测量误差改正

测量误差改正
测量误差改正

测量误差改正

A、钢尺量边改正

一、比长改正

钢尺的名义长度与标准长度进行比较,以求出它的实际长度,叫做尺长鉴定,又称钢尺比长。

尺长改正:ΔL=L0-L

式中:L0——钢尺的实际长度(在标准拉力p0和标准温度t0时的真实长度);

L——名义长度(尺面刻划线间的长度)。

钢尺的尺长改正数为ΔL,则钢尺每米的改正数为ΔL/L。若丈量的距离为S,则应加入的尺长改正数为:

ΔS L=ΔL×S/L=()

L

S

L L-

二、温度改正

钢尺受外界气温变化的影响,尺长要发生伸缩变化,从而使量得的距离将比实际距离增大或缩短,因此需进行温度改正。

ΔS t=S×α×(t-t0)

式中:α——钢尺的线膨胀系数,α=0.000012米/米·度;

t0——钢尺比长时的标准温度;

t——量距时的温度。

三、倾斜改正

所量距离为倾斜边长L ,化算成平距l 为:l=Lcos δ 式中:δ——所测倾斜边长的倾角。 1、当倾斜坡度小于3%时

改正数:ΔS h =-L

h 22

(ΔS h 恒为负)

式中:h ——高差值;

L ——倾斜边长。

2、当倾斜坡度大于3%时 平距为:l=22h L

四、垂曲改正

钢尺悬空丈量边长时,尺身受自重而下垂呈悬链状而非一条直线,使所测量边长大于实际边长,因此要加入垂曲改正,其符号恒为负。

整钢尺长的松垂距,其理论计算公式为:

F=p

qL 80

2

式中:q ——每米钢尺的垂重;

L 0——钢尺的实际长度(标准拉力、温度时的真实长度); p ——拉力。

1、水平测边时,则垂曲改正数为:

ΔS f =-f ×3

0???

? ??L

S

式中:S ——所量边长。 2、测倾斜边长时,垂曲改正数为: ΔS f =ΔS f ·cos δ 式中:δ——所测边的倾角。

3、当分段测边时,应分别计算各分段的垂曲改正数,然后将其相加,为该边的垂曲改正数。

五、拉力改正

测量边长时,所使用的标准拉力为钢尺鉴定时的拉力,可不必加入拉力改正。若所加拉力p 不等于p 0时,则需加入拉力改正。

ΔS p =

()0p p EF

S

- 式中:S ——所测边长;

E ——钢尺的弹性系数,1.96×107N/cm 2

F ——钢尺的横断面积,以为cm 2单位; p ——测边时施加的拉力; p 0——钢尺比长时的标准拉力。

六、其他改正

1、归化到投影水准面的改正

所测边长化算为平距l 后,归化到投影水准面的改正为:

M S ?=-

l R

H M

? 式中:M H ——所量边两端点的高程平均值,以km 为单位; R ——地球的平均曲率半径,取6371km 。 2、投影到高斯—克吕格投影面的改正

ΔS G =l R

y

M ?22

2

式中:M y ——边长两端点的平均y 坐标值,以km 为单位; R ——地球的平均曲率半径,取6371km 。

B 、视距测量

一、原理:

S=α2cos KL h=v i KL -+αsin 2

1

二、精度分析

1、视距常数误差,来源测定误差及温度变化影响;

2、用视距丝读取视距间隔的误差:与尺子最小分划的宽度、距离的远近、望远镜的放大率以及成象的清晰情况有关;

3、视距尺分划误差;

4、视距尺不竖直的误差:在视距尺上安置圆水准器;

5、外界条件的影响:选择合适的天气作业;

6、垂直角误差的影响。

C 、三角高程测量

一、原理

根据两点间的水平距离和垂直角,按三角公式计算两点间的高程。 v i tg S H H A B

-+?+=α

式中:HB ——B 点的高程; HA ——A 点的高程;

S ——A 、B 两点间的水平距离; α——A 、B 两点间视线倾斜角; i ——仪器高; v ——觇标高。

注意:当α为仰角时,取正号,tg α为正;当α为俯角时,取负号,tg α为负;本法称为中丝测高法。

二、球差、气差改正

当A 、B 两点间距离在400米以内时,地球曲率和大气折光对高差的影响为1cm 。如两点间相距更远时,则必须考虑加入地球曲率和大气折光对高差的影响,加入相应的改正数。通常称为“球气差改正”,或简称为“两差改正”。

1、球差改正

A 、

B 为地面两点,AA1是过A 点的水准面,AB 是过A 点的水平

线,即1A A

的切线。由图可知,A 、B 两点间的高差h 即为1A B ,如果

用水平线1B A 代替水准面1A A

,则求得的高差为1B B ,1A B 与1B B 之差1

1B A 即为地球曲率的影响。由地球曲率的影响而对高差所加的改正数称为球差改正。

在直角三角形OAB 1中: 21221AB OA OB += ()222

11S R B A R +=+

112112B A R S B A += =R

S 22

(由于11B A 比R 小得多,在分母中忽略不计) 球差改正数与两点间距离平方成正比,且恒为正值。 2、气差改正

由于大气层愈接近地面,其密度愈大,使光线在空气中的行程是

一条凸向天空的曲线,如图M

T ?弧线。为了照准目标M ,由于大气折光影响,必须将视准轴照准在弧线M

T ?的切线方向N T ,N M 就是大气折光对高差的影响。由于大气折光影响而对高差所加的改正数称为气差改正。

折光曲线的形状随着高度、地形、气温、气压、湿度等变化而变化,通常把它当作一个圆弧,其半径约为地球半径的6~7倍。

气差改正:R

S K N M 22

?=

式中:K ——大气折光系数,在0.08~0.14之间,一般取K=0.11。 气差改正与两点间距离的平方成正比,且恒为负值。 3、球气差改正,通常用符号γ表示。

R

S R S K R S 2

2243.022?=?-=γ

三、三角高程测量的完全公式

如图,水平线K T 可认为垂直于标尺N B ,△TKN 可视为Rt △。 αtg S K N ?=

A 、

B 间高差:h=N M N B N K K B B A --++11

=R S K v tg S i R S 222

2?--?++α

=R S v i tg S 2

43.0?--+?α

H B =H A +R

S v i tg S 2

43.0?--+?α

D、测量误差的分类及其特性

一、测量误差的分类

1、系统误差:

在同样条件下作一系列的观测,测量误差的符号和数量,或者保持一个常数,或者呈现规律性的变化,这种误差就称为系统误差。

系统误差的消除方法:

⑴测定仪器的误差,对观测值加以改正;

⑵测量前对仪器结构进行检验与校正,使偏差减到最小程度;

⑶采用最合理的观测方法,使误差自行抵消或者减弱到最小。

2、偶然误差:

误差在符号和数值上都带有偶然性,没有明显的规律,这类误差称为偶然误差。

二、偶然误差的特性

1、在一定的观测条件下,偶然误差的绝对值不会超出一定的范围;

2、绝对值小的误差比绝对值大的误差出现的机会多;

3、绝对值相等的正误差与负误差出现的机会相等;

4、偶然误差的算术平均值,随着观测次数的无限增加而趋近零,

即:

[]

lim=

?

n

n

式中:[Δ]=Δ1+Δ2+……Δ 3

测量误差的分类,表示方法及检测仪表的品质指标 测量误差: 定义:由仪表读得的被测参数的真实值之间,总是存在一定的差距,这种差距称为测量误差。 分类:(1)系统误差 这种误差的大小和方向不随时间测量过程而改变,这种误差是可以避免的。 (2)疏忽误差 测量者在测量过程中疏忽大意所致,这种误差也可以避免。 (3)偶然误差 这种误差是由一些随机的偶然原因引起的,亦称随机误差。它不易被发觉和修正。 偶然误差的大小反映了测量过程的精度。 表示方法: 式中△ —— 绝对误差 X ——被校表的读数值 X 0——标准表的读数值 Λ——仪表在X 0相对误差 检测仪表的品质指标: 常见的指标简介如下: (1)检测仪表的准确度(精确度) б={△max/(标尺上限值-标尺下限值)}×100% б——相对百分误差 △max ——绝对误差 允许误差是指在规定的正常情况下允许的相对百分误差的最大值,即 б允=±{仪表允许的最大绝对误差值/(标尺上限值-标尺下限值) }×100% б允越大,准确度越低,б允 越小,仪表的准确度越高。

一般数值越小,仪表的准确度等级越高。 (2)检测仪表的恒定度 恒定度常用变差(回差)来表示 变差={最大绝对差值/(标尺上限值-标尺下限值) }×100% (3)灵敏度与灵敏限 S=Δα/Δx 式中S——仪表灵敏度 Δα——指针的线位移或角位移 Δx——引起Δα所需的被测参数变化量 (4)反应时间 仪表反应时间的长短,实际上反映了仪表动态特征的好坏。 (5)线性度 线性度用来说明输出量与输入量的实际关系曲线偏离直线的程度。 线性度常用实际测得的输入-输出特征曲线(称为标定曲线)与理论拟合直线之间的最大偏差与检测仪表满量程输出范围之比的百分数来表示,即 б?=(△?max /仪表量程)×100% 式中б?——线性度(非线性误差) Δ?max——标定曲线对理论拟合直线的最大偏差 (6)重复性 重复性表示检测仪表在被测参数按同一方向作全程连续多次变动时所得标定特性曲线不一致的程度。 бz =(Δz max/仪表量程)×100% 式中бz——重复性误差 Δz max—同方向多次测量时仪表表示值得最大偏差值

测量误差的分类以及解决方法 1、系统误差 能够保持恒定不变或按照一定规律变化的测量误差,称为系统误差。系统误差主要是由于测量设备、测量方法的不完善和测量条件的不稳定而引起的。由于系统误差表示了测量结果偏离其真实值的程度,即反映了测量结果的准确度,所以在误差理论中,经常用准确度来表示系统误差的大小。系统误差越小,测量结果的准确度就越高。 2、偶然误差 偶然误差又称随机误差,是一种大小和符号都不确定的误差,即在同一条件下对同一被测量重复测量时,各次测量结果服从某种统计分布;这种误差的处理依据概率统计方法。产生偶然误差的原因很多,如温度、磁场、电源频率等的偶然变化等都可能引起这种误差;另一方面观测者本身感官分辨能力的限制,也是偶然误差的一个来源。偶然误差反映了测量的精密度,偶然误差越小,精密度就越高,反之则精密度越低。 系统误差和偶然误差是两类性质完全不同的误差。系统误差反映在一定条件下误差出现的必然性;而偶然则反映在一定条件下误差出现的可能性。 3、疏失误差 疏失误差是测量过程中操作、读数、记录和计算等方面的错误所引起的误差。显然,凡是含有疏失误差的测量结果都是应该摈弃的。 解决方法: 仪表测量误差是不可能绝对消除的,但要尽可能减小误差对测量结果的影响,使其减小到允许的范围内。 消除测量误差,应根据误差的来源和性质,采取相应的措施和方法。必须指出,一个测量结果中既存在系统误差,又存在偶然误差,要截然区分两者是不容易的。所以应根据测量的要

求和两者对测量结果的影响程度,选择消除方法。一般情况下,在对精密度要求不高的工程测量中,主要考虑对系统误差的消除;而在科研、计量等对测量准确度和精密度要求较高的测量中,必须同时考虑消除上述两种误差。 1、系统误差的消除方法 (1)对测量仪表进行校正在准确度要求较高的测量结果中,引入校正值进行修正。 (2)消除产生误差的根源即正确选择测量方法和测量仪器,尽量使测量仪表在规定的使用条件下工作,消除各种外界因素造成的影响。 采用特殊的测量方法如正负误差补偿法、替代法等。例如,用电流表测量电流时,考虑到外磁场对读数的影响,可以把电流表转动180度,进行两次测量。在两次测量中,必然出现一次读数偏大,而另一次读数偏小,取两次读数的平均值作为测量结果,其正负误差抵消,可以有效地消除外磁场对测量的影响。 2、偶然误差的消除方法 消除偶然误差可采用在同一条件下,对被测量进行足够多次的重复测量,取其平均值作为测量结果的方法。根据统计学原理可知,在足够多次的重复测量中,正误差和负误差出现的可能性几乎相同,因此偶然误差的平均值几乎为零。所以,在测量仪器仪表选定以后,测量次数是保证测量精密度的前提。 . 容:

第一章测量误差及数据处理 物理实验的任务不仅是定性地观察各种自然现象,更重要的是定量地测量相关物理量。而对事物定量地描述又离不开数学方法和进行实验数据的处理。因此,误差分析和数据处理是物理实验课的基础。本章将从测量及误差的定义开始,逐步介绍有关误差和实验数据处理的方法和基本知识。误差理论及数据处理是一切实验结果中不可缺少的内容,是不可分割的两部分。误差理论是一门独立的学科。随着科学技术事业的发展,近年来误差理论基本的概念和处理方法也有很大发展。误差理论以数理统计和概率论为其数学基础,研究误差性质、规律及如何消除误差。实验中的误差分析,其目的是对实验结果做出评定,最大限度的减小实验误差,或指出减小实验误差的方向,提高测量质量,提高测量结果的可信赖程度。对低年级大学生,这部分内容难度较大,本课程尽限于介绍误差分析的初步知识,着重点放在几个重要概念及最简单情况下的误差处理方法,不进行严密的数学论证,减小学生学习的难度,有利于学好物理实验这门基础课程。 第一节测量与误差 物理实验不仅要定性的观察物理现象,更重要的是找出有关物理量之间的定量关系。因此就需要进行定量的测量,以取得物理量数据的表征。对物理量进行测量,是物理实验中极其重要的一个组成部分。对某些物理量的大小进行测定,实验上就是将此物理量与规定的作为标准单位的同类量或可借以导出的异类物理量进行比较,得出结论,这个比较的过程就叫做测量。例如,物体的质量可通过与规定用千克作为标准单位的标准砝码进行比较而得出测量结果;物体运动速度的测定则必须通过与二个不同的物理量,即长度和时间的标准单位进行比较而获得。比较的结果记录下来就叫做实验数据。测量得到的实验数据应包含测量值的大小和单位,二者是缺一不可的。 国际上规定了七个物理量的单位为基本单位。其它物理量的单位则是由以上基本单位按一定的计算关系式导出的。因此,除基本单位之外的其余单位均称它们为导出单位。如以上提到的速度以及经常遇到的力、电压、电阻等物理量的单位都是导出单位。 一个被测物理量,除了用数值和单位来表征它外,还有一个很重要的表征它的参数,这便是对测量结果可靠性的定量估计。这个重要参数却往往容易为人们所忽视。设想如果得到一个测量结果的可靠性几乎为零,那么这种测量结果还有什么价值呢?因此,从表征被测量这个意义上来说,对测量结果可靠性的定量估计与其数值和单位至少具有同等的重要意义,三者是缺一不可的。 测量可以分为两类。按照测量结果获得的方法来分,可将测量分为直接测量和间接测量两类,而从测量条件是否相同来分,又有所谓等精度测量和不等精度测量。 根据测量方法可分为直接测量和间接测量。直接测量就是把待测量与标准量直接比较得出结果。如用米尺测量物体的长度,用天平称量物体的质量,用电流表测量电流等,

第五章 测量误差及其处理的基本知识 1、测量误差的来源有哪些?什么是等精度测量? 答:测量误差的来源有三个方面:测量仪器的精度,观测者技术水平,外界条件的影响。该三个方面条件相同的观测称为等精度观测。 2、什么是系统误差?什么是偶然误差?它们的影响是否可以消除? 答:系统误差是指在相同的观测条件下对某量作一系列的观测,其数值和符号均相同,或按一定规律变化的误差。偶然误差是指在相同的观测条件下对某量作一系列的观测,其数值和符号均不固定,或看上去没有一定规律的误差。系统误差的影响采取恰当的方法可以消除;偶然误差是必然发生的,不能消除,只能削弱偶然误差的影响。 3、举出水准测量、角度测量及距离测量中哪些属于系统误差? 答:水准仪的i 角误差,距离测量时钢尺的尺长误差,经纬仪的视准轴误差、横轴误差和竖盘指标差等都属于系统误差。 4、评定测量精度的指标是什么?何种情况下用相对误差评定测量精度? 答:测量中最常用的评定精度的指标是中误差,其绝对值越大精度越低。当误差大小与被量测量的大小之间存在比例关系时,采用相对误差作为衡量观测值精度的标准。例如距离丈量,采用往返丈量的相对误差作为评定精度的指标。 所谓相对中误差(简称相对误差)就是中误差之绝对值(设为|m|)与观测值(设为D )之比,并将分子化为1表示K =| |/1||m D D m = 。 5、观测值中误差如何计算? 答:设在相同条件下对某量进行了n 次观测,得一组观测值L 1、L 2、……Ln ,x 为观测值的算术平均值, i v 表示观测值改正数,即 11L x v -= 22L x v -= ...... n n L x v -= 则中误差 [] 1-±=n vv m 6、算术平均值及其中误差如何计算?

第三节 误差的估算 由于物理量的数值的获得途径有直接测量和间接测量两种,无论直测量,还是间测量都有误差,误差的计算也分两种情况。广义地讲,两种情况的处理都属于误差计算。然而,间测量是由直测量决定的,以直测量为基础的,间测量的误差是由直测量通过给定的函数关系确定的。因此,狭义地讲,常把直测量的误差计算称为误差计算,而将间测量的误差计算叫误差传递。此外,由于严格意义上的误差是无法计算的,因而只能通过各种方法进行近似计算,故将误差计算称为误差的估算,而且可有多种方法进行估算。下面就介绍几种常用的误差估算方法。 一、直测量的误差估算 1.算术平均误差 在测量列{}i X 中,各次测量的误差的绝对值的算术平均值叫算术平均误差。记为X ?。 按定义 ∑=-=?n i i X X n X 101 或 ∑=?=?n i i X n X 1 1 其中0X X X i i -=?。 当n 较大时,可用下式估算为 () 1--= ?∑n n X X X i 此法比前法得到的偏差要大些。 2.绝对误差 误差的绝对值叫绝对误差。狭义的绝对误差,如上面的i X ?,X ?。而广义的绝对误差还有后面要讨论的x S ,x σ,σ,Q 等。 3.相对误差 绝对误差与平均值的百分比叫相对误差,又叫百分误差。记为r E 。其估算方法为 %100??= X X E r 广义地讲,后面要讨论的 X S x 、 X σ 等都可叫相对误差。 4.标准误差(实验标准差) 按定义,标准误差是测量列中各次误差的方均根,记为x σ。即

()∑=-=n i i x X X n 1 201σ 需要注意的是,上式是在测量次数很多时,测量列按正态分布时所得到的结果。 实际上,由于真值无法获得,而测量次数也只能是有限的。因此,标准误差x σ只能通过偏差进行估算。常用的估算方法有:最大偏差法、极差法、Bessel 法等,它们的估算结果基本一致。应用上,一般使用Bessel 方法。 由统计理论可推导出,对有限次测量的Bessel 标准偏差x S 的计算公式(Bessel 公式)为: () ∑=--=n i i x X X n S 1 2 11 或 ?? ??????????? ??--=∑∑==2 112 111n i i n i i x X n X n S 即最后是用x S 代替x σ。通常所说的标准误差,实际上就是x S 。 5.算术平均值的标准差 算术平均值的标准差与实验标准差的关系为 x x S n S ?= 1 类似的关系还有算术平均值的平均差与算术平均差的关系 X n X ??= ?1 而且x S X 80.0≈?。 二、间测量的误差计算(误差的传递) 上面所讨论的误差计算方法是对直测量而言的,在此基础上我们可以进一步讨论间测量的误差计算问题。我们知道,间测量是由直测量通过一定的函数关系决定相应的间测量的误差,它们之间的这种关系叫误差的传递,相应的计算公式叫误差传递公式。下面我们首先讨论误差传递公式的一般形式,然后再将其运用于一些具体情况。 1.误差传递公式的一般形式 设间接测量量f 与彼此独立的直接测量量x 、y 、z (只取3个)间的函数关系为 ()z y x f f ,,= 测量结果用平均值和绝对误差表示为 x x x ?±=

电工电子实验指导 理工组:张延鹏

实验一 基本电工仪表的使用与测量误差的计算 一、实验目的 1.熟悉实验台上仪表的使用和布局; 2.熟悉恒压源与恒流源的使用和布局; 3.掌握电压表、电流表内电阻的测量方法; 4.掌握电工仪表测量误差的计算方法。 二、实验原理 通常,用电压表和电流表测量电路中的电压和电流,而电压表和电流表都具有一定的内阻,分别用R V 和R A 表示。如图1-1所示,测量电阻R 2两端电压U 2时,电压表与R 2并 联,只有电压表内阻R V 无穷大,才不会改变电路原来的状态。如果测量电路的电流I ,电流表串入电路,要想不改变电路原来的状态,电流表的内阻R A 必须等于零。但实际使用的电压表和电流表一般都不能满足上述要求,即它们的内阻不可 能为无穷大或者为零,因此,当仪表接入电路时都会使原来的状态发生变化,使被测的读数值与电路原来的实际值之间产生误差,这种由于仪表内阻引入的测量误差,称之为方法误差。显然,方法误差值的大小与仪表本身内阻值的大小密切相关,我们总是希望电压表的内阻越接近无穷大越好,而电流表的内阻越接近零越好。 可见,仪表的内阻是一个十分关键的参数。通常用以下方法测量仪表的内阻。 1.用“分流法”测量电流表的内阻 设被测电流表的内阻为R A ,满量程电流为I m ,测试电路如图1-2所示,首先断开开关S ,调节恒流源的输出电流 I ,使电流表指针达到满偏转,即I =I A =I m 。然后和上开关 S ,并保持I 值不变,调节电阻箱R 的阻值,使电流表的指针在1/2满量程位置,即I A = I S = I m / 2 则电流表的内阻R A =R 。 2.用“分压法”测量电压表的内阻 设被测电压表的内阻为R V ,满量程电压为U m ,测试电路如图1-3所示,首先闭合开关S ,调节恒压源的输出电压U ,使电压表指针达到满偏转,即 U =U V =U m 。然后断开开关S ,并保持U 值不变,调 节电阻箱R 的阻值,使电压表的指针在1/2满量程位置,即U V = U m = U m / 2 可调恒压源 R V U m 图1-3 图1-2 可调恒流源 R 1

四、测量误差基本知识 1、测量误差分哪两类?它们各有什么特点?测量中对它们的主要处理原则是什么? 2、产生测量误差的原因有哪些?偶然误差有哪些特性? 3、何谓标准差、中误差和极限误差? 4、对某个水平角以等精度观测4个测回,观测值列于下表(表4-1)。计算其算术平均值x、一测回的中误差m及算术平均值的中误差m x。 表4-1 5、对某一三角形(图4-1)的三个内角重复观测了九次,定义其闭合差?=α+β+γ-180?,其结果如下:?1=+3",?2=-5",?3=+6",?4=+1",?5=-3",?6=-4",?7=+3",?8=+7",?9=-8";求此三角形闭合差的中误差m?以及三角形内角的测角中误差mβ。

图 4-1 6、在一个平面三角形中,观测其中两个水平角(内角)α和β,其测角中误差均为m=±20",根据角α和角β可以计算第三个水平角γ,试计算γ角的中误差m γ。 7、量得某一圆形地物直径为64.780m ,求其圆周的长S 。设量测直径的中误差为±5㎜,求其周长的中误差m S 及其相对中误差m S /S 。 8、对某正方形测量了一条边长a =100m ,a m =±25mm ;按S=4a 计算周长和P=a 计算面积,计算周长的中误差m 和面积的中误差p m 。 9、某正方形测量了四条边长a 1=a 2=a 2=a 4=100m ,m =m =m =m =±25mm ;按 S=1a +2a +3a +4a 计算周长和P=(1a ?2a +3a ?4a )/2计算面积,求周长的中误差m 和面积的中误差p m 。 10.误差传播定律应用 (1)(1)已知m a =m c =m ,h=a-b ,求m 。 (2)已知a m =m =±6",β=a-c ,求βm 。 (3)已知a m =m =m ,S=100(a-b) ,求m 。 (4)已知D=() h S -,m =±5mm ,m =±5mm ,求m 。

一、测量误差:测量结果减被测量的真值(测量的期望值)之差。1)即:测量误差=测量结果-真值;对测量仪器:示值误差=仪器示值-标准示值。 2)测量误差通常通常可用示值的绝对误差、相对误差及引用误差(折合误差)来表示。 3)按照测量误差的基本性质不同,可将误差分为三大类:系统误差、随机误差和疏失误差。 二、约定真值:是一个接近真值的值,它与真值之差可忽略不计。实际测量中以在没有系统误差的情况下,足够多次的测量值之平均值作为约定真值。一般由国家基准或当地最高计量标准复现而赋予该特定量的值。 三、标称范围:标称范围是指测量仪器的操纵器件调到特定位置时可得到的示值范围(定值)。 四、精度等级:在正常的使用条件下,仪表测量结果的准确程度叫仪表的准确度。 1)引用误差越小,仪表的准确度越高,而引用误差与仪表的量程范围有关,所以在使用同一准确度的仪表时,往往采取压缩量程范围以减小测量误差,精度等级是以它的允许误差占表盘刻度值的百分数来划分的,其精度等级数越大允许误差占表盘刻度极限值越大。量程越大,同样精度等级的,它测得压力值的绝对值允许误差越大。 2)在工业测量中,为了便于表示仪表的质量,通常用准确度等级

来表示仪表的准确程度.准确度等级就是最大引用误差去掉正,负号及百分号.准确度等级是衡量仪表质量优劣的重要指标之一。3)我国工业仪表等级分为,,,,,,七个等级,并标志在仪表刻度标尺或铭牌上.仪表准确度习惯上称为精度,准确度等级习惯上称为精度等级。 绝对误差:测量结果与被测量[约定]真值(标准表读数)之差。 1)公式:△:绝对误差,L:测量值,A:真值(标准表读数)△= L- A 2)绝对误差的缺点:并不能完全表示近似值的好坏程度,例如:x=10±1,y=1000±5,哪一个精度高呢看上去x的绝对误差限比y的绝对误差限小,似乎x的精度高,其实不然。 四、相对误差:测量的绝对误差与被测量[约定]真值(标准表读数)之比的百分数所得的数值,以百分数表示。 1)由于测量值的真值是不可知的,因此其相对误差也是无法准确获知的,我们提到相对误差时,指的一般是相对误差限,即相对误差可能取得的最大值(上限)。指绝对误差在真实值中所占的百分率。他是相对于仪表某一点真值(标准表读数)的一种误差。2)公式:r:相对误差,△:绝对误差,A:真值(标准表读数)r=△/ A% 五、引用误差(折合误差):测量的绝对误差与仪表的满量程值之比,称为仪表的引用误差,它常已百分数表示。 1)引用误差是仪表中通用的一种误差表示方法,他是相对于仪表满

第二章 测量误差的计算基础 测量误差与概率统计学关系密切,下面介绍与测量误差有关的数学基础知识。 一、算术平均值 对某个被测量x 进行n 次测量,所得的n 个测量值(x i ,i=1,2,…,n)的代数和除以n 而得的商,称为算术平均值。即如果有n 个测量值x 1,x 2,…,x n ,那么 式中:x —算术平均值; n —测量次数; x i —第i 个测量值。 对于不含系统误差的测量列在重复性条件或复现性条件下得出n 个观测结果x n ,随机变量x 的期望值μx 的最佳估计是n 次独立观测结果的算术平均值x (x 又称样本平均值)。 [例2—1) 在重复条件下对某被测量重复测量5次,测量值为0.3,0.4,0.7,0.5,0.9,求其算术平均值。 [解] )(154321x x x x x n x ++++= )9.05.07.04.03.0(5 1++++= =0.56(取0.6) 二、残余误差

(一)定义 测量列中的某个测得值(x i )和该测量列的算术平均值(x )之差为残余误差)(i υ,简称残差。 [例2—2] 在重复条件下对某被测量重复测量5次,测量值为:10.4,10.5,10.7,10.6,10.8。求残余误差)(i υ。 [解] )8.106.107.105.104.10(5 1++++=x =10.6 1υ=10.4-10.6=-0.2; 2υ=10.5-10.6=-0.1; 3υ=10.7-10.6=+0.1; 4υ=10.6-10.6=0; 5υ=10.8-10.6=+0.2。 (二)应用 判断x ,i υ计算是否正确,可用∑i υ=0来判定(算术平均值特性之一,算术平均值的另一个特性是:∑2i υ=最小)。当x 计算修约结果产生修 约误差时,∑i υ≠0,此时应满足: 式中:n —测量次数; m —保留位数末位的以10为底幂的指数。 如在[例2—2]中: 0)2.0(0)1.0()1.0()2.0(54321=+++++-+-=++++=∑υυυυυυi 说明;x ,i υ的计算结果正确。 [例2-3] 在重复条件下,对某被测量重复测量7次,测量值为:10.4,

第一章 测量误差及数据处理的基本知识 物理实验离不开对物理量的测量。由于测量仪器、测量方法、测量条件、测量人员等因素的限制,测量结果不可能绝对准确。所以需要对测量结果的可靠性做出评价,对其误差范围作出估计,并能正确地表达实验结果。 本章主要介绍误差和不确定度的基本概念,测量结果不确定度的计算,实验数据处理和实验结果表达等方面的基本知识。这些知识不仅在每个实验中都要用到,而且是今后从事科学实验工作所必须了解和掌握的。 1.1 测量与误差 1.1.1测量 物理实验不仅要定性的观察物理现象,更重要的是找出有关物理量之间的定量关系。因此就需要进行定量的测量。测量就是借助仪器用某一计量单位把待测量的大小表示出来。根据获得测量结果方法的不同,测量可分为直接测量和间接测量:由仪器或量具可以直接读出测量值的测量称为直接测量。如用米尺测量长度,用天平称质量;另一类需依据待测量和某几个直接测量值的函数关系通过数学运算获得测量结果,这种测量称为间接测量。如用伏安法测电阻,已知电阻两端的电压和流过电阻的电流,依据欧姆定律求出待测电阻的大小。 一个物理量能否直接测量不是绝对的。随着科学技术的发展,测量仪器的改进,很多原来只能间接测量的量,现在可以直接测量了。比如车速的测量,可以直接用测速仪进行直接测量。物理量的测量,大多数是间接测量,但直接测量是一切测量的基础。 一个被测物理量,除了用数值和单位来表征它外,还有一个很重要的表征它的参数,这便是对测量结果可靠性的定量估计。这个重要参数却往往容易为人们所忽视。设想如果得到一个测量结果的可靠性几乎为零,那么这种测量结果还有什么价值呢?因此,从表征被测量这个意义上来说,对测量结果可靠性的定量估计与其数值和单位至少具有同等的重要意义,三者是缺一不可的。 1.1.2 误差 绝对误差 在一定条件下,某一物理量所具有的客观大小称为真值。测量的目的就是力图得到真值。但由于受测量方法、测量仪器、测量条件以及观测者水平等多种因素的限制,测量结果与真值之间总有一定的差异,即总存在测量误差。设测量值为N ,相应的真值为N 0,测量值与真值之差ΔN ΔN =N -N 0 称为测量误差,又称为绝对误差,简称误差。 误差存在于一切测量之中,测量与误差形影不离,分析测量过程中产生的误差,将影响降低到最低程度,并对测量结果中未能消除的误差做出估计,是实验测量中不可缺少的一项重要工作。 相对误差 绝对误差与真值之比的百分数叫做相对误差。用E表示: %1000 ??=N N E 由于真值无法知道,所以计算相对误差时常用N代替0N 。在这种情况下,N可能是公认 值,或高一级精密仪器的测量值,或测量值的平均值。相对误差用来表示测量的相对精确度,相对误差用百分数表示,保留两位有效数字。 1.1.3 误差的分类

测量中误差 测量误差按其对测量结果影响的性质,可分为: 一.系统误差(system error) 1.定义:在相同观测条件下,对某量进行一系列观测,如误差出现符号和大小均相同或按一定的规律变化,这种误差称为系统误差。 2.特点:具有积累性,对测量结果的影响大,但可通过一般的改正或用一定的观测方法加以消除。 二.偶然误差(accident error) 1.定义:在相同观测条件下,对某量进行一系列观测,如误差出现符号和大小均不一定,这种误差称为偶然误差。但具有一定的统计规律。 2.特点: (1)具有一定的范围。 (2)绝对值小的误差出现概率大。 (3)绝对值相等的正、负误差出现的概率相同。 (4)数学期限望等于零。即: 误差概率分布曲线呈正态分布,偶然误差要通过的一定的数学方法(测量平差)来处理。 此外,在测量工作中还要注意避免粗差(gross error)(即:错误)的出现。

§2衡量精度的指标 测量上常见的精度指标有:中误差、相对误差、极限误差。 一.中误差 方差 ——某量的真误差,[]——求和符号。 规律:标准差估值(中误差m)绝对值愈小,观测精度愈高。 在测量中,n为有限值,计算中误差m的方法,有: 1.用真误差(true error)来确定中误差——适用于观测量真值已知时。 真误差Δ——观测值与其真值之差,有: 标准差 中误差(标准差估值), n为观测值个数。 2.用改正数来确定中误差(白塞尔公式)——适用于观测量真值未知时。 V——最或是值与观测值之差。一般为算术平均值与观测值之差,即有: 二.相对误差 1.相对中误差=

2.往返测较差率K= 三.极限误差(容许误差) 常以两倍或三倍中误差作为偶然误差的容许值。即: 。 §3误差传播定律 一.误差传播定律 设、…为相互独立的直接观测量,有函数 ,则有: 二.权(weight)的概念 1.定义:设非等精度观测值的中误差分别为m1、m2、…m n,则有: 权其中,为任意大小的常数。 当权等于1时,称为单位权,其对应的中误差称为单位权中误差 (unit weight mean square error)m0,故有:。 2.规律:权与中误差的平方成反比,故观测值精度愈高,其权愈大。

第5章 测量误差及其处理的基本知识 学习重点:测量误差的分类和偶然误差的性质、评定精度的指标、算术平均值及其中误差的计算。 5.1测量误差概述 5.1.1测量误差的来源与分类 一、 观测值及其误差 测量获得的数据称为观测值,观测值i L 与真值X 之差即为观测值的真误差i ?: i ?=i L -X (i =1、2、3...n ) (5-1) 二、 测量误差的来源 产生测量误差的来源有以下三个方面: (1) 仪器性能的限制; (2) 观测者本身的限制; (3) 外界条件的影响。 三、测量误差的分类 根据对测量成果影响的性质,可将误差分为以下两类: (一)系统误差 系统误差是指在相同的观测条件下对某量作一系列的观测,其数值和符号均相同,或按一定规律变化的误差。只要采取恰当的方法就可以将系统误差的影响予以消除。 (二)偶然误差 偶然误差是指在相同的观测条件下对某量作一系列的观测,其数值和符号均不固定,或看上去没有一定规律的误差。偶然误差总是不可避免地存在于观测值中。 5.1.2偶然误差的特性 偶然误差具有以下特性: 1.在一定的观测条件下,偶然误差的绝对值不会超过一定的限度; 2.绝对值小的误差比绝对值大的误差出现的机会大; 3.绝对值相等的正误差和负误差出现的机会相等; 4.当观测次数无限增多时,偶然误差的算术平均值趋近于零,即

5.2 评定精度的指标 测量中最常用的评定精度的指标是中误差。 一、 中误差 设在相同条件下,对真值为X 的量作n 次观测,每次观测值为i L ,其真误差i ?: i ?=i L -X (i =1,2,3...n ) (5-5) 则中误差m 的定义公式为 m = []n ??± (5-6) 在使用中误差评定观测值的精度时,需要注意以下几点: (1) 观测值的精度必须相等,且个数较多。 (2) 依据(5-6)式计算的中误差,代表一组等精度观测中每一个观测值的精度。 (3) 中误差数值前应冠以“±”号。 例如,有甲、乙两组各含10个观测值,其真误差分别为 甲组: +3,-2,-4,+2,0,-4,+3,+2,-3,-1 乙组: 0,-1,-7,+2,+1,+1,-8,0,+3,-1 则依据(5-6)可计算两组观测值的中误差分别为: 7.210) 1323402423(222222222±=+++++++++±=甲m 6.310 ) 1308112710(22222222±=+++++++++±=乙m 即知,甲乙两组中每个观测值的精度可分别以7.2±和6.3±表示,而同一组中真误差的差异,只是偶然误差的反映。由于乙甲m m <,所以,甲组观测值较乙组观测值的精度高。 二、 容许误差 通常规定以两倍(要求较严)或三倍(要求较宽)中误差作为偶然误差的容许误差或限差,即 限?=2~3m (5-9) 三、 相对误差

实验一 基本电工仪表的使用及测量误差的计算 一、实验目的 1. 熟悉实验台上各类电源及各类测量仪表的布局和使用方法。 2. 掌握指针式电压表、电流表内阻的测量方法。 3. 熟悉电工仪表测量误差的计算方法。 二、原理说明 1. 为了准确地测量电路中实际的电压和电流,必须保证仪表接入电路后不会改变被测电路的工作状态。这就要求电压表的内阻为无穷大;电流表的内阻为零。而实际使用的指针式电工仪表都不能满足上述要求。因此,当测量仪表一旦接入电路,就会改变电路原有的工作状态,这就导致仪表的读数值与电路原有的实际值之间出现误差。误差的大小与仪表本身内阻的大小密切相关。只要测出仪表的内阻,即可计算出由其产生的测量误差。以下介绍几种测量指针式仪表内阻的方法。 2. 用“分流法”测量电流表的内阻 如图1-1所示。A 为被测内阻(R A )的直流电流 表。测量时先断开开关S ,调节电流源的输出电流I 使A 表指针满偏转。然后合上开关S ,并保持I 值不 变,调节电阻箱R B 的阻值,使电流表的指针指在1/2 满偏转位置,此时有 I A =I S =I/2 ∴ R A =R B ∥R 1 可调电流源 R 1为固定电阻器之值,R B 可由电阻箱的刻度盘上读得。 图 1-1 3. 用分压法测量电压表的内阻。 如图1-2所示。 V 为被测内阻(R V )的电压表。 测量时先将开关S 闭合,调节直流稳压电源的 输出电压,使电压表V 的指针为满偏转。然后 断开开关S ,调节R B 使电压表V 的指示值减半。 此时有:R V =R B +R 1 电压表的灵敏度为:S =R V /U (Ω/V) 。 式 中U 为电压表满偏时的电压值。 4. 仪表内阻引起的测量误差(通常称之为方 可调稳压源 法误差, 而仪表本身结构引起的误差称为仪表基 图 1-2 本误差)的计算。

误差的计算 一、单次直接测量误差的计算 在实际工作中,我们有时不可能进行重复的测量,或者在测量精度要求不高的情况下只进行一次的测量,称之为单次直接测量。在物理实验中,特别是在电学实验中,经常采取单次测量。因此,如何估计单次测量的误差,是物理实验中的一重要问题。 单次直接测量的测得值就作为其最佳值,其测量误差可以用仪器本身的误差(仪器误差)来计算。 仪器误差是指仪器在规定的作用条件下,正确地使用仪器时,可能产生的最大误差,用Δ仪表示。对仪器误差的估计,我们可分以下几种情况进行讨论: 1、有刻度的仪器仪表 如果未标出精度等级或精密度,取其最小分度值的一半作为测量仪器误差 Δ仪。 2、标有精度的仪器仪表 对于标有精度的仪器,可以取精度的1/2作为测量仪器误差Δ仪。 3、标有精度等级的仪器仪表 可按仪器的标牌上(或说明书中)注明的精度等 级及相关公式计算误差。 4、停表和数字显示的仪器仪表 取末位的1为测量人仪器误差。 仪器误差遵从均匀分布规律,即在误差范围(-Δ仪,+Δ仪)内,各种误差出现的概率都相等。面在这个误差范围以外,误差不可能出现。其分布曲线如图所示,这与正态分布是不同。根据均匀分布理论,仪器的标准误差和仪器误差有如下关系: (6) 因此,单次测量的标准绝对误差为: (7) 二、多次直接测量误差的计算 在条件许可的情况下,我们总是采用多次测量,求其算术平均值作为最佳值。 设对一个物理量x 进行了n 次等精度测量,测量值为x 1,x 2,…,x i ,…,x n 。则其算术平均值为: (8) 其绝对误差为: (9) 若测量列中n 次测量结果是唯一值,或测量列算术平均的标准误差,相对于仪器的标准误差非常小,则多次直接测量取,即多次直接测量的误差可以用下式表示: (10) 3仪仪?= σ3仪仪单?= =σσ∑==n i i x n x 11) 1()(1 2 --= ∑=- n n x x n i i x σ?? ?<>=)()(仪仪仪σσσσσσσx x x 图2-3均匀分布曲线

测量误差及数据处理技术规范 JJG 1027—1991 本技术规范对测量误差和数据处理中比较常遇到的一些问题做出统一的规定,以便正确地给出和使用测量结果。 本规范适用于测量不确定度的评定,计量器具准确度的评定,及其评定结果的表达。 本规范所研究的测量结果的方差是有限的例如,在晶振频率的误差中,由于噪声导致理论方差发散,而是非有限的*。除非特别指明,本规范所述处理方法与误差的分布无关。 一测量结果的误差评定 1 一般原理 由于存在一些不可避免对测量有影响的原因,导致测量结果中存在误差。 误差的准确值、总体标准差都是未知的,但可以通过重复条件或复现条件下的有限次数测量列的统计计算或其它非统计方法得出它们的评定值。 计算得到的误差和(或)已确定的系统误差,应尽量消除或对结果进行修正。无法修正的部分,在测量不确定度评定中作为随机误差处理。 2 测量误差的种类 测量误差是指测量结果与被测量真值之差。它既可用绝对误差表示,也可以用相对误差表示。按其出现的特点,可分为系统误差、随机误差和粗大误差。

2.1 系统误差 在同一被测量的多次测量过程中,保持恒定或以可预知方式变化的测量误差的分量。按其变化规律可分为两类: a 固定值的系统误差。其值(包括正负号)恒定。如,采用天平称重中标准砝码误差所引起的测量误差分量。 b 随条件变化的系统误差。其值以确定的,并通常是已知的规律随某些测量条件变化。如,随温度周期变化引起的温度附加误差。 2.2 随机误差 在同一量的多次测量过程中,以不可预知方式变化的测量误差分量。它引起对同一量的测量列中各次测量结果之间的差异,常用标准差表征。对标准差以及系统误差中不可掌握的部分的估计,是测量不确定度评定的主要对象。 2.3 粗大误差 指明显超出规定条件下预期的误差。它是统计的异常值,测量结果带有的粗大误差应按一定规则剔除。 3 误差来源及分解 任何详细的误差评定报告,应包括各误差项的完整材料,其中应有评定方法的说明。 3.1 误差来源 设被测量的真值为Y0,而测量结果为Y,则绝对误差ΔY可表示为:ΔY=Y-Y0 (1.1)本条叙述由测量绝对误差ΔY分解成可以评定的误差分量ΔYk的法

测量中误差计算公式(很有用哦) 测量误差按其对测量结果影响的性质,可分为: 一、系统误差(system error) 1、定义:在相同观测条件下,对某量进行一系列观测,如误差出现符号和大小均相同或按一定的规律变化,这种误差称为系统误差。 2、特点:具有积累性,对测量结果的影响大,但可通过一般的改正或用一定的观测方法加以消除。 二、偶然误差(accident error) 1、定义:在相同观测条件下,对某量进行一系列观测,如误差出现符号和大小均不一定,这种误差称为偶然误差。但具有一定的统计规律。 2、特点: (1) 具有一定的范围。 (2) 绝对值小的误差出现概率大。 (3) 绝对值相等的正、负误差出现的概率相同。 (4) 数学期限望等于零。即:

误差概率分布曲线呈正态分布,偶然误差要通过的一定的数学方法(测量平差)来处理。 此外,在测量工作中还要注意避免粗差(gross error)(即:错误)的出现。 2衡量精度的指标 测量上常见的精度指标有:中误差、相对误差、极限误差。 一、中误差 方差 某量的真误差,[]求和符号。 规律:标准差估值(中误差m)绝对值愈小,观测精度愈高。 在测量中,n为有限值,计算中误差m的方法,有: 1、用真误差(true error)来确定中误差适用于观测量真值已知时。 真误差Δ观测值与其真值之差,有: 标准差 中误差(标准差估值), n为观测值个数。 2、用改正数来确定中误差(白塞尔公式)适用于观测量真值未知时。 V最或是值与观测值之差。一般为算术平均值与观测值之差,即有: 二、相对误差 1、相对中误差=

2、往返测较差率K= 三、极限误差(容许误差) 常以两倍或三倍中误差作为偶然误差的容许值。即:。 3误差传播定律 一、误差传播定律 设、…为相互独立的直接观测量,有函数 ,则有: 二、权(weight)的概念 1、定义:设非等精度观测值的中误差分别为m 1、m 2、…mn,则有: 权 其中,为任意大小的常数。 当权等于1时,称为单位权,其对应的中误差称为单位权中误差(unit weight mean square error)m0,故有:。 2、规律:权与中误差的平方成反比,故观测值精度愈高,其权愈大。

减小测量误差的方法总结 摘要:本文通过知识回顾法、查阅资料法、总结法,介绍了测量误差的基本概念和来源,从不同角度归纳出误差的分类,并从如何弥补仪器缺陷、减小系统误差和随机误差方面做详细介绍。 关键词:测量误差误差来源减小误差 一、测量误差的概念和来源 (一)测量误差的概念 在测量时,测量结果与实际值之间的差值叫误差。真实值是客观存在的,是在一定时间下体现事物的真实数据。测量值是测量所得的结果。这两者之间总是或多或少的存在一定的差异,就是测量误差。 (二)测量误差的主要来源 1.外界条件 外界的温度、湿度、大气折射等对观测结果都会产生影响。 2.仪器条件 仪器制造产生的精度缺陷。 3.观测者自身条件 每个人都有自己的鉴别能力,一定的分辨率和技术条件,在仪器安置、照准、读数等方面可能会产生误差。 二、测量误差的分类及简单介绍 (一)按表示方法 1.绝对误差:是示值与被测量真值之间的差值。 设被测量的真值为A0,器具的示值为x,则绝对误差Δx为: Δx=x-A0 (1)由于一般无法求得真值A0,在实际应用中,常用精度高一级的标准器具的示值A代替之。X与A之差常称为器具的示值误差。记为: Δx=x-A (2)通常以此值代表绝对误差。 绝对误差一般适用于标准器具的校准。 2.相对误差:是相对误差Δx与被测量的约定值之比,它较绝对误差更能确切地说明测量精度。 3.容许误差:是根据技术条件的要求,规定某一类器具误差不应超过的最大范围。

(二)按误差出现的规律分类 1.系统误差 其变化规律服从某种已知函数。系统误差主要由以下几个方面引起:材料、零部件及工艺缺陷;环境温度、湿度、压力的变化以及其他外界干扰等。 系统误差表明了一个测量结果偏离真值或实际值的程度。系统误差越小,测量就越正确。 2.随机误差 又称偶然误差,其变化规律未知。随机误差是由很多复杂因素的微小变化的总和所引起的,具有随机变量的一切特点,在一点条件下服从统计规律。因此,通过多次测量后,对其总和可以用统计规律来描述,则可从理论上估计对测量结果的影响。 随机误差表现了测量结果的分散性。在误差理论中,常用精密度一词来表征随机误差的大小。随机误差越小,精密度越高。 3.粗大误差 是指在一定条件下测量结果显着地偏离其实际值所对应的误差。在测量及数据处理中,如发现某次测量结果所对应的误差特别大或小时,应认真判断误差是否属于粗大误差,如是,该值应舍去不用。 三、测量误差的减小 下面将从测量误差的三个主要来源:仪器条件、外界条件、观测者自身条件,进行分析如何减小测量误差。 (一)弥补仪器缺陷 由于仪器本身的缺陷带来测量误差,如零点偏离,为了减小测量误差,首先就得考虑弥补仪器的缺陷。可以由以下的方法: 1.替代法 替代法是指在测量装置上对某一带测量进行测量后,立即将带测量与标准量进行交换,再次进行测量,利用函数关系,从而得出测量的值。即在测量装置上对某一带测量进行测量后,再次进行测量,并调到同样的情况,从而得出带测量等于标准量。例如,用电桥测量电阻时,调平衡后,把被测电阻用可变标准电阻替换,调标准电阻值使电桥再次达到平衡,则标准电阻的示值即为被测电阻的阻值。这样可消除用此电桥自身可能存在的误差。 2.对称观测法

测量误差(练习题) 一、选择题 1、对某一量进行观测后得到一组观测值,则该量的最或是值为这组观测值的( )。 A .最大值 B .最小值 C .算术平均值 D .中间值 2、观测三角形三个内角后,将它们求和并减去180°所得的三角形闭合差为( )。 A .中误差 B .真误差 C .相对误差 D .系统误差 3、系统误差具有的特点为( )。 A .偶然性 B .统计性 C .累积性 D .抵偿性 4、在相同的观测条件下测得同一水平角角值为:173°58′58"、173°59′02"、173°59′04"、173°59′06"、173°59′10",则观测值的中误差为( )。 A .±4.5" B.±4.0" C.±5.6" D.±6.3" 5、一组测量值的中误差越小,表明测量精度越( ) A .高 B .低 C .精度与中误差没有关系 D .无法确定 6、边长测量往返测差值的绝对值与边长平均值的比值称为( )。 A .系统误差 B .平均中误差 C .偶然误差 D .相对误差 7、对三角形三个内角等精度观测,已知测角中误差为10″,则三角形闭合差的中误差为( )。 A .10″ B .30″ C .17.3″ D .5.78″ 8、两段距离及其中误差为:D1=72.36m±0.025m, D2=50.17m±0.025m ,比较它们的测距精度为( )。 A .D1精度高 B .两者精度相同 C .D2精度高 D .无法比较 9、设某三角形三个内角中两个角的测角中误差为±4″和±3″,则求算的第三个角的中误差为( )。 A .±4″ B .±3″ C .±5″ D .±6″ 10、设函数X=L 1+2L 2,Y=X+L 3,Z=X+Y ,L 1,L 2,L 3的中误差均为m ,则X ,Y ,Z 的中误差分别为( )。 A .m 5,m 6,m 11 B .m 5,m 6,m 21 C .5m ,6m ,21m D .5m ,6m ,11m 11、某三角网由10个三角形构成,观测了各三角形的内角并算出各三角形闭合差,分别为:+9″、-4″、-2″、+5″、-4″、+3″、0″、+7″、+3″、+1″,则该三角网的测角中误差为( )。 A .±12″ B . ±1.2″ C . ±2.6″ D .±2.4″ 12、测一正方形的周长,只测一边,其中误差为±0.02m,该正方形周长的中误差为( )。 A .±0.08m B .±0.04m C .±0.06m D .±0.02m 13、已知用DJ6型光学经纬仪野外一测回方向值的中误差为±6″,则一测回角值的中误差为( )。 A .±17″ B .±6″ C .±12″ D .±8.5″ 14、已知用DJ2型光学经纬仪野外一测回方向值的中误差为±2″,则一测回角值的中误差为( )。 A .±2.8″ B .±2″ C .±4″ D .±8.5″ 15、已知用DS3型水准仪进行水准测量时,1KM 往返的高差中误差为±3mm,则往测1公里的高差中误差

相关文档
最新文档