磁性纳米TiO_2_Fe_3O_4光催化复合材料的制备及性能_陈金媛

磁性纳米TiO_2_Fe_3O_4光催化复合材料的制备及性能_陈金媛
磁性纳米TiO_2_Fe_3O_4光催化复合材料的制备及性能_陈金媛

2004年第62卷

第20期,2093~2097

化学学报

ACTA CHI M ICA SINICA

Vol.62,2004

No.20,2093~2097磁性纳米TiO2/Fe3O4光催化复合材料的制备及性能

陈金媛a,b 彭图治 ,a

(a浙江大学化学系 西溪校区 杭州310028)

(b浙江工业大学职业技术学院 杭州310014)

摘要 采用溶胶-凝胶法,在磁性Fe3O4表面包覆TiO2,制备了一种新型纳米TiO2/Fe3O4光催化复合材料.XRD,TE M对材料形态结构及包覆情况的分析,显示TiO2包覆在Fe3O4表面,形成平均尺寸为35~50n m的复合结构;UV-vis吸收曲线表明,复合材料对光的吸收出现红移,吸收强度增大;对染料废水光催化降解的模拟研究表明,该复合材料对活性艳红染料的脱色率达100%,是一种便于回收、可重复使用的高效光催化剂.

关键词 纳米TiO2,磁性Fe3O4,复合材料,光催化

Preparation and Properties of a Magnetic-nanometer

TiO2/Fe3O4Composite Photocatalyst

CHE N,Jin-Yuan a,b PE NG,Tu-Zhi ,a

(a Depar tment of Chemis try,Xixi Campu s,Zhejiang U nivers ity,H angzhou310028)

(b School of Vo cational and Techniqu e,Zhejiang University of Technology,H angzhou310014)

Abstract A novel magnetic-nanometer titanium dioxide/ferrifer ous oxide(TiO2/Fe3O4)c omposite photocatalyst was prepared.The photoactive TiO2was deposited onto the surface of magnetic Fe3O4cores using a sol-gel coating technique.The morphological str ucture of the photocatalyst particles was characterized by XRD and TE M analysis. The nanometer-TiO2disperses uniformly and enwraps the Fe3O4magnetic cores to form composite particles with a size of30~50nm.The photocatalyst shows pr operties of absorptive wavelengh red-shift and absor bance increase.The ne w composite photocatalyst is a highly effective decoloring agent in wastewater with a dyestuff of active bright red,which can be recovered and reused.

Keywords nanometer-TiO2,magnetic Fe3O4,composite material,photo-catalysis

纳米TiO2无毒、性能稳定,具有抗化学和光腐蚀、光催化活性高、对水污染中有机物降解无选择性、矿化彻底、无二次污染等优点,是当前最受重视和具有广阔应用前景的光催化氧化剂[1~7].但纳米TiO2颗粒较小,做成催化剂,使用时易流失,难以回收;若制成催化膜则存在很多技术和经济上的问题[3].Fe3O4是一种磁性材料,可被磁铁吸附,把TiO2包覆在Fe3O4表面,可以用外加永久磁铁将其从废水中吸附出来,使之与母液分离.同时,制备过程中渗入微量的Fe3+能降低TiO2的禁带宽度,使吸收波长范围扩展至可见光区域[8,9],提高光催化效率.Watson等[10~14]分别用液相沉积法、等离子体溅射法、超声波合成法制备了TiO2/Fe3O4/SiO2, TiO2-Fe3O4,Fe x O y-TiO2磁性复合材料,并研究了高温处理磁性复合材料对TiO2相转移和光催化活性的影响.

根据上述设想,本文以纳米磁性Fe3O4为基体,再以钛酸丁酯为原料,采用溶胶-凝胶法制备了Fe3O4/TiO2光催化材料,对反应条件进行了优化.同时通过UV-vis,X射线衍射(XRD),透射电镜(TEM)等研究了复合颗粒的形态结构及包覆情况,并对产品进行了模拟染料废水脱色实验,寻求能用于降解水污染中有机物、便于回收使用的高效光催化剂.

E-mail:tzp@z https://www.360docs.net/doc/fe695279.html,

R eceived M arch11,2004;revised and accepted June16,2004.

国家自然科学基金(No.20275034)和浙江省分析测试基金(No.03051)资助项目.

1 实验部分

1.1 仪器

采用U -3400紫外分光光度计(日立)测定吸收光谱.GGZ -300W 中压汞灯(主波长365nm ,上海亚明灯泡厂,光降

解试验距离为20c m .)用于光降解辐射.日本RI GA KU (D /MAX2550PC )X 射线衍射仪、日本JEM -2010(HR )透射电镜、PPMS -9T (quantum design )物理特性测试仪用于本实验.

1.2 试剂

钛酸丁酯、聚乙二醇为化学纯,无水乙醇、氯化亚铁、硝酸、氢氧化钠均为分析纯,水为去离子水.

1.3 复合材料制备

先按文献[15]制得一定量Fe 3O 4磁流体(A ),同时取一定量钛酸丁酯溶于一定量无水乙醇及1mol /L HNO 3溶液中制得透明溶胶(B ),在不断搅拌下,把溶胶(B )滴加入Fe 3O 4磁流体(A )中,并调节溶液pH 值,控制反应温度,反应一定时间后,合成产物经磁力分离,并用去离子水洗涤(除去聚乙二醇及其它游离的离子),再用无水乙醇清洗数次后,磁力分离.将产物在室温下自然干燥即得磁性复合材料.

1.4 光照实验设计与操作工艺

活性艳红模拟染料废水与一定量磁性复合材料在烧杯中搅拌成悬浮液置于恒温槽内,高压汞灯或太阳光分别照射悬浮液1和3h 后,取出反应液进行分离,吸取一定量的清液直接于λma x =

540nm 处测其吸光度,再根据光照前、后的吸光度求其脱色率.

2 结果与讨论

2.1 反应溶液pH 对材料合成过程的影响

钛酸丁酯遇水易发生水解与聚合反应,其反应式为:Ti (OR )4+n H 2O ※Ti (OR )4-n (OH )n +

n HOR (水解)(1)

2Ti (OR )4-n (OH )n ※[Ti (OR )4-n (OH )n -1]2O +H 2O (脱水聚合)(2)或Ti (OR )4-n (OH )n +Ti (OR )4※[Ti (OR )4-n ]2(OH )n -1-(OR )n -1O +

HOR (脱醇聚合)(3)

酸度增加,胶粒表面双电层中[OH -

]减小,双电层变薄,胶粒表面所荷电量减小,排斥能减小,使胶体凝聚加快;又随着酸

度增大,Ti (OR )4的水解速度降低,使生成的胶粒浓度减小而不易凝聚.酸度一定时,随着体系中水/乙醇比(V ∶V )的增大,水解速度加快,溶胶浓度增大,由于布朗运动,胶粒相互碰撞而聚结的几率增大,胶凝时间缩短.据文献[9],pH 在2.5至8.0范围,酸度增大对胶体凝聚的影响大于胶粒表面双电层结构的变化对胶体凝聚的影响.所以酸度对最终形成

的纳米粒子的尺寸影响较大.强酸性条件下磁性Fe 3O 4的溶

解度增大,实验过程控制反应溶液pH =4~5.

2.2 反应温度的影响

图1为不同反应温度下制得的复合材料(TiO 2∶Fe 3O 4为30∶1,摩尔比)的XR D 图,从衍射图可见,随着材料制备过程

温度的升高,板钛矿型二氧化钛[图中以Δ—TiO 2(B )表示的峰]的丰度逐渐减少,如谱图g 中TiO 2以单一锐钛矿型存在说明温度升高,二氧化钛晶型转换率提高.锐钛矿型TiO 2具有更高的光催化活性[16~18],故复合材料制备过程,温度控制在100~110℃,从微粒的晶型上确保材料有最佳光催化活性.

图1 不同反应温度制得复合材料的XRD 曲线Figure 1 XRD patterns of the composite material with different reaction temperatures

a 50℃,

b 60℃,

c 70℃,

d 80℃,

e 90℃,

f 100℃,

g 110℃

2.3 磁学性能

图2显示的是TiO 2/Fe 3O 4催化剂的比饱和磁化强度.可以看到,催化剂全部带有磁性,在进行回收时均可利用其磁

性进行直接分离.但是随着TiO 2/Fe 3O 4比例(摩尔比)的增大,Fe 3O 4外层包覆的TiO 2量增大,催化剂磁性明显下降.由于TiO 2/Fe 3O 4催化剂中Fe 3O 4是提供磁性的来源,它在催化剂中的含量越高,就越容易发挥出本身的磁性特征.

2.4 结构分析

图3显示了系列TiO 2/Fe 3O 4催化剂的XRD 衍射图.可

以看出,在TiO 2和Fe 3O 4的投料比(摩尔比)为20∶1催化剂中,存在有明显的Fe 3O 4特征峰;增加到30∶1时,催化剂中Fe 3O 4特征峰不明显;继续增加至60∶1时,只观察到锐钛矿型TiO 2,Fe 3O 4特征峰不再出现.对60∶1(摩尔比)的复合材料进行强力研磨后,发现有Fe 3O 4特征峰再次出现(图4),证实Fe 3O 4核被表层氧化钛包覆,强力研磨可使表层氧化钛脱落,露出内核.

由XRD 衍射图分析得到,TiO 2与Fe 3O 4比例(摩尔比)在60∶1至2∶1之间的复合材料中Ti O 2纳米晶粒尺寸依次为3.6,3.4,3.3,3.2,3.3,3.0,2.4nm ,包覆在Fe 3O 4表面的TiO 2均为纳米晶,具有量子尺寸效应[19].

图5为Fe 3O 4原样(a )和TiO 2/Fe 3O 4投料比为30∶1

2094

化学学报Vol .62,2004

图2 不同配比TiO 2/Fe 3O 4复合材料的磁化曲线Figure 2 Magnetization curves of the compos ite material with different ratios of TiO 2/Fe 3O 4

n (TiO 2)∶n (Fe 3O 4):a 60∶1,b 40∶1,c 30∶1,d 20∶1,e 10∶1,f 4∶1,g 1∶

1

图3 不同配比TiO 2/Fe 3O 4催化剂的XRD 曲线Figure 3 XRD patterns of TiO 2/Fe 3O 4catalyst with different ratios

n (TiO 2)∶n (Fe 3O 4):a 60∶1,b 40∶1,c 30∶1,d 20∶1,e 10∶1,f 4∶1,g 2∶

1

图4 n (TiO 2)∶n (Fe 3O 4)=60∶1催化剂研磨前(a )和研磨后(b )的XRD 图

Figure 4 XRD patterns of n (TiO 2)∶n (Fe 3O 4)=60∶1catalyst before (a )and after (b )

grinding

图5 Fe 3O 4(a )和n (TiO 2)∶n (Fe 3O 4)=30∶1的复合材料(b )的TE M 照片

Figure 5 TE M photographs of Fe 3O 4(a )and the composite material with n (TiO 2)∶n (Fe 3O 4)=30∶1(b )

(摩尔比)复合材料(b )的TEM 照片.照片显示Fe 3O 4原样颗

粒基本上呈立方体外形,尺寸大小范围为8~15nm ;被TiO 2包覆后变为类球形颗粒,颗粒尺寸增大,约为35~50nm .

在复合材料制备过程中,纳米级的Fe 3O 4作为载体除有很大的比表面积外,表面暴露了大量存在断键的氧原子,初生的水解钛氧化物与载体表面形成相当强的表面键,结果使体系的总自由能下降,该过程是一个相当普遍的热力学自发过程[20]

.通常盐类和氧化物可以自发地单层分散在高比表面载体上,含量低于分散阈值时,以单层或亚单层分散形式

存在,阈值后,出现晶相[21]

.复合材料中TiO 2含量大大高于

Fe 3O 4,并为纳米级尺寸,因此可认为反应过程是TiO 2不断自发单层地分散在以Fe 3O 4为核的颗粒表面,形成均匀分散包覆的TiO 2/Fe 3O 4复合材料.

2.5 UV -vis 光谱

从TiO 2/Fe 3O 4复合微粒的紫外可见光谱(图6)可

以发

图6 不同比例TiO 2/Fe 3O 4催化剂可见光谱曲线Figure 6 UV -vis spectra of TiO 2/Fe 3O 4catalyst with different ratios

n (TiO 2)∶n (Fe 3O 4):a 1∶0;b 40∶1;c 25∶1;d 10∶1;e 1∶1

2095

No .20陈金媛等:磁性纳米TiO 2/Fe 3O 4光催化复合材料的制备及性能

现:随着Fe 3O 4的比例增大,该纳米复合微粒的吸收带发生了红移,同时随Fe 3O 4比例的增大对光的吸收强度也增大.复合

材料吸收带红移,光吸收增强,对开发日光型催化剂是十分有利的.

2.6 光催化性能

表1给出了相同质量不同TiO 2与Fe 3O 4比例的复合催化

剂(其中1∶0的纯TiO 2材料质量与20∶1中TiO 2的质量相当)用于降解活性艳红模拟染料废水的结果.图7为不同配比复合材料的光催化降解曲线.可以看出:经1h 的紫外光照射后,随着复合微粒中TiO 2配比的增加,催化剂表面单位TiO 2含量增加,光催化降解活性随之增加

.

图7 不同配比复合材料光催化降解曲线

Figure 7 Curves of photocatalytic degradation of TiO 2/Fe 3O 4catal yst with different ratios

当材料配比为20∶1至30∶1时,复合催化剂的脱色率达到100%,超过了纯纳米TiO 2(95.3%),催化剂效率提高的原因分析如下.本文制备过程中,磁性Fe 3O 4的形成与复合材料的合成为动态连续进行,在该体系中存在着少量游离的Fe 3+

离子,由于六配位的Ti 4+半径(74.5nm )与六配位Fe 3+半径(69nm )相近,且为d 轨道未充满的可变价离子,在TiO 2纳米晶体形成过程,体系中混杂的少量Fe 3+极易取代晶格位置上的Ti 4+,发生缺陷生成反应[22].Mo 等[23]通过理论计算发现Fe 3+

/Fe 2+

的能级接近TiO 2导带,因而Fe 3+

可成为电子捕获剂.少量的Fe 3+取代TiO 2晶格中的Ti 4+位,电荷载流子的捕获位提高,电子-空穴对的存活时间延长,为电子-空穴对的界面传递创造条件,使光催化活性提高.另一方面,由于Fe 3+/Fe 2+与TiO 2导带能级接近,Fe 3+捕获的电子很容易传递到临近界面的Ti 4+,一般电荷载流子的传递反应是一个较慢的过程(接近1s ),界面电荷传递发生在毫秒级,而对纳米级光催化剂,由于缺少键带弯曲,电子-空穴容易共存或非常接近界面,电子易于传递,也使光催化活性提高.

当材料配比达40∶1和60∶1时,一方面可能因Fe 3O 4比例低,相对渗入的Fe 3+过少,TiO 2表面引起的缺陷位置偏少,不足以阻止h +与e 的复合[9];另一方面可能因表面包裹的TiO 2过多,产生过量的h +

与e 复合,形成的复合带影响了氢氧自由基的形成,降低了对光的利用率,导致催化降解效率(脱色率)下降.

表2为紫外光和太阳光降解试验结果.结果表明:无论是紫外光还是太阳光照射,纳米TiO 2的光降解效果均比大颗粒TiO 2好;而以Fe 3O 4为磁核的复合材料降解效果比纯Ti O 2好.该数据也进一步验证了UV -vis 吸收试验结果,说明由于材料制备过程微量Fe 3+的渗入,复合材料对光的吸收带发生红移,故在太阳光照射下,复合材料的光降解效果明显优于纳米TiO 2.

表3为复合材料经磁力分离后反复使用试验结果(紫外光).结果表明,该材料经多次反复使用仍有较好的光催化降解效果,具有易于回收、可重复使用的特点.

表1 不同配比TiO 2/Fe 3O 4催化剂光降解效果

T able 1 Photo -degradation efficiency of TiO 2/Fe 3O 4catalyst with different ratios

n (TiO 2)∶n (Fe 3O 4):1∶01∶12∶14∶110∶120∶130∶140∶160∶1Decoloration efficiency /%

95.3

72.6

81.2

90.9

98.9

100.0

100.0

98.9

96.4

表2 紫外光和太阳光下复合材料的降解效果

Ta ble 2 Photo -degradation efficiency of the compos ite material by UV and sun -light

Material

TiO 2Nano -TiO 2

Composite material

(40∶1)Composite material

(20∶1)Comp osite material

(10∶1)Decoloration efficiency /%(UV )

76.1

95.3

98.9

100.0

98.9

Decoloration efficiency /%(Sun )

52.5

83.1

90.1

95.7

89.4

表3 复合材料(20∶1)反复使用降解效果

T able 3 Photo -degradation efficiency of the composite material (20∶1,n ∶n )used repeatedly

Frequency

12345

2096

化学学报Vol .62,2004

3 结论

本研究提出了用溶胶-凝胶法制备TiO2/Fe3O4磁性材料的方法,制备过程控制溶液pH在4~5,反应温度在100~110℃,TiO2与Fe3O4比例在20∶1~30∶1,常温干燥,复合材料对模拟染料废水的降解脱色率可达100%,与纳米TiO2降解率相近.由于该材料以Fe3O4磁核为中心,复合催化剂可经磁铁吸附回收,反复使用,具有降低成本,防止二次污染的优点.采用X射线衍射仪和透射电子显微镜对复合材料进行表征,发现TiO2均匀分散包覆在Fe3O4表面,以锐钛矿晶型存在,且复合材料平均尺寸在35~50nm范围,表面则是晶粒尺寸为2.4~3.6nm的TiO2纳米微粒.由于材料制备过程采用了动态连续方法,溶液中微量Fe3+进入TiO2晶格内,使材料的光催化活性提高,且材料吸收带发生红移,使材料在太阳光照射下亦有良好的降解效果.

致谢 浙江大学分析测试中心的吕光烈、胡秀荣、曾耀武、冯春木等老师对本实验研究提供了有关测试数据和图谱的解析,特别是吕光烈老师在本文撰写过程给予了大力的帮助,特此致谢.

References

1Legrin i,O.;Oliveros,E.;Braun,A.M.Ch em.Re v.1993, 93,671.

2Barbeni,M.;Pramauro,E.;Pelizzetti,E.;B orgarello,E.;

Serpone,N.Ch emos phere1985,14,195.

3Li,X.P.;Xu,B.K.;Liu,G.F.Funct.M ater.1999,30, 242(in Chinese).

(李晓平,徐宝琨,刘国范,功能材料,1999,30,242.)

4Parent,Y.;Blake,D.;Magrini-Bair,K.;Lyons,C.;Turchi,

C.;Watt,A.;Wolfrum,E.;Prairie,M.Sol.Energy1996,

56,429.

5Hoffmann,M.R.;Martin,S.T.;Choi,W.;Bahnemann,D.

W.Chem.Rev.1995,95,69.

6Fujishima,A.;Rao,T.N.;Tryk,D.A.J.Photochem.

Pho to biol.,C2000,1,1.

7Ollis,D.F.;Pelizzetti,E.;Serpone,N.En vir on.Sci.Technol.

1991,25,1523.

8Tang,Y.C.;Qian,Z.X.;Qian,Z.L.;Hu,C.;Wang,Y.

Z.Acta Sci.Cir cu mstant.2002,22,395(in Chinese).

(唐玉朝,钱振型,钱中良,胡春,王怡中,环境科学学报,

2002,22,395.)

9Su,B.T.;Zhang,Z.;Zheng,J.;Su,Z.X.Acta Chim.Sinica 2002,60,1936(in Chinese).

(苏碧桃,张彰,郑坚,苏致兴,化学学报,2002,60,1936.) 10Watson,S.;Beydoun,D.;Amal,R.J.Photoch em.Ph otob iol,

A.2002,148,303.

11Beydoun,D.;Amal,R.M ater.Sci.Eng.,B2002,94,71. 12Ye,F.X.;Ohmori,A.Su rf.Coat.Techn ol.2002,160,62. 13Huang,W.P.;Tang,X.H.;Felner,I.;Koltypin,Y.;

Gedanken,A.Mater.Res.Bull.2002,37,1721.

14Gao,Y.;Chen,B.H.;Li,H.L.;Ma,Y.X.Mater.Chem.

Phys.2003,80,348.

15Qiu,G.M.;Sun,Z.H.Chem.Reagent1993,15,234(in Chin ese).

(邱广明,孙宗华,化学试剂,1993,15,234.)

16Ohtani,B.;Ogawa,Y.;Nishimoto,S.I.J.Ph ys.Chem.B 1997,101,3746.

17Keiichi,T.;Teruaki,F.V.C.Chem.Phys.Lett.1991,187,

73.

18Nishimoto,S.I.;Ohtani,B.;Kajiwara,H.;Kagiya,T.J.

Chem.So c.,Far aday T rans.11985,81,61.

19Harada,H.;Ueda,T.Chem.Phys.Lett.1984,106,229.

20Xie,Y.C.;Tan g,Y.Q.A dv.Catal.1990,37,1.

21Den,C.;Duan,L.Y.;Wang,C.B.;Xu,X.P.;Xie,Y.C.

J.M ol.Catal.1992,6,15(in Chinese).

(邓存,段连运,汪传宝,徐献平,谢有畅,分子催化,1992,

6,15.)

22Jin,H.F.;Li,W.G.;Xiang,J.M.;Tang,J.Y.A ppl.

Chem.2001,18,636(in Chinese).

(金华峰,李文戈,向纪明,唐吉玉,应用化学,2001,18,

636.)

23Mo,S.D.;Lin,L.B.;Lin,D.L.J.Phys.Chem.1994, 55,1309.

(A0311117 SONG,J.P.;ZHENG,G.C.)

2097

No.20陈金媛等:磁性纳米TiO2/Fe3O4光催化复合材料的制备及性能

新型碳纳米管磁性复合材料的制备及磁性能

高姗姗等:磷灰石/硅灰石生物玻璃基骨水泥的溶胶–凝胶法制备及性能· 1247 ·第36卷第9期 新型碳纳米管磁性复合材料的制备及磁性能 曹慧群1,邵科1,李耀刚2,朱美芳2 (1. 深圳大学化学与化工学院,深圳 518060;2. 东华大学材料科学与工程学院,纤维改性国家重点试验室,上海 200051) 摘要:采用水热–沉淀法制备了ZnFe2O4包覆碳纳米管(carbon nanotubes,CNTs)磁性复合材料。采用X射线衍射、扫描电镜、透射电镜、M?ssbauer 谱仪和振动样品磁强计等仪器表征制备样品的结构与性能。200℃是制备纳米ZnFe2O4包覆CNTs磁性复合材料的较好的反应条件,温度过高或过低都生成较多的γ-Fe2O3。包覆在CNTs上的ZnFe2O4纳米粒子为球形,粒径为13~20nm。M?ssbauer谱结果表明:大部分ZnFe2O4纳米粒子表现出超顺磁性,少量表现出铁磁性。磁滞回线结果表明:复合材料的矫顽力值为254215.85A/m。 关键词:磁性复合材料;碳纳米管;铁酸锌;磁性能 中图分类号:TB33 文献标识码:A 文章编号:0454–5648(2008)09–1247–04 SYNTHESIS AND MAGNETIC PROPERTIES OF NOVEL CARBON NANOTUBES MAGNETIC COMPOSITES CAO Huiqun1,SHAO Ke1,LI Yaogang2,ZHU Meifang2 (1. College of Chemistry and Chemical Engineering, Shenzhen University, Shenzhen 518060; 2. College of Material Science and Engineer, State Key Laboratory for Modification of Chemical Fibers and Polymer Material, Donghua University, Shanghai 200051, China) Abstract: Novel magnetic composites of carbon nanotubes(CNTs) coated with ZnFe2O4 nanoparticles were synthesized by a precipi-tation-hydrothermal method. The composites were characterized by X-ray diffraction, scanning electron microscope, transmission electron microscope, M?ssbauer spectrum(MS), and vibrating sample magnetometry. A temperature of about 200 was identified to ℃ be an appropriate reactive condition to obtain CNTs coated with ZnFe2O4. It is concluded that more γ-Fe2O3 existed in composites when the temperature is higher or lower than 200. The ZnFe ℃2O4 nanoparticles coated on surface of CNTs are round, and the size of the nanoparticles ranges from 13nm to 20nm. The MS results reveal that most of the ZnFe2O4 nanoparticles show superparamagnetic relaxation, and some of them exhibit ferrite magnetic relaxation. The sample demonstrates good magnetic properties with a coercive strength of 254215.85A/m. Key words: magnetic composites; carbon nanotubes; ferrite znic; magnetic property 碳纳米管(carbon nanotubes,CNTs)具有独特的物理化学性质,在很多领域都具有良好的应用前景,自1991年发现CNTs以来,引起了人们极大的兴趣。[1–3] 将纳米材料与CNTs结合来制备CNTs复合材料已经有大量报道,其中磁性纳米材料与CNTs复合材料的制备引起了人们特别的关注,用具有磁性的金属及其氧化物填充CNTs的研究相对较多,[4–14] 对于磁性纳米材料包覆CNTs。Jiang等[15]采用溶剂热的方法制备了磁性四氧化三铁/CNTs复合材料,并研究了复合材料的电性能。Liu等[16]采用水热法合成的NiFe2O4/CNTs复合材料,研究了复合材料的电性能,相对于NiFe2O4的电性能提高5倍。Correa- Duarte等[17]采用聚合物包覆和层–层组装技术合成出氧化铁纳米颗粒包覆的CNTs功能材料,并在低磁场中将制备的磁性纳米管材料定向排列后,复合材料表现出超顺磁行为,温度为5K时的矫顽力(H c)为22288.00A/m,不存在剩磁;或室温下不存在矫顽力。He等[18]制备的多壁CNTs–Fe2+复合材料在5 K时,H c=20696.00A/m,饱和磁化强度(M s)为0.016 Am2/kg。 收稿日期:2007–12–13。修改稿收到日期:2008–03–19。基金项目:国家自然科学基金(50473002)项目资助。 第一作者:曹慧群(1976—),女,博士,讲师Received date:2007–12–13. Approved date: 2008–03–19. First author: CAO Huiqun (1976–), female, Doctor, lector. E-mail: chq0524@https://www.360docs.net/doc/fe695279.html, 第36卷第9期2008年9月 硅酸盐学报 JOURNAL OF THE CHINESE CERAMIC SOCIETY Vol. 36,No. 9 September,2008

常见纳米材料的制备技术

东华大学研究生课程论文封面 教师填写: 本人郑重声明:我恪守学术道德,崇尚严谨学风。所呈交的课程论文,是本人独立进行研究工作所取得的成果。除文中已明确注明和引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写过的作品及成果的内容。论文为本人亲自撰写,我对所写的内容负责,并完全意识到本声明的法律结果由本人承担。 论文作者签名: 注:本表格作为课程论文的首页递交,请用水笔或钢笔填写。

常见纳米材料的制备技术 1 概述 纳米材料是指材料的任何至少有一个维度的尺寸小于100nm或由小于100nm的基本单元组成的材料,广义来讲,数百纳米的尺度亦可称为纳米材料。由于纳米尺寸的物质具有与宏观物质所迥异的表面效应、小尺寸效应、宏观量子隧道效应和量子限域效应,因而纳米材料具有异于普通材料的光、电、磁、热、力学、机械等性能,纳米材料的性能往往由量子力学决定。按照纳米材料的空间形态可以将其分为4类:三维尺寸均为纳米量级的纳米粒子或人造原子被称为零维纳米材料;纳米纤维为一维纳米材料;纳米膜(片、层)可以称为二维纳米材料;而有纳米结构的材料可以称为三维纳米材料。目前只有纳米粉末实现了工业化生产(如碳酸钙、氧化锌等),静电纺纳米纤维的产量能够满足实验的需求,其它纳米材料基本上还处于实验室研究阶段[1]。 2 常见的纳米材料 2.1 零维纳米材料 指空间中三个维度的尺寸均在纳米尺度,如纳米尺度颗粒、原子团簇等。纳米球全称“原子自组装纳米球固体润滑剂”,是具有二十面体原子团簇结构的铝基合金,是一种新型纳米/非晶合金固体抗磨自修复剂,采用急冷方法制备抗磨剂粉体,在合金从液体到固体的凝固过程中,形成纳米晶/非晶的复合结构,利用粒度控制的方法对抗磨剂粉末进行超微细化处理而成。该材料具有高硬度、高强度,并具有一定的韧性等性能,在多种减摩自修复机制的综合作用下呈现优良的减摩和抗磨性能,可以起到节省燃油、修复磨损表面、增强机车动力、降低噪音、减少污染物排放、保护环境的作用。 2.2 一维纳米材料 一维纳米材料指空间中有二维处于纳米尺度的材料,如纳米纤维、纳米棒、碳纳米管等。 静电纺纳米纤维是目前唯一一种能够连续制备纳米纤维的技术,它是利用高压电场力将纤维从导电溶液中抽拔出来,在抽拔过程中纤维被拉伸变细、溶剂挥

磁性纳米材料的模板法制备研究

磁性氧化物纳米材料的模板法制备研究 摘要磁性氧化物纳米材料的模板制备方法,主要内容包括:模板法的基本原理,模板的制备,利用电沉积法、溶胶凝胶沉积法和化学还原法在模板上制备磁性纳米线及纳米多层结构的技术。 关键词磁性氧化物纳米材料模板法 磁性纳米材料是20 世纪80 年代出现的一种新型磁性材料。磁性纳米材料的特性不同于常规的磁性材料,其原因是关联于与磁相关的特征物理长度恰好处于纳米量级,例如:磁单 畴尺寸,超顺磁性临界尺寸,交换作用长度,以及电子平均自由路程等大致处于1-100nm量级,当磁性体的尺寸与这些特征物理长度相当时,就会呈现反常的磁学性质。在人们所熟知的大量磁性材料中,由于不能同时满足高饱和磁化强度和稳定性高的要求,饱和磁化强度高但稳定性低的材料应用在一定程度上受到了限制。目前可选作磁性金属氧化物微粒的仅有少 数几种,主要为三氧化二铁(Fe 2O 3 )、MFe 2 O 4 (M=Co,Mn,Ni)、四氧化三铁(Fe 3 O 4 )。纳米 科技的发展,使这些磁性材料的应用成为可能,目前,磁性材料纳米化已成为材料科学的一个发展趋势。 磁性纳米材料的制备手段有物理法和化学法,而模板法[1]是由美国科罗拉多州立大学化学系Martin教授领导的研究组在20世纪80年代首创性地将其应用于磁性纳米材料的合成。模板合成是将具有纳米结构、价廉易得、形状容易控制的物质作为模子,通过物理或化学的方法将相关材料沉积到模板的孔中或表面,而后移去模板,得到具有模板规范形貌与尺寸的纳米材料的过程。 1 两种重要模板 用作模板的材料主要有两种:多孔阳极氧化铝模板及痕迹刻蚀聚合物模板,前者孔率较高,且膜孔孔径大小分布均匀; 后者膜孔孔径大小分布较广,且分布不均匀。 1. 1 多孔阳极氧化铝模板(AOO) 是通过电化学氧化的方法在纯铝表面形成的具有高度规整结构的氧化铝薄膜。其研究历史已有40 多年,最早主要用于铝及铝合金的耐腐蚀处理及染色,20世纪80年代Martin 等人首次将其用于纳米材料合成。AAO模板通常采用两步阳极氧化法制备[2-3]。此法所得AAO 模板孔道为六角柱形、垂直膜面呈有序平行排列,孔密度高达1011cm-2,孔径可在4~200nm范围内方便地调节,孔深可达几十到上百微米。AAO模板还具有孔径单分散、耐高温、强度高的特点,是迄今应用最为广泛的模板。AAO 模板的制备过程:首先是99. 99 %的纯铝在酸性条件下进行第一次氧化,后将生成的氧化铝膜在酸性溶液中腐蚀掉,然后以同样的条件进行第二次阳极氧化。得到的AAO 膜经扩孔后可沉积金属及氧化物。 1. 2 痕迹刻蚀聚合物模板 用核裂变碎片轰击6~10μm 厚的聚碳酸酯、聚酯或聚乙烯醇等高分子膜,使膜出现损伤,然后用化学法使损伤痕迹腐蚀发展成纳米孔道即得痕迹刻蚀聚合物模板聚合物模板的纳米孔呈圆柱形,孔径一般为10~200 nm ,孔密度109cm-2,其孔道不如AAO规整,有交错现象,孔轴与膜表面夹角有时可达30°且无序分布,导致所制纳米点阵的各向异性降低。但聚合物模板柔韧性好,不像AAO 模板那样脆,且在高酸性条件下能维持较长时间,因此应用也相当广泛。 2 几种基于模板的合成方法 2.1 电化学沉积法 电化学沉积指金属的阴极还原沉积,适合在模板的纳米孔道内制备金属纳米线。首先在模板的一面通过溅射或真空镀膜等方法制备一层金属薄膜作阴极,通过控制电压、电流、温

纳米材料制备方法综述

纳米材料制备方法综述 摘要:纳米材料由于其特殊性质,近年来受到人们极大的关注。随着纳米科技的发展,纳米材料的制备方法已日趋成熟。纳米材料的制备方法按物态一般可归纳为气相法、液相法、固相法。目前,各国科学家在纳米材料的研究方面已取得了显著的成果。纳米材料将推动21世纪的信息技术、医学、环境、自动化技术及能源科学的发展, 对生产力的发展产生深远的影响。 关键字:纳米材料,制备,固相法,液相法,气相法 近年来,纳米材料作为一种新型的材料得到了人们的广泛关注。纳米材料是指任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料,具有表面与界面效应,量子尺寸效应,小尺寸效应和宏观量子隧道效应,因而纳米具有很多奇特的性能,广泛应用于各个领域。为此,本文综述了纳米材料制备的各种方法并说明其优缺点。 目前纳米材料制备采用的方法按物态可分为:气相法、液相法和固相法。 一、气相法 气相法是将高温的蒸汽在冷阱中冷凝或在衬底上沉积和生长低维纳米材料的方法。气相法主要包括物理气相沉积(PVD)和化学气相沉积(CVD),在某些情况下使用其他热源获得气源,如电阻加热法,高频感应电流加热法,混合等离子加热法,通电加热蒸发法。 1、物理气相沉积(PVD) 在PVD过程中没有化学反应产生,其主要过程是固体材料的蒸发和蒸发蒸气的冷凝或沉积。采用PVD可制备出高质量的纳米材料粉体。PVD可分为制备出高质量的纳米粉体。PVD可分为蒸气-冷凝法和溅射法。 1.1蒸气-冷凝法 此种制备方法是在低压的Ar、He等惰性气体中加热物质(如金属等),使其蒸发汽化, 然后在气体介质中冷凝后形成5-100 nm的纳米微粒。通过在纯净的惰性气体中的蒸发和冷凝过程获得较干净的纳米粉体。此方法制备的颗粒表面清洁,颗粒度整齐,生长条件易于控制,但是粒径分布范围狭窄。 1.2溅射法 用两块金属板分别作为阳极和阴极,阴极为蒸发用的材料,在两电极间充入Ar气(40~250Pa),两电极间施加的电压范围为0.3~1.5kv。由于两极间的辉光放电使Ar离子形成,在电场的作用下Ar离子冲击阴极靶材表面,使靶材原产从其表面蒸发出来形成超微粒子.并在附着面上沉积下来。用溅射法制备纳米微粒有许多优点:可制备多种纳米金属,包括高熔

磁性纳米材料的应用

磁性纳米材料的应用 磁性纳米颗粒是一类智能型的纳米材料,既具有纳米材料所特有的性质如表面效应、小尺寸效应、量子效应、宏观量子隧道效应、偶连容量高,又具有良好的磁导向性、超顺磁性类酶催化特性和生物相容性等特殊性质,可以在恒定磁场下聚集和定位、在交变磁场下吸收电磁波产热。基于这些特性,磁性纳米颗粒广泛应用于分离和检测等方面。 (一)生物分离 生物分离是指利用功能化磁性纳米颗粒的表面配体与受体之间的特异性相互作用(如抗原-抗体和亲和素 -生物素等)来实现对靶向性生物目标的快速分离。 传统的分离技术主要包括沉淀、离心等过程,这些纯化方法的步骤繁杂、费时长、收率低,接触有毒试剂,很难实现自动化操作。磁分离技术基于磁性纳米材料的超顺磁性,在外加磁场下纳米颗粒被磁化,一旦去掉磁场,它们将立即重新分散于溶液中。因此,可以通过外界磁场来控制磁性纳米材料的磁性能,从而达到分离的目的,如细胞分离、蛋白质分离、核酸分离、酶分离等,具有快速、简便的特点,能够高效、可靠地捕获特定的蛋白质或其它生物大分子。此外,由于磁性纳米材料兼有纳米、磁学和类酶催化活性等特性,不仅能实现被检测物的分离与富集,而且能够使检测信号放大,具有重要的应用前景。 通常磁分离技术主要包括以下两个步骤:( 1)将要研究的生物实体标记于磁性颗粒上;(2)利用磁性液体分离设备将被标记的生物实体分离出来。 ①细胞分离:细胞分离技术的目的是快速获得所需的目标细胞。传统的细胞分离技术主要是根据细胞的大小、形态以及密度差异进行分离,如采用微滤、超滤和超滤离心等方法。这些方法虽然操作简单,但是特异性差,而且纯度不高,制备量偏小,影响细胞活性。但是利用磁性纳米材料可以避免一定的局限性,如在磁性纳米材料表面接上具有生物活性的吸附剂或配体(如抗体、荧光物质和外源凝结素等),利用它们与目标细胞特异性结合,在外加磁场的作用下将细胞分离、分类以及对数量和种类的研究。 磁性纳米材料作为不溶性载体,在其表面上接有生物活性的吸附剂或其它配体等活性物,利用它们与目标细胞的特性结合,在外加磁场作用下将细胞分离。 温惠云等的地衣芽孢杆菌实验结果表明,磁性材料 Fe3O4 的引入对地衣芽孢杆菌的生长没有影响;Kuhara等制备了人单克隆抗体anti-hPCLP1,利用 anti-hPCLP1 修饰的磁纳米颗粒从人脐带血中成功分离了成血管细胞,PCLP1 阳性细胞分离纯度达到了 95%。 ②蛋白质分离:利用传统的生物学技术(如溶剂萃取技术)来分离蛋白质程序非常复杂,而磁分离技术是分离蛋白分子便捷而快速的方法。 基于在磁性粒子表面上修饰离子交换基团或亲和配基等可与目标蛋白质产生特异性吸附作用的功能基团 , 使经过表面修饰的磁性粒子在外加磁场的作用下从生物样品中快速选择性地分离目标蛋白质。 王军等采用络合剂乙二胺四乙酸二钠和硅烷偶联剂KH-550寸磁性Fe3O4粒 子进行表面修饰改性 , 并用其对天然胶乳中的蛋白质进行吸附分离。结果表明 , 乙二胺四乙酸通过化学键合牢固地结合在磁性粒子表面 , 并通过羰基与蛋白质反应, 达到降低胶乳氮含量的目的。 ③核酸分离 经典的DNA/RN分离方法有柱分离法和一些包括沉积、离心步骤的方法,这些方法的缺点是耗时多,难以自动化,不能用于分析小体积样品,分离不完全。

磁性纳米材料论文

1 磁性纳米材料的定义和进展 纳米材料又称纳米结构材料,是指在三维空间中至少有一维处于纳米尺度范围内的材料(1 - 100nm) ,或由它们作为基本单元构成的材料,是尺寸介于原子、分子与宏观物体之间的介观体系,因此,纳米磁性材料的特殊磁性可以说是属于纳米磁性。而纳米磁性材料和纳米磁性又分别是纳米科学技术和纳米物性的一个组成部分。 颗粒的磁性,理论上始于20 世纪初期发展起来的磁畴理论,理论与实验表明:当磁性微粒处于单畴尺寸时,矫顽力将呈现极大值。铁磁材料,如铁、镍、钻等磁性单畴临界尺寸大约处于l0 nm 量级,在应用上,可以作为高矫顽力的永磁材料和磁记录材料。由于颗粒磁性与其尺寸有关,若尺寸进一步减小,颗粒将在一定的温度范围内将呈现出超顺磁性。利用微粒的超顺磁性,人们在50 年代开始对镍纳米微粒的低温磁性进行了研究,提出了磁宏观量子隧道效应的概念,并在60 年代末期研制成了磁性液体。60 年代非晶态磁性材料的诞生为磁性材料增添了新的一页,也为80 年代纳米微晶磁性材料(纳米微晶软磁材料、纳米复合永磁材料) 的问世铺平了道路。80 年代以后,在理论与实验二方面,开始对纳米磁性微粒的磁宏观量子隧道效应进行研究,现已成为基础研究的重要课题之一。如1988 年首先在Fe/ Cr 多层膜中发现了巨磁电阻效应,叩开了新兴的磁电子学的大门,为纳米磁性材料的研究开拓了新的领域[2 - 4 ] 。 2 磁性纳米材料的特点 量子尺寸效应: 材料的能级间距是和原子数N 成反比的,因此,

当颗粒尺度小到一定的程度,颗粒内含有的原子数N 有限,纳米金属费米能级附近的电子能级由准连续变为离散,纳米半导体微粒则存在不连续的最高被占据分子轨道和最低未被占据的分子轨道,能隙变宽。当这能隙间距大于材料物性的热能,磁能,静电能,光子能等等时,就导致纳米粒子特性与宏观材料物性有显著不同。例如,导电的金属在超微颗粒时可以变成绝缘体,磁矩的大小和颗粒中电子是奇数还是偶数有关,比热亦会反常变化,光谱线会产生向短波长方向的移动,这就是量子尺寸效应的宏观表现。 小尺寸效应:当粒子尺度小到可以与光波波长,磁交换长度,磁畴壁宽度,传导电子德布罗意波长,超导态相干长度等物理特征长度相当或更小时,原有晶体周期性边界条件破坏,物性也就表现出新的效应,如从磁有序变成磁无序,磁矫顽力变化,金属熔点下降等。 宏观量子隧道效应:微观粒子具有穿越势垒的能力,称为量子隧道效应。而在马的脾脏铁蛋白纳米颗粒研究中,发现宏观磁学量如磁化强度,磁通量等也具有隧道效应,这就是宏观量子隧道效应。它限定了磁存储信息的时间极限和微电子器件的尺寸极限。 3 磁性纳米材料的应用 由于纳米磁性材料具有多种特别的纳米磁特性,可制成纳米磁膜(包括磁多层膜) 、纳米磁线、纳米磁粉(包括磁粉块体) 和磁性液体等多种形态的磁性材料,因而已在传统技术和高新技术、工农业生产和国防科研以及社会生活中获得了多方面的广泛而重要的应用

纳米磁性材料的制备和研究进展综述教案资料

纳米磁性材料的制备和研究进展综述 一.前言 纳米材料又称纳米结构材料 ,是指在三维空间中至少有一维处于纳米尺度范围内的材料 (1-100 nm) ,或由它们作为基本单元构成的材料 ,是尺寸介于原子、分子与宏观物体之间的介观体系。磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。因此 ,纳米磁性材料的特殊磁性可以说是属于纳米磁性。 司马迁《史记》记载黄帝作战所用的指南针是人类首次对磁性材料的应用。而今纳米磁性材料广泛应用于生物学,磁流体力学,原子核磁学,机体物理学,磁化学,

天文学,磁波电子学等方面。随着雷达、微波通信、电子对抗和环保等军用、民用科学技术的,微波吸收材料的应用日趋广泛 ,磁性纳米吸波材料的研究受到人们的关注。纳米磁性材料也对人们的生产与生活带来诸多的利益。 本次综述,主要针对磁性纳米材料的制备方法和研究进展两个问题进行阐述。首先,介绍磁性纳米材料的发展历史,可以追溯到黄帝时期。其次,介绍磁性纳米材料的分类。------再次,重点介绍磁性纳米材料是怎么制备的。其制备方法一般分为三大类:1.由上到下,即由大到小,将块材破碎成纳米粒子,或将大面积刻蚀成纳米图形等。2.由下到上,即由小到大,将原子,分子按需要生长成纳米颗粒,纳米丝,纳米膜或纳米粒子复合物 3. 气相法、液相法、固相法等。第四、介绍磁性纳米材来噢的现状和发展前景。最后,将全文主题扼要总结,并且找出研究的优缺点和差距,提出自己的见解。 二、主题 1、纳米磁性材料的发展史 磁性材料是应用广泛、品类繁多、与时俱进的一类功能材料,磁性是物质的基本属性之一。人们对物质磁性的认识源远流长,早在公元前四世纪,人们就发现了天然的磁石(磁铁矿Fe3O4),,据传说,那是黄帝大战蚩尤于涿鹿,迷雾漫天,伸手不见五指,黄帝利用磁石指南的特性,制备了能指示方向的原始型的指南器,遂大获全胜.古代取其名为慈石,所谓“慈石吸铁,母子相恋”十分形象地表征磁性物体间的互作用。人们对物质磁性的研究具有悠久的历史,是在十七世纪末期和十八世纪前半叶开始发展起来的。1788年,库仑(Coulomb)把他的二点电荷之间的相互作用力规律推广到二磁极之间的相互作用上。1820年,丹麦物理学家奥斯特(Oersted)发现了电流的磁效应;同年法国物理学家安培(Ampere)提出了分子电流假说,认为物质磁性起源于分子电流。

1纳米铁氧体磁性材料的制备

材料科学前沿 题目:纳米铁氧体磁性材料学院:理学院 班级:Y130802 姓名:陈国红 学号:S1*******

摘要:铁氧体纳米磁性材料是一类非常重要的无机功能材料,其应用涉及到电子、信息、航天航空、生物医学等领域。综述了纳米结构铁氧体磁性材料化学制备方法的研究进展,以及它们的应用,分析了其存在的问题,展望了研究和开发纳米结构铁氧体磁性材料的新性能和新技术的应用前景。 关键词:纳米磁性材料;铁氧体;制备;应用

铁氧体是从20世纪40年代迅速发展起来的一种新型的非金属磁性材料。与金属磁性材料相比,铁氧体具有电阻率大、介电性能高、在高频时具有较高的磁导率等优点。随着科学技术的发展,铁氧体不仅在通讯广播、自动控制、计算技术和仪器仪表等电子工业部门应用日益广泛,已经成为不可缺少的组成部分,而且在宇宙航行、卫星通讯、信息显示和污染处理等方面,也开辟了广阔的应用空间。在生产工艺上,铁氧体类似于一般的陶瓷工艺,操作方便易于控制,不像金属磁性材料那样要轧成薄片或制成细粉介质才能应用。由于铁氧体性能好、成本低、工艺简单、又能节约大量贵金属,已成为高频弱电领域中很有发展前途的一种非金属磁性材料 l铁氧体的晶体结构 铁氧体作为一种具有铁磁性的金属氧化物,是由铁和其他一种或多种金属组成的复合氧化物。实用化的铁氧体主要有以下几种晶体类刑 1.1尖晶石型铁氧体 尖晶石型铁氧体的化学分子式为MnFe 20 4 或M0Fe 2 3 ,M是指离子半径与二价 铁离子相近的二价金属离子(Mn2+、Zn2+、Cu2+、Ni2+、Mg2+、Co2+等)或平均化学价为 二价的多种金属离子组(如Li 0.5Fe 0.53 )。以Mn2+替代Fe2+所合成的复合氧化物 MnFe 20 4 称为锰铁氧体,以Zn2+替代Fe2+所合成的复合氧化物ZnFe 2 4 称为锌铁氧体。 通过控制替代金属,可以达到控制材料磁特性的目的。由一种金属离子替代而成的铁氧体称为单组分铁氧体。由两种或两种以上的金属离子替代可以合成出双组 分铁氧体和多组分铁氧体。锰锌铁氧体(Mn—ZnFe 2O 4 )和镍锌铁氧体(Ni—ZnFe 2 4 ) 就是双组分铁氧体,而锰镁锌铁氧体(Mn—Mg—ZnFe 2O 4 )则是多组分铁氧体。 1.2磁铅石型铁氧体 磁铅石型铁氧体是与天然矿物——磁铅石Pb(Fe 7.5Mn 3.5 Al o.5 Ti 0.5 )0 19 有类似晶 体结构的铁氧体,属于六角晶系,分子式为MFe l20 19 或Bao·6Fe 2 3 ,M为二价金 属离子Ba2+、Sr2+、Pb2+等。通过控制替代金属,也可以获得性能改善的多组分铁氧体。 1.3石榴石型铁氧体 石榴石型铁氧体是指一种与天然石榴石(Fe,Mg) 3A1 2 (Si0 4 ) 3 有类似晶体结构

磁性纳米材料制备

合肥学院 Hefei University 化学与材料工程系 题目:磁性纳米材料的合成 班级:13化工(3)班 组员:赵康智、蒋背背、朱英维、高宗强、 1303023045、1303023004、1303023039、学号: 1303023036、13030230

摘要 磁性纳米材料由于具有表面效应、量子尺寸效应,以及超顺磁性等优异的特性,引起了世界各国研究工作者的高度重视。磁性纳米材料的性能与其组成、结构及纳米粒子的稳定性密切相关,因此制备粒径均匀,组成、结构稳定的纳米粒子是其应用的关键。 关键词: 磁性纳米材料;化学合成 正文 一、磁性纳米材料的性能 磁性纳米材料具有纳米材料所共有的表面效应、小尺寸效应、量子尺寸效应、宏观量子隧道效应等。同时由于与磁相关的特征物理长度恰好处于纳米量级,如磁单畴尺寸、超顺磁性临界尺寸、交换作用长度、以及电子平均自由路程等。当磁性材料结构尺寸与这些特征物理长度相当时,就会呈现反常的磁学性质,从而体现出与块体材料和原子团簇不同的特性。磁性纳米材料主要的磁特性可归纳如下:(1)饱和磁化强度;(2)矫顽力;(3)单磁畴结构;(4)居里温度;(5)超顺磁性。 二、磁性纳米材料的合成制备方法 当粒子尺寸减小到纳米量级时,颗粒的尺寸、形貌和晶体结构都会影响材料的性能和应用。而能够制备出尺寸、形貌和晶体结构可控的磁性金属纳米颗粒一直是人们研究的重点和难题。因此,探索通过简单的方法制备出满足应用需要的,尺寸、形貌及晶体结构可控的金属磁性纳米材料对推动纳米科技的发展的具有重要意义。常用的制备磁性金属纳米粒子的方法主要包括:溅射法、机械研磨法和化学合成方法。机械研磨法往往需要要高纯度的金属原材料,并消耗大量能量用于均匀化反应物,反应时间长,而且易引入杂质,所得晶粒不够完整,分散性不够好。同时,为弥补金溅射法属在熔化过程中的挥发损失,往往需要过量的稀土元素。化学方法在制备金属磁性纳米材料方面却能够有效减少成本,反应物易于均匀化,反应过程易于操作,且显著降低了反应所需温度。另外,化学合成法在控制产物组成和颗粒尺寸方面也具有一定的优越性。因此,化学合成法成为合成纳米材料的重要方法。

磁性碳纳米复合材料新型吸附剂处理污水重金属技术及进展

第33卷第2期2016年6月 上海第二工业大学学报 JOURNAL OF SHANGHAI POLYTECHNIC UNIVERSITY V ol.33No.2 Jun.2016 文章编号:1001-4543(2016)02-0081-07 磁性碳纳米复合材料新型吸附剂处理污水重金属技术及进展 郭占虎1,闫星如1,关杰2 (1.田纳西大学诺克斯维尔分校化学与生物分子工程系,美国田纳西州37996; 2.上海第二工业大学环境与材料工程学院,上海201209) 摘要:快速工业化导致排放的污水含有越来越多的重金属(铬,镉,汞,钽,铅,和砷)。其中,Cr(VI)是一种常见的水污染物,具有很强的毒性和移动性。因此,迫切需要寻求经济、有效和可持续使用的处理Cr(VI)的方法。磁性碳纳米复合材料(Magnetic Carbon Nanocomposites,MCNCs)有较大的比表面积,可增强重金属去除效率,同时材料的磁性有利于回收纳米材料。然而,用MCNCs去除污水中重金属的相关技术至今很少有人研究,文中介绍了MCNCs 去除重金属的基本原理,并以两种不同的MCNCs为例,介绍了相关研究的最新进展。 关键词:磁性;纳米复合材料;污水;重金属 中图分类号:TB383文献标志码:A 0引言 随着现代工业的快速发展,地表水的环境问题已经成为国际热点话题。现代工业排放的污水中所含重金属越来越多,比如铬,镉,汞,钽,铅和砷[1]。其中,Cr(VI)是一种常见的剧毒污染物,由于其在水溶液中具有较大溶解性,所以具有很强的移动性,对环境和人类生存的影响巨大[2]。美国环境保护局规定,铬离子在饮用水中的最大限额为100μg/L[3]。世界卫生组织要求饮用水中铬离子含量最高为50μg/L[3]。目前开发的、用以解决重金属问题的技术,包括氰化法、化学沉淀、化学还原法、离子交换法和反渗透法[4-8]。但是,这些方法均存在较为明显的缺陷:氰化法在使用过程中可产生剧毒中间体及其他有机氯化合物,将引起二次污染,导致更多的环境问题;化学沉淀法虽较为简单,但会有大量的沉淀污泥产生,处理低浓度重金属和后续污泥均需增加投入,成本较高[9];离子交换法对于处理含有离子和非离子性的杂质有限制,且操作成本高;反渗透法虽可以有效地降低金属离子浓度,但pH范围和操作成本都限制了其应用。近期研究发现,采用吸附法具有明显优势,其成本较低并且高效[10-11]。相比于沉淀法和电化学法,污水中重金属浓度较低时,吸附法可以比较有效地将其除去。 常用的吸附剂有矿物黏土、生物吸附剂和金属氧化物,然而由于表面疏水性和对金属离子结合力较弱,这些吸附剂的去重金属能力并不理想。近年来,有学者报道碳材料,如活性炭、石墨烯和碳纳米管,具有较好的去重金属离子的能力[12-14],但是这类材料具有低效且不易分离的明显缺陷。活性炭具有较高比表面积,是净化污水吸附剂中的一种,但是当污染物质量分数低至10?9时,活性炭无法再减少污染物的浓度[15-16]。同时,是否易于分离也是吸附剂应用的重要指标。分离碳材料一般采用离心分离法,它要求较高转速,导致应用成本增加。本课题组的研究工作发现,磁性碳纳米复合材料(Magnetic Carbon Nanocomposites,MCNCs)有较大的比表面积,可增大重金属的去除效率,同时所具有的磁性有利于回收纳米材料。 本文将通过两个相关的研究实例介绍MCNCs 去除污水中重金属的基本原理、性能表征及研究展望。以期有助于人们对MCNCs去除污水中重金属应用的理解和认识。 收稿日期:2016-03-07 通信作者:郭占虎(1973–),男,山西运城人,副教授,博士,主要研究方向为多功能复合材料。 电子邮箱nanomaterials2000@https://www.360docs.net/doc/fe695279.html,。 基金项目:上海高校特聘教授(东方学者)岗位计划(No.1410000195)、美国自然科学基金(CMMI13-14486)资助

软磁复合材料研究进展

软磁复合材料研究进展 刘颖,Andrew Peter Baker,翁履谦 哈尔滨工业大学深圳研究生院材料科学与工程学科部,深圳(518055) E-mail:liuying05@https://www.360docs.net/doc/fe695279.html, 摘要:本文根据绝缘包覆材料的不同,综述了近年来开发的各种软磁复合材料及其生产工艺;介绍了软磁复合材料的主要性能特点及影响因素;最后简要介绍了软磁复合材料在电气设备中的应用情况,对将来研究方向提出看法。 关键词:软磁复合材料,高温绝缘包覆层,压坯 中图分类号:TB333 文献标识码:A 1.引言 随着电气设备小型化趋势,对各式微型粉芯[1]的需求日益显著。为了研制出能效更高,体积更小,重量更轻的粉芯,开发新型软磁复合材料(Soft Magnetic Composite, SMC)已成为当前一个热点。SMC材料不仅能有效降低高频涡流损耗,而且还结合了粉末冶金技术的生产优势,在未来几年它将在航空、汽车、家用电器以及其他领域得到广泛的应用。 本文从SMC材料生产工艺、研究进展、性能及影响因素、应用及前景等方面,综述了近几年来SMC材料的发展。 2.软磁复合材料 在生产铁粉基软磁材料时,为降低涡流损耗有两种常用方法[2]。 一种是利用合金添加剂来提高材料电阻率,降低涡流损耗,如铁-硅合金(通常含Si3%),铁-磷合金(一般含P0.45%-0.75%),铁-镍合金(含铁50%,含镍50%)等。但这样降低了饱和磁感应强度,而且合金含量在商业使用上还有一定限度。这种方法适合应用于直流或较低频率交流装置。 另一种方法则是对磁性颗粒进行绝缘包覆处理,这类就是SMC材料,其结构如图1[3]所示。SMC材料,有时也称“绝缘包覆铁粉”,是近来逐渐发展起来的一种新型铁基粉末软磁材料。它通常选用高纯铁粉为基材,经有机材料和无机材料绝缘包覆处理,利用粉末冶金技术使混合粉末成为各向同性的体材料[4,5]。 利用SMC材料生产各类铁芯具有许多突出的优点[6-8]: 1.各向同性:这大大增加了设计自由度,单位重量可获得更大转矩以及更大铜的填充率,实现重量更轻、体积更小的目的。 2.利用粉末冶金技术能压制成型为最终形状的产品,材料利用率提高,成本损耗降低,产品控制更精准,复杂形状加工能力更强。 此外,SMC电机还能采用模块式结构,装卸方便,这使材料回收和再利用容易,十分有利于环保。 叠层硅钢片和软磁铁氧体是两类传统的铁芯材料。硅钢片在直流和交流较低频率时,具有高磁通密度和磁导率;但随着频率增加,涡流损耗急剧增加。铁氧体铁芯虽然高频磁性能优良,电阻率大,铁损低;但存在磁通密度低的缺点。它们均在交流设备小型化过程中均遇到了困难。目前,利用粉末冶金技术生产SMC材料已成为当前研究和开发的热点。研究表

纳米材料的制备及应用

本科毕业论文(设计) 题目:纳米材料的制备及应用 学院:物理与电子科学学院 班级: XX级XX班 姓名: XXX 指导教师: XXX 职称: 完成日期: 20XX 年 X 月 XX 日

纳米材料的制备及应用 摘要:近几年来,由于纳米材料有众多特殊性质,人们越来越关注纳米材料。科技的迅猛发展使纳米材料的制备变得更加成熟。本论文讲述纳米材料的制备,以及纳米技术在将来的应用。 关键词:纳米材料物理方法化学方法应用前景

目录 引言 (1) 1.纳米材料的物理制备方法 (1) 1.1物理粉碎法 (1) 1.2球磨法 (2) 1.3.蒸发—冷凝法 (2) 1.3.1.激光加热蒸发法 (2) 1.3.2.真空蒸发—冷凝法 (4) 1.3.3.电子束照射法 (4) 1.3.4.等离子体法 (5) 1.3.5.高频感应加热法 (5) 1.4.溅射法 (6) 2.纳米材料的化学制备方法 (7) 2.1化学沉淀法 (8) 2.2化学气相沉积法 (8) 2.3化学气相冷凝法 (10) 2.4溶胶--凝胶法 (10) 2.5水热法 (11) 3.纳米材料的其他制备方法 (12) 3.1分子束外延法 (12) 3.2静电纺丝法 (13) 4.纳米材料的应用前景 (14) 5.总结 (14) 参考文献 (15) 致谢 (16)

引言 纳米材料是指任一维空间尺度处于1—100nm之间的材料。它有着不同寻常的性质,如小尺寸效应可引起物理性质的突变,从而具有独特的性能;量子尺寸效应和表面与界面效应使其具有了一般大颗粒物不具备的性质,如对红外线、紫外线有很强的反射作用,应用到纺织品中有抗紫外线,隔热保温作用。纳米材料的这些特性使其在化工、物理、生物、医学方面都有非常重要的价值]1[。多年以来,通过科学家们的潜心研究,使纳米材料在其制备及其应用中得到了很大的发展。纳米材料将逐渐进入人们的日常生活,并将成为未来新工业革命的必备材料。 1.纳米材料的物理制备方法 1.1物理粉碎法 物理粉碎法就是用机械粉碎和电火花爆炸等方法得到纳米微粒]2[。此方法操作简单,成本较低,但得到的纳米微粒纯度不高,分布也不均匀。 图1. 机械粉碎法仪器图

磁电复合材料研究进展

《复合材料学》课程论文 题目:磁电复合材料的研究进展 学生姓名:李名敏 学号: 051002109 学院:化学工程学院 专业班级:材料化学101 电子邮箱: 904721996@https://www.360docs.net/doc/fe695279.html, 2013年 6 月

磁电复合材料的研究进展 摘要:本文介绍磁电复合材料的研究现状和合成工艺,讨论了磁电复合材料性能的影响因素,最后提出了其目前存在的问题及对今后的展望。 关键词:磁电复合材料铁电相铁磁相纳米材料合成工艺性能 1 引言 材料在外加磁场作用下产生自发极化或者在外加电场作用下感生磁化强度的效应称为磁电效应,具有磁电效应的材料称为磁电材料[1]。而磁电复合材料,它由两种单相材料—铁电相与铁磁相经一定方法复合而成。磁电复合材料的磁电转换功能是通过铁电相与铁磁相的乘积效应实现的, 这种乘积效应即磁电效应。磁电复合材料不仅具有前者的压电效应和后者的磁致伸缩效应,而且还能产生出新的磁电转换效应。这种材料能够直接将磁场转换成电场,也可以把电场直接转换为磁场。这种不同能量场之间的转换一步而成,不需要额外的设备,因此转换效率高、易操作。磁电复合材料不但具有较高的尼尔和居里温度,磁电转换系数大等诸多优点,而且还可被用于微波、高压输电、宽波段磁探测,磁场感应器等领域,尤其是在微波泄露、高压输电系统中的电流测量方面有着很突出的优势。此外,磁电复合材料在智能滤波器、磁电传感器、电磁传感器等领域也潜在着巨大的的应用前景[2]。目前, 磁电复合材料作为一种非常重要的功能材料,已成为当今铁电、铁磁功能材料领域的一个新的研究热点。 2 磁电复合材料的研究现状 2.1 磁电复合材料的历史 1894年法国物理学家居里首先提出并证明了一个不对称的分子体在外加磁场的影响下有可能直接被极化,磁电材料概念就此被提出。随后,一些科学家又指出了从对称性角度来考虑,在磁有序晶体中可能存在与磁场强度成正比的电极化以及与电场强度成正比的磁极化即线性磁电效应。直到20世纪80年代,已经发现50多种具有磁电效应的化合物,以及几十种具有此性能的固溶体。虽然发现了一系列具有磁电效应的单相材料,而这类材料虽然既具有铁电性(或反铁电性),又具有铁磁性(或反铁磁性),然而这些材料的居里温度大都远远低于室温,并且只有在居里温度以下这些材料才会表现出微弱的磁电效应。当环境温度上升到居里温度以上时,磁电系数就迅速下降为零,磁电效应也就随之消失。因此,难以利用单相磁电材料开发出具有实际应用价值的器件。这些局限性使得材料科学工作者们又将目光转移到复合材料上,Van Suchtelen首先提出通过

磁性纳米材料的化学合成_功能化及其生物医学应用

第25卷第2期大学化学2010年4月 今日化学 磁性纳米材料的化学合成、功能化 及其生物医学应用 侯仰龙 (北京大学工学院先进材料与纳米技术系北京100871) 摘要从纳米材料的生长动力学模型出发,讨论磁性纳米材料的控制合成原理。总结磁性纳米材料的化学设计与合成、表面功能化及其在核磁共振成像和多模式影像等方面的应用研究最新 进展。 磁性材料在信息存储、传感器和磁流体等传统学科领域有着重要的应用。近年来,随着纳米材料科学与技术的发展,纳米磁性材料的应用开发日益引起人们的关注,特别是在提高信息存储密度、微纳米器件和生物医学领域的应用潜力巨大。本文将从纳米磁学开始,回顾磁性材料的基本概念、化学设计与合成、表面功能化及其在生物医学领域的潜在应用[1]。 1纳米磁学 在磁场中,铁磁体的磁化强度M或磁感应强度B与磁场强度H的关系可用曲线来表示。当外磁场作周期变化时,铁磁体中的磁感应强度随磁场强度的变化而形成一条闭合线,即磁滞回线,图1(a)为铁磁物质磁滞现象的曲线。一般说来,铁磁体等强磁物质的磁化强度M(或B)不是磁场强度H的单值函数而依赖于其所经历的磁状态。以磁中性状态为起始态,当磁状态沿起始磁化曲线磁化时,此时磁化强度逐渐趋于饱和,曲线几乎与H轴平行,将此时的磁化强度称为M s。此后若减小磁场强度,则从某一磁场强度开始,M随H的变化偏离原先的起始磁化曲线,M的变化落后于H。当H减小至0时,M并未同步减小到0,而存在剩余磁化强度 M r 。为使M减至0,需加一反向磁场,称为矫顽力H c 。反向磁场继续增大时,磁体内的M将沿 反方向磁化到趋于饱和(M s),反向磁场减小至0再施加正向磁场时,按相似的规律得到另一支偏离反向起始磁化曲线的曲线。当外磁场完成如上变化时,铁磁体的磁状态可由图1(a)所示的闭合回线描述。当温度高于居里点时,磁性材料将变成顺磁体,其磁性很容易随周围磁场的改变而改变。如果温度进一步提高,或者磁性颗粒的粒度很小时,即便在常温下,当尺寸达到临界畴时,材料中电子的热运动将逐渐占主导作用,热运动引起的扰动能超过磁能,使得原有的磁有序发生无序化,该现象称为超顺磁现象,如图1(b)所示,此时材料矫顽力和剩磁为0。对于纳米颗粒的超顺磁转变温度,称为B loc k i n g温度。其磁学性质随尺寸的变化,如图2所示,与块体磁性材料的多畴结构相比,纳米颗粒具有单畴结构,当颗粒尺寸小于临界畴尺寸时,纳米颗粒的磁自旋将无序排列。在单畴区域,矫顽力随着颗粒尺寸的增加而增加,在颗粒 1

磁功能复合材料及其应用

磁性复合材料及其应用 摘要:纵观人类历史发展发现,材料是体现人类进步的重要物质基础。每种重要的新型材料的应用,都会将人类支配和改造自然地能力提高到一个新的水平。现在,人们又发现了一种新的材料复合材料他是一种由两种或两种以上物理和化学性质不同的物质组合而成的一种多相固体材料。复合材料既可以保持原材料的某些特点,又能发挥组合后的新特征,最重要的是它可以根据需要自行设计,从而最合理的达到使用所要求的性能。目前,关于功能性复合材料的研究有很多,如导电复合材料、磁性复合材料、耐火复合材料、耐高温复合材料、仿生复合材料、智能复合材料、纳米复合材料等,还有一些增强体纤维等等。 1.磁性复合材料简介 磁性复合材料是20世纪70年代发展起来的一种新型高分子功能材料,是现代科学技术领域的重要基础材料之一。磁功能复合材料按组成可分为结构型和复合型两种,结构型磁功能复合材料是指聚合物本身具有强磁性的磁体;复合型磁功能复合材料是指以橡胶或塑料为粘合剂与磁性粉末混合粘结加工而制成的磁体。 磁性复合材料的主要优点是:密度小、耐冲击强度大,制品可进行切割、钻孔、焊接、层压和压花纹等加工,而且使用时不会发生碎裂。它可以采用一般塑料通用的加工方法(如注射、模压、挤出等)进行加工,易于加工成尺寸精度高、薄壁、复杂形状的制品,可成型带嵌件制品,对电磁设备实现小型化、轻量化、精密化和高性能化的目标起着关键的作用,因而越来越多为人们所重视,是一种很有前途的基础功能材料。 磁性复合材料是以高聚物或软金属为基体与磁性功能体复合而成的一类材料。聚合物基磁性复合材料主要由强磁粉(功能体)、聚合物基体(黏结剂)和加工助剂三大部分组成。由于磁性材料有软磁和硬磁之分,因此也有相应的软磁和硬磁复合材料。典型的永磁材料包裹永磁铁氧体、铝镍钴以及稀土永磁材料。 1.1复合型磁性复合材料 复合型磁功能复合材料主要是由树脂及磁粉构成。其中树脂起粘结作用,磁粉是磁性的主要受体,目前用于填充的磁粉主要是铁氧体磁粉和稀土永磁粉。复合型功能复合材料特性又可分为两大类。 一类是磁性粒子最大易磁化方向是杂乱无章排列的,称为各向同性磁功能复合材料,这种复合材料的磁性能较低,一般有钡铁氧体类粘结磁体和Nd-Fe-B类稀土粘结磁体;另一类是在加工过程中通过外加磁场或机械力,使磁粉的最大易磁化方向顺序排列,称为各向异性磁功能复合材料,使用较多的是锶铁氧体磁功能复合材料。在相同材料及配比条件下,各向同性磁功能复合材料的磁性能仅为各向异性磁功能复合材料的1/2~1/3。 1.1.1铁氧体类磁性复合材料 制作各向异性功能复合材料的方法主要有磁场取向法和机械取向法。磁场取向法是将特定的磁粉与树脂、增塑剂、稳定剂、润滑剂等混合后,在混炼机中进行混炼、造粒,然后使用挤出机或注射剂成型,在成型的同时,外加一强磁场,使得磁粉发生旋转顺序排列,制成各向异性磁功能复合材料制品。机械取向法是应用特定的片状磁粉与树脂、增塑剂、稳定剂、润滑剂等混炼塑化后,用压延机使磁粉在机械力的作用下发生顺序排列取向。 1.1.2稀土类磁性复合材料 填充稀土类磁粉制作的磁功能复合材料属于稀土类磁性复合材料。稀土磁粉出现后,树脂粘结磁体飞速发展。作粘结剂的高分子主要是橡胶、热固性树脂和热塑性树脂。橡胶类粘结剂

相关文档
最新文档