Hardness_test 硬度试验

Hardness_test 硬度试验
Hardness_test 硬度试验

COURSEWORK BRIEFING SHEET

COURSE MODULE (and code):Introduction to Materials (CEN106)

ASSIGNMENT TITLE: Lab Experiment: Hardness Test

ASSIGNMENT MARKS: 7.5 %

Lecturers responsible: Dr. Ominda Nanayakkara

Date set: Group 1-6: April 23, 2013

Group 7-12: April 16, 2013

Required date of submission: Group 1-6: May 03, 2013

Group 7-12: April 26, 2013

Penalty scheme for late submission: University Standard Penalty Scheme

Aims:

?To develop experimental and report presentation skills.

?To use common laboratory equipment.

?To compare the experimental data to the theoretical calculation.

Recommended Reading:

?William D.Callister, Jr., “Fundamentals of Materials Science and Engineering” Fifth Edition, John Wiley & Sons.

?Donald R. Askeland, Pradeep P. Phule, “Essentials of Materials Science and Engineering”, Thomson Learning.

At the end of this assignment a student should be able to:

?Be aware of standard laboratory equipment and its use.

?Know how to record, interpret and evaluate results.

?Know how to present a report including experimental results.

?Practised library skills.

1.Introduction

Hardness can be defined as resistance to penetration, abrasion, scratching, or cutting. These are related in that they all require plastic flow of the material. A variety of tests for hardness are in use, depending on which of the above situations is of most interest. Material properties, such as hardness can be altered to desired levels by various heat treatment procedures. Heat treatments affect the microstructure of the metal. Detailed descriptions of the changes to the microstructure can be found in material science textbooks.

Hardness and strength are related to bonding forces on the atomic level. Therefore, it should be expected that hardness and strength are somehow related. A theoretical relationship, which needs to consider the complex mechanisms involved when a hardness indentation is made, is not practical. However, various relationships have been experimentally observed and empirically defined. Usually the relationships are found in tabular form. It is important to note that the relationships may be somewhat different for different materials. Since the methods used to increase the strength of a material (such as heat treating, alloying, or mechanical working) also increase the hardness of the material, hardness measurements can provide a quick and easy means to check if a given strength has been obtained through a particular process.

This experiment will include Rockwell and Brinell hardness tests which measure resistance to penetration. The amount of deformation that occurs when a small, hard penetrator is pressed into a material surface at some designated load is the measure of the hardness of the material.

Rockwell hardness:

The penetrators for the Rockwell hardness tester

range from steel balls to very small diamond

tips (points). The smaller points are used for

harder materials that have a greater resistance to

indentation. There are various force scales used

for various materials. The Rockwell B scale is

suitable for soft engineering metals, and the

Rockwell C scale is appropriate for hard

engineering metals. Each scale requires a

specified tip and load. In some ranges, the

specific Rockwell tests are not valid.

To perform the Rockwell tests, the penetrator is pressed against the specimen with an initial preload to properly seat the penetrator. The remaining load is applied gradually after the dial on the hardness tester has been zeroed. After the penetrator has stopped moving into the specimen, the final position of the dial pointer indicates the Rockwell hardness number that is related to the depth of penetration.

Brinell hardness:

The Brinell test experiment uses a small steel ball which is pressed into a specimen by a defined load that is maintained for a small period of time. The Brinell hardness number (BHN ) is the ratio of the load (in kg ) to the impressed area (in mm ), and is calculated by:

BHN

2

Where,

- Test load [kg ]

- Diameter of the ball [mm ] - Diameter of indentation [mm ]

Since the Brinell number is based on the area of indentation, the diameter of the indentation must be measured. This is done with a microscope with a proper scale to get the indentation in millimetres. The larger diameter indentation corresponds to a softer material and lower Brinell number.

The Brinell hardness number can be used to predict the tensile strength of the material. The relationship between the Brinell number and the tensile strength can be found in reference handbooks therefore calculations are not generally required. The relationship between Rockwell and Brinell hardness numbers are given (see the figure) and therefore either hardness number can be used to predict tensile strength.

Both tensile strength and hardness are indicators of a metal’s resistance to plastic deformation. Consequently, they are roughly proportional for a given range. As a rule of thumb, the tensile strength as a function of the BHN for most steels (cast iron, steel) is related according to the following equation.

TS MPa 3.45 BHN

2.Students groups

Refer the ‘Lab Experiments – Schedule’ sheet.

3.Apparatus

1.Cover

2.Mask

3.Reading projection screen

4.Measuring microscope

5.Fine adjustment knob

6.Indenter

7.Specimen

8.Sliding platform

9.Protective cover

10.Hand wheel

11.Buffer adjustment hand wheel

12.Light adjustment hand wheel

13.Loading hand wheel

14.Back cover

15.Loading channel

16.Power connection

17.Switch

Data record:

Rockwell:

Rockwell Hardness

No. Specimen

type Load (N)

HR (hardness number)

1. Low

carbon

steel

2. High carbon steel

Brinell:

Brinell Hardness

No. Specimen

type Ball diameter

(mm)

Load

(N)

Scale reading

mm

= 0.004, 0.002 (mm)

= (Right – Left)

Left Right

1. Low

carbon

steel

2. High carbon steel

0.004 mm ; When the 2.5 times lens is used.

0.002 mm ; When the 5 times lens is used.

4.Report

Students can share only numerical data among group members. Each student should submit their own report based on own analysis and discussions.

Main content:

4.1.Front cover (Title, Group, Name, Date)

4.2.Introduction and Objectives.

4.3.Experimental methodology.

4.4.Data analysis, graphs, calculations and results (You may include tables and figures

accordingly).

1. Determine the Brinell hardness number (BHN) using Rockwell hardness number. Find

tensile strength (rough) values for steel samples you used.

2. Determine the BHN using the theoretical equation given.

3. Compare BHN s from above two steps.

4.5.Discuss hardness values of low and high carbon steels.

4.6.Discuss experimental errors you observed.

General

4.7.In a Brinell test why is a polished specimen surface more important for harder materials? 4.8.What are the size (area and the thickness) limitations of the specimen used to measure the

hardness?

4.9.List other hardness test methods available and discuss their advantages and disadvantages

in comparison to Rockwell and Brinell tests.

4.10.If 10 hardness tests were to be conducted on the same specimen, why would large errors

result if the measurements were all made at the same (or nearly same) point?

4.11.Conclusion / Reference.

(Above steps provide you a guide, you may write your own report in an appropriate way).

5.Submission

Submit in standard format of coursework submission. Delayed submission will be subjected to standard penalty scheme.

硬度HRC,HV,HB-硬度换算 日期:2008-10-06 硬度 硬度換算公式: 1.肖氏硬度(HS)=勃式硬度(BHN)/10+12 2.肖式硬度(HS)=洛式硬度(HRC)+15 3.勃式硬度(BHN)= 洛克式硬度(HV) 4.洛式硬度(HRC)= 勃式硬度(BHN)/10-3 硬度測定範圍: HS<100 HB<500 HRC<70 HV<1300 (80~88)HRA, (85~95)HRB, (20~70)HRC 洛氏硬度中HRA、HRB、HRC等中的A、B、C为三种不同的标准,称为标尺A、标尺B、标尺C。 洛氏硬度试验是现今所使用的几种普通压痕硬度试验之一,三种标尺的初始压力均为98.07N(合10kgf),最后根据压痕深度计算硬度值。 标尺A使用的是球锥菱形压头,然后加压至588.4N(合60kgf);标尺B使用的是直径为1.588mm(1/16英寸)的钢球作为压头,然后加压至980.7N(合100kgf); 而标尺C使用与标尺A相同的球锥菱形作为压头,但加压后的力是1471N(合150kgf)。因此标尺B适用相对较软的材料,而标尺C适用较硬的材料。 实践证明,金属材料的各种硬度值之间,硬度值与强度值之间具有近似的相应关系。因为硬度值是由起始塑性变形抗力和继续塑性变形抗力决定的, 材料的强度越高,塑性变形抗力越高,硬度值也就越高。但各种材料的换算关系并不一致。 硬度表示材料抵抗硬物体压入其表面的能力。它是金属材料的重要性能指标之一。一般硬度越高,耐磨性越好。常用的硬度指标有布氏硬度、洛氏硬度和维氏硬度。 1.布氏硬度(HB)

以一定的载荷(一般3000kg)把一定大小(直径一般为10mm)的淬硬钢球压入材料表面,保持一段时间,去载后,负荷与其压痕面积之比值, 即为布氏硬度值(HB),单位为公斤力/mm2 (N/mm2)。 2.洛氏硬度(HR) 当HB>450或者试样过小时,不能采用布氏硬度试验而改用洛氏硬度计量。它是用一个顶角120°的金刚石圆锥体或直径为1.59、3.18mm的钢球, 在一定载荷下压入被测材料表面,由压痕的深度求出材料的硬度。根据试验材料硬度的不同,分三种不同的标度来表示: HRA:是采用60kg载荷和钻石锥压入器求得的硬度,用于硬度极高的材料(如硬质合金等)。 HRB:是采用100kg载荷和直径1.58mm淬硬的钢球,求得的硬度,用于硬度较低的材料(如退火钢、铸铁等)。 HRC:是采用150kg载荷和钻石锥压入器求得的硬度,用于硬度很高的材料(如淬火钢等)。 3 维氏硬度(HV) 以120kg以内的载荷和顶角为136°的金刚石方形锥压入器压入材料表面,用材料压痕凹坑的表面积除以载荷值,即为维氏硬度HV值(kgf/mm2)。 HBS,HRC,HBW是硬度指标不同种类。 硬度 硬度表示材料抵抗硬物体压入其表面的能力。它是金属材料的重要性能指标之一。一般硬度越高,耐磨性越好。常用的硬度指标有布氏硬度、洛氏硬度和维氏硬度。 ⑴布氏硬度(HB) 以一定的载荷(一般3000kg)把一定大小(直径一般为10mm)的淬硬钢球压入材料表面,保持一段时间,去载后,负荷与其压痕面积之比值, 即为布氏硬度值(HB),单位为公斤力/mm2 (N/mm2)。 ⑵洛氏硬度(HR) 当HB>450或者试样过小时,不能采用布氏硬度试验而改用洛氏硬度计量。它是用一个顶角120°的金刚石圆锥体或直径为1.59、3.18mm的钢球, 在一定载荷下压入被测材料表面,由压痕的深度求出材料的硬度。根据试验材料硬度的不同,分三种不同的标度来表示:

某项目 材料检验试验 施 工 方 案 编制: 审核: 批准: 某建设集团有限公司 某某工程项目部编制

目录 一、编制依据 (2) 二、工程概况 (3) 三、检验试验管理 (4) 四、检验试验计划................................. 错误!未定义书签。

一、编制依据 1、设计施工图。 2、工程施工组织设计 3、《建筑工程施工质量验收统一标准》(GB50300-2013) 4、《混凝土结构工程施工质量验收规范》(GB50666-2015) 5、《建筑地基基础工程施工质量验收规范》(GB50202-2002) 6、《地下防水工程质量验收规范》(GB50208-2011) 7、《钢筋混凝土用热轧带肋钢筋》(GB1499-2008) 8、《混凝土质量控制标准》(GB50164-2011) 9、《普通混凝土力学性能试验方法标准》(GB/T50081-2002) 10、《钢筋焊接及验收规范》(JGJ18-2012) 11、《钢筋焊接接头试验方法标准》(JGJ/T27-2001) 12、《钢筋机械连接通用技术规程》(JGJ107-2010) 13、《砌体工程施工质量验收规范》(GB50203-2011) 14、《通风与空调工程施工质量验收规范》(GB50243-2002) 15、《建筑节能工程施工质量验收规范》(GB50411-2007)

16、《建筑电气工程施工质量验收规范》(GB50303-2002) 17、《建筑给水排水及采暖工程施工质量验收规范》(GB50242-2002) 18、《给排水管道工程施工及验收规范》(GB50268-2008) 19、其他现行规范、规定 二、工程概况 本工程为某市某小区,位于河北省某市某地,由某市某房地产开发有限公司开发,河北博科工程咨询有限公司设计,某市泰信达工程项目管理有限公司监理,主要有地上住宅,地下一层车库组成。

维氏硬度计的使用方法 维氏硬度的表示方法 维氏硬度表示为HV ,维氏硬度符号HV 前面的数值为硬度值,后面为试验力值。标准的试验保持时间为10~15S 。如果选用的时间超出这一范围,在力值后面还要注上保持时间。例如: 600HV30—表示采用294.2N (30kg )的试验力,保持时间10~15S 时得到的硬度值为600。 600HV30/20—表示采用294.2N (30kg )的试验力,保持时间20S 时得到的硬度值为600。采用正四棱锥体金刚石压头,在试验力作用下压入试样表面,保持规定时间后,卸除试验力,测量试样表面压痕对角线长度。 1. 试验力除以压痕表面积的商就是维氏硬度值。维氏硬度值按式(3-1)计算: HV = 常数×试验力/压痕表面积≈0.1891 F/d2 …………(3-1)式中:HV ————维氏硬度符号; F ―――― 试验力,N ; d ————压痕两对角线d1、d2的算术平均值,mm 实用中是根据对角线长度d 通过查表得到维氏硬度值。 国家标准规定维氏硬度压痕对角线长度范围为0.020~1.400mm 3.维氏硬度试验的分类和试验力选择 维氏硬度试验按试验力大小的不同,细分为三种试验,即:维氏硬度试验、小负荷维氏硬度试验和显微维氏硬度试验。 表3-1维氏硬度试验的三种方法

维氏硬度试验可选用的试验力值很多,见表3-2。 表3-2推荐的维氏硬度试验力 试验力的选择要根据试样种类、试样厚度和预期的硬度范围而定。标准规定,试样或试验层的厚度至少为压痕对角线长度的1.5倍。试验后试样背面不应出现可见的变形痕迹。 维氏硬度试验的优点: 维氏硬度试验的压痕是正方形,轻廓清晰,对角线测量准确,因此,维氏硬度试验是常用硬度试验方法中精度最高的,同时它的重复性也很好,这一点比布氏硬度计优越。 维氏硬度试验测量范围宽广,可以测量目前工业上所用到的几乎全部金属材料,从很软的材料(几个维氏硬度单位)到很硬的材料(3000个维氏硬度单位)都可测量。 维氏硬度试验最大的优点在于其硬度值与试验力的大小无关,只要是硬度均匀的材料,可以任意选择试验力,其硬度值不变。这就相当于在一个很宽广的硬度范围内具有一个统一的标尺。这一点又比洛氏硬度试验来得优越。 在中、低硬度值范围内,在同一均匀材料上,维氏硬度试验和布氏硬度试验结果会得到近似的硬度值。例如,当硬度值为400以下时,HV ≈HB ,如图3-2所示。 维氏硬度试验的试验力可以小到10gF ,压痕非常小,特别适合测试薄小材料。 维氏硬度试验的缺点: 维氏硬度试验效率低,要求较高的试验技术,对于试样表面的光洁度要求较高,通常需要制作专门的试样,操作麻烦费时,通常只在实验室中使用。

二 硬 度 1、硬度试验 1.1硬度(hardness ) 材料抵抗弹性变形、塑性变形、划痕或破裂等一种或多种作用同时发生的能力。 最常用的有:布氏硬度、洛氏硬度、维氏硬度、努氏硬度、 肖氏硬度等。 1.2布氏硬度试验(Brinell hardness test ) 对一定直径的硬质合金球加规定的试验力压入试样表面,经规定的保持时间后,卸除试验力,测量试样表面的压痕直径。布氏硬度与试验力除的压痕表面积的商成正比。 HBW=K · ) (22 2 d D D D F ??π 式中:HBW ——布氏硬度; K ——单位系数 K=0.102; D ——压头直径mm ; F ——试验力N ; D ——压痕直径mm 。 标准块硬度值的表示方法,符号HBW 前为硬度值,符号后按顺序用数字表示球压头直径(mm ),试验力和试验力保持时间(10~15S 可不标注)。如350HBW5/750。表示用直径5mm 的硬质合金球在7.355KN 试验力下保持10~15S 测定的布氏硬度值为350,600HBW1/30/20表示用直径1mm 的硬质合金球在294.2N 试验力下保持20S 测定的布氏硬度值为600。 1.3洛氏硬度试验(Rockwell hardness test ) 在初试验力F 。及总试验力F 先后作用下,将压头(金刚石圆锥、钢球或硬质合金球)压入试样表面,经规定保持时间后,卸除主试验力F 1,测量在初试验力下的残余压痕深度h 。 HR=N- s h 式中:HR ——洛氏硬度; N ——给定标尺的硬度常数; H ——卸除主试验力后,在初试验力下压痕残留的深度(残余压痕深度);mm ; S ——给定标尺的单位;mm 。 A 、C 、D 、N 、T 标尺N=100, B 、E 、F 、G 、H 、K 标尺N=130;A 、B 、 C 、 D 、 E 、

xxxxx工程 试验送检方案 一、工程概况 Xxx工程位于xxx,由新桥和旧桥组成,人民新桥位于人民旧桥的东侧,修建于1992年,结构形式为刚架拱桥,刚架拱净跨径32m,桥梁全长52m,净宽7m,拱圈高度3.2m。人民新桥上部结构刚架拱桥横桥向由4片拱肋组成,拱肋间距为2.86m,拱肋宽0.35m。依据图纸设计要求,主要针对新桥采取如下措施; 1、拆除重建上部结构部分弦杆与斜撑;拆除重做人民新桥全桥桥面铺装及两侧桥头搭板,拆除微弯板,重新浇筑整体式桥面板; 2、保留原拱片,在原拱肋间新增三片拱片;对原拱片拱脚上缘、实腹段及部分拱脚下缘粘贴钢板,更换拱片支座;新建弦杆部分横隔板,对保留横隔板进行增大截面加固; 3、对主拱圈及桥面破损、开裂、露筋部位进行局部修补; 4、拆除重做新旧桥两侧人行道及栏杆;拆除新旧桥绿化带,重新设置中央分隔带等内容。 二、试验室管理制度 1、原材料的报验:现场试验检验人员应及时按取样规则进行取样送检,实验室填写《来样/报告发放登记表》,如需进行平行检验

或见证试验的应及时通知监理部进行取样; 2、试验室根据《来样/报告发放登记表》的内容,按照试验规程的要求,及时检测及时填写检测报告,并及时将检测报告及时反馈给物资部门。试验室保存电子版本和一份原件,并根据工程技术部门的要求提交检测报告。如遇检验材料不合格,应及时通知物资部门,物资部门及时对不合格材料进行封闭、标识; 3、试验检测原始记录是检测工程材料及产品参数特性的真实反映,任何人不得更改、删除。原始记录应力求完整,包括数据、曲线、图表、计算及导出数据; 4、检测报告格式报告填写应完整,数据准确、结论正确; 5、对工程中的检测试验过程负责协调、检查、管理; 6、参与现场质量管理和检查工作,对关键检测项目的实施进行监控。 三、试验检测项目、及检测频率 1.原材料

泸州向林老窖股份有限公司 叙永县龙洞水库枢纽工程项目经理部 专项试验检测方案 一、工程概述 1.1工程概况 龙洞水库位于泸州市叙永县分水镇熊家湾村,距叙永县城56km,距分水镇1.5km。从泸州市经G76纳黔高速约100km可到达叙永县,从叙永县经“叙威路”至分水镇,分水镇与坝址之间有硬化水泥乡村公路,路面宽约3m,工程对外交通比较方便。是一座以灌溉为主,兼顾生态环境用水的小(二)型水利工程。 龙洞沟为倒流河右岸一级支流,位于四川叙永县与云南威信县交界处,流域地处四川境内,发源于海拔1700m左右的小豆地、作坊处。河流基本由北向南流,在桐麻坝附近汇入倒流河,龙洞沟全长约15.5km,地面流域面积为43.0km2。龙洞沟流域以北与永宁河支流黄坭河分水,东、西面均为几乎流向平行的且同为倒流河的无名支沟分界,南与倒流河干流相连。流域地理坐标界于东经105°13′~105°17′、北纬27°43′~27°55′之间,流域大致呈南北向的长叶形,水系呈羽状分布。 水库工程枢纽区包括粘土心墙堆石坝、右岸泄洪(导流)隧洞和左岸取水隧洞等主要建筑物。 1.2工程设计标准和施工范围 1、粘土心墙堆石坝

本工程挡水建筑物采用粘土心墙堆石坝,坝轴线布置成直线。正常蓄水位1283.00m,死水位1258.00m,设计洪水位1283.00m,校核洪水位为1284.16m。 大坝坝顶高程1286.00m,防浪墙顶高程1287.20,坝顶宽6.0m,坝轴线长114.00m,最大坝高63.0m。上游坝坡坡比1:1.8,1258.50m 高程处设一级马道,采用干砌块石护坡。下游坝坡坡比1:1.8,高程1255.00m处设一级马道,上下游马道宽度均为2.0m。 坝体从上游至下游分别为上游堆石料区、上游渡料区、上游反滤料区、粘土心墙料区、下游反滤料区、下游过渡料区及下游堆石料区。 心墙防渗体位于坝体中央,心墙轴线与坝轴线重合,心墙顶高程1284.50m,心墙顶宽3.0m,两侧坡比1:0.25。心墙底部设C25砼基座,粘土心墙上游侧外设反滤料,水平厚度1.0m,上游反滤层上游侧设过渡料,过渡层水平厚度3.0m,外侧填筑坡比1:0.25。下游反滤料区共设2层,水平厚度1.0m和2.0m,外侧填筑坡比1:0.25。反滤层下游侧设过渡料,水平厚度3.0m。外侧填筑坡比1:0.25。坝壳堆石料采用弱风化及新鲜的白云岩。 2、泄洪(导流、放空)隧洞 本工程导流隧洞结合泄洪、放空隧洞布置在枢纽右岸。 导流隧洞进口布置在大坝轴线上游右岸约193m,泄洪隧洞进口布置在导流洞进口下游约40m处。泄洪隧洞穿过右岸山体,由进口明渠段、进口检修闸门竖井段、闸后有压隧洞段、出口闸室段和消力池段组成。其中,导流隧洞与泄洪隧洞在桩号泄0+061.70(导0+130.00m)

建设单位:湖州祥生置业有限公司 监理单位:浙江永诚建设工程管理有限公司 施工单位:诸暨市祥生园林绿化工程有限公司 检验批划分及工程检验检测 专项方案 编制人:杨德军职称(职务)工程师 审核人:王志光职称(职务)工程师 审批人:陈国清 编制单位:诸暨市祥生园林绿化工程有限公司 编制日期:二○一七年五月十八日 专项方案审批表

建设单位:湖州祥生置业有限公司 监理单位:浙江永诚建设工程管理有限公司 市政配套设计单位:湖州市城市规划设计研究院 景观绿化设计单位:浙江泛城设计股份有限公司 勘察单位:核工业湖州工程勘察院 施工单位:诸暨祥生园林绿化工程有限公司 检测单位:湖州市建设工程质量监督站检测中心 质量监督机构:湖州市建设工程质量监督站 一、编制说明及工程概况 一、编制说明及依据 (一)、编制说明 为了加强湖州市悅山湖花园一期市政景观工程的试验管理,针对本工程的情况,特编制此方案,本方案包括市政道路、市政排水管道工程试验总体安排,主要试验方法,以及保证措施等,指导本工程的施工与管理,确保优质、高效、安全、文明地完成本工程的施工任务。 (二)、编制原则 (1)按《城镇道路工程施工与质量验收规范》(CJJ1-2008)、《给水排水管道工程施工与质量验收规范》(GB50268-2008)附录B表B.0.1划分的分项工程内容的基础上,按各专业规范的有关要求进行具体划分; (2)根据施工总工期及准备的劳力、材料、机械设备、财力等条件参照专业规范对

检验批的划分原则进行划分; (3)有利于结构的整体性;各施工段的工程量应尽量大致相等;各施工段均应有一定的工作面,能充分利用时间和空间,且能充分发挥劳动效率。 (三)、编制依据 (1)、湖州市悅山湖花园一期市政景观工程招标文件; (2)、湖州市悅山湖花园一期市政景观工程施工合同; (3)、湖州市悅山湖花园一期市政景观工程施工图设计; (4)、湖州市悅山湖花园一期市政景观工程地质勘察报告; (5)、经批准实施的施工组织设计; (6)、《城镇道路工程施工与质量验收规范》(CJJ1-2008); (7)、《给水排水管道工程施工与质量验收规范》(GB50268-2008); (8)、《混凝土结构工程施工质量验收规范》(GB50204-2011); (9)、《给排水构筑物工程施工及验收规范》(GB50141-2008); (10)、国家及省、市工程建设标准强制性条文; (11)、湖州市建设工程质量监督站质量监督指导; (12)、其他相关资料。 二、工程情况 (一)、工程概况 (1)、位置 湖州市悅山湖花园一期市政景观工程位于仁皇山分区北片,奥体公园西北角,西邻德清路,北为同心路。 (2)、工程自然条件 工程所在地区属中纬度亚热带季风气候区,气候温和,四季分明,雨量充沛。年平均气温15-16°C。每年一月份气温最低,日均3.2℃,极端最低温度-11.1℃。七月份气温最高,日均28.2℃,高温极值41.5℃,年平均温差25℃,无霜期250天左右。多年平均降雨量1124.1mm。每年5-10月降水较为集中,多年平均为697.4mm,为年均降雨量的62.1%。年均水面蒸发量884.8mm,陆地蒸发量797.5mm。其中8、9月份蒸发量最大,分别为年蒸发量的14%和16%。 (3)、工程特点: 湖州市悅山湖花园一期市政景观工程为悅山湖花园一期市政及环境配套工程,道

硬度表示材料抵抗硬物体压入其表面的能力。它是金属材料的重要性能指标之一。一般硬度越高,耐磨性越好。常用的硬度指标有布氏硬度、洛氏硬度和维氏硬度。 1.布氏硬度(HB) 以一定的载荷(一般3000kg)把一定大小(直径一般为10mm)的淬硬钢球压入材料表面,保持一段时间,去载后,负荷与其压痕面积之比值,即为布氏硬度值(HB),单位为公斤力/mm2 (N/mm2)。 2.洛氏硬度(HR) 当HB>450或者试样过小时,不能采用布氏硬度试验而改用洛氏硬度计量。它是用一个顶角120°的金刚石圆锥体或直径为1.59、3.18mm的钢球,在一定载荷下压入被测材料表面,由压痕的深度求出材料的硬度。根据试验材料硬度的不同,分三种不同的标度来表示: ?HRA:是采用60kg载荷和钻石锥压入器求得的硬度,用于硬度极高的材料(如硬质合金等)。 ?HRB:是采用100kg载荷和直径1.58mm淬硬的钢球,求得的硬度,用于硬度较低的材料(如退火钢、铸铁等)。 ?HRC:是采用150kg载荷和钻石锥压入器求得的硬度,用于硬度很高的材料(如淬火钢等)。 3 维氏硬度(HV) 以120kg以内的载荷和顶角为136°的金刚石方形锥压入器压入材料表面,用材料压痕凹坑的表面 积除以载荷值,即为维氏硬度HV值(kgf/mm2)。 邵氏硬度(HA)邵氏硬度专用在橡胶方面的硬度测试 做橡胶的应该知道怎么测 邵氏硬度(HA)用于橡胶、塑料等材料的硬度测定,将一定形状的钢制压针,在试验力作用下压入试样表面,当压足平面与试样表面紧密贴合时,测量压针相对压足平面的伸出长度。通过公式计算出邵氏硬度值。具有结构简单、使用方便、型小体轻、读数直观等特点。A型参数:刻度盘 值:0-100HA;压针行程范围:0—2.5mm;压针端部压力:0.055N-8.05N;压针顶端直径:Φ 0.79mm+\-0.03m m。

显微维氏硬度检测细则 1、试用范围 本细则适用于维氏硬度压痕对角线长度范围为~。 2、原理 将顶部两相对面具有规定角度的正四棱锥体金刚石压头用一定的试验力压入试样表面,保持规时间后,卸除试验力,测量试样表面压痕对角线长度。 维氏硬度值与试验力除以压痕表面积的商成正比,压痕被视为具有正方形基面并与压头角度相同的理想形状。 3、符号和说明 维氏硬度用HV表示,符号之前为硬度值,符号之后按如下顺序排列: 640 HV 30/20 640:硬度值 HV:硬度符号 30:实验力 20:实验力保持时间 4、试样

试件表面应平坦光滑,试验面上应无氧化皮及外来污物,尤其不应有油脂,除非在产品标准中另有规定。试验表面的质量应保证压痕对角线长度的测量精度,建议试验表面进行表面抛光处理。 制备试样时应使由于过热或冷加工等因素对试样表面硬度的影响减至最小。 由于显微维氏硬度压痕很浅,加工试样时建议根据材料特性采用抛光/ 电解抛光工艺。 试样或试验层厚度至少应为压痕对角线长度的倍,试验后试样背面不应出现可见变形压痕。 对于在曲面试样上试验的结果,应修正。 对于小截面或外形不规则的试样,可将试样镶嵌或使用专用试验台试验。 5、试验程序 试验一般在10℃-35℃室温下进行,对温度要求严格的试验,室温应为23℃±5℃。 试验台清洁且无其他污物(氧化皮、油脂、灰尘等)。试样应稳固地放置于刚性实验台上以保证实验过程中试样不产生位移。 使压头与试样表面接触,垂直于试验面施加试验力,加力过程中不应有冲击和振动,直至将试验力施加至规定值。从加力开始至全部试验力施加完毕的时间应在2s-8s之间。对于小力维氏硬度试验和显微维氏硬度试验,加力过程不能超过10s且压头下降速度应不大于s。 对于显微维氏硬度试验,压头下降速度应在15μm/s-70μm/s之间。

硬度是衡量材料软硬程度的一种力学性能,它是指材料表面上低于变形或者破裂的能力。硬度试验是一种应用十分广泛的力学性能试验方法。硬度试验方法有很多,不同硬度测量方法有着各自的特点和适用范围。下面为大家介绍的是洛氏硬度、维氏硬度、布氏硬度、显微硬度、努氏硬度、肖氏硬度各自的特点及其适用领域。供各位材料科学与工程专业同学参考选择。 洛氏硬度: 采用测量压入深度的方式,硬度值可直接读出,操作简单快捷,工作效率高。然而由于金刚石压头的生产及测量机构精度不佳,洛氏硬度的精度不如维氏、布氏。适用于成批量零部件检测,可现场或生产线上对成品检测。 维氏硬度: 维氏硬度测量范围广,不但可以测量高硬度材料,也可以测量较软的金属以及板材、带材,具有较高的精度。但测量效率较低。 布氏硬度: 具有较大的压头和较大的试验力,得到压痕较大,因而能测出试样较大范围的性能。与抗拉强度有着近似的换算关系。测量结果较为准确。对材料表面破坏较大,不适合测量成品。测量过程复杂费事。适合测量灰铸铁、轴承合金和具有粗大晶粒的金属材料,适用于原料及半成品硬度测量。 对于测量精度,维氏大于布氏,布氏大于洛氏。

显微硬度: 压痕极小,可以归为无损检测一类;适用于测量诸如钟表较微小的零件,及表面渗碳、氮化等表面硬化层的硬度。除了正四棱锥金刚石压头之外,还有三角形角锥体、双锥形、船底形、双柱形压头,适用于测量特殊材料和形状的硬度。 努氏硬度: 努氏硬度测量精度比维氏硬度还要高,而且同样试验力下,比维氏硬度压入深度较浅,适合测量薄层硬度。再加上努氏压头作用下压痕周围脆裂倾向性小,适合测量高硬度金属陶瓷材料,人造宝石及玻璃、矿石等脆性材料。 肖氏硬度: 操作简单,测量迅速,试验力小,基本不损坏工件,适合现场测量大型工件,广泛应用于轧辊及机床、大齿轮、螺旋桨等大型工件。肖氏硬度是轧辊重要指标之一。 不同硬度测量方式有着自己的测量范围,下面从硬度值这一角度来说明不同硬度测量法的测量范围:

工程材料检验试验计划 专项方案 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

某项目 材料检验试验 施 工 方 案 编制: 审核: 批准: 某建设集团有限公司 某某工程项目部编制

目录 一、编制依据 (2) 二、工程概况 (2) 三、检验试验管理 (3) 四、检验试验计划 (4)

一、编制依据 1、设计施工图。 2、工程施工组织设计 3、《建筑工程施工质量验收统一标准》(GB50300-2013) 4、《混凝土结构工程施工质量验收规范》(GB50666-2015) 5、《建筑地基基础工程施工质量验收规范》(GB50202-2002) 6、《地下防水工程质量验收规范》(GB50208-2011) 7、《钢筋混凝土用热轧带肋钢筋》(GB1499-2008) 8、《混凝土质量控制标准》(GB50164-2011) 9、《普通混凝土力学性能试验方法标准》(GB/T50081-2002) 10、《钢筋焊接及验收规范》(JGJ18-2012) 11、《钢筋焊接接头试验方法标准》(JGJ/T27-2001) 12、《钢筋机械连接通用技术规程》(JGJ107-2010) 13、《砌体工程施工质量验收规范》(GB50203-2011) 14、《通风与空调工程施工质量验收规范》(GB50243-2002) 15、《建筑节能工程施工质量验收规范》(GB50411-2007)

16、《建筑电气工程施工质量验收规范》(GB50303-2002) 17、《建筑给水排水及采暖工程施工质量验收规范》(GB50242-2002) 18、《给排水管道工程施工及验收规范》(GB50268-2008) 19、其他现行规范、规定 二、工程概况 本工程为某市某小区,位于河北省某市某地,由某市某房地产开发有限公司开发,河北博科工程咨询有限公司设计,某市泰信达工程项目管理有限公司监理,主要有地上住宅,地下一层车库组成。

硬度的基本知识与各种硬度的详细介绍 中文名称:硬度 英文名称:grade;hardness 硬度的几个定义: 定义1:表示磨粒从结合剂中完全脱离的难易程度。 所属学科: 机械工程(一级学科);磨料磨具(二级学科);磨料磨具一般名词(三级学科) 定义2:水沉淀肥皂的能力,大体反映水中钙、镁离子的含量。钙镁浓度的总和称为总硬度,以每升水含碳酸钙的毫克数或毫克当量表示。 所属学科: 生态学(一级学科);水域生态学(二级学科) 定义3:固体材料对外界物体压陷、刻划等作用的局部抵抗能力,是衡量材料软硬程度的一个指标。 所属学科: 水利科技(一级学科);工程力学、工程结构、建筑材料(二级学科);工程力学(水利)(三级学科)

度不同,撞击后的反弹速度也不同。在冲击装置上安装有永磁材料,当冲击体上下运动时,其外围线圈便感应出与速度成正比的电磁信号,再通过电子线路转换成里氏硬度值。 5.肖氏硬度 简称HS。表示材料硬度的一种标准。由英国人肖尔(Albert F.Shore)首先提出。 应用弹性回跳法将撞销从一定高度落到所试材料的表面上而发生回跳。撞销是一只具有尖端的小锥,尖端上常镶有金刚钻。测试数值为1000x撞销返回速度/撞销初始速度(即为碰撞前后的速度比乘以1000) 6.巴氏硬度 巴柯尔(Barcol)硬度(简称巴氏硬度), 最早由美国Barber-Colman公司提出,是近代国际上广泛采用的一种硬度门类,一定形状的硬钢压针,在标准弹簧试验力作用下,压入试样表面,用压针的压入深度确定材料硬度,定义每压入0.0076mm为一个巴氏硬度单位。巴氏硬度单位表示为HBa。 7.努氏硬度 努氏硬度是作为绝对数值而测得的硬度,主要在加工方面使用该数值。一般来说,金刚石的努氏硬度为7000~8000千克/平方毫米 8.韦氏硬度 一定形状的硬钢压针,在标准弹簧试验力作用下压入试样表面,用压针的压入深度确定材料硬度,定义0.01mm的压入深度为一个韦氏硬度单位。韦氏硬度单位表示为HW。 编辑本段钢材的硬度 金属硬度(Hardness)的代号为H。按硬度试验方法的不同, 常规表示有布氏(HB)、洛氏(HRC)、维氏(HV)、里氏(HL)硬度等,其中以HB及HRC较为常用。 HB应用范围较广,HRC适用于表面高硬度材料,如热处理硬度等。两者区别在于硬度计之测头不同,布氏硬度计之测头为钢球,而洛氏硬度计之测头为金刚石。 HV-适用于显微镜分析。维氏硬度(HV) 以120kg以内的载荷和顶角为136°的金刚石方形锥压入器压入材料表面,用材料压痕凹坑的表面积除以载荷值,即为维氏硬度值(HV)。 HL手提式硬度计,测量方便,利用冲击球头冲击硬度表面后,产生弹跳;利用冲头在距试样表面1mm处的回弹速度与冲击速度的比值计算硬度,公式:里氏硬度HL=1000×VB(回弹速度)/ VA(冲击速度)。 便携式里氏硬度计用里氏(HL)测量后可以转化为:布氏(HB)、洛氏(HRC)、维氏(HV)、肖氏(HS)硬度。或用里氏原理直接用布氏(HB)、洛氏(HRC)、维氏(HV)、里氏(HL)、肖氏(HS)测量硬度值。 其他 1.HRC含意是洛氏硬度C标尺, 2.HRC和HB在生产中的应用都很广泛 3.HRC适用范围HRC 20--67,相当于HB225--650 若硬度高于此范围则用洛氏硬度A标尺HRA。 若硬度低于此范围则用洛氏硬度B标尺HRB。 布氏硬度上限值HB650,不能高于此值。 4.洛氏硬度计C标尺之压头为顶角120度的金刚石圆锥,试验载荷为一确定值,中国标准是150公斤力。 布氏硬度计之压头为淬硬钢球(HBS)或硬质合金球(HBW),试验载荷随球直径不同而不同,从3000到31.25公斤力。

维氏硬度以HV表示(参照GB/T4340-1999),测量极薄试样。 1、钢材的硬度:金属硬度(Hardness)的代号为H。按硬度试验方法的不同, 常规表示有布氏(HB)、洛氏(HRC)、维氏(HV)、里氏(HL)硬度等,其中以HB及HRC 较为常用。 HB应用范围较广,HRC适用于表面高硬度材料,如热处理硬度等。两者区别在于硬度计之测头不同,布氏硬度计之测头为钢球,而洛氏硬度计之测头为金刚石。 HV-适用于显微镜分析。维氏硬度(HV) 以120kg以内的载荷和顶角为136°的金刚石方形锥压入器压入材料表面,用材料压痕凹坑的表面积除以载荷值,即为维氏硬度值(HV)。 HL手提式硬度计,测量方便,利用冲击球头冲击硬度表面后,产生弹跳;利用冲头在距试样表面1mm处的回弹速度与冲击速度的比值计算硬度,公式:里氏硬度HL=1000×VB(回弹速度)/ VA(冲击速度)。 便携式里氏硬度计用里氏(HL)测量后可以转化为:布氏(HB)、洛氏(HRC)、维氏(HV)、肖氏(HS)硬度。或用里氏原理直接用布氏(HB)、洛氏(HRC)、维氏(HV)、里氏(HL)、肖氏(HS)测量硬度值。 2、HB - 布氏硬度; 布氏硬度(HB)一般用于材料较软的时候,如有色金属、热处理之前或退火后的钢铁。洛氏硬度(HRC)一般用于硬度较高的材料,如热处理后的硬度等等。 布式硬度(HB)是以一定大小的试验载荷,将一定直径的淬硬钢球或硬质合金球压入被测金属表面,保持规定时间,然后卸荷,测量被测表面压痕直径。布式硬度值是载荷除以压痕球形表面积所得的商。一般为:以一定的载荷(一般3000kg)把一定大小(直径一般为10mm)的淬硬钢球压入材料表面,保持一段时间,去载后,负荷与其压痕面积之比值,即为布氏硬度值(HB),单位为公斤力/mm2 (N/mm2)。 3、洛式硬度是以压痕塑性变形深度来确定硬度值指标。以0.002毫米作为一个硬度单位。当HB>450或者试样过小时,不能采用布氏硬度试验而改用洛氏硬度计量。它是用一个顶角120°的金刚石圆锥体或直径为1.59、3.18mm的钢球,在一定载荷下压入被测材料表面,由压痕的深度求出材料的硬度。根据试验材料硬度的不同,分三种不同的标度来表示: HRA:是采用60kg载荷和钻石锥压入器求得的硬度,用于硬度极高的材料(如硬质合金等)。 HRB:是采用100kg载荷和直径1.58mm淬硬的钢球,求得的硬度,用于硬度较低的材料(如退火钢、铸铁等)。

布氏、洛氏、维氏硬度计三者的区别 目前硬度计已经广泛应用于工厂、车间等行业各种金属材质硬度的测量,但是硬度计的分类也比较多,用户也经常会为硬度计的选择而发愁,下面我们可以了解下常用硬度计的应用范围及区别。 在测量金属硬度时,用的比较多的有洛氏硬度计、布氏硬度计、维氏硬度计。具据统计,硬度计的使用中,洛氏硬度计的应用已经达到70%,洛氏硬度计常用的标尺的有HRC、HRB和HRF,其中HRC标尺用于测试淬火钢、回火钢、调质钢和部分不锈钢。这是金属加工行业应用最多的硬度试验方法。HRB标尺用于测试各种退火钢、正火钢、软钢、部分不锈钢及较硬的铜合金。HRF标尺用于测试纯铜、较软的铜合金和硬铝合金。HRA标尺尽管也可用于大多数黑色金属,但是实际应用上一般只限于测试硬质合金和簿硬钢带材料。 在采用洛氏硬度试验时,当遇到材料较薄,试样较小,表面硬化层较浅或测试表面镀覆层时,就应改用表面洛氏硬度试验。洛氏硬度计适于对成批加工的成品或半成品工件进行逐件检测,该试验方法对测量操作的要求不高,非专业人员容易掌握。可测试各种黑色和有色金属,测试淬火钢、回火钢、退火钢、表面硬化钢、各种厚度的板材、硬质合金材料、粉末冶金材料、热喷涂层的硬度。 布氏硬度计特别适用于组织不均匀的锻钢和铸铁的硬度测试,布氏硬度试验还可用于有色金属和软钢,采用小直径球压头可以测量小尺寸和较薄材料。布氏硬度计多用于原材料和半成品的检测,由于压痕较大,一般不用于成品检测测定灰铸铁、轴承合金和具有粗大晶粒的金属材料。它的试验数据稳定,重现性好,精度高于洛氏,低于维氏。此外布氏硬度值与抗拉强度值之间存在较好的对应关系。布氏硬度试验的缺点是压痕较大,成品检验有困难,试验过程比洛氏硬度试验复杂,测量操作和压痕测量都比较费时,并且由于压痕边缘的凸起、凹陷或圆滑过渡都会使压痕直径的测量产生较大误差,因此要求操作者具有熟练的试验技术和丰富经验,一般要求由专门的实验员操作。 维氏硬度计是测试热处理工件表面硬度的重要手段,它可选用0.5~100kg的试验力,测试薄至0.05mm厚的表面硬化层,它的精度是最高的,可分辨出热处理工件表面硬度的微小差别。另外,有效硬化层深度也要由维氏硬度计来检测,所以,对于进行表面热处理加工或大量使用表面热处理工件的单位,配备一台维氏硬度计是有必要的。

维氏硬度计的原理: 采用正四棱锥体金刚石压头,在试验力作用下压入试样表面,保持规定时间后,卸除试验力,测量试样表面压痕对角线长度。 试验力除以压痕表面积的商就是维氏硬度值。维氏硬度值按式(3-1)计算:HV = 常数×试验力/压痕表面积≈0.1891 F/d2…………(3-1) 式中:HV ————维氏硬度符号; F ――――试验力,N; d ————压痕两对角线d1、d2的算术平均值,mm 实用中是根据对角线长度d通过查表得到维氏硬度值。 国家标准规定维氏硬度压痕对角线长度范围为~1.400mm 维氏硬度的表示方法 维氏硬度表示为HV,维氏硬度符号HV前面的数值为硬度值,后面为试验力值。标准的试验保持时间为10~15S。如果选用的时间超出这一范围,在力值后面还要注上保持时间。例如: 600HV30—表示采用(30kg)的试验力,保持时间10~15S时得到的硬度值为600。 600HV30/20—表示采用(30kg)的试验力,保持时间20S时得到的硬度值为600。维氏硬度试验的分类和试验力选择 维氏硬度试验按试验力大小的不同,细分为三种试验,即:维氏硬度试验、小负荷维氏硬度试验和显微维氏硬度试验。见表 表维氏硬度试验的三种方法 维氏硬度试验可选用的试验力值很多,见表

试验力的选择要根据试样种类、试样厚度和预期的硬度范围而定。标准规定,试样或试验层的厚度至少为压痕对角线长度的倍。试验后试样背面不应出现可见的变形痕迹。 维氏硬度试验的优点 维氏硬度试验的压痕是正方形,轻廓清晰,对角线测量准确,因此,维氏硬度试验是常用硬度试验方法中精度最高的,同时它的重复性也很好,这一点比布氏硬度计优越。 维氏硬度试验测量范围宽广,可以测量目前工业上所用到的几乎全部金属材料,从很软的材料(几个维氏硬度单位)到很硬的材料(3000个维氏硬度单位)都可测量。 维氏硬度试验最大的优点在于其硬度值与试验力的大小无关,只要是硬度均匀的材料,可以任意选择试验力,其硬度值不变。这就相当于在一个很宽广的硬度范围内具有一个统一的标尺。这一点又比洛氏硬度试验来得优越。 在中、低硬度值范围内,在同一均匀材料上,维氏硬度试验和布氏硬度试验结果会得到近似的硬度值。例如,当硬度值为400以下时,HV≈HB。 维氏硬度试验的试验力可以小到10gF,压痕非常小,特别适合测试薄小材料。 维氏硬度试验的缺点 维氏硬度试验效率低,要求较高的试验技术,对于试样表面的光洁度要求较高,通常需要制作专门的试样,操作麻烦费时,通常只在实验室中使用。 维氏硬度计的应用 维氏硬度试验主要用于材料研究和科学试验方面小负荷维氏硬度试验主要用于测试小型精密零件的硬度,表面硬化层硬度和有效硬化层深度,镀层的表面硬度,薄片材料和细线材的硬度,刀刃附近的硬度,牙科材料的硬度等,由于试验力很小,压痕也很小,试样外观和使用性能都可以不受影响。显微维氏硬氏试验主要用于金属学和金相学研究。用于测定金属组织中各组成相的硬度,用于研究难熔化合物脆性等。显微维氏硬度试验还用于极小或极薄零件的测试,零件厚度可薄至3μm

ICS 71.060.10 Prüfung von Kohlenstoffmaterialien – H?rteprüfung nach Rockwell – Verfahren mit Kugel; Feststoffe In keeping with current practice in standards published by the International Organization for Standardization (ISO), a comma has been used throughout as the decimal marker. Ref.No.DIN 51917:2002-12 English price group 07 Sales No.0107 DEUTSCHE NORM December 2002 51917 { ?No part of this translation may be reproduced without the prior permission of DIN Deutsches Institut für Normung e.V., Berlin. Beuth Verlag GmbH , 10772Berlin, Germany, has the exclusive right of sale for German Standards (DIN-Normen).Translation by DIN-Sprachendienst. In case of doubt, the German-language original should be consulted as the authoritative text. Rockwell hardness testing of carbonaceous materials by the steel ball indentation method Continued on pages 2 to 5. Foreword The December 1997 edition of this standard has been revised by Technical Committee Prüfverfahren für Kohlenstoff und Graphit of the Normenausschuss Materialprüfung (Materials Testing Standards Committee)taking into account DIN EN ISO 6508-1 (which has superseded DIN EN 10109-1) on which it was based.Amendments This standard differs from the December 1997 edition in that the steel ball has been replaced by a hard-metal ball, details relating to the test pieces have been changed, the text has been editorially revised and refer-ences have been updated.Previous editions DIN 51917:1987-10, 1997-12. 1Scope This standard specifies a method of determining the Rockwell hardness of carbon/graphite materials, which can also be used to determine the hardness of metal/graphite materials such as those of carbon brushes for use in electrical machinery. NOTE:In this standard, the ball indentation method specified in DIN EN ISO 6508-1 has been modified to be suitable for carbonaceous materials. 2Normative references This standard incorporates, by dated or undated reference, provisions from other publications. These normative references are cited at the appropriate place in the text and the titles of the publications are listed below. For dated references, subsequent amendments to or revisions of any of these publications apply to this standard only when incorporated into it by amendment or revision. For undated references, the latest edition of the publication referred to applies.DIN 1333Presentation of numerical data DIN 51200 Design and application of test piece holding devices in hardness testing machines Supersedes December1997 edition. Copyright Deutsches Institut Fur Normung E.V. Provided by IHS under license with DIN --`,,,`-`-`,,`,,`,`,,`---

相关文档
最新文档