反胶束法可控制备金属纳米颗粒阵列

反胶束法可控制备金属纳米颗粒阵列
反胶束法可控制备金属纳米颗粒阵列

纳米粉体制备方法

纳米粉体制备方法 纳米技术是当今世界各国争先发展的热点技术,纳米技术和材料的生产及其应用在中国已起步,可以产业化的只有为数不多的几个品种,纳米二氧化钛(TiO2)、纳米氧化锌(ZnO)、纳米碳酸钙(CaCO3)便是其中较具代表性的几个品种。纳米粉体的制备方法很多,可分为物理方法和化学方法。以下是对各种方法的分别阐述并举例。 1. 物理方法 (1)真空冷凝法 用真空蒸发、加热、高频感应等方法使原料气化或形成等离子体,然后骤冷。其特点纯度高、结晶组织好、粒度可控,但技术设备要求高。1。金属烟粒子结晶法是早期研究的一种实验室方法。将金属原料置于真空室电极处,真空室抽空(真空度1P a)导入102到103 P a压力的氩气或不活泼性气体,然后像通常的真空蒸发那样,用钨丝蓝蒸发金属。在气体中,通过蒸发、凝聚产生的金属蒸气形成金属烟粒子,像煤烟粒子一样沉积于真空室内壁上。在钨丝篮上方或下方位置可以预先放置格网收集金属烟粒子样品,以备各类测试所用。2。流动油面上的真空蒸发沉积法(VEROS),VEROS法是将物质在真空中连续的蒸发到流动着的油面上,然后把含有纳米粒子的油回收到贮存器内,再经过真空蒸馏、浓缩,从而实现在短时间制备大量纳米粉体。 (2)物理粉碎法 通过机械粉碎、电火花爆炸等方法得到纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。例,有一种制备纳米粉体材料新方法,最适用于碳化物、氮化物及部分金属粉体的制备。其方法是先对反应器抽真空,然后充入保护气体或反应气体,在反应器中设置石墨电极,在石墨电极与反应器坩埚中的金属之间通电,使之产生高温碳电弧,由高温电弧产生金属蒸汽。采用保护气体可以生产出由石墨原子包覆的纳米镍粉、铜粉、铝粉等不易团聚的金属纳米粉末;采用反应气体可以生产碳化物、氮化物纳米粉末。与现有技术相比,生产的纳米粉末不易团聚,具有成本低,电弧功率大,可以实现规模化生产,具有广泛的实用性。用冲击波处理共沉淀法制备的氧化铁与氧化锌混合物合成了铁酸锌,用XRD、TEM 和电子衍射法对这种产品进行了鉴定.与传统的高温焙烧法相比,这种产品的特点是其颗粒尺寸为纳米级.主要原因可能在于冲击波的作用时间极短,因此生成的铁酸锌不会生长成为完整的晶粒.由此可以认为,冲击波处理可能是一种制备复合金属氧化物的纳米粉体的新方法. (3)机械球磨法 采用球磨方法,控制适当的条件得到纯元素纳米粒子、合金纳米粒子或复合材料的纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。例,一种钛合金纳米粉体制备方法,原料包括钛合金粗粉、助磨键合剂、分散剂、表面活性剂;制备方法是,将所述原料按配比投入反应釜,反应釜转速200-300mpr、温度50℃-60℃,反应釜旋转时间15-30分钟;反应釜转速升高至达1000mpr以上,维持该转速1.5-2.5小时,温度为180℃以上;反应釜转速降到300mrp以下,在0.5-1.0小时内降低温度至40℃-50℃,停机,即完成纳米粉体的制备。它稳定地对钛合金实现了纳米化加工;由此为利用纳米粉体的小尺寸效应、表面积效应而使它的耐蚀优点得到提升得以实现,使之可作为一种活性添加剂与各种优良树脂结合成一种新型复合材料。 2. 化学方法 (1)气相沉积法 利用金属化合物蒸气的化学反应合成纳米材料。其特点产品纯度高,粒度分布窄。例,TiCl4气相氧化法,其基本化学反应式为:TiCl4(g)+O2(g)=TiO2(s)+Cl2(g) 施利毅、李春忠等利用

一种纳米金颗粒的制备方法

说明书摘要 本发明公开了一种纳米金颗粒的制备方法,其步骤如下:(1)在去离子水中加入氯金酸溶液、CTAC、硼氢化钠溶液,得到老化的种子溶液;(2)在去离子水中加入氯金酸溶液、CTAC、溴化钠溶液、抗坏血酸溶液,得到生长溶液1;(3)在去离子水中加入氯金酸溶液、CTAC、溴化钠溶液、抗坏血酸溶液,得到生长溶液2;(4)取(1)中的老化好的种子溶液加入到(2)中的生长溶液1,反应完全后得一次生长的Au纳米颗粒分散溶液;(5)取(4)中的溶液加入到(3)中的生长溶液2,反应完全后得二次生长的Au纳米颗粒分散溶液,即为最终的Au纳米颗粒。本发明以水为基液,具有经济性好、操作简单、分散性好的优点,所获得的产品粒径大小比较均匀,且可控,从10 nm到100 nm均可获得。

权利要求书 1、一种纳米金颗粒的制备方法,其特征在于所述方法步骤如下: (1)在5~20 ml去离子水中加入0.001 ~ 0.2 ml氯金酸溶液,然后加入0.01 ~1 g CTAC,与氯金酸溶液混合后均匀后,再加入0.01 ~ 1 mL硼氢化钠溶液,摇晃10 ~ 20 s将溶液混合均匀,静置30 ~ 60 min 后得到老化的种子溶液; (2)在5~20 ml去离子水中加入0.001 ~ 1 ml氯金酸溶液,然后加入0.01 ~1 g CTAC,再加入0 .001~ 0.01 mL溴化钠溶液,超声震荡0.5 ~ 5 min将溶液混合均匀,接着加入0.01 ~ 1 mL抗坏血酸溶液,摇晃30 ~ 60 s使溶液混合均匀后得到无色透明的生长溶液1; (3)在5~20 ml去离子水中加入0.001 ~ 1 ml氯金酸溶液,然后加入0.01 ~1 g CTAC,再加入0.001 ~ 0.01 mL溴化钠溶液,超声震荡0.5 ~ 5 min将溶液混合均匀,接着加入0.001 ~ 1 mL抗坏血酸溶液,摇晃30 ~ 60 s使溶液混合均匀后得到无色透明的生长溶液2; (4)取(1)中的老化好的种子溶液1 ~ 100 μL加入到(2)中配置好的生长溶液1,摇晃10 ~ 20 s使溶液混合均匀后,在30 ℃条件下放置5 ~ 30 min使其反应完全,得一次生长的Au纳米颗粒分散溶液; (5)取(4)中的溶液1 ~ 100 μL加入到(3)中配置好的生长溶液2,摇晃10 ~ 20 s使溶液混合均匀后,在30 ℃条件下放置10 ~60 min使其反应完全,得二次生长的Au纳米颗粒分散溶液,即为最终的Au纳米颗粒。 2、根据权利要求1所述的纳米金颗粒的制备方法,其特征在于所述Au纳米颗粒的粒径为10 nm到100 nm。 3、根据权利要求1所述的纳米金颗粒的制备方法,其特征在于所述氯金酸溶液的浓度为0.01 mol/L。 4、根据权利要求1所述的纳米金颗粒的制备方法,其特征在于所述氯金酸溶液的浓度为0.00025 mol/L。 5、根据权利要求1所述的纳米金颗粒的制备方法,其特征在于

金纳米粒子的制备方法

金纳米粒子的制备方法 由于不同状态的纳米粒子的性质有较大的差异,故人们已经尝试很多方法用简单和多样的合成方法制备特定形貌和大小的金纳米粒子,如纳米线、纳米棒、纳米球纳米片和纳米立方。下面将介绍下目前合成金纳米粒子最常用的方法。 1梓檬酸盐还原法 目前在众多的合成金纳米粒子方法中,最方便的方法是还原Au的衍生物。很长的一段时间最流行的方法是在1951年Turkevitch提出的水溶液中用梓檬酸盐还原HAuCl4的方法,可得到20mn左右的金纳米粒子。金纳米粒子在水溶液中合成的方法主要分为三个步骤:第一,金的盐溶液在适当的溶液中分解;第二,在某种还原剂中还原金的盐溶液;最后,在稳定剂中合成稳定的金纳米粒子。目前,最流行的制备金纳米粒子的方法是在加热的条件下,在水溶液中用梓檬酸盐还原HAuCl4。对于这个方法,通过改变金的浓度和梓檬酸盐的浓度,可以制备出大量的平均粒度的金纳米粒子。 2 Brust-Schiffrin法:两相合成并通过硫醇稳定 人们于1994年提出了合成金纳米粒子的Brust-Schiffrin方法。由于热稳定合成方法简单易行,在不到十年的时间内,此方法在所有领域都有重要的影响。金纳米粒子在有机溶剂中能分散和再溶解,并且没有不可逆的团聚或分解。作为有机分子化合物,它们能很容易的控制和功能化。Faraday的两相合成体系给予合成技术一定的启发,由于Au和S的软性质,这种方法便利用硫醇配体强烈绑住金。四正辛基溴化按作为相转移试剂将AuCV转移到甲苯溶液中,并用NaBH4在正十二硫醇中还原AuCLT。在NaBH4还原过程中,橙色相在几秒内向

深棕色转变(图1): 图1 Au化合物在硫醇溶液中被还原,其Au纳米粒子表面被有机外壳所覆盖 其反应机理如下: 3其它含硫配体 其它含硫配体已经用于稳定金纳米粒子,如黄酸盐和二硫化物等。二硫化物不如硫醇的稳定,但是在催化方面有明显的效果。同样,硫醚不能很好的约束金纳米粒子,但是Rheinhout 团队利用聚硫醚就能很好的解决这个问题。另外,利用碘氧化以硫醇为包覆剂的金纳米粒子,使其分解为金的碘化物和二硫化物。Crook等人利用这一现象制备了以金纳米粒子为模版的环胡精的空心球。 4微乳液,反向胶束,表面活性剂,细胞膜和聚合电解质类 在有或是没有硫醇溶液的情况下,使用微乳液,共聚物胶束,反相胶束,表面活性剂,细胞膜和其它两亲物都是合成稳定的金纳米粒子重要探究领域。用表面活性剂合成的两相系统会引起微乳液或是胶束的形成,将金属离子从水相抽离到有机相,从而维持良好的微环境。表面活性剂的双重角色和硫醇与金纳米粒子的相互作用可以控制金纳米粒子或是纳米晶体的稳定和生长。聚合电解质也广泛用于金纳米粒子的合成。酸衍生的金纳米粒子的聚合电解质包覆剂己经通过带电的聚合电解质静电自组装 得到了。

胶体金(纳米金Gold Nanoparticles)的制备步骤和注意事项

胶体金(纳米金Gold Nanoparticles)的详细制备步骤和注意事项 胶体金的制备一般采用还原法,常用的还原剂有柠檬酸钠、鞣酸、抗坏血酸、白磷、硼氢化钠等。下面介绍最常用的制备方法及注意事项。 1、玻璃容器的清洁:玻璃表面少量的污染会干扰胶体金颗粒的生成,一切玻璃容器应绝对清洁,用前经过酸洗、硅化。硅化过程一般是将玻璃容器浸泡于5%二氯二甲硅烷的氯仿溶液中1分钟,室温干燥后蒸馏水冲洗,再干燥备用。专用的清洁器皿以第一次生成的胶体金稳定其表面,弃去后以双蒸馏水淋洗,可代替硅化处理。 2、试剂、水质和环境:氯金酸极易吸潮,对金属有强烈的腐蚀性,不能使用金属药匙,避免接触天平称盘。其1%水溶液在4℃可稳定数月不变。实验用水一般用双蒸馏水。实验室中的尘粒要尽量减少,否则实验的结果将缺乏重复性。 金颗粒容易吸附于电极上使之堵塞,故不能用pH电极测定金溶液的pH值。为了使溶液pH值不发生改变,应选用缓冲容量足够大的缓冲系统,一般采用柠檬酸磷酸盐(pH3~5.8)、Tris-HCL (pH5.8~8.3)和硼酸氢氧化钠(pH8.5~10.3)等缓冲系统。但应注意不应使缓冲液浓度过高而使金溶胶自凝。 3、柠檬酸三钠还原法制备金溶胶: 取0.01%氯金酸水溶液100ml 加热至沸,搅动下准确加入1%柠檬酸三钠水溶液0.7ml,金黄色的氯金酸水溶液在2分钟内变为紫红色,继续煮沸15分钟,冷却后以蒸馏水恢复到原体积,如此制备的金溶胶其可见光区最高吸收峰在535nm,A1cm/535=1.12。金溶胶的光散射性与溶胶颗粒的大小密切相关,一旦颗粒大小发生变化,光散射也随之发生变异,产生肉眼可见的显著的颜色变化,这就是金溶胶用于免疫沉淀或称免疫凝集试验的基础。 金溶胶颗粒的直径和制备时加入的柠檬酸三钠量是密切相关的,保持其他条件恒定,仅改变加入的柠檬酸三钠量,可制得不同颜色的金溶胶,也就是不同粒径的金溶胶,见附表。附表100 ml 氯金酸中柠檬酸三钠的加入量对金溶胶粒径的影响 1%柠檬酸三钠ml 0.30 0.45 0.70 1.00 1.50 2.00 金溶胶颜色蓝灰紫灰紫红红橙红橙 吸收峰(nm) 220 240 535 525 522 518 径粒(nm) 147 97.5 71.5 41 24.5 15 4、柠檬酸三钠-鞣酸混合还原剂:用此混合还原剂可以得到比较满意的金溶胶,操作方法如下:取4ml1%柠檬酸三钠(Na3C6H5O7.2H2O),加入0~5ml1%鞣酸,0~5ml 25mmo/L K2CO2(体积与鞣酸加入量相等),以双蒸馏水补至溶液最终体积为20ml,加热至60℃取1ml1%的HAuCl4,加于79ml双蒸馏水中,水浴加热至60℃,然后迅速将上述柠檬酸-鞣酸溶液加入,于此温度下保持一定时间,待溶液颜色变成深红色(约需0.5~1小时)后,将溶液加热至沸腾,保持沸腾5分钟即可。改变鞣酸的加入量,制得的胶体颗粒大小不同。 5、白磷还原法:在120ml双蒸馏水中加入1.5ml1%氯金酸和1.4ml 0.1mol/L K2CO3,然后加入1ml五分之一饱和度的白磷乙醚溶液,混匀后室温放置15分钟,在回流下煮沸直至红褐色转变为红色。此法制得的胶体金直径约6nm,并有很好的均匀度,但白磷和乙醚均易燃易爆,一般实验室不宜采用。 要得到大小更均匀的胶体金颗粒,可采用甘油或蔗糖密度梯度离心,经分级后制得胶体金颗粒直径的变异系数(CV)可小于15%。 免疫胶体金制备 1、蛋白质的处理:由于盐类成分能影响金溶胶对蛋白质的吸附,并可使溶胶聚沉,故致敏前应先对低离子强度的水透析。必须注意,蛋白质溶液应绝对澄清无细小微粒,否则应

纳米碳酸钙的应用及制备方法

有填充及增强、增韧的作用,能取代部分价格昂贵的填充料及助济,减少树脂的用量,从而降低产品生产成本,提高市场竞争力。 2、橡胶 应用范围:天然胶,丁腈,丁苯,混炼胶等,适用于轮胎、胶管、胶带以及油封、汽车配件等橡胶制品中。 应用特性:经过表面改性处理后的纳米碳酸钙与橡胶有很好的相容性,具有补强、填充、调色、改善加工艺和制品的性能,可使橡胶易混炼、易分散,混炼后胶质柔软,橡胶表面光滑;可使制品的延伸性、抗张强度、撕裂强度等有本质的提高;可以降低含胶率或部分取代钛白粉、白碳黑等价格昂贵的白色填料,提高产品的市场竞争力。 3、密封胶粘材料 应用范围:硅酮、聚流、聚氨酯、环氧等密封结构胶。 应用特性:应用于密封胶粘材料中,与胶料有很好的亲和性,可以加速胶的交联反应,大大改善体系的触变性,增强尺寸稳定性,提高胶的机械性能,且添加量大,达到填充急补强双重作用。同时,它能使胶料表面光亮细腻。 4、涂料 应用范围:水性涂料和油性涂料。 应用特性:大大改善体系的触变性,可显著提高涂料的附着力,耐洗刷性,耐沾污性,提高强度和表面光洁度,并具有很好的防沉降作作用。部分取代钛白粉,降低成本。 5、油墨 应用范围:适用于平版胶印油墨、凹版印刷油墨等。 应用特性:使用纳米碳酸钙所配置的油墨,身骨及粘性较好,故具有良好的印刷性能;稳定性好;干性快且没有相反作用;由于颗粒小,故印品光滑,网点完整,可以提高油墨的光洁度,适用于高速印刷。 6、造纸 应用范围:卷烟纸、记录纸、簿页印刷纸、高白度铜版纸以及高档卫生巾、纸尿布等。 应用特性:造纸中加入纳米碳酸钙可以提高纸张的松密度、表观细腻性、吸水性;提高特种纸的强度、高速印刷性;调节卷烟纸的燃烧速度。 详细说明: 1:在橡胶工业: 纳米级超细碳酸钙具有超细、超纯的特点,生产过程中有效控制了晶形和颗粒大小,而且进行了表面改性。因此其在橡胶中具有空间立体结构、又有良好的分散性,可提高材料的补强作用。如链状的纳米级超细碳酸钙,在橡胶混炼中,锁链状的链被打断,会形成大量高活性表面或高活性点,它们与橡胶长链形成键连结,不仅分散性好,而且大大增强了补强作用。值得注意的是,它不但可以作为补强填充料单独使用,而且可根据生产需求与其他填充料配合使用,如:炭黑、白炭黑、轻钙重钙、钛白粉、陶土等,达到补强、填充、调色、改善加工工艺和提高制品性能、降低含胶率或部分取代白炭黑、钛白粉等价格昂贵的白色填料的目的。 2:在涂料工业 可作为颜料填充剂,具有细腻、均匀、白度高、光学性能好等优点,纳米级超细碳酸钙具有空间位阻效应,在制漆中,能使配方密度较大的立德粉悬浮,起防沉降作用。制漆后,漆膜白度增加,光泽高,而遮盖力却不下降,这一特性使其在涂料工业被大量推广应用。 3:在塑料工业 由于纳米级超细碳酸钙具有高光泽度、磨损率低、表面改性及疏油性,可填充聚氯乙烯、聚丙烯和酚醛塑料等聚合物中,现在又被广泛应用于聚氯乙烯电缆填料中。 4:在造纸工业 可用于涂布加工纸的原料,特别是用于高级铜板纸。由于它分散性能好,粘度低,能有效的提高纸的白度和不透明度,改进纸的平滑度、柔软度,改善油墨的吸收性能,提高保留率。 5:在油墨行业 作为填料,可替代价格较高的胶质钙,并可提高油墨的光泽度和亮度。

3.7 金纳米粒子的合成方法

1 金纳米粒子的合成方法 1.1 物理法 物理法即采用高能消耗的方式将块体金细化成为纳米级小颗粒,主要包括块状固体粉碎法(又称为磨球法或机械研磨法)、气相法、电弧法、金属蒸汽溶剂化法、辐照分解和热分解等。辐照分解包括近红外辐照和紫外辐照。近红外辐照通过使硫醇包裹的纳米粒子的粒径变大,从而可以获得粒径较大的金纳米粒子;紫外辐照通过影响种子和胶束的协同作用,从而控制金纳米粒子的合成。另外,激光消融通过对温度、反应器位置、异丙醇用量、超声场等实验条件的控制,可以合成形貌,粒径不同的金纳米粒子。总之,金纳米粒子合成的关键在于同时精确地控制其尺寸和形貌。通过物理法制备的金纳米粒子虽然纯度较高,但其产量低下,设备成本极高。 1.2 化学法 化学法主要是以金盐为原料,利用还原反应生成金纳米粒子,在形成过程中通过控制粒子的生长从而控制其尺寸。化学法主要包括水相氧化还原法、相转移法(主要为Brust法)、晶种生长法(又称种金生长法)、模板法、反相胶束法、湿化学合成法、电化学法、光化学法。相对物理法而言,化学法制备金纳米粒子所得到的产物粒径均匀、稳定性高,并且易于控制形貌,是最为方便和经济的方法。 1.2.1 水相氧化还原法 水相氧化还原法合成金纳米粒子主要是指在含有Au3+的溶液中,利用适当的还原剂(例如鞣酸,柠檬酸等,还原剂的选择根据所要合成的金纳米粒子的粒径而定),将Au3+还原成零价,从而聚集成粒径为纳米级的金纳米粒子。常见的方法有AA还原法、白磷还原法、柠檬酸钠还原法和鞣酸-柠檬酸钠还原法。制备粒径在5~12nm的金纳米粒子,一般采用AA还原或白磷还原HAuCl4溶液;制备粒径在大于12nm的金纳米粒子,则采用柠檬酸钠还原HAuCl4溶液。柠檬酸钠法还原Au3+合成金纳米粒子是最早且应用最为广泛的方法。 1951年,Turkevitch首次报道了柠檬酸钠还原HAuCl4溶液的方法制备金纳米粒子,其粒径分布在20nm左右。基于此,Frens发现,通过控制柠檬酸钠和金的比率来控制金纳米粒子的形成,从而可以得到特定尺寸(粒径可以控制在16~147 nm)的金纳米粒子。经典的Frens法至今仍得到了广泛的使用,用于保护和稳定金纳米粒子的柠檬酸根与金纳米粒子的结合能力较弱,易于被其他稳定剂所取代,因此可用于分析DNA,从而扩大了金纳米粒子的应用领域。

柠檬酸钠还原法制备金纳米粒子

柠檬酸钠还原法制备金纳米粒子实验 一、试剂和材料 1) 柠檬酸钠(Na3C6H507?2H2O,AR) 天津市化学试剂三厂 2) 氯金酸溶液(HAu Cl4?4 H2O),用王水(硝酸:盐酸=1:3(浓溶液的体积比)配制)溶解99.99%纯金制备。 3) 所用水均为超纯水(电阻值大于15 MΩ) 4) 所用玻璃仪器均经王水洗液充分浸泡处理,使用前用超纯水洗净并烘干。 5)仪器圆底瓶(50 mL)、冷凝管(含2 条橡皮管)、漏斗、滴管、刻度吸量管(10 mL)、量筒(50 mL)、安全吸球、磁搅拌子、电磁加热搅拌器、烧杯、计时器、试管(1 支)、样品瓶(25 mL)等. 实验方法 (一)小粒径金纳米粒子(约15 nm)的制备 1. 取5 mL 浓硝酸与15 mL 浓盐酸混合于100 mL 烧杯中配制王水。将所需使用的圆底瓶、吸量管、磁搅拌子、样品瓶等以王水浸润约1 分钟,再将王水倒入回收烧杯中,以大量去离子水将器皿冲洗干净,最后以超纯水淋洗2 次,而后倒置滴干。 注1:反应器具需以王水(HNO3/HCl = 1/3 (v/v))浸洗器皿内壁,王水必须完全冲洗干净,以免残余王水影响后续制备反应。 注2:王水因具强腐蚀性及刺激臭味,使用时需穿戴乳胶手套并在通

风橱中清洗。王水用后回收作为最后清洗器具使用。 2. 使用已洗净后的量筒量取1 mM 的四氯金酸溶液45 mL 至100mL 圆底瓶中,加入1 个磁搅拌子。 3. 如图2-1架设回流加热装置:以铁夹固定圆底瓶于铁支架上,再将圆底瓶置于电磁搅拌器上,调整至适当位置使搅拌子能顺利搅拌。 4. 装接冷凝管于圆底瓶的上方使磨砂口接合紧密,以铁夹固定冷凝管;连接冷凝管的橡皮管,让冷却水自下端流入、上方排出。 注:橡皮管需先沾水以便利装接,装接的深度应足够以免脱落。冷凝管充满水后,将冷却水水量调小,以节省用水。 5. 开启电磁加热搅拌器之加热及搅拌调控钮让溶液均匀搅拌及加热至溶液沸腾。

光化学法制备金纳米粒子

班级:12应化1 W学号 :12331106 姓名 : 陈柏霖 《贵金属纳米材料》课程作业(02) 查阅中外文文献,实例说明:运用微乳液法或光化学合成法合成贵金属纳米粒子。要求:给出原料、列出详细可靠的实验过程、给出所获得的贵金属纳米粒子的物相、形貌和粒度等直观证据、给出来源文献。 光化学法制备金纳米粒子 一.原料 氯金酸(HAuCl4,天津市文达稀贵试剂化工厂),分析纯; 二水合柠檬酸三钠(C6H5Na3O7?2H2O,天津市化学试剂一厂),分析纯,简TSC; N-聚乙烯吡咯烷酮([OC(CH2)3NCHCH3]n,K30,聚合度 360,天津市博迪化工有限公司),分析纯,简称 PVP;单宁酸(C76H52O46,天津市化学试剂六厂),分析纯; 聚已二醇(HO(CH2CH2O)nH(n=68-84),平均分子量 4000,天津市科欧化学试剂开发中心),化学纯,简称 PVA; 实验用水均为二次蒸馏水。 实验光源一:500 W 卤钨灯,工作波段为 250~2500 nm; 实验光源二:30 W 紫外灯(U 型),紫外线波长约 95%为 253.7 nm; UV-1100紫外/可见分光光度计(北京瑞利分析仪器有限公司); JEM-100CXII 型透射电镜(日本电子公司)。 二.纳米金溶胶的制备方法 1、柠檬酸钠还原法制备金胶体 取 100 m L 0.01wt%HAuCl4煮沸后逐滴加入不同量的 0.01wt%的柠檬酸三钠溶液,维持沸腾10钟,得到紫红色的金纳米粒子的溶胶。 2、光还原和光诱导制备金胶体 按方法 1 在煮沸的氯金酸滴加柠檬酸钠以后,移至光源下照射,观察颜色由深变浅最后稳定为紫红色,并与不经煮沸直接光源照射的试样比较。 3、单宁酸-柠檬酸钠还原法制备金胶体

纳米粒子的制备方法综述

纳米粒子的制备方法综述 摘要: 纳米材料是近期发展起来的一种多功能材料。在纳米材料的当前研究中,其制备方法占有极其重要的地位,新的制备工艺过程的研究与控制对纳米材料的微观结构和性能具有重要的影响。本文主要概述了纳米材料传统的及最新的制备方法。纳米材料制备的关键是如何控制颗粒的大小和获得较窄且均匀的粒度分布。 [1] Abstract : Nanometer material is a kind of multi-functional material which was developed in recend . In the current study of it , its produce-methods occupy the important occupation . New methods’ reseach and control have an important influence on Nanometer materials’microstructure and property .This title mainly introduces nanometer materials’traditional and new method of producing . The key of the nanometer material s’ producing Is how to control the grain size and get the narrow and uniform size distribution . 关键词: 纳米材料制备方法 Key words : Nanometer material produce-methods 正文: 纳米材料的制备方法主要包括物理法,化学法和物理化学法等三大类。下面分别从三个方面介绍纳米材料的制备方法。 物理制备方法 早期的物理制备方法是将较粗的物质粉碎,其最常见的物理制备方法有以下三种: 1.真空冷凝法 用真空蒸发、加热、高频感应等方法使原料气化或形成等离子体,然后骤冷。其特点纯度高、结晶组织好、粒度可控,但技术设备要求高。 1.物理粉碎法 通过机械粉碎、电火花爆炸等方法得到纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。

复合纳米金膜的制备及其光学性质

第29卷 第3期Vo l 129 No 13材 料 科 学 与 工 程 学 报Journal of M aterials Science &Engineering 总第131期Jun.2011 文章编号:1673-2812(2011)03-0405-06 复合纳米金膜的制备及其光学性质 万 淼1,2,魏 刚1,袁 红1,洪汉烈2 (1.数学与物理学院,中国地质大学,湖北武汉 430074;2.地球科学学院,中国地质大学,湖北武汉 430074) =摘 要> 本文利用化学还原法制备了不同尺寸的金纳米颗粒,并利用离子自组装多层技术在玻璃基底上沉积了基于金纳米颗粒的复合纳米金膜,研究了颗粒尺寸和成膜厚度对复合金膜光学性质的影响。不同比例的柠檬酸钠与氯金酸产生的金纳米颗粒溶液的紫外-可见光谱随着金颗粒直径增大而 红移展宽。适量比例的柠檬酸钠与氯金酸能够产生平均直径为14?1.2nm 且尺寸分布均匀的金纳米球;其溶液在518nm 处有一特征吸收峰。不同大小的金纳米颗粒形成的薄膜的紫外-可见光谱形状不同,局域表面等离子体共振峰的位置随着颗粒直径的减小而向短波方向迁移。薄膜的沉积层数越多,薄膜表面的颗粒分布越均匀,局域表面等离子体峰的峰值变化也将减小。本工作证实了利用离子自组装多层技术能够快速、简易、低成本地在玻璃基底上沉积具有局域表面等离子体共振的复合纳米金膜。 =关键词> 金纳米颗粒;离子自组装多层技术;局域表面等离子体共振;复合纳米金膜;光学性质中图分类号:T Q031.6;O648.16;O657.3 文献标识码:A Preparation and Optical Properties of Gold -nanoparticles Containing Composite Films WAN Miao 1,2,WEI Gang 1,YUAN Hong 1,HONG Han -lie 2 (1.School of Mathematics and Physics,C hina University of Geosciences,Wuhan 430074,China; 2.Faculty of Earth Sciences,C hina University of Geosciences,Wuhan 430074,China) =Abstract > Go ld -nanoparticles (AuNPs)w ith different diameter s w ere prepar ed by chemical reduction method,then co mpo site go ld films w ere depo sited o n g lass slides by ionic self -assem bled m ultilayers (ISAM )technique.Go ld co lloid w ith different diameter s can be produced by differ ent r atios o f so dium citrate to H AuCl 4,and the UV -vis peak w avelength o f collo id shifts to shor ter w aveleng th w ith decreasing AuNPs size.Go ld -nanospheres w ith unifor m size (14?1.2nm average diameter)and g ood size distribution can be prepared,and the UV -vis adso rption peak o f this colloid locates at 518nm.Optical properties o f the composite go ld films depend on both AuNPs size and ISAM film thickness.T he po sitio n of localized surface plasmo n reso nance (LSPR)of the gold film shifts to shorter w aveleng th w ith decr easing AuNPs size.With increasing the number of deposited lay er s,the film surface gets unifo rm character istic and stable LSPR position. =Key words > go ld -nano particles;ionic self -assembled multilayers;lo calized surface plasmon resonance;com po site gold film;optical pro perty 收稿日期:2010-07-01;修订日期:2010-09-25 基金项目:中央高校基本科研业务费专项资金资助项目(CU GL100240) 作者简介:万 淼(1980-),女,讲师,E -m ail:wm wh dz07@https://www.360docs.net/doc/f58611731.html, 。通讯作者:洪汉烈,教授,E -mail:hong hl8311@yah https://www.360docs.net/doc/f58611731.html, 1 引 言 离子自组装多层技术(Io nic Self -assembled Multilay er s,ISAM )是层层自组装技术(Layer -by -Lay er,LbL)的一种。1991年Decher 小组首次利用阴 阳离子聚电解质的静电自组装成功制备了多层复合平板膜 [1] ,并研究了多层薄膜的结构和性质 [2] ,从此之后

纳米碳酸钙制备工艺分析

纳米碳酸钙制备工艺分析 纳米碳酸钙又被称为超微细碳酸钙,其平均粒子直径大约为40nm。工艺实验室制备超细碳酸钙通常采用碳化法、复分解法、微乳法三种途径,工业上则一般采用碳化法。 1、纳米碳酸钙的制备方法 (1)复分解法 复分解法是在一定条件下,将水溶性钙盐(如氯化钙,硫酸钙等)与水溶性碳酸盐(如碳酸铵,碳酸钠等),通过液相到固相的反应过程制得纳米碳酸钙。实验室使用这种方法制取碳酸钙时,可以通过控制反应物浓度、反应温度、生成物的过饱和度以及加入适当的添加剂等操作方法,得到粒径小于0.1μm、比表面积大、具有较好溶解性的无定形碳酸钙产品。 这种方法制得的纳米碳酸钙纯度比较高,也有具有很好的白度,但在制取不同晶形的产品时需要很高的成本,所以目前国内外很少采用这种方法工业制取纳米碳酸钙。 (2)碳化法 ①间歇鼓泡碳化法与复分解法不同,间歇鼓泡碳化法是目前国内外制备纳米碳酸钙广泛采用的方法。其操作步骤是首先将1.04-1.06g/cm3的Ca(OH)2浆液降温到25℃以下,再将浆液打入到碳化塔中,注意保持一定的液位,然后从碳化塔的底部向塔内通入CO2或者CO2和空气的混合气体,控制合理的溶液浓度、反应温度、气液比以及添加剂等条件,可以间歇制得纳米级碳酸钙。 ②连续喷雾法也是通过碳化法来制取纳米碳酸钙,步骤是将Ca(OH)2浆液通过压力式喷嘴从碳化塔的顶部向下呈雾状喷出,与此同时从塔的底部向上通入CO2或者CO2和空气的混合气体,使喷下的Ca(OH)2浆液与CO2充分接触,发生反应。这

种方法明显增加了CO2气体和Ca(OH)2浆液的接触面积,反应过程可以通过控制石灰乳的浓度、液滴直径、流量、反应气液比等条件,在常温下制得直径在0.04-0.08μm的纳米碳酸钙。 通过连续喷雾法制得的CaCO3粒径分布窄,颗粒形状比较规则,而且容易分散,综合品质要优于间歇鼓泡法,但由于这种方法能耗较大,而且喷嘴容易发生堵塞,造成了高额生产成本,故难以普及。 (3)微乳法 微乳法是近年来刚刚发展起来的一种制备纳米微粒的方法。这种方法的操作步骤是分别将可溶性碳酸盐和可溶性钙盐溶解到组成成分完全相同的两份微乳液中,在一定条件下进行混合反应。这样可以在较小区域内控制晶粒的成核与生长,完成后再将晶粒与溶剂分离,就可以得到纳米碳酸钙微粒,其粒径几乎都控制在几纳米到几十纳米之间。 2、工业上制备纳米碳酸钙的工艺 (1)工艺流程 工艺流程将一定量的生石灰,按水灰比8:1的比例放入80℃的热水中进行消化,完成后就得到了氢氧化钙粗溶液,将其陈化24小时,用200目的筛网过筛,得到精制的氢氧化钙浆料。将精制氢氧化钙浆料放入玻璃反应器,加入适量添加剂,设置合适的碳化温度,调整合适的搅拌速度,经转子流量计通入二氧化碳和氮气的混合气体或者纯净的二氧化碳气体,就开始了碳化反应。当反应体系呈酸性,也就是pH值下降到7以下后,继续碳化15分钟,就得到了纳米碳酸钙溶液。将所得浆料升温至80℃,加入一定量硬脂酸钠保温2小时,过滤、干燥、粉碎后即得纳米碳酸钙固体。

纳米金的制备

氯金酸(HAuC14)是主要还原材料,常用还原剂有柠檬酸钠、鞣酸、抗坏血酸、白磷、硼氢化钠等。根据还原剂类型以及还原作用的强弱,可以制备0.8 nm~150 nm不等的胶体金。最常用的制备方法为柠檬酸盐还原法。具体操作方法如下: (1)将HAuC14先配制成0.01%水溶液,取100 mL加热至沸。 (2)搅动下准确加入一定量的1%柠檬酸三钠(Na3C6H5O7·2H2O)水溶液。 (3)继续加热煮沸15 min。此时可观察到淡黄色的氯金酸水溶液在柠檬酸钠加入后很快变灰色,续而转成黑色,随后逐渐稳定成红色。全过程约2~3 min。 (4)冷却至室温后用蒸馏水恢复至原体积。 用此法可制备16~147 nm粒径的胶体金。金颗粒的大小取决于制备时加入的柠檬酸三钠的量。 表19-1 四种粒径胶体金的制备及特性 胶体金粒径/ nm 1%柠檬酸三钠加入量/mL 胶体金特性呈色λmax/nm 16 2.00 橙色518 24.5 1.50 橙红522 41 1.00 红色525 71.5 0.70 紫色535 *还原100mL 0.01%HAuC14所需量 2.注意事项 ● 氯金酸易潮解,应干燥、避光保存。 ● 氯金酸对金属有强烈的腐蚀性,因此在配制氯金酸水溶液时,不应使用金属药匙称量氯金酸。 ● 用于制备胶体金的蒸馏水应是双蒸馏水或三蒸馏水,或者是高质量的去离子水。 ● 是以制备胶体金的玻璃容器必须是绝对清洁的,用前应先经酸洗并用蒸馏水冲净。最好是经硅化处理的,硅化方法可用5%二氯甲硅烷的氯仿溶液浸泡数分钟,用蒸馏水冲净后干燥备用。 ● 胶体金的鉴定和保存:胶体金的制备并不难,但要制好高质量的胶体金却也并非易事。因此对每次制好的胶体金应加以检定,主要检查指标有颗粒大小,粒径的均一程度及有无凝集颗粒等。 肉眼观察是最基本也是最简单和方便的检定方法,但需要一定的经验。良好的胶体金应该是清亮透明的,若制备的胶体金混浊或液体表面有漂浮物,提示此次制备的胶体金有较多的凝集颗粒。在日光下仔细观察比较胶体金的颜色,可以粗略估计制得的金颗粒的大小。当然也可用分光光度计扫描λmax来估计金颗粒的粒径。结制备的胶体金最好作电镜观察,并选一些代表性的作显微摄影,可以比较精确地测定胶体金的平均粒径。 胶体金在洁净的玻璃器皿中可较长时间保存,加入少许防腐剂(如0.02%NaN3)可有利于保存。保存不当时会有细菌生长或有凝集颗粒形成。少量凝集颗粒并不影响以后胶体金的标记,使用时为提高标记效率可先低速离心去除凝集颗粒。

纳米金制备

纳米金的制备 一、实验药品 氯金酸、柠檬酸钠、二蒸水、超纯水、铬酸洗液(H2SO4/K2Cr2O7) 二、实验器材 精密电子天平、电动搅拌器、500mL圆底烧瓶、100mL烧杯、玻璃棒、100mL容量瓶、1000μL移液枪 三、实验步骤 ①玻璃器皿的清洁 据文献表明,玻璃器皿的清洁是纳米金制备成功与否的关键,如果玻璃器皿内不干净或者有灰尘落入就会干扰胶体金颗粒的形成,形成颗粒大小不一、颜色微红、无色或浑浊不透明的溶液。所以在制备纳米金之前,必须认真地清洗所有玻璃器皿,先用自来水和一般的洗涤剂将所有玻璃器皿清洗一遍,然后用铬酸洗液(H2SO4/K2Cr2O7)充分浸泡,24小时之后用清水将铬酸洗液冲洗干净,最后再用高纯水冲洗3-4遍,放入烘箱中充分干燥后,待用。通过此方法处理过的玻璃器皿不需要硅化处理,可以直接制备胶体金,也可以用已经制备的胶体金溶液用同等大小颗粒的金溶液去包被所有的玻璃器皿的表面,然后弃去,再用蒸馏水清洗,即可使用,因为它减少了金颗粒的吸附作用。 ②溶液的配制 氯金酸(HAuCl4)水溶液的配制:将1g氯金酸一次溶解于新鲜的高纯水中,用100mL容量瓶配成1%的水溶液,移置于100mL广口瓶中,放置于阴暗处保存。 柠檬酸钠溶液的配制:将1g柠檬酸钠一次性溶解于新鲜的高纯水中,用100mL容量瓶配制成的1%水溶液,移置于100mL广口瓶中,放置于阴暗处保存。 所有配制试剂的容器均按照上述要求的酸处理洗净。 ③实验步骤 按班级人数分为1组~4组。1组作为对照组,第2组探究不同反应温度对纳米金颗粒大小形成的影响;第3组探究还原剂浓度对纳米金颗粒大小形成的影响;第4组探究在温度及其还原剂浓度同时变化对纳米金颗粒大形成的影响。 实验过程中,由于在一定范围内的搅拌强度和搅拌时间对制备纳米金影响不大,但考虑到化学反应的需要和水蒸发过多对实验结果造成的不良影响,实验时搅拌强度以不产生漩涡、搅拌时间控制在 15min左右。 第一组 所有操作均在室温下进行。在100mL圆底烧瓶中加入50mL超纯水,用1000μL的移液枪移取500μL事先配制好的1%的氯金酸水溶液于50mL超纯水中,使得溶液中氯金酸的浓度降低至0.01%(w/v),将此溶液在油浴中加热恒温于100℃内。在磁子的剧烈搅拌下,迅速加入4mL的事先配制好的柠檬酸三钠溶液(1%),继续搅拌,反应10 min 至合成液不再变色,停止加热,继续搅拌,待合成液冷却至室温后,放入 4℃冰箱储存,以备表征和标记应用。第二组 所有操作均在室温下进行。在100mL圆底烧瓶中加入50mL超纯水,用1000μL的移液枪移取500μL事先配制好的1%的氯金酸水溶液于50mL超纯水中,使得溶液中氯金酸的浓度降低至0.01%(w/v),将此溶液在油浴中加热恒温于100℃内。在磁子的剧烈搅拌下,迅速加入3mL的事先配制好的柠檬酸三钠溶液(1%),继续搅拌,反应10min至合成液不再变色,停止加热,继续搅拌,待合成液冷却至室温后,放入 4℃冰箱储存,以备表征和标记应用。 第三组 所有操作均在室温下进行。在100mL圆底烧瓶中加入50mL超纯水,用1000μL的移液枪

金纳米颗粒的合成方法

金纳米颗粒的盐酸羟胺种子合成法 摘要:本文描述了粒径在30nm到100nm的金纳米颗粒合成方法。通过种子生长法盐酸羟胺作为还原剂合成不同大小的金纳米颗粒。其大小由种子和氯金酸的浓度决定。此方法合成的金纳米颗粒单分散性优于柠檬酸钠作还原剂的一步合成法。重要的是,表面被修饰过的金纳米颗粒也可通过上述方法长大。 许多科学家和工程师都在关注金纳米颗粒的特殊的物理性质。在颗粒组装和膜的形成方面,单分散的金纳米颗粒有着很重要的地位。厚度为45-60nm的金膜表现出角度相关的等离子体共振。柠檬酸钠合成的10-20nm金纳米颗粒单分散性很好。但是此方法合成的更大的金纳米颗粒(粒径在40nm到120nm)单分散性变差,其颗粒浓度小,而且颗粒的真实粒径与预测的粒径相差比较大。 我们所提供的方法是通过种子生长发盐酸羟胺还原氯金酸合成金纳米颗粒。在热力学上,盐酸羟胺是能够还原氯金酸为金单质,金纳米颗粒表面可以加速这个反应的发生。这样,实现了成核和生长两个阶段分离,如图1。此方法的优势在于:ⅰ此方法合成的金纳米颗粒单分散性优于Frens的柠檬酸钠合成法合成的;ⅱ能很好的预测金纳米颗粒的粒径;ⅲ能很好的应用到表面修饰的金纳米颗粒。 图1 金纳米颗粒的生长过程 紫外吸收光谱可以很好监测金纳米颗粒合成的整个过程。图2表明加入 17nM,12nm的种子后,盐酸羟胺与氯金酸反应的过程。上面的吸收光谱是以10s 的间隔记录的,金纳米颗粒的等离子体共振峰的强度增长很明显。这些改变可能是颗粒增长或者新的金纳米颗粒的形成引起的。下面的吸收光谱是氯金酸和盐酸羟胺混合物30min前后的紫外吸收光谱。没有出现金纳米颗粒的紫外吸收峰,说明没有新的金纳米颗粒核生成。因此,在520nm金纳米颗粒的吸收峰增强是由于

纳米金的制备方法

胶体金溶液的制备有许多种方法,其中最常用的是化学还原法,基本的原理是向一定浓度的金溶液内加入一定量的还原剂使金离子变成金原子。目前常用的还原剂有:白磷、乙醇、过氧化氢、硼氢化钠、抗坏血酸、枸橼酸钠、鞣酸等,下面分别介绍制备不同大小颗粒的胶体金溶液。 一、制备胶体金的准备 (一)玻璃器皿的清洁 制备胶体金的成功与失败除试剂因素以外玻璃器皿清洁是非常关键的一步。如果玻璃器皿内不干净或者有灰尘落入就会干扰胶体金颗粒的生成,形成的颗粒大小不一,颜色微红、无色或混浊不透明。我们的经验是制备胶体金的所有玻璃器皿先用自来水把玻璃器皿上的灰尘流水冲洗干净,加入清洁液(重铬酸钾1000g,加入浓硫酸2500ml,加蒸馏水至10000ml)浸泡24h,自来水洗净清洁液,然后每个玻璃器皿用洗洁剂洗3~4次,自来水冲洗掉洗洁剂,用蒸馏水洗3~4次,再用双蒸水把每个器皿洗3~4次,烤箱干燥后备用。通过此方法的处理玻璃器皿不需要硅化处理,而直接制备胶体金。也可用已经制备的胶体金溶液,用同等大不颗粒的金溶液去包被所用的玻璃器皿的表面,然后弃去,再用双蒸水洗净,即可使用,这样效果更好,因为减少了金颗粒的吸附作用。 (二)试剂的配制要求 (1)所有配制试剂的容器均按以上要求酸处理洗净,配制试剂用双蒸馏水或三蒸馏水。 (2)氯化金(HauCl4水溶液的配制:将lg的氯化金一次溶解于双蒸水中配成1%的水溶液。放在4”c冰箱内保存长达几个月至1年左右,仍保持稳定。 (3)白磷或黄磷乙醚溶液的配制:白磷在空气中易燃烧,要格外小心操作。把白磷在双蒸水中切成小块,放在滤纸上吸于水份后,迅速放入已准备好的乙醚中去,轻轻摇动,等完全溶解后即得饱和溶液。储藏于棕色密闭瓶内,放在阴凉处保存。 二、制备胶体金的方法和步骤 (一)白磷还原法 1.白磷还原法(z Sigmondy 1905年) (1)取1%的HAuCl4水溶液1ml,加双蒸水99ml配成0.01%的HAuCl4水溶液。 (2)用0.2mol/l K2CO3调pH至7.2。 (3)加热煮沸腾,迅速加入0.5ml 20%白磷的饱和乙醚溶液,振荡数分钟至溶液呈现橙红色时即成。胶体金的颗粒直径为3nm左右,大小较均匀。

相关文档
最新文档