瞬变电磁测深法

瞬变电磁测深法
瞬变电磁测深法

作业06_第四章时变电磁场

作业06_第四章时变电磁场-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

第四章 时变电磁场 1. 在无源的自由空间中,已知磁场强度597.210cos(31010)A/m y H t z e -=??-,求位移电流密度。 2. 在电导率310S/m γ=、介电常数06εε=的导电媒质中,已知电场强度 58210sin(10)x E t e -=?π,计算在92.510s t -=?时刻,媒质中的传导电流密度c J 和位移电流密度d J 。 3. 在无源区域,已知电磁场的电场强度90.1cos(6.281020.9)V/m x E t z e =?-,求空间 任一点的磁场强度H 和磁感应强度B 。 4. 一个同轴圆柱型电容器,其内、外半径分别为11cm r =、24cm r =,长度0.5m l =,极板间介质介电常数为04ε,极板间接交流电源,电压为 V u t =π。求极板间任意点的位移电流密度。 5.一个球形电容器的内、外半径分别为a 和b ,内、外导体间材料的介电常数为ε,电导率为γ,在内、外导体间加低频电压sin m u U t ω=。求内、外导体间的全电流。

6. 已知自由空间中电磁波的两个场量表达式为 20002)V/m x E =t z e ωβ-, 5.32sin()A/m y H =t z e ω β- 式中,20MHz f =,0.42rad/m β==。求(1)瞬时坡印亭矢量;(2)平均坡印亭矢量;(3)流入图示的平行六面体(长为2m ,横截面积为0.5m 2)中的净瞬时功率。 7. 一个平行板电容器的极板为圆形,极板面积为S ,极板间距离为d ,介质的介电常数和电导率分别为ε, γ,试问: (1). 当极板间电压为直流电压U 时,求电容器内任一点的坡印亭矢量; (2). 如果电容器极板间的电压为工频交流电压cos314u t =,求电容器内任一点的坡印亭矢量及电容器的有功功率和无功功率。 8. 在时变电磁场中,已知矢量位函数m e cos()z x A A t z e αωβ-=-,其中m A 、α和β均是常数。试求电场强度E 和磁感应强度B 。 x

牵引变电所接线方式

1WL 2WL 1WL 2WL 9QS 10QS 1QS 2QS 1QS 2QS 1QF 2QF 5QS 3QF 6QS 3QS 4QS 3QS 5QS 4QS 7QS 3QF 6QS 8QS T-1 T-2 T-1 T-2 1QF 2QF (a ) (b ) 图2-2 桥式接线 (a) 内桥带外跨 条接线 ;(b ) 外桥接线 两回 进线 (电源引入线)分别经断路器接入两台主变压器,若在两条电源引入线之间用带断路器的横向母线(汇流母线)将它们连接起来,即构成桥式接线。带断路器的横向母线通常称为连接桥。当桥式接线的两回电源引入线接入电力系统的环形电网中时,断路器经常处于闭合状态以便系统功率穿越。 根据连接桥的所在的位置不同,桥式接线又分为外桥式接线和内桥式接线。 (1)内桥带外跨条接线 如图2-2(a)所示,连接桥若设置在靠变压器侧,则构成了内桥式接线。为了提高内桥接线的供电的可靠性和运行的灵活性,一般在进线断路器外侧再设置一条带隔离开关的横向母线(称为外跨条)。内桥带外跨条接线在两条电源进线回路上均有断路器,任一电源线路故障不影响向牵引变电所的供电。 主接线正常运行时,如电源1WL 供电,2WL 备用;主变压器T-1运行,T-2备用。此时,除隔离开关9QS 、10QS 、8QS 断开,其他开关均闭合,使系统功率从桥断路器通过,如图2-2(a)中的箭头所指的方向所示。电源1WL 经1QS 、1QF 、3QS 、7QS 将电能传递给T-1,另一回电路冷备用。电源1WL 经1QS 、1QF 、3QS 、5QS 、3QF 、6QF 、4QS 、2QF 、2QS 将电能传递给周边变电所,完成系统功率穿越。 内桥带外跨条式主接线在两条电源进线上均设有断路器,如断路器1QF 、2QF 。若电源1WL 故障,需要退出检修时,反映该故障的继电器保护装置动作,断路器1QF 断开,电源1WL 退出运行,同时,电源2WL 测的电源断开点自动闭合,2WL 投入运行。若只是一般的倒换电源1WL ,只需断开1QF ,闭合电源2WL 测的

牵引供电系统期末试卷

电气化铁路供电系统试卷2 一、单项选择题(在每小题的四个备选答案中,选出一Array个正确的答案,并将其代码填入题干后的括号内。 每小题1分,共20分) 1.一个完整的电力系统由分布各地的不同类型的()组成,该系统起着电能的生产、输送、分配和消费的作用。() A 发电厂、升压和降压变电所、输电线路 B 发电厂、升压和降压变电所、输电线路和电力用户 C 发电厂、升压和降压变电所、电力用户 D发电厂、输电线路和电力用户 2.我国电气化铁道牵引变电所供电电压的等级为()。() A 500V或330KV B 110kV或220KV C 330kV或220KV D 110kV或35KV 3.电气化铁道供电系统是由()组成。()A一次供电系统和牵引供电系统B牵引供电系统和牵引变电所 C一次供电系统和接触网D牵引供电系统和馈电线 4.低频单相交流制接触网采用的额定电压有:()() A 11-13kV和3.7kV B 11-13kV和55kV C 11-13kV和25kV D 3.7kV和55Kv 5.为确保电力机车牵引列车正常运行,应适当选择牵引变电所主变压器分接开关的运行位,使牵引侧母线空载电压保持:()。() A 直接供电方式: 28kV-29kV之间;AT供电方式:56kV-58kV之间 B 直接供电方式: 20kV-29kV之间;AT供电方式:56kV-58kV之间 C 直接供电方式: 19kV-29kV之间;AT供电方式:56kV-58kV之间 D 直接供电方式: 19kV-27.5kV之间;AT供电方式:38kV-55kV之间6.斯科特结线牵引变电所,当M座和T座两供电臂负荷电流大小相等、功率因数也相等时,斯科特结线变压器原边三相电流()。() A 平衡 B 无负序电流 C 对称 D 有零序电流 7.交流牵引网对沿线通信线的影响,按其作用的性质可分为静电影响和电磁影响。电磁影响由()所引起。() A 牵引网电流的交变磁场的电磁感应 B 牵引网电场的静电感应 C 牵引网电场的杂音干扰 D 牵引电流的高次谐波

瞬变电磁_

《地球探测与信息技术基础》 课程作业 题目:瞬变电磁法在地球勘探上的应用 姓名:周桥立 班级:064101 学号:20101003648 授课教师:胡祥云 2013 年 04 月 20日

摘要 瞬变电磁法是近年来电法勘探领域一种重要方法,是根据地壳中岩石或者矿体的导电性及介电性等电学性质的差异,研究电磁场的空间或时间分布规律,从而解决各种地质问题。目前已经发展为探测油气、金属和非金属矿产的一种重要方法,并且在深部地质构造研究、工程勘察、油气、矿产、水、地热勘探等领域得到广泛应用。

目录 1.概述 (4) 2. 瞬变电磁法 (5) 3.正演问题的研究 (8) 4.瞬变电磁勘探的应用 (12) 5.总结 (14) 参考文献 (15)

一、概述 电磁场理论的应用已经遍及地学、生命科学、医学、空间科学、信息科学等几乎所有的技术科学领域,同时这些工程技术领域对电磁理论研究也不断地提出各种新的要求. 电磁法勘探是基于研究电磁波在导电介质中传播特性,从而达到研究地下地质体赋存特性的目的. 通过天然或人工场源在大地中激励的交变电磁场,研究电磁场的空间和时间分布,分析观测到的磁场信号,得到地下目标体的电性分布特征的一种地球物理方法。 瞬变电磁测深法( Transient elect romagneticmet hod ,简称TEM) 是电磁法勘探中应用较广的一种,是近年来在工程地质勘察中普遍应用的时间域电磁探测方法. 它是利用阶跃波或其它脉冲电流场源激励,在大地产生过渡过程场,断电瞬间在大地中形成涡旋交变电磁场,测量这种由地下介质产生的二次感应电磁场随时间变化的衰减特性,从测量得到的异常信号中分析出地下不均匀体的导电性能和位置,从而推断矿体、工程基础、地下水、地质灾害、工程病态等地下目标体的分布性态. 该技术具有灵敏度高、分辨率强、探测深度大、灵活多变适应性强以及轻便、快速、廉价诸多优点,近年来发展十分迅猛,应用前景十分广阔. 目前,瞬变电磁法已经成为地球物理探测领域内的重要方法之一. 已广泛应用于水利、交通、城建、环保、考古等部门. 成功地解决了大量实际问题。 近年来,计算机技术的进步使瞬变电磁法的二维与三维正演模拟计算方法得到了迅速的发展,目前常用的有有限元法、有限差分法和积分方程法等。瞬变电磁法的三维正演模拟受到科学工作者的重视,深入研究三维瞬变电磁法以提高其应用水平和解释精度,具有重要的理论和现实意义。

牵引变电所电气主接线的设计

指导教师评语修改(40) 年月

1题目:牵引变电所电气主接线的设计 1.1选题背景 某牵引变电所位于大型编组站内,向两条复线电气化铁路干线的三个方向馈电区段供电,已知列车正常情况的计算容量为12000kV A(三相变压器),并以10kV 电压给车站电力照明机务段等地区负荷供电,容量计算为3850kV A。各电压侧馈出线数目及负荷情况如下: R 10kV回路(2路备):供电电源由系统区域变电所以双回路110KV输送线供电。算;各种方案主接线的技术经济性比较。) 这类牵引变电所的电源线路,按保证牵引符合供电的需求一般有两回,主要向牵引负荷和地区负荷供电,桥型结线的中间牵引变电所还有穿越功率通过母线,并向邻近牵引变电所或地区变电所供电。由题意知,本牵引变电所担负着重要的牵引负荷供电任务(一级负荷)、馈线数目多、影响范围广,应保证安全可靠持续性的供电。10千伏地区负荷主要为编组站自动化驼峰、信号自动闭塞、照明及其自动装置等一部分为一级负荷、其他包括机务段在内的自用电和地区三相负载等均为二级负荷,也应满足有足够安全可靠供电的要求。本变电所为终端变电所,一次侧无通过功率。 2方案论证 因没有校核容量,只考虑计算容量来选择变压器,牵引变压器计算容量为12000kV A,故选择容量为12500kV A的变压器,而地区变压器选择6300kV A变压器。 根据原始资料和各种负荷对供电可靠性要求,主变压器容量与台数的选择,可能有以下两种方案:

110kV母线,(110千伏变压器最小容量为6300kV A)。 过15%,采用电压为110/25/10.5kV A,结线为Y//两台三绕组变压器同时3主接线设计 (2)可靠性:根据变电所的性质和在系统中的地位和作用不同,对变电所的主接线可靠性提出不同的要求。主接线的可靠性是接线方式和一次、二次设备可靠性的综合。对主接线可以作定量计算,但需要各种设备的可靠性指标、各级线路、母线故障率等原始数据。通常采用定性分析来比较各种接线的可靠性。 (3)经济性:经济性是在满足接线可靠性、灵活性要求的前提下,尽可能地减少与接线方式有关的投资。 (2)变电所在电力系统中的地位和作用:电力系统中的变电所有系统枢纽变电所、地区重要变电所和一般变电所三种类型。一般系统枢纽变电所汇集多个大电源,进行系统功率交换和以中压供电,电压为330—500kV;地区重要变电所,电压为220—330kV;一般变电所多为终端和分支变电所,电压为110kV,但也有220kV。 (3)负荷大小和重要性:对于一级负荷必须有两个独立电源供电,且当任何一个电源失去后,能保证对全部一级负荷不间断供电。对于二级负荷一般要有两个独立电源供电,且当任何一个电源失去后,能保证全部或大部分二级负荷的供电。 (4)系统备用容量大小:装有两台及以上主变压器的变电所,其中一台事故断

牵引变电所设计原则及其要求

目录 第1章牵引变电所设计基础 (1) 1.1 概述 (1) 1.2 电气主接线设计的基本要求 (1) 1.3 电气主接线的设计依据 (2) 1.4 主变压器型式、台数及容量的选择 (3) 第2章 F所牵引变电所电气主接线图设计说明 (3) 第3章短路计算 (4) 第4章高压电气设备选择及校验 (5) 4.1 高压电气设备选择的原则 (5) 4.2 高压电气设备的选择方法及校验 (7) 4.2.1 高压断路器和隔离开关的选择 (11) 4.2.2 高压熔断器的选择和校验 (13) 4.2.3 电流互感器的选择和校验 (14) 4.2.4 电压互感器 (14) 4.2.5 支柱绝缘子及穿墙套管的选择和校验 (15) 4.2.6 母线的选择和校验 (16) 4.2.7 限流电抗器选择 (16) 4.2.8 避雷器的选择 (17) 后记 (19) 参考资料 (20) 附图 (21)

第1章牵引变电所设计原则及要求 1.1概述 变电所电气主接线设计是依据变电所的最高电压等级和变电所的性质,选择出一种与变电所在系统中的地位和作用相适应的接线方式。变电所的电气主接线是电力系统接线的重要组成部分,它表明变电所内的变压器、各电压等级的线路、无功补偿设备以最优化的接线方式与电力系统连接,同时也表明在变电所内各种电气设备之间的连接方式。一个变电所的电气主接线包括高压侧、中压侧、低压侧以及变压器的接线。因各侧所接的系统情况不同,进出线回路数不同,其接线方式也不同。电气主结线的基本结线形式有但母线结线,双母线结线,桥形结线和简单分支结线。牵引负荷侧电气结线特点主要有:1.每路馈线设有备用断路器的单母线结线;2.具有公共备用断路器的结线;3.但母线分段带旁路母线结线。 1.2 电气主接线基本要求 电气主接线应满足可靠性、经济性和灵活性三项基本要求: 1、灵活性 主接线的灵活性主要表现在正常运行或故障情况下都能迅速改变接线方式,具体情况如下: ①满足调度正常操作灵活的要求,调度员根据系统正常运行的需要,能方便、 灵活地切除或投入线路、变压器或无功补偿装置,使电力系统处于最经济、最安全的运行状态。 ②满足输电线路、变压器、开关设备停电检修或设备更换方便灵活的要求。 设备停电检修引起的操作,包括本站内的设备检修和系统相关的厂、站设备检修引起的站内的操作是否方便灵活。 ③满足接线过渡的灵活性。一般变电站都是分期建设的,从初期接线到最终 接线的形成,中间要经过多次扩建。主接线设计要考虑接线过渡过程中停电范围最少,停电时间最短,一次、二次设备接线的改动最少,设备的搬迁最少或不进行设备搬迁。 ④满足处理事故的灵活性。变电所内部或系统发生故障后,能迅速地隔离故 障部分,尽快恢复供电操作的方便和灵活性,保障电网的安全稳定。

110kv牵引变电所设计

课程设计报告 课程电气化铁道供电系统与设计 题目牵引变电所B主接线及变压器容量计算学院电气工程学院 年级专业电气工程及其自动化 班级学号 学生姓名 指导教师

目录 1 概述 (1) 2 设计方案简述 (2) 3 牵引变压器容量计算 (2) 3.1牵引变压器容量的计算 (2) 3.1.1牵引变压器计算容量 (2) 3.1.2牵引变压器过负荷能力校验 (3) 3.2牵引变压器功率损耗计算 (3) 3.3牵引变电所电压不平衡度计算 (4) 3.3.1计算电网最小运行方式下的负序电抗 X(-) (4) s 3.3.2计算牵引变电所在紧密运行工况下注入110kV电网的负序电流 (4) 3.3.3构造归算到110kV的等值负序网络 (4) 3.3.4牵引变电所110kV母线电压不平衡度计算及校验 (4) 4 导线选择 (5) 4.1软母线选择 (5) 4.1.1室外110kV进线侧的母线选择 (6) 4.1.2室外27.5kV侧的母线选型及校验 (7) 4.1.3室外10kV馈线侧的母线选型及校验。 (7) 5 主接线选择 (8) 总结 (9) 附录一牵引变压器主要技术数据表 (10) 附录二牵引变电所B主接线图 (11) 参考文献 (12)

1 概述 包含有A、B两牵引变电所的供电系统示意图如图1-1所示: L3 L2 L1 B A S Y S T E M 1 S Y S T E M 2 图1-1牵引供电系统示意图 表1-1 设计基本数据 图1-1牵引变电所中的两台牵引变压器为一台工作,另一台备用。 电力系统1、2均为火电厂。其中,电力系统容量分别为250MV A和200MVA。选取基准容量 j S为200MV A,在最大运行方式下,电力系统1、2的综合电抗标幺值分别为0.13和0.15;在最小运行方式下,电力系统的综合标幺值分别为0.15和0.17。 对每个牵引变电所而言,110kV线路为一主一备。图1-1中, 1 L、2L、3L长度为25km、 40km、20km.线路平均正序电抗 1 X为0.4Ω/km,平均零序电抗0X为1.2Ω/km。

第五章时变电磁场

第五章 时变电磁场 1 什么是时变电磁场:场源(电荷、电流或时变场量)和场量(电场、磁场)随时间变化的电磁场。由于时变的电场和磁场相互转换,也可以说时变电磁场就是电磁波。 2 时变电磁场的特点:1)电场和磁场互为对方的涡旋(旋度)源。2)电场和磁场共存,不可分割。3)电力线和磁力线相互垂直环绕。 3 本教科书自第五章以后内容全是关于电磁波的,第五章主要是基础,引入波动方程去掉电场与磁场的耦合,引入复矢量,简化时间变量的分析。第六章以平面波为例,首先研究无限大区域内的电磁波的传播特点,引入用于描述电磁波特性的参量。然后介绍半无限大区域内的电磁波的传播特点-电磁波的反射和折射。第七章首先介绍一个坐标方向无限、其余坐标方向有限的区域内的电磁波传播特性—导行电磁波特性,然后介绍了有限区域内的电磁波谐振特性。第八章介绍了电磁波的产生-天线。 4 本章内容线索:1)理论方面:基本场方程,位函数(引入矢量位),边界条件,波动方程。2)基本方法:复矢量 §时变电磁场方程及边界条件 1 1)因为 t ?? 不为零,电场和磁场相互耦合,不能分开研究。其基本方程就是Maxwell 方程。 微分形式:?? ??? ? ?? ??????? ??-=??=??=????-=????+=??t J B D t B E t D J H ρρρρρρ ρρ ρρ0 积分形式??????? ??????????-=?=?=????-=????+=??????????s V s s V c s c s dV t s d J s d B dV s d D s d t B l d E s d t D J l d H ρρρρρρρρρρρρρρρρρ0)( 2)物质(本构)方程: 在线性、各向同性媒质中

时变电磁场习题

1、时变电磁场的激发源是( )。 A .电荷和电流 B .变化的电场和磁场 C .同时选择A 和B 2.坡印廷矢量S 的瞬时表示为__________________,平均值为________________。 3.位移电流的表达式为( ) A .J D =????S t D ·ds B .J D =t D ?? C .J D =????-S t D ·ds D .J D =t D ??- 4.在理想介质中,波阻抗为( ) A .实数 B .虚数 C .复数 D .零 5.电磁波的传播速度等于___________。P159 6.时变电磁场中的感应电动势,包括发电机电动势和变压器电动势二部分,它们产生的条件 是( )。 A. 导体回路和磁场随时间变化 B. 只要磁通随时间变化 C. 导体回路运动和磁场随时间变化 D. 导体回路运动切割磁力线和磁通随时间变化 7.由动态位A 和?求E 和H 的关系式是( )。 A. E =?-?,B =?·A B. E =?-?-t A ?? 和B =??A C. E=??+t A ?? 和B =??A D. E =?-?-t A ?? ,B =-??A P156 8.平面电磁波的波阻抗等于( )。 A.με B. με 1 C.με1 P159 D. ε μ

9. 电磁感应定律的本质就是变化的磁场产生 。 10.全电流定律的微分方程为( ) A .▽×H=J C B .▽×H=J+t D ?? C .▽×H=t D ?? D .▽×H=0 11.达朗贝尔方程(动态位) 12.什么是传导电流?在时变场中,传导电流是否保持连续? 13. 坡印亭矢量 14. 用场的观点分析静电屏蔽、磁屏蔽和电磁屏蔽,对屏蔽材料有什么要求? 静电屏蔽p51:利用导体在静电场中达到平衡状态时具有(1)导体内电场为0;(2)导体为等位体;(3)电荷只分布在导体表面。故把导体空腔接地,可把导体内外的场分割为两个互不影响的独立系统,达到屏蔽的目的。(把不可受外界电场影响的带电体或不希望去影响外界的带电体用一接地的金属壳罩起来,以隔绝有害的静电影响) 磁屏蔽P138:利用高磁导率材料具有低磁阻的特性,将其制成有一定厚度的外壳,起磁分路作用,使壳内设备少受磁干扰,达到磁屏蔽。 电磁屏蔽p207:一方面利用电磁波在金属表面产生涡流,从而抵消原来的磁场;另利用电磁波在金属表面产生反射损耗和透射波在金属内的传播过程中衰减产生吸收损耗,达到屏蔽作用。 屏蔽材料:静电屏蔽——金属 磁屏蔽 ——铁磁性材料 电磁屏蔽——良导体

牵引变电所设计的课程设计

电力牵引供电系统课程设计评语: 考勤(10) 守纪 (10) 设计过程 (40) 设计报告 (30) 小组答辩 (10) 总成绩 (100) 专业: 班级: 姓名: 学号: 指导教师:

目录 1 设计原始题目 (1) 1.1具体题目 (1) 1.2要完成的内容 (2) 2 设计课题的计算与分析 (2) 2.1计算的意义 (2) 2.2详细计算 (2) 2.2.1 牵引变压器容量计算 (2) 2.2.2 牵引变压器过负荷能力校验 (3) 2.2.3 牵引变压器功率损耗计算 (3) 2.2.4 牵引变压器在短时最大负荷下的电压损失 (3) 2.2.5 牵引变电所电压不平衡度 (3) 2.2.6 牵引变电所主接线设计 (4) 3 小结 (5) 参考文献 (6) 附录 (7)

1 设计原始题目 1.1 具体题目 《供变电工程课程设计指导书》的牵引变电所B。包含有A、B两牵引变电所的供电系统示意图如图1所示。设计基本数据如表1所示。 SYSTEM2SYSTEM1 L1L2L3 B A 图1 牵引供电系统示意图 表1设计基本数据 项目B牵引变电所 左臂负荷全日有效值(A)320 右臂负荷全日有效值(A)290 左臂短时最大负荷(A)410 右臂短时最大负荷(A)360 牵引负荷功率因数0.85(感性) 10kV地区负荷容量(kVA)2*1200 10kV地区负荷功率因数0.83(感性) 牵引变压器接线型式YN,d11 牵引变压器110kV接线型式简单(双T)接线 左供电臂27.5kV馈线数目 2 右供电臂27.5kV馈线数目 2 10kV地区负荷馈线数2回路工作,一回路备用 预计中期牵引负荷增长40%

第五章时变电磁场题解

第五章 时变电磁场 5-1 如图5-1所示,一个宽为a 、长为b 的矩形导体框,放置在磁场中,磁感应强度为B e =B t y 0sin ω。导体框静止时其法线方向e n 与y e 呈α角。求导体框静止时或以角速度ω绕x 轴旋转(假定t =0时刻,α=0)时的感应电动势。 解 由于 y t B e B ωsin 0=,据 ?? ???-=s t e s B d , 导体框静止时, t B ab ab t B e ωωααcos cos cos 0-=???- = 导体框旋转时, ()() t abB t ab B t ab t B t t ab B t t e ωωωωωωω2cos 2cos 221 cos sin cos d 000s -=??-=??? -=???-=???-=??s B 5-2 设图5-2中随时间变化的磁场只有z 轴分量,并沿y 轴按 B B y t B t ky z ==-(,)cos()m ω的规律分布。现有一匝数为N 的线圈平行于xoy 平面,以速度v 沿y 轴方向移动(假定t =0时刻,线圈几何中心处y =0)。求线圈中的感应电动势。 解 据 ()???=l e l B v d 设 2 , 2 21a vt y a vt y + =-=,则有 ()()[]() kvt vB Nb a vt k a vt k vB Nb y B y B v Nb e m m sin 2cos 2cos 2211?-=????? ???? ?? ++??? ??-?=+?= 5-3 一半径为a 的金属圆盘,在垂直方向的均匀磁场B 中以等角速度ω旋转,其轴线与磁场平行。在轴与圆盘边缘上分别接有一对电刷,如图5-3所示。这一装置称为法拉第发电机。 试证明两电刷之间的电压为22B a ω。 解 由于t d d α ω= ,αωd d =t ,t ωα=,ωr v =

电力系统对牵引变电所的供电方式

电力系统对牵引变电所的供电方式 这些都可以在技校里面都可以学到的知识,例如:甘肃轨道学校;兰州轨道技校,一些有知名的技工学校和技术学校都可以得到很好的学习和实践。 关键词:甘肃轨道学校,兰州轨道技校,技工学校,技术学校,职业技校. 电力系统向牵引变电所供电的方式可分为单电源供电,双电源供电和混合供电。当同一电气化区段有不同那个的电力系统功能供电时,在牵引网的分界处,应设置分相电分段而不应并联。牵引变电所设置两台变压器,它要求双电源供电。 一、牵引变电所高压进线的主接线方案 (一)牵引变电所主接线的要求 1、牵引变压器的接线方式不同,对主接线的影响较大。 2、在满足可靠性的情况下,应尽量采用简单的接线形式,一般一双T 接线为主。 3、双T接线虽然要求双回路进线,但可根据电气化铁路的重要程度和运量大小而采用手动投入或自动投入备用回路。当变电所的双回路进线中,主回路发生故障时,备用回路应投入。当采用手动投入时,将有一段停电时间(几数分钟到几十分钟),但可使主接线简化,考虑到110kV线路故障率较低,而且220 kV及更高系统逐步形成之情况下,这种接线方式得到了普遍应用。 4、对于重要电气化区段,可采用自动投入或双回路主供。 5、接触网的故障率较高,要求27.5 kV 侧馈线断路器能承受较高的跳闸次数或有足够的备用。 (二)单母线分段接线 1、单母线分段接线当牵引变电所除了110kV两回电源引入线外,还有别的引出线的时候,通常采用此种方式。正常运行时,分段断路器闭合,两母线并列运行,电源回路和同一负荷的馈线应交错连接在不同的分段母线上,分段断路器既能通过穿越功率,又可在必要的时候将母线分成两段,这样,当母线检修时,停电范围可缩小一半;母线故障时,分段断路器自动跳闸,将故障段母线断开,非故障段母线及其线路仍照常工作,仅使故障段母线连接的线路停电。单母线分段的接线,广泛用于城市电牵引变电所和110Kv电源进线回路较少的电牵引供电系统。 2、单母线带旁路母线接线单母线分段的接线虽然有上述优点,但是,还是存在断路器检修或故障时将使有关回路停电的缺陷,为此,增设一组旁路母线,组成带旁路母线的单母线接线即可解决这一矛盾。

110kv牵引变电所设计

兰州交通大学课程设计报告《电力牵引供变电课程》 课程设计报告 课程电气化铁道供电系统与设计 题目牵引变电所B主接线及变压器容量计算学院电气工程学院 年级专业电气工程及其自动化 班级学号 学生姓名 指导教师

目录 1 概述 (1) 2 设计方案简述 (1) 3 牵引变压器容量计算 (1) 3.1牵引变压器容量的计算 (2) 3.1.1牵引变压器计算容量.......................................................... 错误!未定义书签。 3.1.2牵引变压器过负荷能力校验.............................................. 错误!未定义书签。 3.2牵引变压器功率损耗计算 (2) 3.3牵引变电所电压不平衡度计算 (3) 3.3.1计算电网最小运行方式下的负序电抗 X(-) ...................... 错误!未定义书签。 s 3.3.2计算牵引变电所在紧密运行工况下注入110kV电网的负序电流错误!未定义 书签。 3.3.3构造归算到110kV的等值负序网络 ................................. 错误!未定义书签。 3.3.4牵引变电所110kV母线电压不平衡度计算及校验 ......... 错误!未定义书签。 4 导线选择 (4) 4.1软母线选择 (4) 4.1.1室外110kV进线侧的母线选择 ......................................... 错误!未定义书签。 4.1.2室外27.5kV侧的母线选型及校验.................................... 错误!未定义书签。 4.1.3室外10kV馈线侧的母线选型及校验。........................... 错误!未定义书签。 5 主接线选择 (7) 总结 (8) 附录一牵引变压器主要技术数据表 (9) 附录二牵引变电所B主接线图 (10) 参考文献 (11)

瞬变电磁法

瞬变电磁法测量装置由发射回线和接收回线两部分组成,工作过程分为发射、电磁感应和接收三部分。当发射回线中通以阶跃电流,发射电流突然由I下降到零,根据电磁感应理论,发射回线中电流突然变化必将在其周围产生磁场,该磁场称为一次磁场,一次磁场在周围传播过程中,如遇到地下良导电的地质体,将在其内部激发产生感应电流,又称涡流或二次电流,由于二次电流随时间变化,因而在其周围又产生新的磁场,称为二次磁场。由于良导电地质体内感应电流的热损耗,二次磁场大致按指数规律随时间衰减,形成瞬变磁场,二次磁场主要来源于良导电地质体的感应电流,因此它包含着与地质体有关的地质信息,二次磁场通过接收回线观测,并对观测的数据进行分析和处理,对地下地质体的相关物理参数进行解释.

非磁性导电球体的瞬变电磁响应曲线 电导率σ越小,响应初值越大,但衰减快;σ大,响应初值小, 而衰减慢。 2007吉林大学

地质体的瞬变电磁响应存 在导电响应“窗口”,反 映电性变化的差异。 非磁性导电球体的响应导电窗口曲线 2007吉林大学

常用的发射波形及频谱 0 2 -5 5 d T/2 H0 0 2 -5 5 d T/2 H0 0 2 -5 0 5 2d T/2 H0 d' d' 几种常用激励场的波形 几种简化波形的频谱c 矩形波 正弦波 斜阶跃波 2007吉林大学 回线一次场垂直分量沿x 轴的变化回线一次场垂直分量沿z 轴的变化 一次场的特征: 地面各点的磁场方向均垂直地面,回线中部的磁场较均匀。一次场随着据地表的距离增大而减小。 回线磁场的特点:地面各点的磁场方向均垂直地面,回线中部的磁场较均匀。对于边长为2a 的正方形回线,如果以与中心点磁场大小相差不超过40%为准,则在回线中部0.6a 及上、下±0.18a 的范围内可近似看成垂直的均匀场。因为它随深度减弱较慢,故有较深的探测能力。回线外部则一次场变化较大。 2007吉林大学

瞬变电磁法简介

第三节瞬变电磁法(TEM) 一、方法原理 瞬变电磁法是利用不接地回线或接地线源通以脉冲电流为场源,以激励探测目的物感应二次电流,在脉冲间歇测量二次场随时间变化的响应。当发射回线中的电流突然断开时,在介质中激励出二次涡流场(激发极化场),二次场从产生到结束的时间是短暂的,这就是“瞬变”名词的由来。在二次涡流场的衰减过程中,早期以高频为主,反映的是浅层信息,晚期以低频为主,反映的是深层地下信息。研究瞬变电磁场随时间变化规律,即可探测不同导电性介质的垂向分布。 瞬变电磁法的探测深度与回线线圈的大小、匝数有关,线圈越大、匝数越多,探测的深度就越深。 瞬变电磁法的观测是在脉冲间隙中进行,不存在一次场源的干扰,这称之为时间上的可分性,脉冲是多频率的合成,不同的延时观测的主频率不同,相应的时间场在地层中的传播速度不同,调查的深度也就不同,这称之为空间的可分性。由这两种可分性导致瞬变电磁法有以下特点:把频率域法的精确度问题转化成灵敏度问题,加大功率,灵敏度可以增大信噪比,加大勘探深度;在高阻围岩地区不会产生地形起伏影响的假异常;在低阻围岩地区由于是多道观测,早期道的地形影响也较易分辨;可以采用同点组合(同一回线、重叠回线等)进行观测,使与探测目标的耦合最好,取得的异常强,形态简单,分层能力强;线圈点位、方位或接收距要求相对不严格,测地工作简单,功效高;有穿透低阻覆盖层的能力,探测深度大;剖面测量与测深工

作同时完成,提供了更多有用信息,减少了多解性。 二、地球物理前提 由于瞬变电磁法是观测断电后由一次脉冲激励出的二次涡流场随时间的变化规律,二次涡流场随时间的衰减快慢和强弱与被探测介质(道碴、混凝土、岩石等)及介质状态(含水与干燥、完整与破裂)有关,TEM法衰减曲线的变化过程反映了检测点由高频到低频、由浅层到深层的地质信息变化过程。检测的参数是各层规一化的电阻率,对实测的衰减曲线进行反演拟合,绘制地下电性分层及分层的电阻率柱状图,进而以反演拟合曲线为基础,绘制成曲线簇断面图、等值线断面图及电性分级断面图。 TEM法主要用于隧底检测。隧底结构的正常场,一般情况下,干燥的道碴与铺底砼、基岩相比,相对电阻率高、电导率低,铺底砼的电阻率次高、电导率次低,基岩的电阻率相对较低、电导率相对较高,略高于铺底砼。当隧底结构出现异常,有裂损的铺底砼与完好的铺底砼相比,电导率升高、电阻率降低。如果在铺底层与基岩顶面之间有干虚碴层或存在吊空、松散层时,则将出现低电导率、高电阻率层;相反,虚碴层、松散层含水时,则出现高电导率、低电阻率。因此,用TEM法对隧底进行检测后,将实测的衰减曲线进行反演拟合,并以反演拟合为基础,绘制成电性分级断面图等图件,最后结合收集的既有资料(隧底结构图、竣工图、施工开挖地质情况等),对这些图件进行分析解释,提供隧底结构分层(道碴层、铺底层、基岩面、道碴充水充泥段和陷槽段)、有无底板层(含仰拱)、底板层破损段、

中心回线瞬变电磁测深法快速电阻率成像方法及应用

文章编号:!""!#!$%&(’""’)"&#""(%#") 中心回线瞬变电磁测深法快速电阻率成像方法及应用 严良俊!,徐世浙!,胡文宝’,陈清礼’,胡家华’ (!*浙江大学地球科学系,浙江杭州)!""’+;’*江汉石油学院, 湖北荆州 ,),!"’) 摘要:利用导电全空间与均匀半空间中心回线源和磁偶极子在阶跃电流激发下磁场公式和扩散速度的定义,导出了不同条件下瞬变场的扩散速度公式。在此基础之上,引入瞬变电磁测深全区视电阻率定义数值计算方法,给出了电阻率成像的一阶与二阶近似公式,从而建立了一套中心回线瞬变电磁测深快速电阻率成像方法。模型检验结果、实测剖面电阻率成像以及对大地电磁测深视电阻率曲线进行静偏移校正效果均良好,说明该方法是可行的、有效的。关 键 词:瞬变电磁测深;扩散速度;全区视电阻率;大地电磁测深 中图分类号:-&)!*).’( 文献标识码:/ !引言 中心回线瞬变电磁测深法(012)以其装置轻便 和受旁侧影响小等特点,已被广泛应用于油气勘探、工程物探、电法找水和地热勘探领域。另外,由于中心回线瞬变电磁测深的视电阻率无静态偏移,故常被用于大地电磁测深(20)曲线的静校正,从而使在恶劣地形和复杂地表地质条件下,20勘探的资料品 质大大提高。通常,中心回线瞬变电磁测深法的视电阻率曲线由于采用早、晚期近似而在过渡区发生畸变。因此,求解全区视电阻率是准确进行快速电阻率成像的关键。" 方法原理 主要研究回线框或磁偶极子在阶跃电流激发下的瞬变电磁测深的成像方法。"#! 导电全空间中的瞬变电磁场 当导电全空间中有一导电回线,回线中供以阶跃电流时,其电流的数学描述为: !(")3 ""4"!" "!"{ , (!) 此时电场仅有切向分量,当在5轴上观测时,磁场仅有垂直分量,测量时往往是测其对时间的变化率(与感应电动势相对应)。其时域表达式为: "#$""3!"%!678"’#!&,#" ’(9:;(<’’’),(’) 其中 !"— ——供电电流;%— ——线框的半径;&— ——观测点到线框的距离;"———&与5轴的夹角;!— ——导电介质的电阻率;#"— ——自由空间的磁导率;’3 #"’! # "&。 "#"均匀半空间中的瞬变电磁场 由文献[!!]可知,当线框置于地表且供以阶跃 电流时,地下任意一点处磁场随时间的变化率为: "#""3!"!#"% )$="(’},!(%),"(-%)%).%,())其中 -3/>%; /— ——观测点到线框中心的水平距离;(%; $3% (!.+)!>’ 。"#$ 瞬变电磁场扩散速度 我们知道,瞬变场在有耗介质中的传播为扩散方式。根据阶跃电流触发的瞬变电磁场传播特性,通常将瞬变场的扩散速度定义为"0>""的极大值向 前推移的速度,则在接收点-处的扩散速度定义为:123"& "" 。 (,)由(’)式和瞬变场扩散速度定义可得导电全空间中瞬变场的扩散速度: 收稿日期:’""!#!!#!$ 基金项目:中国石油天然气集团公司“地球物理勘探应用基础研究”资助(编号:’""",!<",)作者简介:严良俊(!$&,—),男,湖北荆州人,江汉石油学院地球物理系副教授,浙江大学地球科学系在读博士生,从事电磁勘探 方法研究与教学工作* ? %(?煤田地质与勘探 ?@/A B1@A@BC D 1E-A@F/0G@H IJKL)"HJL&M9NL’""’   万方数据

瞬变电磁

瞬变电磁法 1、概述 顺便电磁法(TEM)属于时间域电磁法,它是的原理是根据地壳中岩石或者矿体的导电性及介电性等电学性质的差异,以不接地的回线或者是连接地线通上脉冲电流为场源,地下发射一次脉冲磁场,在一次脉冲磁场间歇期间利用线圈或接地电极观测地下介质中引起的二次感应涡流场,从而探测介质电阻率的一种方法。其基本工作方法是:于地面或空中设置通以一定波形电流的发射线圈,从而在其周围空间产生一次电磁场,并在地下导电岩矿体中产生感应电流:断电后,感应电流由于热损耗而随时间衰减,有一个瞬变的过程。可以通过判断和分析二次的时空变化特征,来判断地下地质体的电性特征,找出其位置,产状和埋深等特征。具有可以同时的具有时间和空间的可分性、探测深度达、分辨率高、信息丰富等优点。近几十年来,我国科学技术快速进步,经济迅猛发展,各项基础建设稳步展开,对于各种矿产资源、能源、地下水资源等的需求快速增加。同时,各项建设中遇到了许多工程问题,如公路建设中的地下空洞、煤田开采中的陷落柱、隧道开挖中的突水问题等等。这些因素在一定程度上制约着我国经济的发展,而顺便电磁法的出现,利用其测量方面的优势,已经发展成为探测油气、金属和非金属矿产的一种重要方法,并且在深部地质构造研究,工程勘察、油气、矿产、水、地热勘探等领域得到了广泛的应用。可以很好地保证资源供给,减少经济损失,加快建设进度。 2、研究现状 2.1、研究历史 对勘测工程工作的种种困难,把瞬变电磁法应用到地质勘探中的想法在上世纪30年代就有人提出来。最初的时域电磁法是利用到了L.W.Blan在1993年获得专利,用电磁脉冲激发提供电偶极形成电场。随后在前苏联有人提出了瞬变电磁测深法。在50年代,前苏联、加拿大、美国等国已经开始就瞬变电磁法的理论与应用技术进行了深入的研究,同时期由J.R.Wait 提出了使用瞬变电磁场法寻找导电矿体的理念。前苏联也基本已经建立了瞬变电磁法与野外施工的技术方法,更在70、80年代开展了大量的测量工作,特别是在二维和三维测量的方面就有了很大的进步,这使的瞬变电磁法在地质勘探上运用有了很大的发展。随着计算机的发展,西方各国在瞬变电磁法的二三维正演模拟方面也取得很大的成就。 我国于20世纪70年代研究TEM法。长春地质学院地矿部物化探研究所、中南工业大学、西安地质学院、中国有色金属工业总公司及中国地质大学等单位都在方法理论仪器及野外试验方面进行了一定的工作,先后研发出瞬变电磁系统,取得了很大的研就成果。至今TEM法一直处于蓬勃发展和广泛应用阶段。总的来看,目前国内已比较完整地建立了TEM 法的一维反演及方法技术理论,并自行研制了一些功率较小的仪器。 2.2、仪器的发展现状 近十几年来,伴随着计算机技术的快速的发展,瞬变电磁仪经过五次改进更型。性能稳定、实用可靠的商品化瞬变电磁仪器始于70年代初期,最先推出商品仪器的为加拿大CRONE地球物理公司,目前国内外商品化仪器大约有十几种。 2.2.1国外瞬变电磁仪 加拿大CRONE地球物理公司的DigitalPEM系统,匹配2.4 kW和4.8 kW二种发射机,发射机的发射电流下降沿固定模式有200Ls、300Ls、500Ls、1000Ls、1500Ls五种,发射线圈为任何状态、任何大地耦合条件下,发射机都可自动调整发射电流下降沿时间保持不变,接收传感器为棒状探头,探头脚架为可调式支架,能方便地调节探头地状态以满足测量三分量的要求,工作装置主要为中心回线、定源大回线和偶极~偶极。配有地~井TEM系统,井中三分量探头为分体式,即垂直分量和水平分量为二个探头,野外工作时每一激发回线状态下,分别测量垂直分量和水平分量,这样相对降低了工作效率,但大大增加了安全性,由于

电偶源瞬变电磁测深研究_四_瞬变电磁测深视电阻率

?煤田物探? 电偶源瞬变电磁测深研究(四) ——瞬变电磁测深视电阻率 陈明生 田小波 (煤炭科学研究总院西安分院 710054) 摘要 给出了由电偶源垂直磁场H z(t)计算全区(期)视电阻率的数值计算方法;将时间范围扩展到几十秒,以满足大偏移距(r)探测大深度的需要。模拟计算结果显示,全区视电阻率能清晰地反映地电断面的结构,有助于定性定量解释。 关键词 电偶极源 瞬变电磁法 视电阻率 中国图书资料分类法分类号 P6311325 作者简介 陈明生 男 59岁 研究员 硕士 应用地球物理 1 引言 对瞬变电磁测深,我们所采集的数据是电磁场 的强度,例如感应电动势,这既可以是磁感应强度水 平分量的时间变化率,也可是磁感应强度垂直分量 的时间变化率。不过人们最常用的还是磁感应强度 垂直分量的变化率,即5B z 5t。所绘制的随时间变化的 曲线称为时域衰减曲线或瞬态响应曲线。 但是直接从衰减曲线上很难看出所反映的地电断面结构,通常都要根据正演公式转算成电阻率。场强和地电阻率的关系一般是比较复杂的,很难以显函数表示。但是我们可以借助于均匀半空间的正演公式在特定条件下的渐近式直接计算电阻率,或采用数值方法求取。这样求取的电阻率对均匀大地,或者对曲线的首支、尾支才可能是真电阻率,而一般情况下只能称为视电阻率。视电阻率和真电阻率关系密切,它的变化规律基本反映了地电结构,对我们的定性定量解释都有很大意义。 2 瞬变电磁测深远、近区视电阻率 对电偶极源瞬变电磁测深,所测垂直磁感应强 度对时间的变化率5B z 5t,在特定的场区下所得均匀半 空间的渐近表达式都是显函数[1],可按传统方法定义视电阻率。 211 远区(早期)视电阻率 在瞬变电磁测深中,当感应数Λ=2Πrμ1时, 称为远区或早期。在这种条件下,对均匀半空间电磁 场值进行近似,得出均匀半空间电阻率关于电磁场 值的反函数,称为远区或早期视电阻率。对于观测资 料为 5B z 5t的电偶极源瞬变场的视电阻率定义为: Θ5B z5tΣ=2Πr4 3Ia sinΗ ? 5B z t。(1) 212 近区(晚期)视电阻率 对于近区或晚期的情况,Λ=2 Πr Σν1,这时通过对均匀半空间电磁场近似后可得电偶极源瞬变磁感 应强度 5B z t的视电阻率定义: Θ5B z5tΣ=(Ia rΛ5 20 40Π3 2t5 2 ?sin Η 5B z 5t)2 3。(2) 图1给出了电偶极源垂直磁感应强度变化率( 5B z 5t)的视电阻率曲线。由图看出,这是H K型4层 地电断面视电阻率响应曲线:远区视电阻率响应曲 线,(曲线1)首支渐近线反映了真电阻率,相当于浅 部地层,随着时间的推移,反映更深部的地层电阻率 (视电阻率)变化,尾部曲线下降,已和地层电阻率无 关;近区视电阻率响应曲线,(曲线2)尾支渐近线反 映第四层的真电阻率,往前反映出第三层的高电阻 率,再向前已不能反映地层的电阻率。 由上看出,由远区、近区特定条件下定义的视电阻率都有很大局限性。当条件满足时,能反映地下电 性的变化,一但条件得不到满足,就不能很好地反映 或根本不反映地下电性特征。实际上人们很难判断 条件满足与否,即使将两者合起来,对于衔接部分也 ? 2 5 ?COAL GEOLO GY&EXPLORA T I ON A ug.1999

相关文档
最新文档