光纤矢量水听器研究进展

光纤矢量水听器研究进展
光纤矢量水听器研究进展

光纤矢量水听器研究进展+

倪明*张振宇孟洲胡永明

(国防科技大学光电科学与工程学院长沙410073)

摘要:阐述了光纤矢量水听器拾取声波振速信号的基本原理。介绍了国内外矢量水听器研究现状与发展趋势,国防科大研制的同振球型光纤矢量水听器探头尺寸为Φ110mm,工作带宽20~2000Hz,加速度灵敏度大于35dB(ref 1rad/g),指向性呈现“8”字自然指向性,工作水深大于500m。海上初步实验结果表明,光纤矢量水听器可有效拾取水声信号,实现对目标的定向处理。最后展望了光纤矢量水听器可应用的领域。

关键词:光纤矢量水听器矢量水听器

目前水声探测所用的水听器一般都是声压水听器,它只能得到声场的声压标量。光纤矢量水听器(fiber optic vector hydrophone, FOVH)是一种新型水声探测器,它在一个点上的测量信号中就已包含了声场的标量信息和三维矢量信息,通过这些信息的互相关处理,能极大地抑制干扰,提高信噪比。传感单元具有指向性,抑制环境噪声4.8~6.0dB,这样在相同阵增益的情况下可大大减小阵列的孔径。单个传感器具有指向性,可有效解决声压水听器阵列的左右弦模糊问题。

光纤矢量水听器是一种建立在光纤、光电子技术基础上的水下三维声场信号传感器[1]。它通过高灵敏度的光学相干检测,将声波振速信号转换为光信号,并通过光纤传至信号处理系统提取声波信息。相对于传统压电矢量水听器,干涉型光纤矢量水听器灵敏度高、信号经光纤传输损耗小、免电磁干扰、无串扰、能在恶劣的环境中实现长期稳定工作,系统具有光纤网络的特点,可大规模组阵实现水下大范围声学监测。

1 基本原理

干涉型光纤矢量水听器基于光纤干涉仪原理构造,拾取声信号的原理基于声压对干涉仪两臂的调制,全光光纤矢量水听器系统则是湿端基于光纤矢量水听器探测单元,信号传输采用光缆传输,以湿端无任何电子器件为特性的先进水下声测量系统。

1.1 光纤干涉仪原理

图1是Michelson光纤干涉仪基本结构图。由激光器发出的激光经3dB光纤耦合器分为两路,一路构成光纤干涉仪的传感臂,接受声波的调制,另一路则构成参考臂,两臂的光信号经后端反射膜反射后返回光纤耦合器,发生干涉,干涉的光信号经光电探测器转换为电信号,由信号处理就可以拾取声波的信息。

+国家863计划资助(2006AA09Z121) * 通讯作者。Email: niming_1@https://www.360docs.net/doc/fc8375704.html,

图1 Michelson 光纤干涉仪基本结构

Fig.1 Structure of fiber Michelson interferometer

干涉后的光信号经光电转换后可以写成:

n n s V V V +++∝)cos(100φφφ+ (1)

其中,0V 是输出的电压信号,V 是干涉仪的可视度,n V 是电路附加噪声,s φ为由水中声压引起的相差信号,即为要探测的水声信号,0φ为干涉仪的初始相位,是个常量,n φ为位相差的低频漂移,是一个不确定量,随温度和外界环境影响而变化。

1.2 单元构成原理

光纤矢量水听器有几种传感类型,我们采用的结构是加速度传感类型。水中声场矢量包括梯度、振速和加速度等,对于加速度型光纤矢量水听器,声压灵敏度在工作频段内应随频率变大而线性增加,同时指向性应具有余弦特性。我们研究的光纤矢量水听器主要是干涉型同振矢量水听器[2],其光学结构是一个干涉型光纤加速度传感器,结构图2所示:

图2 一维光纤加速度传感器结构图 图3 三维光纤矢量水听器结构图

Fig.2 Structure of one dimension fiber accelerometer Fig.3 Structure of three dimension FOVH 其基本工作原理是:两个弹性体A 、B 支撑一质量块M ,光纤干涉仪的两臂绕在弹性体上,在声场加速度作用下,质量块对弹性柱体施加以惯性作用力,弹性柱体的轴向形变引起径向形变,引起缠绕在弹性柱体上的光纤长度发生变化,进而在光纤干涉仪上产生相位差变化。在实际应用中,一般将三个光纤加速度计做成一整体,如图3所示,以减小体积和交叉串扰。

对于加速度型光纤矢量水听器,其灵敏度由加速度相位灵敏度度量。加速度相位灵敏度定义为由矢量水听器作加速运动引起干涉仪两臂的相位差φ?与水听器运动的加速度变化量a 的比值。

a M a φ?= (rad/g) (2)

进一步,利用声场关系可得光纤矢量水听器的声压灵敏度为:

a c p M M 0

0ρω= (rad/Pa) (3)

其中,ω是信号角频率,0ρ是海水的密度,0c 是海水声速。

2 国内外研究现状与趋势

声矢量传感技术是在最近十年间备受水声界关注的研究焦点之一[3]。从上世纪五十年代中期美国学者发表的有关使用惯性传感器直接测量水中质点振速的经典论文以来,到在上世纪七八十年代前苏联的学者利用其研制成功的声矢量传感器(复合水听器)开展海洋环境噪声研究,直至上世纪九十年代声矢量传感器技术研究热潮才逐渐兴起。1989年俄国学者出版了

世界上第一部有关声矢量传感技术的专著“声学矢量-相位方法”,较全面的论述了声矢量传感器技术的原理和应用。2003年出版的“海洋矢量声学”发展了海洋环境噪声的声压标量场特性的研究,提出了基于声矢量传感器的海上实验、数据处理以及理论分析等一整套方法。

目前,美国和俄罗斯在矢量水听器研制应用方面处于领先地位。上世纪70年代,美国就矢量水听器成功应用于远程浮标声纳AN/SSQ-53系统和DIFAR定向浮标中,在战略拖曳阵中SURTASS中也采用了矢量水听器。目前美国的研究主要集中在新型矢量传感器、矢量舷侧阵声纳、矢量舰壳声纳以及矢量水雷声引信方面,并且还在探索矢量水听器在拖曳线列声纳中的应用,甚至开发了矢量信号处理专用的DSP模块。前苏联在上世纪80年代也开始研制拖曳矢量线列阵声纳,先后有БГА11-9-17/5、БГА10-4、БГА5-3/2、БГА24-9-6/4等型号的矢量线列阵。当前俄罗斯的矢量水听器还在海岸预警声纳、海洋环境噪声测量和水雷引信等方面得到应用。

在我国,压电矢量水听器的研究也有多年历史,开展这方面工作较多的主要有哈尔滨工程大学、西北工业大学、中船重工715所和中科院声学所。国内的相关工作可追溯到上世纪九十年代初有关声压梯度水听器和双水听器声强测量等研究工作,但真正较深入开始研究的时间在1998年以后。1998年松花湖实验和2000年大连海试是国内最早的两次关于声矢量传感器技术的外场实验,随后的2002年密云水库实验和2003年东海、南海声矢量传感器线阵实验。多年前,我国还通过对俄引进,全面展开压电矢量水听器的工程应用研究。

相对于传统压电矢量水听器,干涉型光纤矢量水听器灵敏度高,信号经光纤传输损耗小(0.2dB/km),无串扰,能在恶劣的水下、地下环境中实现长期、稳定工作。还有很重要的一点是,结合现有的光纤通讯技术,光纤矢量水听器可以方便地组建拖曳阵、舷侧阵、岸基阵等各种水下全光阵列和大范围光纤传感网。光纤矢量水听器的这些优良特性为解决浅海低频的水声研究和应用的许多问题提供了理想的技术途径。

2003年7月国防科大研制的光纤矢量水听器,在中船重工715所水声一级计量站进行了灵敏度及指向性测试,测试声压灵敏度达到-140dB,指向性为“8”字指向性,串扰小于-20dB。2003年8月国防科大研制的四分量光纤矢量水听器在青岛外海域进行了海上试验,并成功实现了矢量三维定向和匹配场三维定位。

3 国防科大研究进展

3.1 一维光纤矢量水听器制作与测试

基于弹性力学及声光相互作用原理对光纤矢量水听器建立理论模型,采用有限元分析方法,运用ANSYS软件设计仿真平台,进行大量理论仿真计算,在此基础上完成光学及机械结构设计,选择增敏及封装材料,我们制作了一个一维光纤矢量水听器探头,如图4所示。依据加速度灵敏度测试标准,对其加速度灵敏度及频响特性测试是通过在振动台上与标准加速度计的对比测试来实现的,如图5所示。

e d i m e n s i o n F O

i x e d b e

chuck

图4 一维光纤矢量水听器实物图 图5 加速度灵敏度测试系统示意图 Fig.4 Photo of one dimension FOVH Fig.5 Sketch of acceleration sensitivity measurement system

一维光纤矢量水听器加速度灵敏度及指向性测试结果如图6、图7所示,在工作带宽20~2000Hz 范围内,加速度灵敏度大于35dB(0dB=1rad/g),指向性基本呈现其“8”字自然指向性。

图6 加速度灵敏度响应曲线 图7 指向性测试结果 Fig.6 Response curve of acceleration sensitivity Fig.7 Result of directional response

3.2 三维光纤矢量水听器设计与制作

三维光纤矢量水听器光学系统设计如图8所示,光学系统采用光纤Michelson 非平衡干涉仪。从激光器发出的调频光经耦合器C1~C3分束进入三维矢量传感器,传感器中三个方向自成独立的光纤Michelson 非平衡干涉仪,构成三维芯轴型推挽式结构。干涉仪的干涉信号经探测器D1~D3进行检测。

图8 光纤矢量水听器光学系统结构 Fig.8 Sketch of optical system of FOVH

我们在一维光纤矢量水听器制作及测试的基础上,完成了三维光纤矢量水听器的制作,如图9左图所示,封装前的三维光纤矢量水听器并不能用于水声探测,必须根据水声场检测的特殊要求进行封装。我们参考压电矢量水听器的外形设计,将整个结构的外壳设计为球形以减小流噪声,球内设置与球尺寸匹配的铝质框架用于固定三维的各个轴向,如图9右图所示。我们制作的光纤矢量水听器属于同振球型,有效拾取声波振速信号矢量球密度需等于海水的密度,我们通过球体配重来实现的。为实现振速、声压联合处理,球体两端装配了两个标量水听器,一般称为四分量水声传感器。

图9 三维矢量光纤传感头封装实物图。左图为封装前,右图为封装后。

Fig.9 Photo of one FOVH. Before packaged(left), After packaged(right).

3.3 主要技术指标

对三维光纤矢量水听器样机的加速度灵敏度、频响特性、指向性和系统噪声进行了测试,其主要技术指标如下:

1) 工作频带:20Hz~2kHz;2) 加速度灵敏度:≥35dB(0dB=1rad/g);

3) 水听器尺寸:≤Φ110mm;4) 灵敏度一致性:±2dB;

5) 动态范围:≥100dB;6) 正交串扰:≤-20dB;

7) 方向性起伏:≤±1.5dB;8) 方向精度:优于50(信噪比>3dB);

9) 工作温度:-5?C~40?C;10) 工作水深:500m。

3.4海上试验

实际应用中光纤矢量水听器实现定向功能尚需要知道传感器的姿态等数据,如图10所示,我们研制了一套多参量光纤矢量水听器系统,其不仅包括四分量光纤矢量水听器,还装配一套电子罗盘测量水平与俯仰姿态,而加装的温度与压力传感器则用于测量实验情况下的水文参数。

图10 三维矢量光纤传感及海洋环境传感系统

Fig.10 Photo of FOVH and other parameters of marine environment 我们于2008年4月在南海进行了光纤矢量水听器的相关海上试验,图12左是采集的脉冲信号波形及其功率谱(x轴因传输光纤损坏无信号),经姿态修正后测向处理结果如图12右所示,较好实现对目标的测向。

图11光纤矢量水听器南海海上试验现场

Fig.11 Seatest of FOVH on South China Sea

图12 光纤矢量水听器海试结果。左为脉冲信号波形及频谱,右为测向结果。

Fig.12 Test results of FOVH on sea. Waveform and its power spectrum(left) and direction finding(right).

4 应用前景

光纤矢量水听器适用于单点测量获取海洋水下声学三维矢量信息和一维声压信息,为解决浅海低频的水声研究和应用的许多问题提供了理想的技术途径,从而在以下一些重要的领域展示了广阔的应用前景:(1) 岸基固定海域水下声场探测;(2) 潜艇或水面舰艇拖曳阵列;

(3) 机动阵列、声纳浮标、潜标等;(4) UUV、鱼雷、自主攻击水雷等小平台为载体的水声探测;(5) 石油、天然气勘探中的地震波检测。

参考文献:

[1] 熊水东. 光纤矢量水听器研究[D]. 长沙:国防科大博士学位论文,2003年.

[2] 贾志富. 三维同振球型矢量水听器的特性及其结构设计[J]. 应用声学,2001,V ol.20(4):15-20.

[3] 孙贵青, 李启虎. 声矢量传感器研究进展[J]. 声学学报,2004,V ol.29(6): 481~490.

Development of fiber optic vector Hydrophone

Ni Ming, Zhang Zhenyu, Meng Zhou, Hu Yongming

(College of Photo-electric Science and Engineering, National University of Defense Technology,

Changsha, 410073, Hunan, China)

Abstract: Introduced the principle of fiber optic vector hydrophone and how it detected of sound vibration velocity and development of vector hydrophone in those years. We fabricated some units of fiber optic vector hydrophone, whose diameter was 110mm. Test showed its acceleration

光纤水听器综述

光纤水听器及阵列综述 马宏兰周美丽 (天津师范大学电子与通信工程学院) 摘要:为适应水声学应用特别是水下反潜战的需要 ,在光纤技术不断发展的基 础上 ,光纤水听器应运而生。光纤水听器是一种基于光纤、光电子技术上的新型水下声传感器 ,因其在军事、民用各领域应用广泛 ,目前光纤水听器在国内外发展迅速 ,已经到达实用状态。全光光纤水听器系统的湿端采用全光实现,信号传感与传输皆基于光纤技术。具有抗电磁干扰、重量轻和造价低等优点。文章简述了光纤水听器的发展历史、现状 ,论述了光纤水听器阵列的原理及其应用前景。 关键词:光纤水听器多路复用技术阵列 0引言:在光纤水听器的实际应用中,由于水下声场的复杂性,单元水听器很难获得目标的详细信息,因而需要将数百乃至上千个探测基元组成大的阵列,以获得更多水声场信息,通过水听器阵列完成声场信号的波束形成,实现对水下目标的定位与指向。在2003年8月下水的美国最新型攻击核潜艇上,装备的舷侧阵就由2 700个光纤水听器基元组成【1】。对于大规模的光纤水听器阵列,多达数十上百基元的光纤水听器光信号都是由同一根光纤传输的,在实际系统中,这种性能就是由光纤水听器的多路复用技术实现的。可见多路复用是光纤水听器的核心技术。 1 光纤水听器的开发 自1976年美国Bucar等人发表第一篇有关光纤水听器的论文【2】以来, 各工业发达国家的海军研究部门以及有关的研究和工业部门都在积极从事光纤水听器的研究和开发,尤其以美国最为突出。美国海军研究实验室、美国海军研究生院和Litton制导和控制公司等先后研究开发了Maeh一Zehnder、Michelson 干涉仪的光纤水听器, 主要结构有心轴型、互补型(推挽式) 、平面型和椭球弯 张式等光纤水听器。这些结构水听器达到的归一化灵敏度(△。/ 。△P)为适应水声学应用特别是水下反潜战的需要 ,在光纤技术不断发展的基础上 ,光纤水听器应运而生。光纤水听器是一种基于光纤、光电子技术上的新型水下声传感器 ,因其在军事、民用各领域应用广泛 ,目前光纤水听器在国内外发展迅速 ,已经到达实用状态。各国对光纤水听器的研究投入了大量人力和物力,技术也日益娴熟。 2、多路复用的阵列体系结构 阵列体系分为以下六大部分,其中时分/ 波分混合复用技术是其关键有效手段。 1 ) 频分复用(FDM) 【3】相位产生载波(PGC)问询的体系结构—美国海军研究实验室已用此方案对总数48 个单元水听器成网组成的阵列成功地进行了海上试验, 证实了这种体系结构的低阐值检测能力和低的串扰。 2) 时分复用(TDM) 相位产生载波问询的体系结构—美国海军研究实验室已作了10 单元的光纤水听器阵列演示, 证实了其低的光背景噪声和低的串扰。

光纤激光水听器的基本原理,国内外光纤激光水听器的研究进展以及发展趋势

光纤激光水听器的基本原理,国内外光纤激光水听器的研究进展以及发展趋 势 一、引言 声波是人类已知的唯一能在海水中远距离传输的能量形式。水听器(Hydrophone)是利用在海洋中传播的声波作为信息载体对水下目标进行探测以及实现水下导航、测量和通信的一类传感器。由于水下军事防务上的要求和人类开发利用海洋资源的迫切需要,水听器技术得到空前的发展。传统的水听器包括电动式、电容式、压电式、驻极体式,等等。 20世纪70年代以来,伴随着光导纤维及光纤通信技术的发展,光纤水听器逐渐成为新一代的水声探测传感器。与传统水听器相比,其最大优点是对电磁干扰的天然免疫能力。此外,光纤水听器还具有噪声水平低、动态范围大、水下无电、稳定性和可靠性高、易于组成大规模阵列等优点。现有的光纤水听器包括光强度型、干涉型、偏振型、光栅型等。其中,光纤激光水听器(FLH)就是一种光栅型水听器,但由于它的传感元件光纤激光器(又称有源光纤光栅)相比于无源光纤光栅具有高功率和极窄线宽的特点,配合上基于光纤干涉技术的解调方法,它的微弱信号探测能力相比于普通的无源光纤光栅水听器可以提高几个数量级。 压电式水听器和干涉式光纤水听器是目前应用最广泛的水声探测器件。与干涉式光纤水听器相比,压电式水听器技术更加成熟,结构和制作工艺更简单,大规模生产时一致性可以得到相对较好的控制。但是,防漏电、耐高温、长距离传输、动态范围大则是光纤水听器最大的优势。尤其在一些特殊领域(例如高温高压的深井油气勘探领域)有着比压电水听器更为广阔的应用前景。与干涉式光纤水听器相比,光纤激光水听器的最大优势在于易复用,即“串联即成阵”。同时,受弯曲半径影响,干涉式光纤水听器的体积较大,水听器直径通常大于1cm。而由于光纤激光型水听器结构简单,传感单元仅为一根光纤的尺寸,光纤激光水听器外径可细至4~6mm。当然,受光纤激光器本身弦振动及系统1/f噪声影响,加速度响应较大、低频段噪声相对较高是目前光纤激光型水听器存在的主要问题之一,有

英国PA医用光纤水听器FOH

光纤水听器是一种建立在光纤、光电子技术基础上的水下声信号传感器。它通过高灵敏度的光学相干检测,将水声振动转换成光信号,通过光纤传至信号处理系统提取声信号信息。光纤水听器具有灵敏度高,频响特性好等特点。由于采用光纤作信息载体,适宜远距离大范围监测。 深圳市一测医疗测试技术有限公司是一家专注于医疗器械测试 产品和技术的研发、销售与服务为一体的“国家高新技术企业”,我们拥有自主研发的国家发明专利技术并且代理了众多国外先进专业 测试产品,如膜式水听器、光纤水听器、水听器校准、吸声材料、声场测试水处理系统等。

光纤水听器FOH:灵敏度高,抗电磁干扰,价格便宜,可测量同一个点的温度和压力,并描绘出压力和温度变化曲线。光纤水听器非常适合高强度声输出的测量。 技术参数: 构成:10um 的材料附着在玻璃上,构成光纤,直径为 10um; 校准:250kHz to 50MHz 可校准; 灵敏度:平行传感器: 150mV/MPa at 3MHz;锥形传感器: 100mV/MPa at 3MHz; 灵敏度变化范围:+/-3dB; 能量承受范围:10kPa to 15MPa。

以上就是深圳一测医疗给大家介绍英国PA光纤水听器FOH相关信息,如果您还想了解更多的相关事项可以拨打我们的热线电话,可以点击我们的官网在线实时咨询我们,或者关注我们的官方微信公众号,我们会有专业的工作人员为您解答。 我们通过与国际优秀的医疗器械测试仪器制造商和专业实验室的广泛深入合作以及国内行业专家的紧密交流与协作,并严格按照ISO9001:2015质量管理体系要求为医疗器械产业在研发、生产,监督、检验,在用售后、培训,教学与研究等各领域客户提供完善的医疗器械测试整体解决方案和专业的技术服务。 公司秉承“热情、专注、高效、负责”的经营理念,以“专业专注,精益求精”为服务宗旨,力求解决医疗器械测试过程中的各种繁杂问题,而不仅仅是一次测试,从而保障患者得到安全有效的诊断和治疗。

压电式MEMS仿生结构矢量水听器设计 开题报告

毕业设计开题报告 学生姓名:学号: 学院: 专业: 设计(论文)题目:压电式MEMS仿生结构矢量水听器 封装及性能测试研究指导教师: 2013年12月10日

开题报告填写要求 1.开题报告作为毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一。此报告应在指导教师指导下,由学生在毕业设计(论文)工作前期内完成,经指导教师签署意见及所在专业审查后生效; 2.开题报告内容必须用按教务处统一设计的电子文档标准格式(可从教务处网页上下载)打印,禁止打印在其它纸上后剪贴,完成后应及时交给指导教师签署意见; 3.学生写文献综述的参考文献应不少于15篇(不包括辞典、手册)。文中应用参考文献处应标出文献序号,文后“参考文献”的书写,应按照国标GB 7714—87《文后参考文献著录规则》的要求书写,不能有随意性; 4.学生的“学号”要写全号(如020*******,为10位数),不能只写最后2位或1位数字; 5. 有关年月日等日期的填写,应当按照国标GB/T 7408—94《数据元和交换格式、信息交换、日期和时间表示法》规定的要求,一律用阿拉伯数字书写。如“2004年3月15日”或“2004-03-15”; 6. 指导教师意见和所在专业意见用黑墨水笔工整书写,不得随便涂改或潦草书写。

毕业设计开题报告

矢量水听器由于体积小、重量轻、布放方便等特点,在实际应用中已经受到重视。近年来,在MEMS仿生器件研究方面,国外已有多家研究机构通过模仿鱼类侧线器官、蟋蟀的听觉纤毛等,设计并制造出了多种压电式、压阻式以及电容式的MEMS纤毛仿生微传感器,如德国的Nest-erov和Brand于2005年研制出了压阻式MEMS仿生微探测器,美国伊利诺斯州立大学微米纳米技术研究中心的Chen等于2006年通过模仿鱼类的侧线器官工作原理,研制出了纤毛式MEMS仿生微流量传感器。荷兰的Krijnen等在2006年通过模仿蟋蟀的听觉纤毛,制作出了纤毛式仿生微声传感器[5]。 目前,在美国和俄罗斯,性能稳定的矢量水听器已经进入了工程应用阶段。美国在SURTASS系统中已经应用矢量水听器,解决了左右舷模糊问题;前苏联利用其研制的矢量水听器托线阵,系统地研究了矢量水听器托线阵的姿态、拖拽速度和流噪声对矢量水听器检测性能的影响。国外的纤毛仿生传感器也主要为微触觉传感器或微流量传感器,关于纤毛式的仿生MEMS水声传感器还未见报道[6]。 1.2.2 国内本课题的发展现状及前景 国内从“八.五”期间开始矢量水听器的研究,并取得了丰硕的成果,先后研发了以双迭片为敏感元件的不动外壳型矢量水听器和以加速度计为敏感元件的同振球型矢量水听器。十年来,我国在矢量水听器的研制方面取得了长足的进步,先后研制出多种结构具有自主产权的矢量水听器,包括动圈式矢量水听器、悬臂梁式多维测振传感器、压电圆盘弯曲式同振型矢量水听器以及中、高频二维柱形、三维球型矢量水听器等,从而实现了水声测量中不同场合的不同需求[7]。 目前,国内关于纤毛式仿生MEMS传感器的研究还比较少,主要研究成果是中北大学微米纳米研究中心设计并制造的压阻式MEMS仿生结构矢量水听器,如图1所示[8]。该水听器是通过模仿鱼类侧线器官的神经丘感觉器,完成了以压敏电阻为敏感单元的水声传感器仿生组装设计;利用新型精巧的仿生结构和压阻敏感机理设计制作新型的矢量水声传感器;利用MEMS批量制造技术,实现矢量水声传感器的小型化和一致性;结合MEMS工艺和组装工艺技术,解决复杂结构的仿生制造问题。该矢量水声传感器的低频特性、灵敏度、小尺寸以及水声传感器的一致性等方面带来好处,为水声传感器的设计提供一种新方法[9]。

用MSp430进行微功耗数据采集

用MSp430进行微功耗数据采集 0 引言 ?以电池作为电源的水下数据采集系统,若要长时间工作必然要为其配备大 量的电池作为电源,如果能降低系统的功耗,那么将减少电池的数量,不仅能降低系统的成本而且能大大缩小系统的体积和重量,也更有利于水下数据采集系统的布放。本文介绍了一种基于微功耗单片机MSP430F1611和CF卡的水下微功耗数据采集系统的设计与实现,总功率仅150mW。相比传统的以DSP为 处理器、IDE硬盘为存储介质的数据采集系统,功耗大大降低。 ?1 系统总体构成 ?本系统是应用在矢量水听器噪声测量试验中,要求实时采集并存储矢量水 听器4通道信号,每通道采样率为10kHz,在水下不间断工作7小时。 ?鉴于本系统采样率不高,7个小时总的数据量不超过2个G,所以没必要采用功耗和体积都比较大的IDE硬盘,采用容量为2G的CF卡完全可以满足系 统要求。CF卡的全称为Compact Flash,兼容3.3V和5V工作电压,工作时没有运动部件,其体积小、耗电量小、容量大,具有很高的性价比。目前,CF 卡的容量可高达12GB,CF卡由控制芯片和闪存模块组成,闪存用于存储信息,控制芯片用于实现与主机的连接及数据的传输。CF卡可工作在TRUEIDE模式下,并且与普通IDE硬盘接口完全兼容,所以很容易进行开发使用。 ?系统对采集的数据只存储而不做信号处理,在处理器的选取上也就不必一 味追求高速度,本系统采用TI公司的超低功耗单片机MSP430F1611作为系统的处理器,负责AD的采集,并把采集的数据写入CF卡。这是一款高性价比 的单片机,具有以下特点:丰富的片内外设;超低功耗,在电压3.3V主频 1MHz时工作电流仅600μA;强大的处理能力,在8MHz晶体驱动下,指

光纤矢量水听器研究进展

光纤矢量水听器研究进展+ 倪明*张振宇孟洲胡永明 (国防科技大学光电科学与工程学院长沙410073) 摘要:阐述了光纤矢量水听器拾取声波振速信号的基本原理。介绍了国内外矢量水听器研究现状与发展趋势,国防科大研制的同振球型光纤矢量水听器探头尺寸为Φ110mm,工作带宽20~2000Hz,加速度灵敏度大于35dB(ref 1rad/g),指向性呈现“8”字自然指向性,工作水深大于500m。海上初步实验结果表明,光纤矢量水听器可有效拾取水声信号,实现对目标的定向处理。最后展望了光纤矢量水听器可应用的领域。 关键词:光纤矢量水听器矢量水听器 目前水声探测所用的水听器一般都是声压水听器,它只能得到声场的声压标量。光纤矢量水听器(fiber optic vector hydrophone, FOVH)是一种新型水声探测器,它在一个点上的测量信号中就已包含了声场的标量信息和三维矢量信息,通过这些信息的互相关处理,能极大地抑制干扰,提高信噪比。传感单元具有指向性,抑制环境噪声4.8~6.0dB,这样在相同阵增益的情况下可大大减小阵列的孔径。单个传感器具有指向性,可有效解决声压水听器阵列的左右弦模糊问题。 光纤矢量水听器是一种建立在光纤、光电子技术基础上的水下三维声场信号传感器[1]。它通过高灵敏度的光学相干检测,将声波振速信号转换为光信号,并通过光纤传至信号处理系统提取声波信息。相对于传统压电矢量水听器,干涉型光纤矢量水听器灵敏度高、信号经光纤传输损耗小、免电磁干扰、无串扰、能在恶劣的环境中实现长期稳定工作,系统具有光纤网络的特点,可大规模组阵实现水下大范围声学监测。 1 基本原理 干涉型光纤矢量水听器基于光纤干涉仪原理构造,拾取声信号的原理基于声压对干涉仪两臂的调制,全光光纤矢量水听器系统则是湿端基于光纤矢量水听器探测单元,信号传输采用光缆传输,以湿端无任何电子器件为特性的先进水下声测量系统。 1.1 光纤干涉仪原理 图1是Michelson光纤干涉仪基本结构图。由激光器发出的激光经3dB光纤耦合器分为两路,一路构成光纤干涉仪的传感臂,接受声波的调制,另一路则构成参考臂,两臂的光信号经后端反射膜反射后返回光纤耦合器,发生干涉,干涉的光信号经光电探测器转换为电信号,由信号处理就可以拾取声波的信息。 +国家863计划资助(2006AA09Z121) * 通讯作者。Email: niming_1@https://www.360docs.net/doc/fc8375704.html,

光纤矢量水听器

光纤矢量水听器的设计与研究 XX (安徽大学xxxxxxxxxxxxXX学院,安徽合肥) 摘要:光纤矢量水听器是建立在光纤技术,光电子技术基础上的水下声信号传感器。本文在介绍了强度型、干涉型和光纤光栅型矢量水听器原理的基础上,比较了它们的灵敏度、测量范围和抗干扰能力等参数。干涉型光纤矢量水听器是通过水中声波对光纤的压力来改变纤芯折射率或长度,从而引起光纤中传播光束光程的变化,通过检测其相位差得到水声信息。光纤矢量水听器被广泛的用于拖曳阵、固定阵、船壳阵和声呐浮标中,是现代海洋技术不可或缺的一部分。关键词:光纤矢量水听器,强度型,干涉型,光纤光栅型,潜艇拖曳阵 Design of Optical Fiber Vector Hydrophone Ge Xin (Anhui University ,physics and Material science College,AnHui HeFei)Abstract:Optical fiber vector hydrophone is the underwater acoustic signal sensor,which is based on optical fiber technology and photoelectron technology.This paper compared their sensitivity, measuring range ,Anti-jamming capability and other Parameter, based on describing Strength Type,Interference type and optical fiber grating type.Interferometric fiber optic vector hydrophone obtain acoustic information by detecting the water pressure.Acoustic pressure of the water changes the length of the fiber core refractive index,which force the optical path difference changing.Optical fiber vector hydrophone is widely used for Towed Array,Fixed array ,Hull array and Sonar buoy,which is an integral part of marine technology Key words:Optical fiber vector hydrophone,Strength Type,Interference Type, Optical fiber Grating Type,Towed Array 光纤矢量水听器是建立在光纤技术,光电子技术基础上的水下声信号传感器,其信号的探测与传输均以光作为传输媒介,更具有体积小,重量轻,抗电磁干扰,灵敏度高等特性,被广泛的用于水下打捞作业,军事侦察,国防等重要方面。光纤水听器经过将近20多年的发展与研究,其技术已日臻成熟,一些领域内已广泛应用,前景广阔]1[。 光纤矢量水听器最基本的功能就是探测由被测物体发出的声场。被探测物体在水中移动会产生声波,声波在三维空间上发散开来形成声场。水声技术中要想准确的描述声场并探知声场信息,不仅需要声场的标量信息如声压,还需要声场

光纤水听器原理与应用综述

光纤水听器原理与发展现状 袁虎邓华秋 (华南理工大学物理系广州510640) 摘要光纤水听器由于其特有的抗电磁干扰、体积小等特点,在军事、民用方面有着广泛应用。本文简介了光纤水听器的基本原理,并分别对强度调制型、干涉型和光栅型光纤水听器进行了简单的介绍。在现在的光纤水听器的应用中,点式的传感已不能满足现在的大规模集成化要求,因此分布式光纤水听器也是近期的研究热点。文中介绍了两种分布式光纤水听器的技术方案,分别是OTDR和FMCW技术。与此同时由于光纤激光器的发展,其良好的单色性和稳定性可以用于优良的光源,把它用到干涉型光纤水听器中可以极大程度的提高光纤水听器的性能。 关键词:光纤水听器;FMCW;光纤激光器 1.光纤水听器简介 声波作为一种机械波,可以在海水中进行远程能量传递,而其他类型的能量场在水中衰减很快,因此,声波是海洋深层信息收集、传递和处理的最重要形式[1]。水声传感器简称水听器,是在水中侦听声场信号的仪器。它作为反潜声纳的核心部件,在军事领域中有着重要的应用;在工业生产和民用领域,也有着广泛的用途,如用于海洋石油和天然气的勘探、地震预测、水声物理研究、海洋气候以及渔业等众多方面。 早期的水听器主要有压电陶瓷制成的压电水听器。但随着应用的深入,基于压电陶瓷传感元件的水听器出现了许多不足之处。如对电磁场的敏感性,电缆负载、连接电缆的共振效应,同时利用压电陶瓷进行点传感的技术难度和成本也十分困难。正是由于传统压电式水听器存在这些问题,随着光纤和激光技术的发展,人们研制出了一种基于光纤光电子技术的新型水听器-光纤水听器。它的研究始于冷战时期,由于反潜战的需要,美国海军开始了光纤水听器的研究。[2,3]1977年布卡诺等人发表首篇关于光纤技术的水声传感系统的论文[4]。 光纤水听器由于传感头部分不用使用电,而是通过光来传输信号,所以具有抗电磁干扰、电绝缘、动态范围宽、稳定可靠性高、灵敏度不受水流静压力和频率的影响、可以进行远距离测量、探头体积小、方便构成大规模阵列等众多优点。所以,光纤水听器的研究越来越受到各国的重视[4]。 2.光纤水听器原理

光纤水听器在海洋中的应用

光纤水听器在海洋中的应用 光纤水听器是一种建立在光纤、光电子技术基础上的水下声信号传感器。它通过高灵敏度的光学相干检测,将水声振动转换成光信号,通过光纤传至信号处理系统提取声信号信息。它具有灵敏度高,频响特性好等特点。由于采用光纤作信息载体,适宜远距离大范围监测。 在美国最为先进的新型核潜艇——“弗吉尼亚”级潜艇中,为了提高反潜、反舰和远程侦察能力,装备了大孔径阵列光纤声学传感器系统,即光纤水听器。它利用光纤和激光技术把目标在水中传播的声音信号转化为光学信息,从而使“弗吉尼亚”级潜艇能够精准识别和跟踪目标。光纤水听器就像人类洞察汪洋的一双“慧眼”,难怪美国海军研究实验室光纤水听器的研究人员曾经自豪地说:“属于光纤水听器技术的时代已经到来!” 一、光纤水听器的优势 看似安宁的海洋,其实从来都不平静。声波是目前人类知道的唯一能够在水中远距离传播的物质,而光和电磁波在水中传播时很快就会被吸收。声波不仅可以在水里传得很远,而且当声波遇到海洋中的物体时,会被反射回来,不同频率的声波,在水中被吸收和反射的程度也不相同。人们根据声

波的这一特性发明了声呐,用来进行水中探测、定位和通信。 但近年来随着武器装备的迅速发展和消噪技术的不断进步,各类静音效果良好的核动力潜艇以及aip潜艇先后列装各国海军,利用传统声呐装置进行侦听的难度大大增加。反潜作战成为当今世界各国海军公认的最大难题之一。 光纤水听器主要用于海洋声学环境中的声传播、噪声、混响、海底声学特性、目标声学特性等的探测,是现代海军反潜作战、水下兵器试验、海洋石油勘探和海洋地质调查的先进探测手段。2009年2月初,英国“前卫”号弹道导弹核潜艇与法国“凯旋”号核潜艇在大西洋深海上演了“深情一吻”。当时两艘潜艇均在水下航行,而且艇上带着核导弹,碰撞发生时,潜艇上共有约250名乘员,可竟然无人利用声呐装置发现对方。 其实,自冷战时代起,美国和西方国家就经常派潜艇近距离监视苏联的大型海上军事演习,双方潜艇发生相撞事件时有发生。据不完全统计,在北方舰队和太平洋舰队过去30年来进行军事演习的海域,就曾发生过11起俄罗斯(前苏联)潜艇与外国潜艇相撞事故。俄核潜艇“库尔斯克”号的沉没引发了世人的种种猜测,其中有一种猜测就是认为发生了潜艇相撞事件。 二、光纤水听器技术发展 光纤水听器是一种建立在光纤传感和光电子技术基础

相关文档
最新文档