RST1201 单通道电容式触摸调光控制芯片

RST1201 单通道电容式触摸调光控制芯片
RST1201 单通道电容式触摸调光控制芯片

旭日科技

Rising Sun Technology

单通道电容式触摸调光控制芯片RST1201

■ 概述

RST1201是一款单通道电容式触摸IC,专门针对LED灯的应用,内置强大的电容感应式触摸算法,广泛使用于各种类型的LED灯具控制产品。

本产品的优势和特点:

◆可以在有介质(如玻璃,亚克力,塑料,陶瓷等)隔离保护的情况下实现触摸功能,安全性高。也可以直接金属部件(如金属台灯,长臂灯,金属按钮,镀金属外壳等等,应用电路简单,外围器件少,加工方便,低成本。

◆抗电源干扰及手机干扰性好。EFT可以达到4KV以上;近距离,多角度手机干扰,对讲机干扰情况下,触摸响应灵敏度可靠性不受影响。

■ 特性简介

◆典型工作电压:2.4V~5.5V

◆触发传感器:单通道

◆内置上电复位(POR)

◆内置低电压复位(LVR)

◆采用低功耗的CMOS技术

■ 功能描述

本IC是通过CS1和CS2来选择IC的工作模式,具体见下表:

Rising Sun Technology

单通道电容式触摸调光控制芯片RST1201◆模式一

◇初始上电时,灯为关灭状态。

◇点击触摸(触摸持续时间小于550ms)时,可实现灯光的亮灭控制。一次点击触摸,灯亮;在一次点击触摸,灯灭。如此循环。灯光点亮或关灭时,无亮度缓冲。且灯光点亮的初始亮度固定为全亮的50%。

◇长按触摸(触摸持续时间大于500ms)时,可实现灯光无极亮度调节。一次长按触摸,灯光逐渐增加,松开时灯光亮度停在松开时刻的亮度,若长按时间超过3秒,则灯光亮度达到最大后不在变化;再一次长按触摸,灯光亮度逐渐降低,松开时灯光亮度停在松开时刻对应的亮度,若长按时间超过3秒,则灯光亮度达到最小亮度后不在变化,如此循环。

◇点击触摸和长按触摸可以在任何时候随意使用,相互之间功能不收干扰和限制。

◆模式二

◇与模式一不同的是,在点击触摸开灯和光灯时,通过使灯光由一个较低亮度缓慢平滑过渡到开灯初始亮度,在点击触摸关灯时,使灯光由当前亮度缓慢平滑降低直至关灭,从而达到亮度缓慢变化的视觉缓冲效果,起到保护眼睛和视力的效果。

◆模式三

◇与模式二不同的是,在模式二基础上增加了亮度记忆功能。即在AC220V电源不段的情况下每次点击触摸光灯时的亮度会被记忆,下次点击触摸开灯时会以此亮度为初始亮度。

在AC220电源断电情况下,重新上电后的第一次点击触摸开灯,初始亮度为全亮的50%。

◆模式四

◇初始上电时,灯为关灭状态。

◇每次点击触摸,灯亮度按低亮度→中亮度→高亮度→灭灯,依次循环变化。

Rising Sun Technology

单通道电容式触摸调光控制芯片

RST1201

■ 引脚配置

OSCI

CS2VC1OUTPUT VDD CS1

GND

TOUCH INPUT

■ 引脚描述

■ 订购信息

◆ 丝印信息

YY: 年份代码

ZZ:产地代码 D: DIP-8 P: 环保标识

YY: 年份代码

WW:周数代码(01-52) ZZ:产地代码 S: SOP-8 P: 环保标识

Rising Sun Technology

单通道电容式触摸调光控制芯片RST1201■ 电气特性

1工作电压3V

2工作电流<300uA

3输入高电平>2/3VDD

4输入端低电平<1/3VDD

5输入端高电流5mA

6输入端低电流10mA

7待机电流(VDD=3V)10uA

8工作温度–20℃~70℃

9储存稳定–50℃~100℃

■ 应用电路

◆ 使用干电池或稳压源或开关电源供电时的应用电路

◆ 使用充电电池供电时的应用电路(AC220IN 为交流220V充电电压输入)

Rising Sun Technology CO.,LTD

Rising Sun Technology

单通道电容式触摸调光控制芯片RST1201

■ 应用说明

◆ 当介质材料及厚度等差异较大时,可通过调整VC1与GND之间的采样电容来调节触摸灵敏度。调整规律:电容容值增大,灵敏度增高;相反则灵敏度降低。

◆ 不同的介质材料和介质厚度情况下对应的采样电容列表如下:(不建议用瓷片电容和Y5V 的贴片电容作为灵敏度电容,最好选用NPO(COG)电容,或其他温漂量较小的电容特性相对比较稳定的高精度电容)

注:此表仅供参考,具体根据时间应用的PCB和模具外壳相结合来调整,定案后,生产过程无需在从新调整。

■ 应用经验

◆ 请注意,当触摸介质比较厚时,单个触摸点的面积要相对大一些,比如用3mm以上的非

电介质时,单个按键的触摸面积最好在15mm左右。

◆ 由于不同的介质传导电荷的能力不同,以上表格的参数,仅供参考,具体根据实际应用的需求来调整触摸感应的灵敏度。

◆ 并不是电容的容量越大就越灵敏,不合适的电容,会导致过灵敏或反应迟钝,调整依据以手指刚好接触到触摸介质有反应为最佳,如果需要用量压才有反应,说明灵敏度不够,如果还没有接触到介质就偶反应,说明灵敏度过高。

◆ 如果电源的纹波幅度达到了0.2V,建议要对电源做特殊处理,比如增加稳压或滤波等。

◆ 在某些特定的应用上,要尽可能的让触摸电路远离某些功能电路,比如收音机,RF等。

Rising Sun Technology

单通道电容式触摸调光控制芯片RST1201■ 封装信息

SECTION B-B

SYMBOL A A1A2A3b b1B1c c1D E1C cA cB cC L

MILLIMETER MIN 3.60 0.51 3.10 1.50 0.44 0.43

1.52

0.25 0.24 9.05 6.15

2.54 7.62

7.62 0 3.00 NOM 3.80 3.30 1.60 0.46 0.25 9.25 6.35

MAX 4.00 3.50 1.70 0.53 0.48 0.31 0.26 9.45 6.55 9.50 0.94

Rising Sun Technology

单通道电容式触摸调光控制芯片RST1201◆ SOP-8

SECTION B-B

SYMBOL A A1A2A3b b1c c1D E E1C L L1θ

MILLIMETER MIN0.08 0.12 0.55 0.39 0.38 0.21 0.19 4.70 5.80 3.70

1.27

0.50

1.05

0 NOM0.18 1.40 0.65 0.41 0.20 4.93 6.00 3.90 0.65

MAX 1.77 0.28 1.60 0.75 0.48 0.43 0.26 0.21 5.10 6.20 4.10 0.80 8o

单片机实现触摸按键

感应按键电路分析 感应按键电路分析: 感应按键是刚刚在电磁炉上运用的一种新技术,其主要特点是使电磁炉易清洁,防水性能好。目前在电磁炉上用的感应按键主要有天线感应式及电容式,我们目前用的是利用人体电容的电容式感应按键 感应按键原理如下面的图式; 感应按键电路包括信号产生、信号整形2个单元:首先由信号产生单元产生约几百KHz的高电平占空比约50%的信号;然后信号整形单元对所产生的信号进行整形,整形过程类似于开关电源工作过程;最后将信号送至MCU 的AD口。 当有人体靠近感应按键时,将会形成一个对地的电容在信号整形的高电平期间分流一部分电流,致使整形后的信号下降,并在人体离开前一直维持在下降的电位上;而当人体离开后,整流后的信号又会上升到原来的电位水平。 由于存在电路耦合及寄生电容,所以一般用下降沿和上升沿来识别感应按键的响应动作。

*************************************************************************************************** *************************************************************************************************** *************************************************************************************************** *************************************************************************************************** *************************************************************************************************** *************************************************************************************************** *************************************************************************************************** ************************************************************************************************** 原理图:示意图1,按键AD每个单独检测,不用切换

触摸感应按键设计指南

触摸感应按键设计指南 张伟林 2009-12-09 sales@soujet.com http://www.soujet.com

1. 概述 对触摸屏与触摸按键在手机中的设计与应用进行介绍,对设计的经验数据进行总结。达到设计资料和经验的共享,避免低级错误的重复发生。 2. 触摸按键设计指导 2.1 触摸按键的功能与原理 2.1.1触摸按键的功能 触摸按键起keypad 的作用。与keypad 不同的是,keypad 通过开关或metaldome 的通断发挥作用,触摸按键通过检测电容的变化,经过触摸按键集成芯片处理后,输出开关的通断信号。 2.1.2触摸按键的原理 如下图,是触摸按键的工作原理。在任何两个导电的物体之间都存在电容,电容的大小与介质的导电性质、极板的大小与导电性质、极板周围是否存在导电物质等有关。PCB 板(或者FPC )之间两块露铜区域就是电容的两个极板,等于一个电容器。当人体的手指接近PCB 时,由于人体的导电性,会改变电容的大小。触摸按键芯片检测到电容值大幅升高后,输出开关信号。 在触摸按键PCB 上,存在电容极板、地、走线、隔离区等,组成触摸按键的电容环境,如下图所示。 Finger Time Capacitance C

2.1.3 触摸按键的按键形式 触摸按键可以组成以下几种按键 z单个按键 z条状按键(包括环状按键) z块状按键 单个按键 条状按键块状按键 2.1.4触摸按键的电气原理图如下:

在PCB板上的露铜区域组成电容器,即触摸按键传感器。传感器的信号输入芯片,芯片经过检测并计算后,输出开关信号并控制灯照亮与否。灯构成触摸按键的背光源。 2.2 触摸按键的尺寸设计 按键可以是圆形、矩形、椭圆形或者任何其他的形状。其中以矩形和圆形应用最为普遍,如图所示: 通常在按键的中间挖空,使PCB下方的光线可以通过挖空导到PCB上方,照亮LENS上的字符。根据ADI公司的推荐,按键大小尺寸如下表: 按键的挖空尺寸与按键的大小相关,如下表

电容式触摸按键PCB布线

`电容式触摸按键 1. 电源 A.优先采用线性电源,因为开关电源有所产生的纹波对于触摸芯片来说影响比较大 B.触摸IC的电源采用开关电源时,尽量控制纹波幅度和噪声。在做电源变化时,如果纹波不好控制, 可采用LDO经行转换 C.触摸芯片的电源要与其他的电源分开,可采用星型接法,同时要进行滤波处理。 如果电源干扰的纹波比较大时可以采用如下的方式: 2.感应按键 A. 材料 根据应用场合可以选择PCB铜箔、金属片、平顶圆柱弹簧、导电棉、导电油墨、导电橡胶、导电玻璃的ITO层等 但在安装时不管使用什么材料,按键感应盘必须紧密贴在面板上,中间不能有空气间隙。 B. 形状: 原则上可以做成任意形状,中间可留孔或镂空。我们推荐做成边缘圆滑的形状,如圆形或六角形,可以避免尖端放电效应 C. 大小 最小4mmX4mm, 最大30mmX30mm,有的建议不要大于15mmX15mm,太大的话,外界的干扰相应的也会增加 D. 灵敏度 一般的感应按键面积大小和灵敏度成正比。一般来说,按键感应盘的直径要大于面板厚度的4倍,并且增大电极的尺寸,可以提高信噪比。各个感应盘的形状、面积应该相同,以保证灵敏度一致。 灵敏度与外接CIN电容的大小成反比;与面板的厚度成反比;与按键感应盘的大小成正比。 CIN电容的选择: CIN电容可在0PF~50PF选择。电容越小,灵敏度越高,但是抗干扰能力越差。电容越大,灵敏度越低,但是抗干扰能力越强。通常,我们推荐5PF~20PF E. 按键的间距 各个感应盘间的距离要尽可能的大一些(大于5mm),以减少它们形成的电场之间的相互干扰。当用PCB铜箔做感应盘时,若感应盘间距离较近(5MM~10MM),感应盘周围必须用铺地隔离。 如图:各个按键距离比较远,周围空白的都用地线隔开了。但注意地线要与按键保持一定的距离

调光灯光控制器使用说明

DK-503调光控制器 使用说明书(1.1) 深圳市必爱歌电子科技有限公司 版本作者日期内容 1.0 丁度旭2010.09.02 创建 1.1 胡冬贤2011.11.11 增加三路单独控制,线性调光。

DK-503调光灯光控制器使用说明书(V1.1) 请注意:DK-503和DK-05、DK-08的工作状态设置方法不一样 一、DK-503调光灯光控制器基本参数: 产品规格:DK-503灯光控制器5路开关控制,3路调光控制 工作电压:220V-250V 功耗10W;外型尺寸:220*125*55 (长*深*高) 单路负载:可调灯光1500W(7A)开关灯光6000W(30A) 产品特点: a、三路调光可实现每路独立控制。 b、每路的亮度开关记忆功能。 d、调光亮度变化渐变,避免视觉冲击。 e、调光每路可编入场景中,且不同场景亮度不同。 F、灯光控制器上可直接按键操作设定灯光亮度。g、可恢复出厂默认值。 二、DK-503前面板图: 前面板自左至右八个按键有两种含义。含义一:“通道”对应后面板连接的八路负载,按键上方的LED灯表示状态,正常工作时,LED亮表示该路负载接通为亮;设置状态时,LED亮表示该路负载受控制。含义二:“场景”代表本机的灯光组合(注:另一叫法为“场景”),有八个场景A-H和开机场景共九种场景。 前面板最右边按键代表“确认设置”键,其上方的LED代表“设置指示灯”。 后面板灯光接线图 灯控墙板举例 (用网线连接灯光墙板至DK系列墙板的 任意一个LINK口) 三、出厂默认设置: 1、出厂默认灯光场景:出场默认开机场景:通道1-8连接的8个灯全亮。 场景A(动感):通道1灯的亮灭控制场景B(柔和):通道2灯的亮灭控制 场景C(明亮):通道3灯的亮灭控制场景D(抒情):通道4灯的亮灭控制 场景E(未取名):通道5灯的亮灭控制场景F(未取名):通道6灯的亮灭控制 场景G(未取名):通道7灯的亮灭控制场景H(未取名):通道8灯的亮灭控制 2、什么是“灯光场景”:多路灯光的亮灭组合而成的场景就是所谓的“灯光场景”。最简单的是一个灯光场景单独只控制一个 灯。复杂的比如可以要求灯光场景A(动感)控制通道1、2、3 连接的三个灯的同时亮灭,灯光场景B(柔和)控制通道

电容式触摸按键解决方案模板

电容式触摸按键解 决方案

电容式触摸按键解决方案 一、方案简介 在便携式媒体播放器和移动手持终端等大容量、高可视性产品的应用中,触摸按键已被广泛采用。由于其具有方便易用,时尚和低成本的优势,越来越多的电子产品开始从传统机械按键转向触摸式按键。 触摸按键方案优点: 1、没有任何机械部件,不会磨损,无限寿命,减少后期维护成本。 2、其感测部分能够放置到任何绝缘层(一般为玻璃或塑料材料)的后面,很容易制成与周围环境相密封的键盘。以起到防潮防水的作用。 3、面板图案随心所欲,按键大小、形状任意设计,字符、商标、透视窗等任意搭配,外型美观、时尚,不褪色、不变形、经久耐用。从根本上解决了各种金属面板以及各种机械面板无法达到的效果。其可靠性和美观设计随意性,能够直接取代现有普通面板(金属键盘、薄膜键盘、导电胶键盘),而且给您的产品倍增活力! 4、触摸按键板可提供UART、IIC、SPI等多种接口,满足各种产品接口需求。 二、原理概述 如图1所示在PCB上构建的电容器,电容式触摸感应按键实际上只是PCB上的一小块“覆铜焊盘”,触摸按键与周围的“地信号”构成一个感

应电容,当手指靠近电容上方区域时,它会干扰电场,从而引起电容相应变化。根据这个电容量的变化,能够检测是否有人体接近或接触该触摸按键。 接地板一般放置在按键板的下方,用于屏蔽其它电子产品产生的干扰。此类设计受PCB上的寄生电容和温度以及湿度等环境因素的影响,检测系统需持续监控和跟踪此变化并作出基准值调整。 基准电容值由特定结构的PCB产生,介质变化时,电容大小亦发生变化。 图1 PCB上构建开放式电容器示意图 三、方案实现 该系列电容式触摸按键方案,充分利用触摸按键芯片内的比较器特性,结合外部一个电容传感器,构造一个简单的振荡器,针对传感器上电容的变化,频率对应发生变化,然后利用内部的计时器来测量出该变化,

电容式触摸按键设计指南

Capacitive Touch Sensor Design Guide October 16, 2008 Copyright ? 2007-2008 Yured International Co., Ltd.1YU-TECH-0002-012-1

(3) (3) (5) (9) (11) (11) (17) (20) Copyright ? 2007-2008 Yured International Co., Ltd.2YU-TECH-0002-012-1

Copyright ? 2007-2008 Yured International Co., Ltd.3 YU-TECH-0002-012-1 1. 2. ( ) 3M 468MP NITTO 500 818

Copyright ? 2007-2008 Yured International Co., Ltd.4 YU-TECH-0002-012-1 3. 4. Front Panel Sensor Pad Sensor Pad Electroplating Or Spray Paint Nothing

Copyright ? 2007-2008 Yured International Co., Ltd.5 YU-TECH-0002-012-1 1. (FPC) ITO (Membrane) ITO ITO ( 10K ) FPC ITO MEMBRANE PCB

Copyright ? 2007-2008 Yured International Co., Ltd.6 YU-TECH-0002-012-1 2.ITO LCD ITO ( 10K ) 3. 1mm 8mm ( 8mm X 8mm ) 1mm 8mm X 8mm 2mm 10mm X 10mm 3mm 12mm X 12mm 4mm 15mm X 15mm 5mm 18mm X 18mm ( ) 196.85 mil (5mm) 0.254mm(10mil) 2mm 5mm 2mm

基于ZigBee的LED灯调光控制器设计与实现

5 基于ZigBee技术的LED灯调光控制器设计与实现 5.1 概述 LED(Light Emitting Diode),发光二极管,是一种能够将电能转化为可见光的固态的半导体器件,它可以直接把电转化为光。LED的心脏是一个半导体的晶片,晶片的一端附在一个支架上,一端是负极,另一端连接电源的正极,使整个晶片被环氧树脂封装起来。半导体晶片由两部分组成,一部分是P型半导体,在它里面空穴占主导地位,另一端是N型半导体,在这边主要是电子。但这两种半导体连接起来的时候,它们之间就形成一个P-N结。当电流通过导线作用于这个晶片的时候,电子就会被推向P区,在P区里电子跟空穴复合,然后就会以光子的形式发出能量,这就是LED灯发光的原理。而光的波长也就是光的颜色,是由形成P-N结的材料决定的。 LED灯最大的优点就是节能环保。光的发光效率达到100流明/瓦以上,普通的白炽灯只能达到40流明/瓦,节能灯也就在70流明/瓦左右徘徊。所以,同样的瓦数,LED灯效果会比白炽灯和节能灯亮很多。1瓦LED灯亮度相当于2瓦左右的节能灯, 5瓦LED灯1000小时耗电5度,LED灯寿命可以达到5万小时,LED灯无辐射。 随着社会经济的发展,对LED灯的需求越来越高。所以在物联网智能家居、智慧照明系统中研究基于ZigBee的LED灯驱动控制显得非常重要。 5.2 LED灯驱动电路研究设计 采用电容降压电路是一种常见的小电流电源电路,由于其具有体积小﹑成本低﹑电流相对恒定等优点,也常应用于LED的驱动电路中。 图5-1为一个实际的采用电容降压的LED驱动电路:请注意,大部分应用电路中没有连接压敏电阻或瞬变电压抑制晶体管,建议连接上,因压敏电阻或瞬变电压抑制晶体管能在电压突变瞬间(如雷电﹑大用电设备起动等)有效地将突变电流泄放,从而保护二级关和其它晶体管,它们的响应时间一般在微毫秒级。

电容式触摸感应IC工作原理

电容式触摸感应IC工作原理 任何两个导电的物体之间都存在着感应电容,一个按键即一个焊盘与大地也可构成一个感应电容,在周围环境不变的情况下,该感应电容值是固定不变的微小值。当有人体手指靠近触摸按键时,人体手指与大地构成的感应电容并联焊盘与大地构成的感应电容,会使总感应电容值增加。电容式触摸按键IC在检测到某个按键的感应电容值发生改变后,将输出某个按键被按下的确定信号。电容式触摸按键因为没有机械构造,所有的检测都是电量的微小变化,所以对各种干扰会更加敏感,因此触摸按键设计、触摸面板的设计以及触摸IC的选择都十分关键。 一,触摸PAD设计 1. 触摸PAD材料 触摸PAD可以用PCB铜箔、金属片、平顶圆柱弹簧、导电棉、导电油墨、导电橡胶、导电玻璃的ITO层等。不管使用什么材料,按键感应盘必须紧密贴在面板上,中间不能有空气间隙。当用平顶圆柱弹簧时,触摸线和弹簧连接处的PCB,镂空铺地的直径应该稍大于弹簧的直径,保证弹簧即使被压缩到PCB板上,也不会接触到铺地。 2. 触摸PAD形状 原则上可以做成任意形状,中间可留孔或镂空。作者推荐做成边缘圆滑的形状,可以避免尖端放电效应。一般应用圆形和正方形较常见。 3. 触摸PAD面积大小 按键感应盘面积大小:最小4mm×4mm,最大30mm×30mm。实际面积大小根据灵敏度的需求而定,面积大小和灵敏度成正比。一般来说,按键感应盘的直径要大于面板厚度的4倍,并且增大电极的尺寸,可以提高信噪比。各个感应盘的形状和面积应该相同,以保证灵敏度一致。通常在绝大多数应用里,12mm×12mm是个典型值。

4. 触摸PAD之间距离 各个触摸PAD间的距离要尽可能的大一些(大于5mm),这样可以减少它们形成的电场之间的相互干扰。当用PCB铜箔做触摸PAD时,若触摸PAD间距离较近(5mm~10mm),触摸PAD必须用铺地隔离。如果各个触摸PAD距离较远,也应该尽可能的铺地隔离。适当拉大各触摸PAD间的距离,对提高触摸灵敏度有一定帮助。 三、触摸面板选择 1. 触摸面板材料 面板必须选用绝缘材料,可以是玻璃、聚苯乙烯、聚**乙烯(pvc)、尼龙、树脂玻璃等,按键正上方1mm以内不能有金属,触摸按键50mm以内的金属必须接地,否则金属会影响案件的灵敏度。在生产过程中,要保持面板的材质和厚度不变,面板的表面喷涂必须使用绝缘的涂料。 2. 触摸面板厚度 通常面板厚度设置在0~10mm之间。不同的材料对应着不同的典型厚度,例如亚克力材料一般设置在2mm~4mm之间,普通玻璃材料一般设置在3mm~6mm之间。 3. 双面胶 触摸按键PCB与触摸面板通过双面胶粘接,双面胶的厚度取0.1~0.15mm比较合适,推荐采用3M468MP,其厚度0.13mm。要求PCB与面板之间没有空气,因为空气的介电系数为1,与面板的介电系数差异较大。空气会对触摸按键的灵敏度影响很大。所以双面胶与面板,双面胶与PCB粘接,都是触摸按键生产装配中的关键工序,必须保证质量。

电容式触摸屏设计要求规范精典

电容式触摸屏设计规 【导读】:本文简单介绍了电容屏方面的相关知识,正文主要分为电子设计和结构设计两个部分。电子设计部分包含了原理介绍、电路设计等方面,结构设计部分包好了外形结构设计、原料用材、供应商工艺等方面 【名词解释】 1. V.A区:装机后可看到的区域,不能出现不透明的线路及色差明显的区域等。 2. A.A区:可操作的区域,保证机械性能和电器性能的区域。 3. ITO:Indium Tin Oxide氧化铟锡。涂镀在Film或Glass上的导电材料。 4. ITO FILM:有导电功能的透明PET胶片。 5. ITO GALSS:导电玻璃。 6. OCA:Optically Clear Adhesive光学透明胶。 7. FPC:可挠性印刷电路板。 8. Cover Glass(lens):表面装饰用的盖板玻璃。 9. Sensor:装饰玻璃下面有触摸功能的部件。(Flim Sensor OR Glass Sensor) 【电子设计】 一、电容式触摸屏简介 电容式触摸屏即Capacitive Touch Panel(Capacitive Touch Screen),简称CTP。根据其驱动原理不同可分为自电容式CTP和互电容式CTP,根据应用领域不同

可分为单点触摸CTP和多点触摸CTP。 1、实现原理 电容式触摸屏的采用多层ITO膜,形成矩阵式分布,以X、Y交叉分布作为电容矩阵,当手指触碰屏幕时,通过对X、Y轴的扫描,检测到触碰位置的电容变化,进而计算出手指触碰点位置。电容矩阵如下图1所示。 图1 电容分布矩阵 电容变化检测原理示意简介如下所示: 名词解释: ε0:真空介电常数。 ε1 、ε2:不同介质相对真空状态下的介电常数。 S1、d1、S2、d2分别为形成电容的面积及间距。

基于51单片机的调光控制器设计

基于51单片机的调光控制器设计 1 调光控制器设计 在日常生活中,我们常常需要对灯光的亮度进行调节。本调光控制器通过单片机控制双向可控硅的导通来实现白炽灯(纯阻负载)亮度的调整。双向可控硅的特点是导通后即使触发信号去掉,它仍将保持导通;当负载电流为零(交流电压过零点)时,它会自动关断。所以需要在交流电的每个半波期间都要送出触发信号,触发信号的送出时间就决定了灯泡的亮度。 调光的实现方式就是在过零点后一段时间才触发双向可控硅开关导通,这段时间越长,可控硅导通的时间越短,灯的亮度就越低;反之,灯就越亮。 这就要求要提取出交流电压的过零点,并以此为基础,确定触发信号的送出时间,达到调光的目的。 1.1 硬件部分 本调光控制器的框图如下: 控制部分:为了便于灵活设计,选择可多次写入的可编程器件,这里选用的是ATMEL的AT89C51单片机。 驱动部分:由于要驱动的是交流,所以可以用继电器或光耦+可控硅(晶闸管SCR)来驱动。继电器由于是机械动作,响应速度慢,不能满足其需要。可控硅在电路中能够实现交流电的无触点控制,以小电流控制大电流,并且不象继电器那样控制时有火花产生,而且动作快、寿命长、可靠性高。所以这里选用的是可控硅。 负载部分:本电路只能控制白炽灯(纯阻负载)的亮度。 1.2 软件部分 要控制的对象是50Hz的正弦交流电,通过光耦取出其过零点的信号(同步信号),将这个信号送至单片机的外中断,单片机每接收到这个同步信号后启动一个延时程序,延时的具体时间由按键来改变。当延时结束时,单片机产生触发信号,通过它让可控硅导通,电流经过可控硅流过白炽灯,使灯发光。延时越长,亮的时间就越短,灯的亮度越暗(并不会有闪烁的感觉,因为重复的频率为100Hz,且人的视觉有暂留效应)。由于延时的长短是由按键决定的,所以实际上就是按键控制了光的强弱。 理论上讲,延时时间应该可以是0~10ms内的任意值。在程序中,将一个周期均分成N 等份,每次按键只需要去改变其等份数,在这里,N越大越好,但由于受到单片机本身的限制和基于实际必要性的考虑,只需要分成大约100份左右即可,实际采用的值是95。 可控硅的触发脉冲宽度要根据具体的光耦结合示波器观察而定,在本设计中取20 μs。程序中使用T1来控制这个时间。 对两个调光按键的处理有两种方式:一种是每次按键,无论时间的长短,都只调整一个台阶(亮或暗);另一种是随按键时间的不同,调整方法不同:短按只调整一个台阶,长按可以连续调整。如前面所述,由于本设计中的台阶数为95(N=95),如果使用前一种方式,操作太麻烦,所以用后者较为合理。 2 各单元电路及说明 2.1 交流电压过零点信号提取 交流电压过零点信号提取电路,图中的同步信号就是我们需要的交流电压过零点信号。各部分波形。

电容式触摸感应面板PCB Layout指南

电容式触摸面板PCB Layout 指南 本文旨在为S-Touch T M 电容触摸感应设计所采用的各种PcB(印刷电路板)的结构和布局提供设计布局指导,包括触摸键,滑动条和旋转条。鉴于在多种应用中,两层PCB 板被广泛采用,本文以两层PCB 板为例,介绍PCB 板的设计布局 PCB 设计与布局 在结构为两层的PCB 中,S-Touch 触摸控制器和其他部件被布设在 PCB 的底层,传感器电极被布设在PCB 的顶层。每个传感器通道所需的调谐匹配电容器可以直接布设在该传感器电极的底层。需要指出的是,S-Touch 触摸控制器布设在底层,应该保证其对应的顶层没有布任何传感器电极。顶层和底层的空白区域可填充网状接地铜箔,铜箔距离感应电极需在3mm 以上 PCB 设计规则 第1层(顶层) ?传感器电极位于PCB 的顶层(PCB 的上端与覆层板固定在一起),感应电极一般布置 为一个焊盘,所有感应电极面积尽量保持一致大小,有效面积不得小于25mm 2,但也不能超过15mm 2×15mm 2,若超过这一尺寸,不但会降低灵敏度,而且会增加对噪声的易感性。感应电极大小应根据覆层板(外壳)的材料和厚度来适当布置,对应关系为(仅供参考): 空白区域可填充网状接地铜箔(迹线宽度为6密耳,网格尺寸为30密耳)。 ?顶层可用来布设普通信号迹线(不包括传感器信号迹线)。应当尽可能多地把传感器信 号迹线布设在底层。传感器信号迹线宽度请选用0.15mm~0.2mm ,建议不要超过0.2mm 。 ?感应电极与接地铜箔的距离至少应为2mm ,我公司建议在3mm 以上 感应电极面积亚克力普通玻璃ABS 6mm ×6mm 1.0mm 2.0mm 1.0mm 7mm ×7mm 2.0mm 3.0mm 2.0mm 8mm ×8mm 3.5mm 4.0mm 3.5mm 10mm ×10mm 4.5mm 6.0mm 4.5mm 12mm ×12mm 6.0mm 8.0mm 6.0mm 15mm ×15mm 8.0mm 12mm 8.0mm

电容式触摸屏设计规范精典

电容式触摸屏设计规范【导读】:本文简单介绍了电容屏方面的相关知识,正文主要分为电子设 计和结构设计两个部分。电子设计部分包含了原理介绍、电路设计等方面,结构设计部分包好了外形结构设计、原料用材、供应商工艺等方面 【名词解释】 1. V.A区:装机后可看到的区域,不能出现不透明的线路及色差明显的区域等。 2. A.A区:可操作的区域,保证机械性能和电器性能的区域。 3. ITO:Indium Tin Oxide氧化铟锡。涂镀在Film或Glass上的导电材料。 4. ITO FILM:有导电功能的透明PET胶片。 5. ITO GALSS:导电玻璃。 6. OCA:Optically Clear Adhesive光学透明胶。 7. FPC:可挠性印刷电路板。 8. Cover Glass(lens):表面装饰用的盖板玻璃。 9. Sensor:装饰玻璃下面有触摸功能的部件。(Flim Sensor OR Glass Sensor) 【电子设计】 一、电容式触摸屏简介 电容式触摸屏即Capacitive Touch Panel(Capacitive Touch Screen),,根据应CTP和互电容式CTP。根据其驱动原理不同可分为自电容式CTP简称. 用领域不同可分为单点触摸CTP和多点触摸CTP。 1、实现原理 电容式触摸屏的采用多层ITO膜,形成矩阵式分布,以X、Y交叉分布作为电容矩阵,当手指触碰屏幕时,通过对X、Y轴的扫描,检测到触碰位置的电容变化,进而计算出手指触碰点位置。电容矩阵如下图1所示。 1 电容分布矩阵图 电容变化检测原理示意简介如下所示:名词解释::真空介电常数。ε0 ε2:不同介质相对真空状态下的介电常数。ε1 、d2S2d1S1、、、分别为形成电容的面积及间距。

感应按键原理

电容式触摸感应按键的基本原理 ◆Silicon Labs 现提供一种可侦测因触摸而改变的电容的方法 电容式触摸感应按键的基本原理就是一个不断地充电和放电的张弛振荡器。如果不触摸开关,张弛振荡器有一个固定的充电放电周期,频率是可以测量的。如果我们用手指或者触摸笔接触开关,就会增加电容器的介电常数,充电放电周期就变长,频率就会相应减少。所以,我们测量周期的变化,就可以侦测触摸动作。 具体测量的方式有二种: (一)可以测量频率,计算固定时间内张弛振荡器的周期数。如果在固定时间内测到的周期数较原先校准的为少,则此开关便被视作为被按压。 (二)也可以测量周期,即在固定次数的张弛周期间计算系统时钟周期的总数。如果开关被按压,则张弛振荡器的频率会减少,则在相同次数周期会测量到更多的系统时钟周期。 Silicon Labs推出的C8051F9xx微控制器(MCU)系列,可通过使用芯片上比较器和定时器实现触摸感应按键功能,连接最多23个感应按键。而且无须外部器件,通过PCB走线/开关作为电容部分,由内部触摸感应按键电路进行测量以得知电容值的变化。

◆以Silicon Labs的MCU实现触摸感应按键 利用Silicon Labs其它MCU系列,仅需搭配无源器件,即可实现电容式触摸感应按键方案。与C8051F93x-F92x方案相比,唯一所需的外部器件是(3+N) 电阻器,其中N是开关的数目,以及3个提供反馈的额外端口接点。C8051F93x-F92x 之外,Silicon Labs其它MCU系列可直接连接12个开关,或者通过外部模拟多路复用器连接更多开关。 设计触摸感应按键开关 因为我们要侦测电容值的变化,所以希望变化幅度越大越好。现在,有三个主要因素会影响开关电容及变化幅度。 ?PCB上开关的大小、形状和配置 ?PCB走线和使用者手指间的材料种类 ?连接开关和MCU的走线特性 我们测试了下图中这12种不同开关。目的是为了发现开关的形状尺寸会如何影响开关的空闲和被接触的状态,还可以发现哪一种开关的空闲电容最大,就不容易被PCB上的寄生电容而影响。测试结果表明,在特定区域中的开关越大且走线越多,则此开关的闲置电容便越高。图中的环状开关具有最低的电容,所以当开关动作时,可显现最大的电容相对变化。

触摸按键设计要求教案资料

触摸按键设计要求

触摸按键画板法 (以下所提到的芯片为HT45R34) ●Sensor pad形状: Sensor pad形状可以为圆形,方形,三角形(实心型),抑可以线条构成此类圆形(镂空型),前者用于覆盖板较厚的情况。后者则用于覆盖板较薄的情况下。推荐用圆形,感应效果更佳。 ●Sensor pad尺寸: Sensor pad面积越大灵敏度越大,但超过手指按压范围的部分对增加灵敏度没有作用。以圆形为例,一般设计为10m m~15mm的直径,符合成人手指的大小。 ●Sensor pad与ground plane之间的间隔: 间隔越大,touch swith的基础电容越小,RC震荡的频率越大,灵敏度也越大,但间隔太大,地对电场的约束越小,干扰越大;间隔太小,基础电容太大,灵敏度太小,且地对电场的约束太大,不利于电场穿透覆盖板,使得覆盖板只能较薄。推荐的间隔为0.5m m~ 1.0mm,例如10mm直径的sensor pad配合0.5mm的间隔。 ●布局要求: Sensor pad 要靠近MCU,每一个Sensor Pad到MCU的距离要尽量一致。IN,RREF,CREF引出脚要短,该RC模块要靠近MCU。另外,复位电路,晶振电路要靠近MCU。 布线要求:

由MCU的RC1~RC16PIN到touch swith的连线,要尽量的短,尽量远离其他走线或元件,线宽尽量窄(7~10mil).要避免touch swith的连线临近高频的通信线(例如I2C SPI通信线),在没有办法避免的情况下,请让两者直交布线。尽量将到touch swith的连线布在与S ensor Pad不同的Layer (采用双面板时),使其受到人体的影响降低,且这些线与线之间的也要尽量互相远离,线周围也要铺上地,以保证其尽量少受到其他信号的干扰。 ●覆盖板的材料: 覆盖板为一些坚固,易安装的绝缘材料,介电常数在2.5~10之间,Demo Board 上采用的是压克力板材,还有很多可采用的板材,例如:普通玻璃,徽晶板等,覆盖板的介电常数越小,Sensor Padde的感应范围越小。安装要求覆盖板紧贴Sensor Pad的表面,用粘胶将其贴在Sensor Pad的表面(排掉它们之间的空气)则效果更佳。 ●覆盖板的厚度: 覆盖板的厚度一般为1mm~5mm,厚度越大touch swith的灵敏度越小,信噪比也越低。Sensor Pad的面积越小,覆盖板要越薄。

电容式触摸按键布线

电容式触摸按键布线分享 1):电容式触摸按键特点及应用 与传统的机械按键相比,电容式触摸感应按键不仅美观时尚而且寿命长,功耗小,成本低,体积小,持久耐用。它颠覆了传统意义上的机械按键控制,只要轻轻触碰,他就可以实现对按键的开关控制,量化调节甚至方向控制,现在电容式触摸感应按键已经广泛用于手机,DVD,电视,洗衣机等一系列消费类电子产品中! 2):电容式触摸按工作基本原理 所谓感应式触摸按键,并不是要多大的力量去按,相反,力量大和小的效果是一样的,因为外层一般是一块硬邦邦的塑料壳。具体就电容式而言,是利用人手接触改变电容大小来实现的,通俗点,你手触摸到哪个位置,那里的电容就会发生变化,检测电路就会检测到,并将由于电容改变而带来的模拟信号的改变转化为数字信号的变化,进行处理! 3): 电容式触摸按电容构成及判断 PCB材料构成基本电容,PCB上大面积的焊盘(触摸按键)与附近的地构成的分布电容,由于人体电容的存在,当手指按上按键后,改变了分布电容的容量(原来的电容并上了人体电容),通过对PAD构成的分布电容充放电或构成振荡电路,再检测充放电的时间,或者振荡频率,脉冲宽度等方式可以检测电容容量的变化,继而可判断按键是否被按下。 电容式触摸按键布板要求 1): PCB板的电容构成因素: PCB板中电容构成因素如右图: 其中代表PCB板最终生成电容

代表空气中的介质常数 代表两板电介质常数 代表两极板面面积 代表两板距离 2): PCB板的布局 电容式感应触摸按键实际只是PCB上的一小块覆铜焊盘,当没有手指触摸时,焊盘和低型号产生约5—10PF的电容值,我们称之为“基准电容”故为了PCB设计尽量达到这值,PCB需要进行更好设计!如下图:

电容式触摸感应按键技术原理及应用

电容式触摸感应按键技术原理及应用 2010-05-26 12:45:02| 分类:维修 | 标签: |字号大中小订阅 市场上的消费电子产品已经开始逐步采用触摸感应按键,以取代传统的机械式按键。针对此趋势,Silicon Labs公司推出了置微控制器(MCU)功能的电容式触摸感应按键(Capacitive Touch Sense)方案。电容式触摸感应按键开关,部是一个以电容器为基础的开关。以传导性物体(例如手指)触摸电容器可改变电容,此改变会被內置于微控制器的电路所侦测。 电容式触摸感应按键的基本原理 ◆Silicon Labs 现提供一种可侦测因触摸而改变的电容的方法 电容式触摸感应按键的基本原理就是一个不断地充电和放电的弛振荡器。如果不触摸开关,弛振荡器有一个固定的充电放电周期,频率是可以测量的。如果我们用手指或者触摸笔接触开关,就会增加电容器的介电常数,充电放电周期就变长,频率就会相应减少。所以,我们测量周期的变化,就可以侦测触摸动作。 具体测量的方式有二种: (一)可以测量频率,计算固定时间弛振荡器的周期数。如果在固定时间测到的周期数较原先校准的为少,则此开关便被视作为被按压。 (二)也可以测量周期,即在固定次数的弛周期间计算系统时钟周期的总数。如果开关被按压,则弛振荡器的频率会减少,则在相同次数周期会测量到更多的系统时钟周期。 Silicon Labs推出的C8051F9xx微控制器(MCU)系列,可通过使用芯片上比较器和定时器实现触摸感应按键功能,连接最多23个感应按键。而且无须外部器件,通过PCB走线/开关作为电容部分,由部触摸感应按键电路进行测量以得知电容值的变化。 ◆以Silicon Labs的MCU实现触摸感应按键 利用Silicon Labs其它MCU系列,仅需搭配无源器件,即可实现电容式触摸感应按键方案。与C8051F93x-F92x方案相比,唯一所需的外部器件是(3+N)电阻器,其中N是开关的数目,以及3个提供反馈的额外端口接点。C8051F93x-F92x之外,Silicon Labs其它MCU系列可直接连接12个开关,或者通过外部模拟多路复用器连接更多开关。 设计触摸感应按键开关 因为我们要侦测电容值的变化,所以希望变化幅度越大越好。现在,有三个主要因素会影响开关电容及变化幅度。 PCB上开关的大小、形状和配置

电容式触摸屏设计规范-A

电容式触摸屏设计规范

1 目的 规范电容式触摸屏(投射式)的设计,提高设计人员的设计水平及效率,确保触摸屏模块整体的合理性及可靠性。 2 适用范围 第五事业部TP厂技术部电容式触摸屏设计人员。 3 工程图设计 3.1 工程图纸为TP模块的成品管控,以及出货依据,包含以下内容: 3.1.1 正面视图: 该视图包含TP外形、view area、active area、FPC图形及相关尺寸.若TP需作表面处理,则必须对LOGO的位置、尺寸、材质、颜色、以及工艺进行标注。 需标注尺寸及公差如下: 3.1.2 侧视图: 该视图表示出TP的层状结构, TP各层的厚度、材质、FPC厚度(含IC等元件)必须标注。 需要标注尺寸及公差如下:

3.1.3 反面视图: 这一图层包含背胶、保护膜、泡棉及导光膜的外形尺寸,以及FPC背面的IC及元件区尺寸。 需要标注尺寸及公差如下: 3.1.4 FPC出线图:一般情况FPC的表示可以在正面视图中完成,主要反应FPC与主板的连接方式。如果FPC连接方式为ZIF ,则必须标注以下尺寸。 如果TP与主板的连接方式为B2B,则必须标注连接器的位置尺寸及公差。走线图,出线对照表: 走线图表示TP内部走线,如下图所示: 出线表为TP内部与外界的连接接口,电容的一般分I2C、SPI、USB,如下图所示: I2C接口

USB接口 3.2 文字说明 该部分对TP的常规非常规性能作重点表述,主要包括以下内容: 3.2.1 结构特性:包括lens材质,ITO膜的厂家及型号,IC型号3.2.2 光学特性:包括透光率,雾度,色度等 3.2.3 电气特性:工作电流,反应时间等 3.2.3 机械特性:输入方式,表面硬度等 3.2.4 环境特性:工作温度,储存温度,符合BHS-001标准等 以上特性如超出行业规格范围,需逐一标注,并让客户确认。 3.3 图档管理 图档管理这块需按以下原则进行相应维护: 3.3.1 按照命名规则填写图框,并签名。 3.3.2 如有更改需有更改记录及版本升级,并需客户确认。

单片机的调光控制器原理

单片机调光控制器设计 驱动部分:由于要驱动的是交流,所以可以用继电器或光耦+可控硅(晶闸管SCR)来驱动。继电器由于是机械动作,响应速度慢,不能满足其需要。可控硅在电路中能够实现交流电的无触点控制,以小电流控制大电流,并且不象继电器那样控制时有火花产生,而且动作快、寿命长、可靠性高。所以这里选用的是可控硅。 负载部分:本电路只能控制白炽灯(纯阻负载)的亮度。 1.2 软件部分 要控制的对象是50Hz的正弦交流电,通过光耦取出其过零点的信号(同步信号),将这个信号送至单片机的外中断,单片机每接收到这个同步信号后启动一个延时程序,延时的具体时间由按键来改变。当延时结束时,单片机产生触发信号,通过它让可控硅导通,电流经过可控硅流过白炽灯,使灯发光。延时越长,亮的时间就越短,灯的亮度越暗(并不会有闪烁的感觉,因为重复的频率为100Hz,且人的视觉有暂留效应)。由于延时的长短是由按键决定的,所以实际上就是按键控制了光的强弱。 理论上讲,延时时间应该可以是0~10ms内的任意值。在程序中,将一个周期均分成N 等份,每次按键只需要去改变其等份数,在这里,N越大越好,但由于受到单片机本身的限制和基于实际必要性的考虑,只需要分成大约100份左右即可,实际采用的值是95。 可控硅的触发脉冲宽度要根据具体的光耦结合示波器观察而定,在本设计中取20 μs。程序中使用T1来控制这个时间。 对两个调光按键的处理有两种方式:一种是每次按键,无论时间的长短,都只调整一个台阶(亮或暗);另一种是随按键时间的不同,调整方法不同:短按只调整一个台阶,长按可以连续调整。如前面所述,由于本设计中的台阶数为95(N=95),如果使用前一种方式,操作太麻烦,所以用后者较为合理。 2 各单元电路及说明 2.1 交流电压过零点信号提取 交流电压过零点信号提取电路如图2所示,图中的同步信号就是我们需要的交流电压过零点信号。各部分波形如图3所示。

PSoC电容式触摸感应技术

PSoC电容式触摸感应技术 PSoC是由Cypress半导体公司推出的具有数字和模拟混合处理能力的可编程片上系统芯片,某些系列的PSoC(如CY8C21X34系列),由于其内部配备的特殊资源,使得它可以很容易地实现电容式触摸感应功能,仅需少量的几个外置分立元件,可以将每一个通用的I/O都配置为电容感应输入。 电容式触摸感应原理如图1所示,电路板上两块相邻的覆铜之间存在一个固有的寄生电容Cp,当手指(或其他导体)靠近时,手指和两块覆铜之间又产生新的电容,这些电容相当于并联到原来的Cp之上,当我们把其中一块覆铜连接到PSoC的模拟I/O上,另一块连接到地上,就可以通过测量电容的变化来判断手指的存在。 我们把连接到PSoC上的覆铜称之为电容传感器(Capacitive Sensor),电容传感器上需覆盖绝缘材料(产品外壳)。通过在PSoC内部搭建电路并用内建8位处理器的程序来控制电路的运作,就可以把电容的变化转化成计数值的变化,进而转化成按键动作所需要的开关量。 P SoC内部有几种预先设计好的电容感应用户模块,用户模块可以看作是硬件电路配置与软件库函数(API)的集合,用户所需要做的就是在PSoC开发环境(PSoC designer)中将用户模块配置到数字/模拟阵列中,开发环境会自动生成硬件寄存器配置及库函数,剩下的工作就是一些用户模块参数的调整,以及应用代码的编写。整个开发过程非常直观、流畅,对于有嵌入式系统开发经验的工程师来说,很快就会得心应手。 电容式感应技术为工业设计提供新的思路 有了电容式感应技术,工业设计师首先能想到的就是把传统的机械按键换成电容式的感应开关。这增加了工业设计的灵活性,因为电容式开关可以隐藏在一块完整的表面下边,不需要像机械按键那样需要预留机械部件运动的空间。在有些便携式产品上,设计师希望能在产品上赋予自然的灵性,比如像贝壳一样的MP3播放器、像卵石一样的手机,用电容式开关取代机械按键可以在最大程度上还原设计师的构思,让产品外观有浑然天成的效果。 按键是电容式感应技术最常见的应用方式,利用PSoC内建8位处理器的运算,可以在产品上实现更为人性化的操作方式,比如滑动条(一维操作)和触摸板(二维操作)。 将多个电容传感器并排放在一起就可以实现滑动条(slider)的功能,如图2所示,PSoC按顺序感测每一个传感器的电容变化,除当前正在被感测的传感器以外,其他的传感器都在PSoC内部连接到地上,这样可以保证每个传感器的电容一致性。

电子调光控制器的设计报告 (2)(2020年九月整理).doc

电子技术课程设计报告 题目:电子调光控制器的设计报告 学生姓名:杨康宁 学生学号: 1314030235 系别:电子工程学院 专业:通信工程 届别: 13级 指导教师:廖晓纬 电子调光控制器的设计 学生:杨康宁 指导老师:廖晓纬 通信工程13级2班 1课程设计的任务与要求 1.1课程设计的任务 设计可控硅控制的照明灯光调光电路。 1.2课程设计的要求 在220V市电电压作用下,照明灯泡受规律控制。 1.3课程设计的研究基础 本设计为基于可控硅的调光电路。可控硅具有一个重要的特点——如果阳极 或控制极外加的是反向电压,晶闸管就不能导通。控制极的作用是通过外加正向 触发脉冲使晶闸管导通,却不能使它关断。使导通的晶闸管关断,可以断开阳极 电源或使阳极电流小于维持导通的最小值。如果晶闸管阳极和阴极之间外加的是

交流电压或脉动直流电压,那么,在电压过零时,晶闸管会自行关断。在晶闸管 的阳极和阴极正偏置一个周期内,触发后至正偏置为零的区间的宽度称为导通 角,通过改变导通角的大小控制晶闸管输出电压大小,以弱电控制强电,从而使 灯泡两端电压改变以达到控制照明亮度的效果。 2 调光控制系统方案制定 2.1 实验原理 若实现调光功能,即是改变灯泡输出功率的大小,可以从改变其电压大小入 手。通过所设计的电路来调节其端电压从而达到调光的目的。此功能的具体实现 可用一整流电路和一脉冲单元电路组合来实现。整流电路用于实现其交流电变成 直流电,而脉冲单元电路则用于产生触发脉冲去触发整流电路从而可调节其整流 电路的导通角进而调节其可控整流电路的直流平均输出电压,进而达到调节灯泡 亮度的目的。 2.2 原理框图 灯泡 电源整流电路晶闸管脉冲信号发生器 3 调光控制系统方案设计 3.1各单元模块功能介绍及电路设计 此电路包含两个单元电路,可控整流电路与脉冲单元电路即弛张振荡器。

相关文档
最新文档