掌握这门技术语言,更便于同行业间进行技术探讨和技术革新,但是前提条件是必须精 通机械制图这门课程以及相关的国家标准,并且反复强调标准规定的严谨性、权威性和法制性,使技术人员较好地确立标准化意识。 机械制图对解决实际问题和创新能力的影响《机械制图》课除了如何使他们很好地建立空间想象能力、掌握投影规律及国家标准,还必须具有机械专业的相关知识,如金属工艺学、机械制造工艺学、机械零件与机械原理、公差配合与技术测量等,这些知识在机械制图中的零件结构、表面质量、加工方法、材料选择、技术要求、连接装配关系等方面都要用到。也不是只局限于了解制图上的一些概念、定义和规则,还会学习和掌握到其它相关领域的各种知识,并且会正确、合理、全面地应用好机械制图这门工具,是现代化生产中技术人才最基本的要求,通过机械制图的学习,就要求具备这种让机械制图与实际结合起来,解决实际工作 中存在的各方面的问题的能力。《机械制图》是人们进行技术革新、技术改造的工具,是对新设计、新构思、新工艺研究探索,反映和表达高新技术、发明创造新生事物的载体。大胆地在该课程教学中融进新思想、新设计、探索和创新,是知识经济时代向我们提出的新课题、

机械制图标注常用符号大全

机械制图标注常用符号 序号符号名称符号绘制标准应用示例1 GB/T 1182-2008 基准符号。 涂黑三角形及中轴 线可任意变换位置, 方框与字母只允许 水平放置不允许歪 斜;方框外边的连线 也只允许在水平或 铅垂两个方向画出。

2 GB/T 4458、4-2003; 标注正方形结构尺寸时在尺寸前面加注正方形符号。 高度h=3、5mm 3 GB/T 4458、 4-2003; 标注弧长时在尺寸 前面加注弧长符号。 高度h=R=3、5mm 4 GB/T 4458、4-2003;GB/T 16675、2-1996 尺寸注法; 沉孔或锪平符号。 高度h=3、5mm 5 GB/T 4458、4-2003; GB/T 16675、2-1996 尺寸注法; 沉孔或锪平深度符号。 高度h=3、5mm 6 GB/T 4458、4-2003; GB/T 16675、2-1996 尺寸注法; 埋头孔符号。 高度h=3、5mm 机械制图尺寸标注常用标准符号 序号 符号名称 符号绘制标准 应用示例 7 GB/T 15754-1995 锥度符号或莫氏锥度注法。 高度h=3、5mm

8 JB/T 5061-2006 定位支撑符号。 高度h=3、5mm 9 JB/T 5061-2006 辅助支撑符号。 高度h=3、5mm 10 JB/T 5061-2006 辅助支撑符号。 高度h=5mm 11 GB/T 4459、5-1999 中心孔符号。 高度h=3、5mm; 高度H1=5mm。 12 JB/T 8555-2008 热 处理技术要求在零 件图样上的表示方 法。粗糙度符号的三 角形部分为测量点 符号。可随图形进行 缩放。 汇编人:质管办标准化管理员郑家贵2011年8月25日 机械制图基础知识 一、、图线GB/T 4457、4-2002 GB/T 17450-1998

机械制图_表面粗糙度符号(doc)

表面粗糙度符号、代号及其注法 Mechanical drawings— Surface roughness symbols and methods of indicating 1993-11-09 批准 1994-07-01 实施 国家质量技术监督局发布 本标准等效采用国际标准ISO 1302—1992《技术制图——标注表面特征的方法》。 1 主题内容与适用范围 本标准规定了零件表面粗糙度符号、代号及其在图样上的注法。 本标准适用于机电产品图样及有关技术文件。其他图样和技术文件也可参照采用。 2 引用标准 GB 1031 表面粗糙度参数及其数值 GB/T 13911 金属镀覆和化学处理表示方法 GB 3505 表面粗糙度术语表面及其参数 GB 4054 涂料涂覆标记 GB 10610 触针式仪器测量表面粗糙度的规则和方法 GB 12472 木制件表面粗糙度参数及其数值 3 表面粗糙度符号、代号 3.1图样上所标注的表面粗糙度符号、代号是该表面完工后的要求。 3.2有关表面粗糙度的各项规定应按功能要求给定。若仅需要加工(采用去除材料的方法或不去除材料的方法)但对表面粗糙度的其他规定没有要求时,允许只注表面粗糙度符号。 3.3图样上表示零件表面粗糙度的符号见表1。 在图样上标注表面粗糙度参数的上限值或下限值。 当要求在表面粗糙度参数的所有实测值中不得超过规定值时,应在图样上标注表面粗糙度参数的最大值或最小值。 3.5表面粗糙度高度参数轮廓算术平均偏差R a值的标注见表2,R a在代号中用数值表示(单位为微米),参数值前可不标注参数代号。

z y 的标注见表3,参数值前需标注出相应的参数代号。 图1 若按GB 10610—1989第6.1条中表1、表2的有关规定选用对应的取样长度时,在图样上可省略标注。 3.8若需要标注表面粗糙度间距参数轮廓的单峰平均间距S值、轮廓微观不平度的平均间距S m值或轮廓支承长度率tp时,应注在符号长边的横线下面,数值写在相应代号的后面。图2a是轮廓微观不平度的平均间距S m上限值的标注示例。图2b是轮廓支承长度率t p的标注示例,表示水平截距C在轮廓最大高度R y的50%位置上,支承长度率为70%,给出的t p 为下限值。图2c为S m最大值的标注示例。图2d为t p最小值的标注示例。 图2 3.9如该表面的粗糙度要求由指定的加工方法获得时,可用文字标注在符号长边的横线上面,见图3。 图3 3.10镀(涂)覆或其他表面处理的要求(表示方法或标记按GB/T 13911和GB 4054的规定)可以注写在符号长边的横线上面,也可以在技术要求中说明。 需要表示镀(涂)覆或其他表面处理后的表面粗糙度值时,其标注方法见图4a。 需要表示镀(涂)覆前的表面粗糙度值时,应另加说明,见图4b。 若同时要求表示镀(涂)覆前及镀(涂)覆后的表面粗糙度值时,标注方法如图4c。 图4 3.11需要控制表面加工纹理方向时,可在符号的右边加注加工纹理方向符号,见图5。常见的加工纹理方向符号见表4。 图5

相关文档
最新文档