074立体卷铁心变压器箱底的制造 0

铁芯制造工艺新

第二章铁芯制造工艺 第一节裁剪 一、剪切 剪切就是指用剪床与剪刀加工工件的工作。按照剪刀的安装方法,分为平口剪与斜口剪两种。平口剪的上下剪刃平行,一般用于剪切窄而厚的材料。斜口剪的上刀刃相对下刀刃有一个斜角。用于剪切宽而薄的板料。由于斜口剪上剪刃只有一点与板材接触,随着上刀刃下降,逐渐将板材剪成两部分;而平口剪剪刀全部与板材接触,在全宽范围内一下剪成两部分,因而斜口剪比平口剪省力,所以现在几乎全部采用斜口剪。由于斜口剪上剪刃与下剪刃有斜角φ,因而在侧向产生一个推力,所以角第一不宜过大,一般在10°~15°;第二在剪切时,在剪刃开口的一边加一挡料板,其用途有两点;一就是档料与抵消推力,二就是用作剪切定位,如图1-1a所示。 图1-1 斜口剪切示意图 a)斜口剪切示意图b)剪刃形状及有关角度图1-1b所示为剪刃形状的有关角度,其中δ角称为剪刃角,它就是直接影响刀刃的强度、锐利程度、剪切力大小与剪切质量好坏的重要因素。剪切硅钢片时,根据剪刀材质的不同,可在75°~85°之间选择。 为了减少剪刃上部与材料之间的摩擦,在上下剪刃靠近材料一侧,磨出一个1、5°~3°的后角α。 为了减少剪刃与剪切后的材料见的摩擦起见,在垂直材料的方向上,对上下刀刃各磨出一个1°~1、5°的前角γ。刃角δ为β角与前角γ之差。 由于卷料硅钢片的问世,原有的一般剪床已无法加工,因而产生了用圆盘滚刀来进行剪切,这就就是滚剪。滚剪刀具理论上后角α=0°,前角γ=0°。实际在刃磨时,后角α=0°,前角γ=1°,上下刃重合度为板厚的50%~70%,间隙为板厚的2、5%~5%。 剪切可按剪切刃与冷轧钢带的轧制方向的相对位置来分。在硅钢带剪切中,一般可分为纵剪、90°横剪与45°剪三种。 纵剪,就就是采用上述的圆盘滚剪刀,在纵滚生产线上。沿冷轧硅钢带的轧制方向,

-立体卷铁芯变压器的结构特点

立体卷铁芯变压器的结构特点: 1、磁路优化 (1)三维立体卷铁心层间没有接缝,磁路各处分布均匀,没有明显的高阻区,没有接缝处磁通密度的畸变现象。 (2)磁通方向与硅钢片晶体取向完全一致。 (3)三相磁路长度完全相等,三相磁路长度之和最短。 (4)三相磁路完全对称,三相空载电流完全平衡。 2、损耗低,节电效果显著 (1)三维立体卷铁心的磁化方向完全与硅钢片的轧制方向一致,且铁心层间没有搭头接槰,磁路各处的磁通分布均匀,没有明显的高阻区、没有接缝处磁通密度的畸变现象。在材质相同的前提下,卷绕式铁心与叠片式铁心相比,其铁损工艺系数从1.3-1.5之间下降到1.05左右,仅此一项可使铁心损耗降低10-20%。 (2)由于特殊的三维立体结构,使铁心的铁轭部分用材量比传统叠片铁心减少25%,且减少的角重量占铁心总重约6%。 (3)对硅钢片的剪切处理会使其导磁性能恶化,三维立体卷铁心经高温(800℃)真空充氮退火处理,不仅消除了铁心的机械应力,而且细化了硅钢片的磁畴,提高了硅钢片二次再结晶能力,使硅钢片的性能大大优于其出厂时的性能。 (4)经检测,三维立体变压器的空载损耗较国标降低25-35%,空载电流最高可降低92%。

3、噪音低 由于三维立体卷铁心是将硅钢片条料在专用的铁心卷绕机上不间断、紧密连续卷制而成,没有接缝,不会产生如叠片式那样因磁路不连续而发出的噪音。同时,三相磁路、磁通完全对称,工作磁密设计合理,因而产品噪音大大降低。 4、过载能力强 (1)产品本身的发热量很低:卷铁心变压器其空载损耗、空载电流都非常小,产品本身发热量就很低; (2)三相线圈呈“品”字形排布,在线圈间形成一条上下贯通的中心天然气道——“抽风烟筒”,由于上下铁轭温差30-40℃,产生强烈的空气对流,冷空气从下面往中心通道补充,热量从上铁轭内斜面辐射出去,自然循环中迅速带走变压器产生的热量。 5、结构紧凑,占地小 特殊的三维立体铁心使产品结构紧凑、布局合理,器身平面占用面积比传统产品减少10-15%,器身高度降低10-20%,若安装在箱式变电站中可缩小箱变体积近1/4。

高效节能三角形卷铁芯10KV变压器的经济性比较

高效节能三角形卷铁芯 10KV变压器的经济性比较 武汉供电局殷汉卿谢江辉肖栋柱 前言: 供电损耗由管理线损和技术线损组成。降低供电损耗就象拧毛巾,通过加强运行管理,可以较大幅度降低管理线损。线损降到一定程度就较难挤出水分,需要加强技术线损的管理,降低技术线损。本文从设备选择提出一个观点,旨在抛砖引玉,推动降低技术线损工作。 传统变压器的铁心结构为平面形,目前三角形卷铁芯变压器,突破了 传统结构框框,采用三只相同矩形的半圆截面卷铁芯,组合成 为立体三相变压器铁芯,使三相铁芯磁路完全对称,磁阻大大 减少,激磁电流、空载损耗显著降低,是一种使用传通材料, 但运行噪声更小、结构更为紧凑的高效节能型变压器,值得在 配电网络中推广应用,提高配电网经济运行水平。

S13-MR三角形卷铁芯变压器,比传统叠片式 配电变压器在性能上有较大提高,与S9型同容量 配电变压器相比,空载损耗下降44%,负载损耗下 降7%,空载电流下降90%,噪声级下降13dB,节能 效果显著。 对10KV级50-1000KVA S13-MR三角形卷铁芯变压 器与普通结构铁心变压器比较分析表明: (1)与新S9相比, S13-MR压器空载损耗下降35.3%-46.5%,如果综合考虑按全年变压器空载运行8700小时,额定负载运行5000小时,电费取0.5元/KW 计算,计算公式: P=8700*Po+5000*Pk+0.05*8700Io%*Pn 式中: P——全年节约电量 kWh Po——两系列同规格变压器空载损耗的差值 kW Pk——两系列同规格变压器负载损耗的差值 kW Io%——两系列同规格变压器空载电流的差值 Pn——变压器额定容量 kVA 0.05——无功当量 例:一台1000KVAS13-MR变压器比S9变压器运行一年可节约电能: 8700(1.7-0.91)+5000(10.03-9.6)+0.05*8700*(1.3%-0.13%)* 1000 =13460 (kWh) 即节约电费:6730元。 如果平均每KVA按节电13KW.h,以2002武汉供电局配电变压器总容量为2638570KVA,若全部采用S13-MR变压器,年节电3430万KW.h,可节约电费1715万元,这还没有考虑减少无功补偿设备的投入。 (2)S13-MR变压器价格为新S9价的1.3倍时,平均电价按0.5元/度计,由于空载损耗降低,一般运行1-2年,即可收回一次性多投资的费用。 S13-MR变压器的价格评估: 从1981年起,在变压器的采购投标中,国际上出现了变压器损耗评估的概念,对产品的性能和价格进行综合评估,目的是获取最大的使用效益。

S11卷铁芯变压器介绍

S11卷铁芯变压器介绍 摘要:降低变压器的损耗,提高供配电系统效率,是目前世界各国关注的问题。在整个供电系统中,配电变压器所占比重最大,改进其性能,降低损耗指标,对电力系统节能,提高系统可靠性具有重要的意义。由于卷铁芯变压器有其独特的结构优势,它与传统的叠片式铁芯变压器相比,具有重量轻,体积小,空载损耗小,噪音低,机械和电气性能优越,因此,在今后电网建设与改造中,卷铁芯变压器将逐步被推广使用。 1S11卷铁芯变压器的由来 (1)概述 降低变压器的损耗,提高供配电系统效率,是目前世界各国关注的问题。在整个供电系统中,配电变压器所占比重最大,尤其在农村电网中几乎都是配电变压器,改进其性能,降低损耗指标,对电力系统节能,提高系统可靠性具有重要的意义。由于卷铁芯变压器有其独特的结构优势,它与传统的叠片式铁芯变压器相比,具有重量轻,体积小,空载损耗小,噪音低,机械和电气性能优越,因此,在今后电网建设与改造中,卷铁芯变压器将逐步被推广使用。80年代末美国、德国、日本相继开发了卷铁芯变压器,最早是使用在电子变压器上,作为复印机、计算机、卡拉OK、游戏机等高档电子产品和医疗产品上,而后逐渐移置到电力变压器上。卷铁芯由硅钢片不间断连续卷制而成,在片形上没有接缝,可降低噪音。开始仅有单相铁芯,以后由单相卷铁芯技术推广到三相卷铁芯制造上来。只要在两个闭路矩形铁芯外面,再用电工钢带绕一个矩形铁芯即可以制成平面布置型的三相三柱式铁芯。它由两个相同的内框和外框组成。三相卷铁芯变压器与单相相比,其损耗和一个噪音的降低都是不足的,但与叠片式的铁芯变压器相比有许多优点。 单相卷铁芯变压器只有一个框,铁芯经退火后,其工艺系数仅为1.05。三相卷铁芯变压器一般采用三相三柱内铁芯形式,铁芯经退火后,其工艺系数可达到1.15~1.2。 卷铁芯变压器的制造过程主要由硅钢片的纵剪、铁芯卷制、铁芯真空退火、线圈绕制、器身绝缘装配、产品总装配等工序组成。 (2)国内S11卷铁芯变压器的状况: 90年代中期我国自行开发了卷铁芯工装设备及制造技术,90年代后期我国一些生产厂家也分别从日本、瑞典等国家引进卷铁芯的工装设备和技术。 卷铁芯变压器的铁芯是由厚度小于或等于0.3mm冷轧的硅钢片,纵剪成不同宽度的条料,连续不断卷制(中间没有接头)成长方形的框架,又由于硅钢片的宽度形状不同,绕制成型后其断面是不一样的。这样卷铁芯又可分为两种:阶梯型和R型。 阶梯型卷铁芯变压器和R型卷铁芯变压器,它们都具备卷铁芯变压器的优点。但它们之间又有不同,如硅钢片的利用上,梯形的要比R型的高,磁阻方面梯形的要比R型的大一些,体积上R型的要比梯形的略小,至于其他方面都不好一概而论,都有待进一步去改进工装设备,改进生产工艺,改进设计思路,而逐渐显示出各自的优势来。 目前我国生产S11卷铁芯变压器的厂家不过十几家,大部分是生产阶梯型的厂家,R型的生产厂家不过有几家。卷铁芯变压器的产品除了供给国内用户外,有的厂家产品已销往国外。卷铁芯变压器的生产,目前我国主要集中在10kV电压等级,最大容量800kV A已通过鉴定,1250kV A、1600kV A已经试制成功。 目前电力部门采购的卷铁芯变压器以315kV A及以下的容量居多 (3)我国卷铁芯变压器同国外产品空载损耗指标比较: 比日本三菱公司变压器:空载损耗降低21.8% 比日本大阪变压器:空载损耗降低10.3% 比日本东芝变压器:空载损耗降低39% 比意大利变压器:空载损耗降低39.6% 比挪威变压器:空载损耗降低36.5% 比比利时变压器:空载损耗降低21.2%

立体卷铁心变压器

立体卷铁心变压器 最近,沈阳变压器研究所技术中心开发设计了立体卷铁心变压器,其技术特点、技术经济性等内容如下: 1.预期目标 目前新S9产品已广泛地占领了市场。但随着经济的发展,用户对“11”型产品的需求逐步增长。这就要求我们设计出可靠性高、损耗低的新产品。S11型立体卷铁心变压器是在新S9及平面卷铁心成熟的技术基础上设计开发的。S11型立体卷铁心产品在满足性能指标的同时,力求降低原材料用量。 2.产品特点 立体卷铁心系列三相油浸配电变压器是在总结以往10kV级配电变压器,特别是新型S9系列及平面卷铁心系列产品设计经验的基础上进行的。设计的主导思想是在保证可靠性和高性能指标的前提下,尽可能降低成本。 铁心:三相立体卷铁心与平面卷铁心的相同之处在于:铁心均在生产线上进行卷制,不需要横剪设备,消除了由人工叠片、叠装、拆插铁轭造成的质量波动;立体卷铁心经退火处理后,能彻底消除内应力,磁路各处均无高磁阻存在,故空载损耗与励磁电流均可大幅度下降;比较叠铁心变压器可减少5-6道工序,因此生产效率高,质量稳定可靠,较少受人为因素影响;立体卷铁心充分发挥了高导磁冷轧硅钢片的导磁特性,经退火后,大大降低了空载损耗和空载电流;由于卷铁心是不间断连续绕制而成,只有几个接缝,不会产生如叠片式铁心那样因磁路不连贯而发出的噪声,可使噪声降低到最低限度,一般可降低5~10dB,达到静音状态。本系列铁心是由三个相同的框组成的,每个框都是单独绕制的,工艺过程简化。这样单个铁心重量减小,退火彻底,有效地降低了空载损耗。由于三个框相同,铁心三个心柱的磁路对称分布,使空载电流也是对称分布的。铁轭的截面积为心柱截面积的一半,减低了铁心重量。

变压器铁心制造工艺分析

龙源期刊网 https://www.360docs.net/doc/e517356054.html, 变压器铁心制造工艺分析 作者:李永康 来源:《科学与财富》2018年第09期 摘要:变压器铁心是决定变压器性能指标的重要组部件,一直是电力行业研究的重要课题。本文分析了特高压大容量变压器铁心的制造工艺流程及工艺要求,并提出了提升铁心制造工艺水平的相关建议,为铁心制造工艺进一步发展奠定了理论基础。 关键词:特高压变压器;铁心;PET绑扎;不叠上铁轭; 0.引言 近年来,随着科技水平的不断提高及电力行业的不断发展,变压器需求增幅较快,且变压器的种类、容量及生产工艺都有了长足的进步。作为变压器的重要核心部件之一,铁心质量的优劣决定着变压器的整体性能的好坏,尤其是损耗。随着我国材料及加工工艺水平的不断创新及提高,我国的铁心生产水平与日俱增,但仍具有一定的提升空间。如何提升铁心制造工艺水平,降低变压器铁心损耗一直是行业内重要的研究议题。本文以变压器铁心为研究内容,揭示铁心的制造工艺、流程及要求,并针对性提出提高铁心制造工艺水平的方法。 1.铁心制造工艺及流程 铁心是变压器中的主要磁路部分且是其他部件的安装骨架结构,特高压变压器铁心主要由表面涂有绝缘涂层、含硅量较高的硅钢片制作而成。如图1所示,为常见的变压器铁心。 变压器是基于电磁感应原理制作而成,而铁心及其上缠绕的线圈组成电磁感应系统,其性能的优劣决定着变压器损耗、震动、噪声等指标的大小。 对于应用最多的平面叠片铁心而言,其制造过程主要分为纵向剪切、横向剪切、铁心叠积、铁心装配等。在铁心的剪切过程中生成的过大毛刺需要及时去除,以避免在变压器运行时强电场环境下产生放电。国内主要大型变压器厂,剪切设备为德国乔格自动剪切线,自动化程度高,产生毛刺小,基本不用二次去毛刺,极大的提高了生产效率和产品质量。 2铁心制造工艺要求 铁心的制造质量是与变压器性能息息相关的重要经济指标,是降低变压器损耗的主要研究内容。针对铁心制造的工艺流程,以下从纵向剪切、横向剪切、叠积及铁心装配等工序入手,分析铁心制造的工艺要求。 (1)纵向剪切

再论立体卷铁心变压器

再论立体卷铁心变压器 立体卷铁心变压器是一种新结构的配电变压器,性能特点是什么?优势在哪里?市场情况怎样?下面将给出一定的分析。 还得从中国的配电变压器市场说起。 中国的配电变压器市场现正处于一个艰难的阶段。大小企业日子都不好过。问题很多,可以用怪相丛生来形容。比如质量观念差,为降低成本,选用次等材料;设计上把主绝缘距离取得低到没有安全裕度;变压器油添加抗压剂来缩小主绝缘距离而不考虑长期稳定性;变压器容量不足;使用二次片;以铝冒充铜;企业之间恶性低价竞争,导致产品质量恶性循环等等。导致这一切的主要原因是配电变压器的产量远大于需求量,而国家对配电变压器质量的监管存在制度性漏洞。没有一个“优胜劣汰”的竞争规则。没有一个行政职权的部门来规范行业秩序。产能过剩加无序竞争的结果只能是如此。价低者中标的招标方式也助长了这些怪相。 配电变压器的技术门槛很低,容易进入。再加上国家对配电变压器质量的监管存在制度性漏洞,进入者太多,导致供远大于求。比如配电变压器型号证书的取得就存在严重缺陷。送到国家有关机构去做型式试验的配电变压器和实际生产的配电变压器严重脱节,甚至是风马牛不相干的两回事。君不见许多变压器厂就是买其他厂的变压器去取得型号证书的吗!(有专门的黄牛党提供这种服务)。现在全国

流行的长圆形铝线油浸式变压器如果拿去做短路试验,基本上是全军覆灭。可悲的是这样的变压器在全国大行其道。虽然国家每年对配电变压器都进行抽检,因为抽查的厂家少,抽查的变压器数量少,抽查的项目是一些常规项目,因而监管的作用甚微。 在供远大于求的形势下,小型的配电变压器企业可以暂时歇业,等有机会再卷土重来。有一定规模的配电变压器企业当然不能走歇业的路,要么苦苦支撑,要么寻求和大企业联合或者被收购,要么寻求他路。许多配电变压器企业都往特种变压器这条路上挤,因为大家看到生产特种变压器的企业日子要好过一些。比如许多配电变压器企业都正在试制变频变压器或者多脉波移相整流变压器。除了特种变压器这条路外,还有两条热门的路,一条是使用新材料的非晶合金变压器;另一条是应用新结构的立体卷铁心变压器。 非晶合金变压器空载损耗是很低,主要应用于负荷率低的地方。应用有限。这是非晶合金片的特性决定的。因为非晶合金片的磁通密度只能取1.0~1.35T,心柱的填充系数只能达到0.87左右,导致心柱面积大,导线用得多。为省铜材降成本,多设计为负载损耗偏大。负载损耗大的变压器用在负荷率高的地方很不经济。 立体卷铁心变压器的发展是最近几年的事。在江西大族和广东海鸿之前也有许多厂家进行过试制,因为没有开发出相应的生产设备而没能大规模推广开来。真正把立体卷铁心变压器推广开来的,是位于

立体卷铁心制造工艺探讨

立体卷铁心制造工艺探讨 发表时间:2019-04-25T10:48:25.327Z 来源:《基层建设》2019年第4期作者:李文龙 [导读] 摘要:因为立体卷铁心变压器在制造成本、性能结构等诸多方面优势非常明显,逐步受到企业和用户的关注,让立体卷铁心的性能进一步提高,具有非常重要的意义,在此过程中一定要首先对制造工艺进行重视,对立体卷铁心性能优劣产生最重要影响的就是真空退火,本文重点分析研究立体卷铁心的退火工艺,研究和探讨立体卷铁心的制造工艺技术,以供参考。 特变电工股份有限公司新疆变压器厂新疆昌吉 831100 摘要:因为立体卷铁心变压器在制造成本、性能结构等诸多方面优势非常明显,逐步受到企业和用户的关注,让立体卷铁心的性能进一步提高,具有非常重要的意义,在此过程中一定要首先对制造工艺进行重视,对立体卷铁心性能优劣产生最重要影响的就是真空退火,本文重点分析研究立体卷铁心的退火工艺,研究和探讨立体卷铁心的制造工艺技术,以供参考。 关键词:立体卷铁心;制造工艺;退火工艺 1 退火工艺的前期准备 首先需要检查退火炉的相关性能,比如说水循环系统、加热系统等,在对相关系统的工作状态进行确认之后,还需要判断出气阀门、进气阀门等的密封性是否符合要求,其次需要选择合格的铁心,在退火炉中,保证随炉材料器件等无灰尘,无油,避免在退火的过程中,硅钢片出现渗碳氧化等问题,对铁心的性能产生重要影响,最后,进行预通电升温,在此过程中一定要先在退火炉当中通入一定的保护气体。 2 退火工艺要点 2.1 退火气体的选择 硅钢片的最佳退火保护气体通常使用的是氮氢混合气体或者除氧干燥的高纯氮气,氮氢混合气体需要达到氢气的含量低于10%的要求,这种混合气体,属于一种不爆燃的非氧化性气体,可以通过触媒把其中的残氧利用化学反应形成水分而去掉,防止硅钢片出现氧化,需要对保护气体当中的氢气含量进行严格的控制,如果氢气的含量较高,可能会导致硅钢片表层的涂层出现氧化物还原的问题,将绝缘涂层破坏,影响硅钢片的绝缘性,氮氢混合气体可以利用分解氨气,同时利用燃烧去除分解后的氢气获得,由于当前工艺发展的速度进一步加快,氮的生产水平进一步提高,人们已经越来越重视使用99.99%以上的液氮,氮作为保护气体在工程实践的过程中,这种保护气体的使用效果较好,避免了硅钢片出现氧化。 2.2 退火炉的选用 2.2.1 发热体布置方面 依照发热体的布置位置,退火炉可以分为内热式和外热式,内热式的发热体主要在内罐当中布置或者可以将内罐直接拿掉,将等待退火的硅钢片直接放到具有发热体的外罐内部完全加热,外热式主要是把发热体设置在内外罐之间,等待退火硅钢片设置在内罐当中,在加热的过程中,热量需要先通过内罐进行传递,通过这种循环对流的方式,将气流向铁心传递,这两种方式都得到了广泛的使用,在性能方面各有千秋。 2.2.2 圆形炉和方形炉方面 在选择方形炉和圆形炉方面,往往使用的是圆形炉,由于现在方形炉出现很多缺点,导致方形炉的使用情况受到限制,首先方形炉的外观,棱角处在升温的过程中会产生应力集中等情况,容易对退火铁心进行破坏,另外在内部加热过程中存在死角,气流流通不畅,如果气流不均匀,这会导致温度不均匀,最后再进行预抽真空的过程中,方形内罐的形状可能会导致其出现形变损坏,而圆形炉不会出现这样的问题,可以让退火铁心的质量有效提高,让设备的使用寿命延长。 2.2.3 井式炉和卧式炉方面 当前,各生产企业广泛使用卧式炉和井式炉,在使用的过程中各有利弊,主要是冷却工艺和控制方式上的差别不大,井式炉的优点在于在设计的过程中,不会占用很大的位置,然而对厂房的垂直高度就有一定的要求,起吊高度较高,在装炉时需要耗费大量的人力,卧式炉存在占地面积较大的缺点,但是在装炉的时候比较方便,需要依照厂房的实际情况,合理的选用两种形式的退火炉。伴随科学技术的快速发展,各生产供应商也在对设备的质量和性能进行强化,在未来发展的过程中,设备会逐步改进,让铁心退火后的质量得到快速提高。 3 退火温度的要求 3.1适宜的退火温度 在退火温度控制的过程中是一个循序渐进的过程,在升温的时候,需要把炉温从常温快速上升到300℃,接着,在以另一个速度,使其升温至600℃,在600℃之后,还需要继续通过特定的升温速度,使其达到最高温度,退火的温度既不能太低,也不能太高,如果温度太高,不但可能会提高退火成本,导致能源消耗量增加,还会导致硅钢带的表层防氧化保护膜受到破坏,导致硅钢带层间的绝缘性能下降,如果温度过低,无法保证硅钢片内部晶粒排序得到恢复,无法将应力去除,导致退火失败,因此依照一般卷铁心所用的硅钢料进行应力消除,将退火的最高温度控制在800℃左右,在此过程中还需要注意所述温度都是硅钢带所承受的温度,然后在操作的过程中,这些温度都是从炉内的热电偶进行检测获得的,热电偶的安装位置和温度具有一定的关联性,所以一定要保证热电偶的安装位置合理,如果有必要,需要设置相应的校正方式,将误差缩小。 3.2 适宜的升温速度 在对退火炉设备进行实际使用的过程中,发热体的发热能力是较为有限的,并不会产生无限、高发热的情况,在低温的时候,升温的速度比较快,然而伴随温度的快速提高,声温的能力会逐步下降,另外铁心退火升温的时候,从原有的温度升至300℃的过程中,电热周期式炉可以通过满功率直接升温的方式,然而从300℃下600℃进行升温的过程中,需要保证升温的速度控制在每小时40℃到50℃左右,在600℃升温到800℃的时候,需要保证升温速度降低在不超过20℃每小时的范围之内,这样可以进一步保证铁心受热均匀。 3.3 保温时间的确定 在确定保温时间的过程中,和很多因素都息息相关,比如说发热体加热方式、卷铁心的大小等。在退火的过程中,如果卷铁心的容量相差过大,需要调整一些细节,比如说,对一些容量偏大的巻鉄心进行退火的过程中,需要在到达最高保温温度升温的过程中,额外增加一段时间保温,一般情况下时间为一小时到两小时,这样可以让卷铁心中的内应力减少。

变压器生产流程

变压器生产流程 原材料领料 变压器图纸确认 绕组首先确认图纸是否与生产产品相符,确认其容量无误后再看线规,找出线规后确认匝数。其次确认是何种接线方式(星型和三角型),高压图纸要看其分接出头,数好出头匝数,低压看好是何种绕线方式,出头长度,换位位置,绕组的内外径,幅向大小等。 绝缘首先根据线圈内经算出纸筒纸板长宽度,其次从图纸编号找出端绝缘长度图纸,包括油道垫块和瓦楞纸油道厚度,依次找出端圈及上下铁轭绝缘 一二次侧绕组、绝缘 一次绕组 看图纸确认出头长度,用红蓝铅笔在导线标出,如果是螺旋式需不同的尺度,后一组比前一组多量出一根导线的长度,以便保持出头整齐美观。出头折弯后要用皱纹纸半迭式包一层,出头要弧度角度一致,出头整理好后用皱纹纸包三毫米厚,外用白布带绑紧(不可用紧缩带,焊接时容易烧坏)。 纸筒绕之前要先用卡尺把模具外径量准,需要加垫纸板的要裁好。纸筒纸板选一毫米为宜两头搭接绕制用紧缩带绕紧,绕制中辅助工要用锤沿着紧缩带敲紧。 圆筒式绕法端绝缘由纸条制成时,用直纹布带将其绑扎在第一匝导线上开始绕第一匝时,边绕边再线匝下面沿圆周放四处拉紧布带(紧缩带)。端绝缘的绑扎成8字形。拉紧布带将第一匝和端绝缘绑扎在一起,绕第二匝时将拉紧布带翻到上面来,绕第三匝时在压到下面去,这样曲折的将端圈拉紧。圆筒式绕组中间换位一次,换位后要用皱纹纸包一层再用半毫米纸板垫在里面用白布带绑紧。绕制时辅助工要不断的靠紧和控制幅向,层间用0.08毫米电缆纸三层绝缘,第二匝与出头要用半毫米纸板隔开以免破坏绝缘同样在底部升层时的剪刀口处也要加。 结束时两个出头要对齐,同样出头与倒数第二匝也用纸板隔开,两出头要扎紧。剪断线前要用紧缩带扎紧整个线圈。 螺旋式绕组主要是630千伏安以上的低压绕组,出头与圆筒式相同,需要注意的是出头折弯处用斜拉紧缩带与前面的拉紧布带一样压紧并一直压到结束出头并绑紧防止出头弹出和线圈张力作用。 (1) 绕组绕制要紧密无间隙

变压器制造工艺

隔离变压器制作工艺 一、线圈组装 1.材料确认? 1.1?线架规格确认。? 1.2?确认线架完整:不得有破损和裂缝。? 1.3?将绕线模芯装夹在CNC绕线机上,并锁紧。 1.4 把骨架套在绕线模芯上并锁紧两侧挡板。 1.5 在骨架上包2层NMN纸(纸要包紧)接口粘胶带。 2.绕线方式? 2.1次级绕线:采用均匀密绕的方式,绕线至最上层也不零乱,绕线排列整齐。(如下图) 用已选型漆包线绕初级线圈,起头引线需套纤维套管,线长150mm(套管长100mm左右,骨架处留20mm左右,其余留在骨架外面),圈数参照生产图纸。本线收尾,收尾线超出骨架后留长大于150mm。在线包中的尾线需套纤维套管并且收尾线与线圈直接垫放一张NMN纸增强绝缘。起头尾头位置应按照图纸要求,收尾引线需用麦拉胶带固定缠紧。 2.2初级绕线:采用均匀密绕的方式,绕线至最上层也不零乱,绕线排列整齐。(如下图) 用已选型漆包线型号线绕次级线圈各个绕组,留线方式参照初级线圈的留线方式进行。出线位置应符合图纸要求。

最后,在初级线圈以及次级线圈上外包3层NMN纸,纸要包紧,接口处用麦拉胶带粘贴。 3.屏蔽层制作 用0.1*75mm铜箔绕中间屏蔽层线圈,起头位置的线头用高温胶带包 裹3-5层,包覆长度15-20mm。起头线头需锡焊一根黄加绿地线引出,焊接处上下用高温胶带粘在绝缘纸上,并在线头上再覆盖一张NMN纸,增加绝缘处理。此层线圈总圈数0.9,留线方式和长度参照初级线圈一样处理即可。 在屏蔽层线圈上外包3层NMN纸,纸要包紧,接口处用麦拉胶带粘贴。 4.包胶带 1)操作步骤? 将胶带平贴线包,按图面要求的圈数包胶带.胶带结束点处在线包侧边。胶布起始点与结束处须重叠5mm以上。 2)注意事项 胶带必须拉紧包平,不可卷起,刺破或露铜线。 3)线包部分: 变压器线包部分最外层胶布破损造成线圈外露者,必须加贴胶布完全 覆盖住破损处,且加贴胶布之层数须与原规定最外层胶布之层数相同,并于涂凡立水后烘烤干始可。加贴之胶布其头尾端均须伸入铁芯两侧内,且伸入铁芯两侧之胶布长以不超过铁芯之厚度为限 (胶布伸入至 少达到2/3铁芯厚)。 4、浸漆

变压器制造工艺

变压器制造工艺

、线圈组装 1材料确认 1. 1线架规格确认。 1.2 确认线架完整:不得有破损和裂缝。 1 . 3 将绕线模芯装夹在C N C 绕线机上,并锁紧。 1.4 把骨架套在绕线模芯上并锁紧两侧挡板。 1.5 在骨架上包2层NMf 纸(纸要包紧)接口粘胶带。 2. 绕线方式 2 .1次级绕线:采用均匀密绕的方式,绕线至最上层也不零乱 ,绕线 排列整齐。(如下图) 用已选型漆包线绕初级线圈,起头引线需套纤维套管,线长1 50m m (套管长100m m 左右,骨架处留20mn 左右,其余留在骨架外面),圈 数参照生产图纸。本线收尾,收尾线超出骨架后留长大于150mm 。 在线包中的尾线需套纤维套管并且收尾线与线圈直接垫放一张 NMN 纸增强绝缘。起头尾头位置应按照图纸要求,收尾引线需用麦拉胶带 固定缠紧。 2.2初级绕线:采用均匀密绕的方式,绕线至最上层也不零乱,绕线 隔离变压器制作工艺

排列整齐。(如下图) 用已选型漆包线型号线绕次级线圈各个绕组,留线方式参照初级线圈的留线方式进行。出线位置应符合图纸要求。 最后,在初级线圈以及次级线圈上外包3层NMN纸纸要包紧,接口处用麦拉胶带粘贴。 3.屏蔽层制作 用0 .1決75mn铜箔绕中间屏蔽层线圈,起头位置的线头用高温 胶带包裹3- 5层,包覆长度1 5 —20m起头线头需锡焊一根黄 加绿地线引出,焊接处上下用高温胶带粘在绝缘纸上,并在线头上再覆盖一张NM N纸,增加绝缘处理。此层线圈总圈数0.9,留线方 式和长度参照初级线圈一样处理即可。 在屏蔽层线圈上外包3层NMN纸纸要包紧,接口处用麦拉胶带粘 贴。 4.包胶带1)操作步骤将胶带平贴线包,按图面要求的圈数包胶带.胶带结束点处在线包侧边。胶布起始点与结束处须重叠5mn以上。 2)注意事项

S11卷铁芯变压器的开发制造和应用

S11卷铁芯变压器的开发制造和应用 1S11卷铁芯变压器的由来 (1)概述: 降低变压器的损耗,提高供配电系统效率,是目前世界各国关注的问题。在整个供电系统中,配电变压器所占比重最大,尤其在农村电网中几乎都是配电变压器,改进其性能,降低损耗指标,对电力系统节能,提高系统可靠性具有重要的意义。由于卷铁芯变压器有其独特的结构优势,它与传统的叠片式铁芯变压器相比,具有重量轻,体积小,空载损耗小,噪音低,机械和电气性能优越,因此,在今后电网建设与改造中,卷铁芯变压器将逐步被推广使用。 80年代末美国、德国、日本相继开发了卷铁芯变压器,最早是使用在电子变压器上,作为复印机、计算机、卡拉OK、游戏机等高档电子产品和医疗产品上,而后逐渐移置到电力变压器上。卷铁芯由硅钢片不间断连续卷制而成,在片形上没有接缝,可降低噪音。开始仅有单相铁芯,以后由单相卷铁芯技术推广到三相卷铁芯制造上来。只要在两个闭路矩形铁芯外面,再用电工钢带绕一个矩形铁芯即可以制成平面布置型的三相三柱式铁芯。它由两个相同的内框和外框组成。三相卷铁芯变压器与单相相比,其损耗和一个噪音的降低都是不足的,但与叠片式的铁芯变压器相比有许多优点。

单相卷铁芯变压器只有一个框,铁芯经退火后,其工艺系数仅为1.05。三相卷铁芯变压器一般采用三相三柱内铁芯形式,铁芯经退火后,其工艺系数可达到1.15~1.2。 卷铁芯变压器的制造过程主要由硅钢片的纵剪、铁芯卷制、铁芯真空退火、线圈绕制、器身绝缘装配、产品总装配等工序组成。 (2)国内S11卷铁芯变压器的状况: 90年代中期我国自行开发了卷铁芯工装设备及制造技术,90年代后期我国一些生产厂家也分别从日本、瑞典等国家引进卷铁芯的工装设备和技术。 卷铁芯变压器的铁芯是由厚度小于或等于0.3mm冷轧的硅钢片,纵剪成不同宽度的条料,连续不断卷制(中间没有接头)成长方形的框架,又由于硅钢片的宽度形状不同,绕制成型后其断面是不一样的。这样卷铁芯又可分为两种:阶梯型和R型。 阶梯型卷铁芯变压器和R型卷铁芯变压器,它们都具备卷铁芯变压器的优点。但它们之间又有不同,如硅钢片的利用上,梯形的要比R 型的高,磁阻方面梯形的要比R型的大一些,体积上R型的要比梯形的略小,至于其他方面都不好一概而论,都有待进一步去改进工装设备,改进生产工艺,改进设计思路,而逐渐显示出各自的优势来。

立体卷铁心牵引变压器的设计

立体卷铁心牵引变压器的设计 发表时间:2019-04-01T15:11:27.780Z 来源:《防护工程》2018年第35期作者:李文龙[导读] 本文重点分析研究立体卷铁心牵引变压器的设计,以供参考。 特变电工股份有限公司新疆变压器厂新疆昌吉 831100 摘要:伴随当前城市轨道交通发展速度进一步加快,牵引整流变压器在轨道交通车辆当中得到了非常广泛的使用,在牵引整流电源当中成为了非常重要的一个部分,然而由于其能耗较大而逐步成为社会关注的焦点,本文重点分析研究立体卷铁心牵引变压器的设计,以供参考。 关键词:立体卷铁心牵引;变压器;设计 1 立体卷铁心牵引变压器概述 在牵引供电系统当中,牵引变压器是非常重要的能量转换和传递的设备,然而由于牵引负荷的性质,造成牵引变压器这一段时间内是空载的状态,通过分析研究发现,通常条件下,电气化铁路的载荷系数只有0.3到0.6,在重载的条件下,复线的平均负载系数只能达到0.5到0.6,而通常空载运行的时间往往占到40%到50%,这就导致了空载损耗在总体损耗当中成为最大的一个部分,伴随当前国家越来越重视节能减排,节能型变压器逐步变成未来发展过程中的一个重要方向。当前发展过程中,常规卷铁心变压器和非晶合金变压器是发展前景较好的节能型变压器,非晶合金具有低损耗、高磁导率等诸多特点,然而其在机械应力方面相对较为敏感,没有较好的热稳定性,在大型铁信中应用较为困难,常规卷铁芯变压器的主要是以硅钢片为核心材料,能够大幅度降低空载损耗,而且结构非常先进,是当前发展节能型牵引变压器的一个重要方向,卷铁芯通常条件下是由多根形状特征相似的硅钢片带料连续卷制而产生的,对硅钢片的取向性进行了充分的利用,与此同时,整个磁路中气隙较小,料带连续绕制没有较多的接缝,而且损耗较低,在卷制的过程中非常紧密,和铁片式铁芯相比,在制备工艺方面非常复杂,然而其角重不大,比较省材料,另外空载电流和空载损耗大幅度下降。 2 立体三角形卷铁心牵引变压器设计 通过叠片式铁心供应生产制造的变压器,如果想让空载损耗降低,让能效等级提高,采取的唯一办法是提高材料本身性能或者增加消耗材料,然而由于能效等级的进一步提升,原有的叠片式变压器增加一定的材料用量也无法符合能效要求,所以一定要在铁心结构上进行创新,才能让这一目标实现,为了让这一目标实现,设计了立体三角形卷铁芯牵引变压器。这次开发设计的过程中,产品主要针对某沿海城市的轨道交通牵引变压器,绕组网测移相,铁心使用的是立体三角卷铁芯结构,阀侧轴向双分裂结构,单机12脉波。变压器的具体型号如下图: 图 1 电压相量图图 2 电流相量图图 3 绕组联结图依照图2所示电流的相量计算公式为: 相量的关系是IAA`=-IA`C`+IA`X

变压器制造工艺守则

绕组制造工艺守则 ①圆筒式绕组的绕制 1、弯折导线始端及包扎绝缘,按图样规定的绕向和始端长度,用折弯工具将导线弯成90°。左绕向的绕组始端向右弯折,右绕向绕组始端向左弯折。折弯损坏的导线绝缘必须剥去重新包扎,用与匝绝缘相同等级的绝缘材料半叠包一层。端绝缘根部的相邻线匝应包扎100mm长的绝缘。 2、800kV A以上绕组的第一匝、第二匝和最后二匝用NH纸半叠包一层。 3、将端绝缘用拉紧带将其绑扎在第一匝导线上,绑扎成“S”字形。所有线匝应拉紧靠实,以保证绕组在轴向上是紧实的。 4、在绕第一层线匝时,要随绕随用木锤将线匝靠紧。在绕制过程中要使导线保持一定的涨紧力,保证绕组的紧实平整。随时检查导线质量,对损坏的绝缘应及时包扎。 5、两根以上导线并绕进行换位而产生的匝间空隙用匝间垫条填平,匝间垫条用绝缘带绑扎在相邻的线匝上,换位处的S弯用NOMEX 绝缘纸半叠包一层,包扎长度略大于S弯长度。 6、绕第一层最后一匝时,与起始端相同的办法把端绝缘均匀绑在线匝上,然后将拉紧带端头用胶粘接在撑条上并压在线匝下面,切勿脱落。当层间为气道撑条时,拉紧带必须放在气道撑条上面。 7、当层间有气道撑条时,按图样规定的数量和位置沿圆周均匀放置,各撑条之间应放置临时撑条,其厚度要小于气道撑条~1mm。放置气道撑条时,要注意撑条与引出线始、尾端之间的位置。导线的升层处以撑条为中心,用0.05mm厚的NOMEX绝缘纸半叠包一层,包长50~100mm。

8、无气道的多层绕组,层与层之间加垫层间绝缘纸,绝缘纸的两端应错位搭接,搭接长度为20~40mm,宽度与绕组轴向相同。 9、绕线至最后,引出端按图样要求留出一定长度,剪断导线,定准引出线位置,用折弯工具将导线弯成90°,包扎引出端绝缘。 10、对高压绕组的分接线引出线,弯折处均补包绝缘,包至弯折处向内10~20mm。绑牢后在分接线两侧用收紧带拉紧。 11、将绕制好的绕组连同绕线模具从绕线机上卸下,吊运到绕组起立架上,将绕组竖起后移到脱模台上,侧档座朝下,要严防碰伤绕组,然后拆下档座螺栓,收缩可调绕线模,使绕组与绕线模脱离,垂直抽出绕线模即可。 ②连续式绕组的绕制 1、将绝缘筒、绝缘端圈套在绕线模上,调节绕线模直径至绝缘筒涨紧。 2、将T 型撑条均匀地绑在绝缘筒上并穿上相应的燕尾垫块。 3、线匝为单根、整数匝,绕线引出端在外侧,左绕正接时的连续式绕组的绕制。 a) 第一段为反段。首先将导线的始端固定在绕线模上。调整导线涨力,起动绕线机。根据设计要求和匝数绕成一个临时线段,折换位S 弯,在S弯处要半叠包一层与导线相同等级的绝缘,其长度每端长出S 弯10~15mm。将临时线段的最后一匝移置到撑条上,将其成正式反段的最内一匝。然后依次将其余的线匝移置到第一匝的上面。最后将线段移到并靠近线模的挡板旁,用力反向拉紧打实,用绝缘带将引出线与线段绑牢。 b) 放置第一段与第二段之间的气道(燕尾)垫片,垫好临时撑条,开始绕制正段。其涨力略小于反段涨力,边绕边用手锤打板将线段靠

立体卷铁心结构与特点

立体卷铁心结构与特点 1、磁路优化 (1)三维立体卷铁心层间没有接缝,磁路各处分布均匀,没有明显的高阻区,没有接缝处磁通密度的畸变现象。 (2)磁通方向与硅钢片晶体取向完全一致 (3)三相磁路长度完全相等,三相磁路长度之和最短 (4)三相磁路完全对称,三相空载电流完全平衡 2、损耗低,节电效果显著 (1)三维立体卷铁心的磁化方向完全与硅钢片的轧制方向一致,且铁心层间没有搭头接槰,磁路各处的磁通分布均匀,没有明显的高阻区、没有接缝处磁通密度的畸变现象。在材质相同的前提下,卷绕式铁心与叠片式铁心相比,其铁损工艺系数从1.3-1.5之间下降到1.05左右,仅此一项可使铁心损耗降低10-20%。(2)由于特殊的三维立体结构,使铁心的铁轭部分用材量比传统叠片铁心减少25%,且减少的角重量占铁心总重约6%。 (3)对硅钢片的剪切处理会使其导磁性能恶化,三维立体卷铁心经高温(800℃)真空充氮退火处理,不仅消除了铁心的机械应力,而且细化了硅钢片的磁畴,提高了硅钢片二次再结晶能力,使硅钢片的性能大大优于其出厂时的性能。 (4)经检测认定,三维立体变压器的空载损耗较国标降低25-35%,空载电流最高可降低92%。 3、噪音低 变压器本体振动产生噪音的根源在于: - 硅钢片的磁致伸缩引起铁心振动,产生噪音 - 硅钢片接缝处和叠片之间存在着因漏磁而产生的电磁吸引力,引起铁心振动,产生噪音 - 变压器工作磁密选取过高,接近或达到饱和点,漏磁太大,产生噪音 由于三维立体卷铁心是将硅钢片条料在专用的铁心卷绕机上不间断、紧密连续卷制而成,没有接缝,不会产生如叠片式匆忙那样因磁路不连续而发出的噪音。同时,三相磁路、磁通完全对称,工作磁密设计合理,因而产品噪音大大降低。

中小型变压器制造工艺守则(精)

H级干式变压器及中小型变压器制造工艺守则 总编制:朱木根 2001年12月18日 通用工艺目录 代 号 OEB.910.001OEB.910.002OEB.910.003OEB.910.004OEB.910.005OEB.910.006OEB. 910.007OEB.910.008OEB.910.009OEB.910.010OEB.910.011OEB.910.012OEB.910.0 13OEB.910.014OEB.910.015OEB.910.016OEB.910.017OEB.910.018OEB.910.019OE B.910.020OEB.910.021 共2页第1页 工艺守则名称 变压器总装配工艺守则变压器器身装配工艺守则圆筒式绕组绕制工艺守则连续式绕组绕制工艺守则螺旋式绕组绕制工艺守则绕组的整理和压装 圆筒式高低压绕组套装工艺守则引线装配 干式变压器器身(总)装配检测工艺守则夹件工艺守则硅钢片剪切工艺守则端绝缘加工工艺守则变压器箱制造工艺守则绝缘筒与撑条铆制工艺守则环氧稀纬粘带绑扎铁芯工艺守则绝缘子与埋伏件联接工艺守则铁芯夹装工艺守则下料工艺守则 环氧酚醛玻璃布板加工工艺守则环形铁芯卷制工艺 干式变压器类总装配技术条件 通用工艺目录代号 OEB.910.022OEB.910.023OEB.910.024OEB.910.025OEB.910.026OEB.910.027OEB. 910.028 OEB.910.029共2页第2页工艺守则名称干式变压器的绝缘装配技术条件中小型铁芯片冲剪硅钢片横剪刀的刃磨、安装、调整和拆装工艺守则硅钢片横向剪切尺寸偏差规定的工艺守则中小型变压器铁芯装配工艺守则H级干式变压器线圈真空压力浸漆工艺守则铁芯真空加保护气体退火工艺硅钢片纵向剪切生产线操作工艺守则 特种工艺目录 代 号 OEB.920.000OEB.920.001OEB.920.002OEB.920.003OEB.920.004OEB.920.005OEB. 920.006OEB.920.007OEB.920.008OEB.920.009OEB.920.010OEB.920.011OEB.920.0 12OEB.920.013OEB.920.014OEB.920.015OEB.920.016OEB.920.017 共1页第1页

变压器制造过程质量验收检验大纲

大型变压器制造过程质量验收检验大纲 1总则 1.1内容和适用范围 1.1.1本大纲主要规泄了采购单位(或使用单位)应对石油化工用35kV及以上大型变压器制造过程进行质疑验收检验的基本内容及要求,也可作为委托驻厂监造的主要依据。 1.1.2本大纲适用于石汕化工工业使用的输变电用35kV及以上大型变压器。 1.2.1GB 1094.1-5《电力变压器》; 1.2.2IEC 60076 ?电力变压器》; 1.2.3GB/T6451-2008《油浸式电力变压器负载导则》; 1.2.4GB311.1-1997《高压输变电设备的绝缘配合》; 1.2.5GB/T 1094.7-2008《汕浸式电力变压器负载导则》: 1.2.6GB 5273《变压器、髙压电器和套管的接线端子》: 1.2.7GB 2536《变压器油》; 1.2.8GB 7449《电力变压器和电抗器等雷电冲击试验和操作冲击试验导则》; 1.2.9国家及行业相关标准规范等。 2原材料 2.1依据采购《技术协议》核对铜导线供应商,并审查原始质保书中的化学成分、机械性能、导电率、电阻率、截而积及绝缘等级: 2.2根据采购《技术协议》核对硅钢片供应商,并审査原始质保书中的化学成分、机械性能、磁感强度、单耗、厚度: 2.3根据采购《技术协议》核对绝缘材料供应商,并审査原始质保书中的机械性能、电气性能及绝缘等级: 2.4根据采购《技术协议》审查变压器用汕的供应商、牌号、油基、化学成分、物理性能、抗氧化剂含量: 2.5根据采购《技术协议》及施工图要求审查钢板的供应商,并审查原始质保书中的化学成分、机械性能、规格等: 2.6根据采购《技术协议》及施工图要求审查外购仪表的供应商、规格及型号。 3主要组件检测 3.1电容式套笛、分接开关耐压试验抽查比例按采购《技术协议》规左; 3.2电容式套管介质损耗因数测左按采购《技术协议》规泄: 3.3电容式套管的电容值测定按采购《技术协议》规左; 3.4硅钢片、铁芯对地、绕组对地绝缘电阻测左。 4几何尺寸 4.1按制造厂图纸及工艺规定验收; 4.2线圈高度、内径、外径、出线线头及位置偏差应进行核查; 4.3外绝缘距离应进行核査; 4.4套管爬电距离应进行核査: 4.5变压器本体轨距与地脚螺栓配合尺寸应进行核查。

相关文档
最新文档