三相六拍步进电动机控制程序的设计与调试(郑州航空工业管理学院 + 电气)

三相六拍步进电动机控制程序的设计与调试(郑州航空工业管理学院 + 电气)
三相六拍步进电动机控制程序的设计与调试(郑州航空工业管理学院 + 电气)

三相六拍步进电动机控制程序的设计与调试

§课题内容:

用PLC控制三相六拍步进电机,其控制要求如下:

1.三相步进电动机有三个绕组:A、B、C,

正转通电顺序为:A→AB→B→BC→C→CA→A

反转通电顺序为:A→CA→C→BC→B→AB→A

2.要求能实现正、反转控制,而且正、反转切换无须经过停车步骤。

3.具有两种转速:

1号开关合上,则转过一个步距角需0.5秒。

2号开关合上,则转过一个步距角需0.05秒。

§课题要求:

1.根据题意,I/O编址,编制控制程序。并对梯形图程序加以说明。

2.完成课程设计说明书。

§有关概念:

步进电动机是纯粹的数字控制电动机。它将脉冲信号转换成角位移,即给一个脉冲信号,步进电动机就转动一个角度,步进电动机有以下特点:

①步进电动机的动作响应快,易于启停,速度在相当长的时间内可以实现平滑调节。

②步进电动机只有通过脉冲电源供电才能运行,它不能直接使用交流电源和直流电源。

③步进电动机存在震荡和失步现象,必须对控制系统和机械负载采取相应的措施,而且步进电动机自身噪声和振动大,带惯性负载的能力较差。

§步进电动机的结构:

步进电动机根据作用原理和结构可以分为两大类:

①电磁式步进电动机这种步进电动机是早期的步进电动机。它通常只有一个绕组,并且仅靠电磁作用还不能使用电动的转子做步进运行,必须加上相应的机械部件,才能实现步进的效果。这种步进电动机分为螺线管和棘轮型步进电动机。

②定子和转子之间仅仅靠电磁作用就可实现步进作用的步进电动机 这种电动机一般有多相绕组,在定子和转子之间没有机械联系。这种电机有良好的可靠性及快速性。工业应用上大量采用做伺服元件、指示元件及功率伺服拖动元件。有时也用作位置控制、速度控制元件。

在单片机的应用系统中,都是使用第二类步进电动机。在第二类步进电动机中根据转子的结构形式,可以分成永磁式步进电动机或反应式步进电动机,在永磁式步进电动机中它的转子是用永磁钢制成的,也有通过滑环供电的直流励磁绕组绕制,无论如何,其转子是一个磁源。在反应式步进电动机中,其转子由软磁材料制成齿状。在这种步进电动机的转子中没有绕组。

反应式步进电动机有力矩性能好、步进频率高、频率响应快、不通电时可自由转动、可双向转动、结构简单和寿命长等特点,过在单片机应用系统中大量使用它。在这里,以反应式步进电动机为例介绍步进电动机的结构。

在反应式步进电动机中分定子和转子两大部分。在定子上有六大极,每个大极上绕有绕组。对称的大极绕组形成一个绕组,也即形成一相控制绕组。显然分别产生A 、B 、C 三相绕组,正因为该三项的绕组的存在才使步进电动机产生启动转矩,每每个齿上分部着小齿,大小相同,间距相等。定子大级上的齿和转子上的齿是对应吻合的。在定子大级中,其中心线是齿的中心线,有些反应式步进电动机中是槽的中心线,齿距角

r

N π

?2=

其中r N 为转子齿数。

反应式步进电动机的绕组通常由单极性脉冲供电,一般由基本脉冲和辅助脉冲串进行换向控制步进工作,有时也采用双极性脉冲供电。但在单片机应用的系统中,基本上都是用单极性脉冲供电的。

需要指出的是:当转子齿和定子某个大极的齿对齐时,则转子的齿和其他有关大齿不会对齐,对于三相反应式步进电动机,如果A 相大极的齿和转子齿对齐,那么B 相和C 相大极的齿必定和转子的齿对不齐。定子和转子的齿对齐时称为对齿;定子和转子的齿对不齐称为错齿。错齿是步进电动机能实现步进旋转的根本原因。

§步进电动机的工作原理:

以40齿电动机为例,当A 相齿对齐后、B 相齿相差

31

齿距角,C 相相差

3

2

个齿距角,当A 相通电磁场强迫转子向最大磁导率的方向运动,使转子对准A 相,此时B 相C 相没有接通,不产生磁场。当A 相断电,B 相通电,磁场强迫

转子向最小磁导率方向转动。使转子对准B 相齿。此时转子就前进了3

1

个齿距

角该齿距角就为一个布距角,如此循环,转子不停的连续转动起来。

§转速的调整原理:

当A 、B 、C 三相的通电切换频率增大时,转速就快。通电切换频率变小时,

转速就变慢,从而实现快慢的速度控制。因此只需控制磁极的脉冲顺序、频率和个数就能控制步进电机的方向,快慢,转动的角度,即按A 、B 、C 顺序正传;按A 、C 、B 顺序反转。

频率高转速快,频率低转速低。

脉冲个数少时转动角度小,角度与脉冲成正比。

§设计电气图及控制梯形图:

1做出步进电动机三相六拍的电气原理图如下:

设计六拍的工作方式,其通电顺序为:1正转通电顺序为:A →AB →B →BC →C

→CA →A 2反转通电顺序为:A →CA →C →BC →B →AB →A.得: A 相 Y000=M1+m2+m6 B 相 Y001=M2+M3+M4 C 相Y002=M4+M5+M6

2步进电动机PLC 控制输入输出点分配表:

3步进电动

机PLC 控制接线图如下:

输入信号

输出信号 名称 代号 输入点编号 名称

代号

输出点编号 正向启动 SB1 X000 A 相输入端 A Y000 反启动向 SB2 X001 B 相输入端 B Y001 停止按钮 SB3 X002 C 相输入端 C Y002 速度控制按钮

SA

X003

4根据控制要求,设计步进电动机的PLC控制梯形图如下

正向启动停止

反向启动停止

快速运行

慢速运行

时钟脉冲

步进电机正转位移

步进电机逆转位移

步进电动机PLC控制梯形图5步进电动机PLC控制指令语句如表所示:A相绕组通电B相绕组通电C相绕组通电

§程序设计说明:

①第0 逻辑行为步进电动机正转启动控制程序,第6逻辑行为步进电动机反转启动控制程序。

②第12、18逻辑行为步进电动机速度控制程序。当SA断开时,步进电动机以慢速运行。反之以快速运行。

③第24、28逻辑行为步进电动机速度控制时间控制脉冲程序,分别将K2、K25传入寄存器D0中。

④第34到51逻辑行为步进电动机分配移位程序,其作用是分配步进电动机各相的脉冲,以控制步进电动机按三相六拍的规律运行。

⑤第74到82逻辑行为驱动控制程序。

§心得体会:

在现代科学技术的众多领域中,PLC控制技术起着越来越重要的作用。它利用外部的设备或装置以及各种集成的芯片使机器,设备或生产过程的实现某个工作状态。整个设计过程让我对plc的了解更加深了一层,使我知道了在当今的信息技术如此发达的世界中,我们必须运用多种渠道,去学习研究。并要很好的运用计算机和一些软件,只有这样,我们才能更好地、精确地、快速地解决问题。同时在设计过程中增加了思考和动手能力。

§参考文献:

[1]流行PLC使用程序及设计贺哲荣西安电子大学出版社 2006

[2]工业电气控制从入门到精通高俊晓机械工业出版设 2010

[3]图解PLC机电控制技术段有艳中国电力出版社 2009

[4]电气控制与可编程控制器技术史国生化学工业出版社 2005

基于PLC三相步进电动机控制系统设计(三相步进电动机PLC控制系统)

目录 1 概述 (1) 1.1 PLC控制步进电机研究的意义 (1) 2 基于PLC的步进电机控制系统设计 (9) 2.1 系统的组成及功能 (9) 2.2 步进电机特性 (9) 2.3 PLC介绍 (12) 2.4 步进电机控制系统程序设计 (13) 3 磁头定位 (20) 3.1 硬盘工作原理 (20) 3.2 磁头及定位系统 (23) 4 难题及解决过程 (24) 5 结论 (25) 结束语 (28) 致谢 (29) 参考文献 (30) 附录A (31)

1 概述 1.1 PLC控制步进电机研究的意义 基于步进电动机良好的控制和准确定位特性,被广泛应用在精确定位方面,诸如数控机床、绘图机、扎钢机、自动控制计算装置、自动记录仪表等自动控制领域。 PLC作为简单化了的计算机,功能完备、灵活、通用、控制系统简单易懂,价格便宜,可现场修改程序,体积小、硬件维护方便,价格便宜等优点,在全世界广泛应用,为生产生活带来巨大效益方便。因此,通过研究用PLC来控制步进电动机的,既可实现精确定位控制,又能降低控制成本,还有利于维护。以往的步进电动机需要靠驱动器来控制,随着技术的不断发展完善,PLC具有了通过自身输出脉冲直接步进电动机的功能,这样就有利于步进电动机的精确控制。本课题《基于PLC的步进电机磁头定位系统设计》就是利用PLC控制步进电机在硬盘工作时磁头定位的研究。 1.2 国内外关于步进电机和PLC的应用状况 1.2.1 步进电机方面 步进电机是一种将电脉冲转化为角位移的执行元件。当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(称为“步距角”),它的旋转是以固定的角度一步一步运行的。通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。虽然步进电机已被广泛地应用,但步进电机并不能像普通的直流电机、交流电机在常规下使用。它必须由双环形脉冲信号、功率驱动电路等组成控制系统方可使用。控制涉及到机械、电机、电子及计算机等许多专业知识。 目前,国内生产步进电机的厂家的确不少,但具有专业技术人员,能够自行开发,研制的厂家却非常少,大部分的厂家只有一、二十人,连最基本的设备都没有。仅仅处于一种盲目的仿制阶段。这就给用户在产品选型、使用中造成许多麻烦。签于上述情况,选用步进电机时应该十分注意以下一些指标。 (1)步进电机的静态指标术语 相数:产生不同对极N、S磁场的激磁线圈对数。常用m表示。 拍数:完成一个磁场周期性变化所需脉冲数或导电状态用n表示,或指电机转过一个齿距角所需脉冲数,以四相电机为例,有四相四拍运行方式即AB-BC-CD-DA-AB,

步进电动机的工作原理与特点

步进电动机的工作原理及特点随着微电子和计算机技术的发展,步进电机的需求量与日俱增,它广泛用于打印机、电动玩具等消费类产品以及数控机床、工业机器人、医疗器械等机电产品中,其在各个国民经济领域都有应用。研究步进电机的控制系统,对提高控制精度和响应速度、节约能源等都具有重要意义。 1 步进电机概述 步进电动机又称脉冲电动机或阶跃电动机,国外一般称为Steppingmotor、Pulse motor或Stepper servo,其应用发展已有约80年的历史。步进电机是一种把电脉冲信号变成直线位移或角位移的控制电机,其位移速度与脉冲频率成正比,位移量与脉冲数成正比。步进电机在结构上也是由定子和转子组成,可以对旋转角度和转动速度进行高精度控制。当电流流过定子绕组时,定子绕组产生一矢量磁场,该矢量场会带动转子旋转一角度,使得转子的一对磁极磁场方向与定子的磁场方向一着该磁场旋转一个角度。因此,控制电机转子旋转实际上就是以一定的规律控制定子绕组的电流来产生旋转的磁场。每来一个脉冲电压,转子就旋转一个步距角,称为一步。根据电压脉冲的分配方式,步进电机各相绕组的电流轮流切换,在供给连续脉冲时,就能一步一步地连续转动,从而使电机旋转。步进电机每转一周的步数相同,在不丢步的情况下运行,其步距误差不会长期积累。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,同时步进电机只有周期性的误差而无累积误差,精度高,步进电动机可以在宽广的频率围通过改变脉冲频率来实现调速、快速起停、正反转控制等,这是步进电动机最突出的优点[1]。 正常情况下,步进电机转过的总角度和输入的脉冲数成正比;连续输入一定频率的脉冲时,电动机的转速与输入脉冲的频率保持严格的对应关系,不受电压波动和负载变化的影响。由于步进电动机能直接接收数字量的输入,所以特别适合于微机控制。 2国外的研究概况 步进电机是国外发明的。中国在文化大革命中已经生产和应用,例如、、、、都生产,而且都在各行业使用,驱动电路所有半导体器件都是完全国产化的,当时是全分立元器件构成的逻辑运算电路,还有电容耦合输入的计数器,触发器,环形分配器。国外在大功率的工业设备驱动上,目前基本不使用大扭矩步进电动机,因为从驱动电路的成本,效率,噪音,加速度,绝对速度,系统惯量与最大扭矩比来比较,比较不划算,还是用直流电动机,加电动机编码器整体技术和经济指标高。一些少数高级的应用,就用空心转杯电机,交流电机。国外在小功率的场合,还使用步进电机,例如一些工业器材,工业生产装备,打印机,复印件,速印机,银行自动柜员机。国外用许多现代的手段将步进电机排挤出驱动应用,除了前面提到的旋转编码器,打印机还使用光电编码带或感应编码带配合直流电动机,实现闭环直线位移控制。国过去是用大力矩步进电动机实现机床数控,有实力的公司现在也采用交流电动机驱动数控机床,在驱动设备的主要差距,是国外对交流电动机的控制理论与工程分析和应用能力强,先进的控制理论作为软件,写在控制器部。 总的来说,步进电机是一种简易的开环控制,对运用者的要求低,不适合在大功率的场合使用。 在卫星、雷达等应用场合,中国在文化大革命后期,就生产了力矩电机,就生产了环形

PLC控制步进电机的实例(图与程序)

PLC控制步进电机的实例(图与程序) ·采用绝对位置控制指令(DRVA),大致阐述FX1S控制步进电机的方法。由于水平有限,本实例采用非专业述语论述,请勿引用。 ·FX系列PLC单元能同时输出两组100KHZ脉冲,是低成本控制伺服与步进电机的较好选择! ·PLS+,PLS-为步进驱动器的脉冲信号端子,DIR+,DIR-为步进驱动器的方向信号端子。 ·所谓绝对位置控制(DRVA),就是指定要走到距离原点的位置,原点位置数据存放于32位寄存器D8140里。当机械位于我们设定的原点位置时用程序把D8140的值清零,也就确定了原点的位置。 ·实例动作方式:X0闭合动作到A点停止,X1闭合动作到B点停止,接线图与动作位置示例如左图(距离用脉冲数表示)。 ·程序如下图:(此程序只为说明用,实用需改善。) ·说明: ·在原点时将D8140的值清零(本程序中没有做此功能) ·32位寄存器D8140是存放Y0的输出脉冲数,正转时增加,反转时减少。当正转动作到A点时,D8140的值是3000。此时闭合X1,机械反转动作到B点,也就是-3000的位置。D8140的值就是-3000。 ·当机械从A点向B点动作过程中,X1断开(如在C点断开)则D8140的值就是200,此时再闭合X0,机械正转动作到A点停止。 ·当机械停在A点时,再闭合X0,因为机械已经在距离原点3000的位置上,故而机械没有动作!

·把程序中的绝对位置指令(DRVA)换成相对位置指令(DRVI): ·当机械在B点时(假设此时D8140的值是-3000)闭合X0,则机械正转3000个脉冲停止,也就是停在了原点。D8140的值为0 ·当机械在B点时(假设此时D8140的值是-3000)闭合X1,则机械反转3000个脉冲停止,也就是停在了左边距离B点3000的位置(图中未画出),D8140的值为-6000。 ·一般两相步进电机驱动器端子示意图: ·FREE+,FREE-:脱机信号,步进电机的没有脉冲信号输入时具有自锁功能,也就是锁住转子不动。而当有脱机信号时解除自锁功能,转子处于自由状态并且不响应步进脉冲。 ·V+,GND:为驱动器直流电源端子,也有交流供电类型。 ·A+,A-,B+,B-分别接步进电机的两相线圈。

嵌入式电机转动控制实验..

《嵌入式系统设计与实例开发》(2011-2012学年第2学期) 实 验 报 告 实验五电机转动控制实验----c语言实现方法

电机转动控制实验—C语言实现方法 一、实验目的 1.熟悉ARM本身自带的六路即三对PWM,掌握相应寄存器的配置。 2.编程实现ARM系统的PWM输出和I/O输出,前者用于控制直流电机,后者用于控制步进电机。 3.了解直流电机和步进电机的工作原理,学会用软件的方法实现步进电机的脉冲分配,即用软件的方法代替硬件的脉冲分配器。 4.掌握带有PWM和I/O的CPU编程实现其相应功能的主要方法。 二、实验内容 学习步进电机和直流电机的工作原理,了解实现两个电机转动对于系统的软件和硬件要求。学习ARM知识,掌握PWM的生成方法,同时也要掌握I/O的控制方法。 1.编程实现ARM芯片的一对PWM输出用于控制直流电机的转动,通过A/D旋钮控制其正反转及转速。 2.编程实现ARM的四路I/O通道实现环形脉冲分配用于控制步进电机的转动,通过A/D 旋钮转角控制步进电机的转角。 3.通过超级终端来控制直流电机与步进电机的切换。 三、预备知识 1、用ARM SDT 2.5或ADS1.2集成开发环境,编写和调试程序的基本过程。 2、ARM应用程序的框架结构。 3、会使用Source Insight 3 编辑C语言源程序。 4、掌握通过ARM自带的A/D转换器的使用。 5、了解直流电机的基本原理。 6、了解步进电机的基本原理,掌握环形脉冲分配的方法。 四、实验设备及工具 硬件:ARM嵌入式开发平台、用于ARM7TDMI的JTAG仿真器、PC机Pentium100以上。 软件:PC机操作系统win98、Win2000或WinXP、ARM SDT 2.51或ADS1.2集成开发环境、仿真器驱动程序、超级终端通讯程序。 五、实验原理 1.直流电机 1)直流电动机的PWM电路原理 晶体管的导通时间也被称为导通角а,若改变调制晶体管的开与关的时间,也就是说通过改变导通角а的大小,如图2-22所示,来改变加在负载上的平均电压的大小,以实现对电动机的变速控制,称为脉宽调制 (PWM)变速控制。在PWM变速控制中,系统采用直流电源,放大器的频率是固定,变速控制通过调节脉宽来实现。 构成PWM的功率转换电路或者采用"H"桥式驱动,或者采用 "T"式驱动。由于"T"式电路要求双电源供电,而且功率晶体管承受的反向电压为电源电压的两倍。因此只适用于小功率低电压的电动机系统。而"H"桥式驱动电路只需一个电源,功率晶体管的耐压相对要求也低些,所以应用得较广泛,尤其用在耐高压的电动机系统中。

五项步进电动机的控制

毕业设计(论文) 学院 专业 姓名

XX大学 毕业设计(论文)任务书

前言 随着现代工业自动化的日益发展,电动机作为重要的电器元件,被广泛的应用在各种自动化控制系统中。步进电动机由于其具有易于电脑操作、步数误差小、精度高、使用系统时间长和成本低等优点,被广泛应用于工业控制中。其中五相混合式步进电机总体性能优于其它种类的步进电动机,是工业上应用最为广泛的步进电动机品种,被广泛的应用在各个领域中。所以对五相步进电动机实现自动化是工业自动化的必然趋势。打印机作为计算机的输出设备之一,运用步进电动机作为打印机的字车动力源和走纸机构,通过牵引机构将步进电动机的转动转变为走纸移动,可以实现打印纸的纵向移动,因其要求精度比较高,所以,打印机的走纸结构能够使用五相步进电动机来控制。对五相步进电动机的使用,工业中应用比较广泛,但大都应用于高精度的机床控制系统中,整个系统比较庞大,所以,本文以步进电动机在的打印机中的精密控制为背景介绍使用PLC控制五相步进电动机按照给定频率自动运行和自由调速的模拟控制方法。

摘要 主要阐述了以五相步进电动机在针式打印机走纸结构中的应用为背景,介绍了一种用三菱FX-2N系列PLC实现对规格型号90BYG550A-0301的五相步进电动机控制的方法,利用PLC产生脉冲信号对五相步进电动机进行模拟控制,实现对五相步进电动机五个绕组的通电状态,达到五相步进电动机按照固定速度的循环自动运行的目的,并实现步进电动机正反转和调速控制。用PLC控制五相步进电动机驱动针式打印机的走纸结构控制纸张的进退,实现打印机的打印工作。基于PLC控制的步进电动机具有设计简单,实现方便,定位精度搞,参数设置灵活等有点,在工业过程控制中使用可靠性高,监控方便。本设计还包括步进电动机的工作原理和特点,PLC的主要功能和应用,各硬件软件元件的介绍选择以及控制程序的编程方法。 关键字:五相步进电动机,PLC控制

步进电机的控制程序

mega16的,16和32管脚兼容,只不过flash大小不一样,不过中断向量号也不一样,你看下自己改改。时钟频率:内部RC 1M 芯片:ULN2003 键值:0 小角度快正转。1 小角度快倒。2 大角度快转。3 大角度快倒。4 小角度正慢转。5 小角度倒慢转。6 大角度正慢转。7 大角度倒慢转。********************************************************************/ #include #include #define uchar unsigned char #define uint unsigned int uchar a=0,b=0; uchar KEY_num=0xe1; unsigned int m=9000; const uchar f1[]={0x02,0x06,0x04,0x0c,0x08,0x09,0x01,0x03}; //正转时序3.75度 const uchar f2[]={0x04,0x06,0x02,0x03,0x01,0x09,0x08,0x0c}; //倒转时序3.75度 const uchar f3[]={0x01,0x02,0x04,0x08}; //正转时序7.5度 const uchar f4[]={0x01,0x08,0x04,0x02}; //倒转时序7.5度 void delay(int k) //延时 { int i; for(i=0;i

实验6(步进电机实验)

实验6:步进电机实验 一、实验目的 了解直流电机和步进电机的工作原理 学会Linux下用软件的方法实现步进电机的脉冲分配,用软件 的方法代替硬件的脉冲分配器 二、实验内容 学习步进电机的工作原理,了解实现电机转动对于系统的软件和硬件要求。学习ARM知识,要掌握I/O的控制方法。Linux下编程实现ARM的四路I/O通道实现环形脉冲分配用于控制步进电机的转动。 三、预备知识 C语言的基础知识、程序调试的基础知识和方法,Linux的基本操作。Linux关于module的必要知识。 四、实验设备及工具 硬件:UP-NETARM2410-S嵌入式实验平台、PC机Pentium 500以上,硬盘10G以上 软件:PC机操作系统REDHAT LINUX 9.0+MINICOM+ARM-LINUX开发环境 五、实验原理 1、步进电机概述 步进电机是一种能够将电脉冲信号转换成角位移或线位移的机电元件,它实际上是一种单相或多相同步电动机。单相步进电动机有单路电脉冲驱动,输出功率一般很小,其用途为微小功率驱动。多相步进电动机有多相方波脉冲驱动,用途很广。使用多相步进电动机时,单路电脉冲信号可先通过脉冲分配器转换为多相脉冲信号,在经功率放大后分别送入步进电动机各相绕组。每输入一个脉冲到脉冲分配器,电动机各相的通电状态就发生变化,转子会转过一定的角度(称为步距角)。正常情况下,步进电机转过的总角度和输入的脉冲数成正比;连续输入一定频率的脉冲时,电动机的转速与输入脉冲的频率保持严格的对应关系,不受

电压波动和负载变化的影响。由于步进电动机能直接接收数字量的输入,所以特别适合于微机控制。 2、步进电机的种类 目前常用的步进电机有三类: 1、反应式步进电动机(VR)。它的结构简单,生产成本低,步距角可以做的相当小,但动态性能相对较差。 2、永磁式步进电动机(PM)。它的出力大,动态性能好;但步距角一般比较大。 3、混合步进电动机(HB)。它综合了反应式和永磁式两者的优点,步距角小,出力大,动态性能好,是性能较好的一类步进电动机。 3、步进电机的工作原理 现以反应式三相步进电机为例说明其工作原理。定子铁心上有六个形状相同的大齿,相邻两个大齿之间的夹角为60度。每个大齿上都套有一个线圈,径向相对的两个线圈串联起来成为一相绕组。各个大齿的内表面上又有若干个均匀分布的小齿。转子是一个圆柱形铁心,外表面上圆周方向均匀的布满了小齿。转子小齿的齿距是和定子相同的。设计时应使转子齿数能被二整除。但某一相绕组通电,而转子可自由旋转时,该相两个大齿下的各个小齿将吸引相近的转子小齿,使电动机转动到转子小齿与该相定子小齿对齐的位置,而其它两相的各个大齿下的小齿必定和转子的小齿分别错开正负1/3的齿距,形成“齿错位”,从而形成电磁引力使电动机连续的转动下去。 和反应式步进电动机不同,永磁式步进电动机的绕组电流要求正,反向流动,故驱动电路一般要做成双极性驱动。混合式步进电动机的绕组电流也要求正,反向流动,故驱动电路通常也要做成双极性。 4、开发板中步进电机控制的实现 本开发板中使用的步进电机为四相步进电机。转子小齿数为64。 系统中采用四路I/O进行并行控制,ARM控制器直接发出多相脉冲信号,在通过功率放大后,进入步进电机的各相绕组。这样就不再需要脉冲分配器。脉冲分配器的功能可以由纯软件的方法实现。

基于单片机的步进电动机控制器的设计

第一部分培训软件简介 Proteus软件是英国Lab Center Electronics公司出版的EDA工具软件(该软件中国总代理为广州风标电子技术有限公司)。它不仅具有其它EDA工具软件的仿真功能,还能仿真单片机及外围器件。它是目前比较好的仿真单片机及外围器件的工具。虽然目前国内推广刚起步,但已受到单片机爱好者、从事单片机教学的教师、致力于单片机开发应用的科技工作者的青睐。 Proteus是世界上著名的EDA工具(仿真软件),从原理图布图、代码调试到单片机与外围电路协同仿真,一键切换到PCB设计,真正实现了从概念到产品的完整设计。是目前世界上唯一将电路仿真软件、PCB设计软件和虚拟模型仿真软件三合一的设计平台,其处理器模型支持8051、HC11、PIC10/12/16/18/24/30/DsPIC33、AVR、ARM、8086和MSP430等,2010年又增加了Cortex和DSP系列处理器,并持续增加其他系列处理器模型。在编译方面,它也支持IAR、Keil和MATLAB等多种编译器。 Keil C51是美国Keil Software公司出品的51系列兼容单片机C语言软件开发系统,与汇编相比,C语言在功能上、结构性、可读性、可维护性上有明显的优势,因而易学易用。Keil提供了包括C编译器、宏汇编、连接器、库管理和一个功能强大的仿真调试器等在内的完整开发方案,通过一个集成开发环境(μVision)将这些部分组合在一起。运行Keil软件需要WIN98、NT、WIN2000、WINXP等操作系统。如果你使用C语言编程,那么Keil几乎就是你的不二之选,即使不使用C语言而仅用汇编语言编程,其方便易用的集成环境、强大的软件仿真调试工具也会令你事半功倍。 第二部分培训项目实例 培训项目一:基于单片机的步进电动机控制器的设计 项目要求: 采用单片机对步进电机进行控制,包括正转、反转、加速、减速和停止,同时采用液晶显示屏显示步进电动机的运行情况。 培训目的: 1.掌握步进电机的工作原理;

步进电动机概念及其工作原理

步进电动机概念及其工作原理 步进电动机是一种将脉冲信号变换成相应的角位移(或线位移)的电磁装置,是一种特殊的电动机。一般电动机都是连续转动的,而步进电动机则有定位和运转两种基本状态,当有脉冲输入肘步进电动机一步一步地转动,每给它一个脉冲信号,它就转过一定的角度。步进电动机的角位移量和输入脉冲的个数严格成正比,在时间上与输入脉冲同步,因此只要控制输入脉冲的数量、频率及电动机绕组通电的相序,便可获得所需的转角、转速及转动方向。在没有脉冲输入时,在绕组电源的激励下气隙磁场能使转子保持原有位置处于定位状态。步进电动机按其输出转矩的大小来分,可以分为快速步进电动机和功率步进电动机。快速步进电动机连续工作频率高而输出转矩较小,一般在N·cm级,可以作为控制小型精密机床的工作台(例线切割机床)也可以和液压转矩放大器组成电液脉冲马达去驱动数控机床的工作台,而功率步进电动机的输出转矩就比较大是N·m级的,可以直接去驱动机床的移动部件。步进电动机按其励磁相数,可以分为三相、四相、五相、六相甚至八相。一般来说随着相数的增加,在相同频率的情况下,每相导通电流的时间增加,各相平均电流会高些,仍而使电动机的转速—转矩特性会好些,步距角亦小。但是随着相数的增加,电动机的尺寸就增加,结构亦复杂,目前多用3~6相的步进电动机。由于步进电动机的转速随着输入脉冲频率变化而变化,调速范围很广,灵敏度高,输出转角能够控制,而且输出精度较高,又能实现同步控制,所以广泛地使用在开环系统中,也还可用在一般通用机床上,提高进给机构的自动化水平。步进电动机按其工作原理来分,主要

有磁电式和反应式两大类,这里只介绍常用的反应式步进电动机的工作原理,现用下图的步进电动机的简化图来加以说明。 在电动机定子上有A、B、C三对磁极,磁极上绕有线圈,分别称之为A相、B 相和C相,而转子则是一个带齿的铁心,这种步进电动机称之为三相步进电动机。如果在线圈中通以直流电,就会产生磁场,当A、B、C三个磁极的线圈依次轮流通电,则A、B、C三对磁极就依次轮流产生磁场吸引转子转动。首先有一相线圈(设为A相)通电,则转子1、3两齿被磁极A吸住,转子就停留在图5—5a的位置上。然后,A相断电,6相通电,则磁极A的磁场消失磁极B产生了磁场,磁极召的磁场把离它最近的2、4两齿吸引过去,停止在图b的位置上,这时转子逆时针转了30°。再接下去B相断电,C相通电。根据同样道理,转子又逆时针转了30°,停止在图c的位置上。若再A相通电,C相断开,那么转子再逆转30°,使磁极A的磁场把2、4两个齿吸住。定子各相轮流通电一次转子转过一个齿。这样按A→B→C→A→B→C→A→…次序轮流通电,步进电动机就一步一步地按逆时针方向旋转。通电线圈每转换一次,步进电动机旋转30°,我们把步进电动机每步转过的角度称之为步距角。如果把步进电动机通电线圈转换的次序倒过来换成A→C→B→A→C→B→…的顺序,则步进电动机将按顺时针方向旋转,所以要改变步进电动机的旋转方向可以在仸何一相通电时进行。 步进电动机

电机传动与控制实验指导书

实验一步进电机基本原理实验 一、实验目的 1、了解步进电动机的基本结构和工作原理。 2、掌握步进电机驱动程序的设计方法。 二、实验原理 步进电动机又称为脉冲电机,是工业过程控制和仪表中一种能够快速启动、反转和 制动的执行元件。其功能是将电脉冲转换为相应的角位移或直线位移。步进电动机的运 转是由电脉冲信号控制的,步进电动机的角位移量或线位移量与脉冲数成正比,每给一 个脉冲,步进电机就转动一个角度(步距角)或前进/倒退一步。步进电机旋转的角度由 输入的电脉冲数确定,所以,也有人称步进电动机为一个数字/角度转换器。 当某一相绕阻通电时,对应的磁极产生磁场,并与转子形成磁路,这时,如果定子 和转子的小齿没有对齐,在磁场的作用下,由于磁通具有力图走磁阻最小路径的特点, 转子将转动一定的角度,使转子与定子的齿相互对齐,由此可见,错齿是促使电机旋转 的原因。 四相步进电动机以四相单四拍、四相双四拍、四相八拍方式工作时的脉冲分配表如 表1,表2和表3 表1 四相单四拍脉冲分配表表2 四相双四拍脉冲分配表 表3 四相八拍脉冲分配表 如步进电动机每一相均停止通电,则电机处于自由状态;若某一相一直通直流电时,

则电机可以保持在固定的位置上,即停在最后一个脉冲控制的角位移的终点位置上,这样,步进电动机可以实现停车时转子定位。这就是步进电动机的自锁功能。当步进电机处于自锁时,若用手旋转它,感觉很难转动。 三、实验步骤: 1.将DRYDC-A型运动控制台的电源线和串行通信接口线连接好。 2.打开DRMU-ME-B综合实验台的电源总开关,开关电源的开关,采集仪开关。 启动硬件设备。 3.打开计算机,从桌面或程序组运行DRLink主程序,然后点击DRLink快捷 工具条上的“联机注册”图标,选择“DRLink采集主卡检测”进行注册。 没有使用信号采集主卡的用户可选择:“局域网服务器”进行注册,此时,必需在对话框中填入DRLink服务器的主机IP地址。 4.点击DRLink快捷工具条上“文件夹”图标,出现文件选择对话框,在实验 目录中选择“步进电机基本原理”实验,并启动该实验。 5.点击该实验脚本中的“开关”按钮,向运动控制卡下载实验程序。 6.本实验中先做步进电机的驱动实验:选择运行方式为“连续驱动”,依次选 择步进电机的工作方式为:四相单四拍、四相双四拍、四相八拍;方向可以是任意的;脉冲间隔参数可用5~10ms。点“电机驱动”按钮,驱动电机工作。观察电机的工作情况。(对于四相八拍的工作方式,脉冲间隔最小可以到2ms)终止电机运行请在运行方式中选择“停止保持”或“停止不保持”。 7.步进电机的自锁实验:运行方式选择“停止保持”,其它参数不变,点“电 机驱动”按钮。可以使步进电机某相通电,处于“自锁”状态。此时,用手转动电机的皮带轮,可以感到转动比较困难。 8.步进电机的步距角演示:运行方式选择“单步驱动”,点“电机驱动”按钮。 每点击一次“电机驱动”按钮,步进电机旋转一个角度,这个角度就是步距角。对于本实验台步距角为1.8o。 除了可以使用DRLink平台下的实验脚本进行本实验外,还可以使用C-51的C语言程序进行本实验。本运动控制平台在内部使用了DRMC-A型运动控制卡,其CPU是ADUC842,关于ADUC842的硬件的详细信息,请参考我们提供的pdf 文档。在DRMC-A型运动控制台,步进电机的端口地址:0x8000,用低4位表示电机的4相,1表示发送脉冲,0表示空。根据步进电机的工作方式的脉冲分配表(表1~3),逐步向端口的低4位写入0和1就可以了。具体的程序请参考StepMotor1.c~StepMotor5.c。在生成执行代码后,按运动控制台的“PRG”+“RST”按钮后,使用Windows Serial Downloader将执行程序下载到单片机内。

步进电动机控制系统设计

安徽机电职业技术学院 毕业论文 步进电动机控制系统设计 系(部)电气工程系 专业电机与电器 班级电机3091 姓名徐亮 学号1306093050 指导教师陈莉娟 2011~2012学年第1学期

指导教师评语 等级签名日期

安徽机电职业技术学院2012届毕业生 毕业设计(论文)成绩评定单成 姓名专业电机与电器班级电机3091 课题 评分标准分值得分 指导教师评语(40分)设计方案合理、实用、经济、原理分析正确、严密,内容完整。10 计算方法正确,计算结果准确,程序设计正确简洁,工艺合理。5 元器件(材料)选择合理,明细表规范。5 图面清晰完整,布局、线条粗细合理,符合国家标准。 5 文字叙述简明扼要,书写规范。 5 按时独立完成,同学相互关心,遵守制度,认真负责。10 合计得分:指导教师签名:日期:年月日 评阅教师评分(30分)内容充实,有阶段性成果,有应用价值。 10 图纸、论文如实反映设计成果,有理论分析,又有实践过程。10 语句通顺,思路清晰,符合逻辑。 5 图标清晰,文字工整,字符和曲线标准化。5 合计得分:评阅教师签名:日期:年月日 答辩评分(30分)自述条理明确,重点突出。5 基本概念清楚,回答问题正确。 15 专业知识运用灵活,解决问题技术措施合理。10 合计得分:答辩组长签名:日期:年月日 总得分:等级系主任签名:日期:年月日

安徽机电职业技术学院毕业论文(设计)指导过程记录表题目基于过程控制的PID控制器设计 学生姓名学号1305073059指导教师徐林 系部电气系班级过自3071顺序号第1-6次 学生完成毕业论文(设计)内容情况第一周:指导老师布置毕业设计课题,要求学生查阅有关毕业设计的相关资料; 第二周:指导老师带领学生到实验室熟悉实验设备,并要求每个学生都能熟练掌握实验设备的使用方法; 第三周:在指导老师的指导下,完成双容水箱的简单PID控制系统设计; 第四周:在指导老师的带领下,到实验室完成双容水箱的简单PID 控制系统的实验并记录相关实验数据。 第五周:在指导老师的指导下,完成前馈—反馈控制系统的设计; 第六周:在指导老师的带领下,到实验室完成前馈—反馈控制系统的实验并记录相关实验数据,并且和双容水箱的简单PID控制系统的实验数据相比较,得出结论:前馈-反馈控制系统不仅能够改善简单PID控制系统的控制效果,而且具有更大的灵活性、抗干扰性、 适应性和更好的控制精度。 学生签名: 时间:年月日 教师指导 内容记录 教师签名: 时间:年月日

实验五 步进电机单轴定位控制实验

方向信号 (a) 脉冲+方向 (b) 正脉冲+负脉冲 实验五 步进电机单轴定位控制实验 一、实验目的 1. 学习和掌握步进电机及其驱动器的操作和使用方法; 2. 学习和掌握步进电机单轴定位控制方法; 3.学习和掌握PLC 单轴定位模块的基本使用方法。 二、实验原理 步进电动机是一种将电脉冲信号转换为相应的角位移或直线位移量的机电执行元件,即步进电动机输入的是电脉冲信号,输出的是角位移或直线位置。每给一个脉冲,步进电动机转动一个角度,这个角度称为步距角。运动速度正比于脉冲频率,角位移正比于脉冲个数。 步进电动机典型控制系统框图如图1-2-9所示。 图1-2-9 步进电动机典型控制系统框图 位置控制单元可根据需要的频率和个数以及设定的加减时间控制步进电动机运动。 由于步进电动机需要正反转运动,因此定位单元的输出脉冲形式有“脉冲+方向”和“正脉冲+负脉冲”两种,它们均可控制步进电动机正反转运动。输出脉冲形式通过参数设定来选择。其脉冲形式如图1-2-10所示。 图1-2-10 定位模块的两种输出脉冲形式

PLS ) 由于步进电动机的电磁惯性和所驱动负载的机械惯性,速度不能突变,因此定位模块要控制升降频过程。步进电机升、降频过程如图1-2-11。一般情况下,S 2=S 3。 图 1-2-11 步进电机升、降频示意图 其中:f 1——设定的运行频率,应小于步进电动机的最高频率; S 1——设定的总脉冲个数; S 2——升频过程中脉冲个数,由加速时间和运行频率确定; S 3——降频过程中脉冲个数,由减速时间和运行频率确定。 步进电动机驱动器将位置定位模块的输出脉冲信号进行分配并放大后驱动步进电动机的各相绕组,依次通电而旋转。驱动器也可接受两种不同形式的脉冲信号,通过开关来选择,定位模块和驱动器的脉冲形式要相同。另外,为了提高步进电动机的低频性能,驱动器一般具有细分功能,多个脉冲步进电动机转动一步,细分系数一般为1、2、4、8、16、32等几种,通过拨码开关来设定。 步进电动机驱动生产机械的运动部件。 图1-2-12 实验系统结构框图 位置定位模块、步进电动机及驱动器种类很多,本实验中采用的是三菱FX2N 系列PLC 中的双轴定位模块FX2N-20GM ,该模块与PLC 相连,可以单独或同时控制两个步进电动机,

步进电机控制系统设计.

毕业设计论文 论文题目:基于单片机的步进电机控制电路板设计 摘要 随着微电子和计算机技术的发展,步进电机的需求量与日俱增,它广泛用于打印机、电动玩具等消费类产品以及数控机床、工业机器人、医疗器械等机电产品中,其在各个国民经济领域都有应用。研究步进电机的控制系统,对提高控制精度和响应速度、节约能源等都具有重要意义。 步进电机是一种能将电脉冲信号转换成角位移或线位移的机电元件,步进电机控制系统主要由步进控制器,功率放大器及步进电机等组成。采用单片机控制,用软件代替上述步进控制器,使得线路简单,成本低,可靠性大大增加。软件编程可灵活产生不同类型步进电机励磁序列来控制各种步进电机的运行方式。 本设计是采用AT89C51单片机对步进电机的控制,通过IO口输出的时序方波作为步进电机的控制信号,信号经过芯片ULN2003驱动步进电机;同时,用 4个按键来对电机的状态进行控制,并用数码管动态显示电机的转速。 系统由硬件设计和软件设计两部分组成。其中,硬件设计包括AT89C51单片机的最小系统、电源模块、键盘控制模块、步进电机驱动(集成达林顿ULN2003)模块、数码显示(SM420361K数码管)模块、测速模块(含霍尔片UGN3020)6个功能模块的设计,以及各模块在电路板上的有机结合而实现。软件设计包括键盘控制、步进电机脉冲、数码管动态显示以及转速信号采集模块的控制程序,最终实现对步进电机转动方向及转动速度的控制,并将步进电机的转动速度动态显示在LED数码管上,对速度进行实时监控显示。软件采用在Keil软件环境下编辑

************* 第1章绪论 1.1 课题背景 当今社会,电动机在工农业生产、人们日常生活中起着十分重要的作用。步进电机是最常见的一种控制电机,在各领域中得到广泛应用。步进电机作为执行元件,是机电一体化的关键产品之一, 广泛应用在各种自动化控制系统中。 随着微电子和计算机技术的发展,步进电机的需求量与日俱增,在各个国民经济领域都有应用。步进电机是一种将电脉冲转化为角位移的执行机构。当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(称为“步距角”),它的旋转是以固定的角度一步一步运行的。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。步进电机可以作为一种控制用的特种电机,其优点是结构简单、运行可靠、控制方便。尤其是步距值不受电压、温度的变化的影响、误差不会长期积累的特点,给实际的应用带来了很大的方便。它广泛用于消费类产品(打印机、照相机、雕刻机)、工业控制(数控机床、工业机器人)、医疗器械等机电产品中。研究步进电机的控制和测量方法,对提高控制精度和响应速度、节约能源等都具有重要意义。控制核心采用C51芯片,它以其独特的低成本,小体积广受欢迎,当然其易编程也是不可多得的优点为此,本文设计了一个单片机控制步进电机的控制系统,可以实现对步进电机转动速度和转动方向的高效控制。 1.2 设计目的及系统功能 本设计的目的是以单片机为核心设计出一个单片机控制步进电机的控制系统。本系统采用AT89C51作为控制单元,通过键盘实现对步进电机转动方向及转动速度的控制,并且将步进电机的转动速度动态显示在LED数码管上。 1

步进电机控制及其汇编程序

综合实践报告之第二次大作业 题目:步进电机控制设计 说明:在工业电气自动化工程中,步进电机是一种常用的控制设备,它以脉冲信号控制电机的转速,在数控机床、仪器仪表、计算机外围设备以及其它自动设备中有广泛的应用。 步进电机是指一步步走的电动机,所谓“步”指转动角度,每步都会使电机转过一个固定的角度。步进电机有不同的种类,但其控制方法均相同,均以脉冲信号进行驱动,很适合使用单片机来进行控制。 本次大作业要求设计一个步进电机的控制部分。 已知: 采用2相制5线步进电机,其结构如下图所示,线圈中心抽头X1与X2连接在一起; B 相X1A 相 2相步进电机 步进电机采用1相激磁法,即在每一个瞬间只有一个线圈导通,其它线圈休息; 单片机与步进电机之间可采用ULN2003类的驱动IC ; 要求: 查找资料,设计出步进电机的硬件连接电路图; 给出控制软件流程图; 用汇编语言写出控制软件的代码。 提示:本作业对电机的转动方向不做要求,在实际应用中,改变线圈激磁的顺序可以改变步进电机的转动方向,每送一次激磁信号后应经过一小段时间延时,让步进电机有足够的时间建立激励磁场及转动。可以使用单片机的~端口输出控制信号,经驱动IC 传至步进电机。

电路图设计说明 此控制电路选用AT89S51型单片机作为驱动时序的输出控制器,其输出作为两相四线步进电机的时序信号,经过驱动芯片ULN2003放大后输入到两相四线步进电机的输入端口;单片机作为控制指令的输入按键K1-K3的输入端口,K1为电机正转按键,K2为电机正转按键,K3为电机停止按键,这三个按键均为高电平输入有效,按一下K1电机正转,按一下K2电机反转转,按一下K3电机停止。其硬件电路如图一: 控制程序流程图

基于51系列单片机控制步进电机调速实验 (自动保存的)

基于51系列单片机控制步进电机调速实验 实验指导书 仇国庆编写 重庆邮电大学自动化学院 自动化专业实验中心 2009年2月

基于51系列单片机控制步进电机调速实验 实验目的及要求: 1、熟悉步进电机的工作原理 2、熟悉51系列单片机的工作原理及调试方法 3、设计基于51系列单片机控制的步进电机调速原理图(要求实现电机的速度反馈测量,测量方式:数字测量) 4、实现51系列单片机对步进电机的速度控制(步进电机由实验中心提供,具体型号42BYG )由按钮控制步进电机的启动与停止;实现加速、匀速、和减速控制。速度设定由键盘设定,步进电机的反馈速度由LED 数码管显示。 实验原理: 步进电机控制原理 一般电动机都是连续旋转,而步进电动却是一步一步转动的,故叫步进电动机。步进电机是数字控制电机,它将脉冲信号转变成角位移,即给一个脉冲信号,步进电机就转动一个角度,因此非常适合于单片机控制。步进电机可分为反应式步进电机(简称VR)、永磁式步进电机(简称PM)和混合式步进电机(简称HB)。因此步进电动机是一种把脉冲变为角度位移(或直线位移)的执行元件。步进电动机的转子为多极分布,定子上嵌有多相星形连接的控制绕组,由专门电源输入电脉冲信号,每输入一个脉冲信号,步进电动机的转子就前进一步。由于输入的是脉冲信号,输出的角位移是断续的,所 以又称为脉冲电动机。随着数字控制系统的发展,步进电动机的应用将 逐渐扩大。 步进电机区别于其他控制电机的最大特点是,它是通过输入脉冲信号来 进行控制的,即电机的总转动角度由输入脉冲数决定,而电机的转速由 脉冲信号频率决定。步进电机的驱动电路根据控制信号工作,控制信号 可以由单片机产生。 电机转子均匀分布着很多小齿,定子齿有三个励磁绕阻,其几 何轴线依次分别与转子齿轴线错开。0、1/3て、2/3て,(相邻 两转子齿轴线间的距离为齿距以て表示),即A与齿1相对齐, B与齿2向右错开1/3て,C与齿3向右错开2/3て,A'与齿5相对齐,(A'就是A,齿5就是齿1)下面是定转子的展开图:(图2所示)

步进电动机控制系统设计报告

单片机原理与应用课程设计说明书 题目:步进电动机控制系统设计 系部: 专业: 班级:2013级1班 学生姓名: 学号: 指导教师: 2013年 6 月22 日

目录 1.项目设计任务与要求 (1) 2.项目设计方案 (1) 2.1设计思路 (1) 2.2器件选择方案 (1) 2.2.1 单片机的选择 (1) 2.2.2 AT80C51的主要性能 (1) 2.2.3 AT80C51引脚图 (2) 2.2.4 管脚作用: (2) 2.2.5 四相步进电动机工作原理 (3) 3 .硬件电路设计 (5) 3.1步进电动机介绍 (5) 3.2 步进电动机控制系统电路设计 (5) 3.3步进电动机驱动电路 (5) 3.4按键与指示电路 (6) 3.5晶振电路和复位电路 (8) 4.项目软件设计 (9) 5.项目仿真与调试 (12) 5.1程序的调试 (12) 5.2步进电动机控制系统仿真 (13) 5.2.1步进电动机正转仿真 (13) 5.2.2步进电动机反转仿真 (14) 5.2.3步进电动机停止仿真 (14) 6.结论 (15) 7.附录 (16) 参考文献 (18)

1.项目设计任务与要求 使用80C51单片机对四相步进电动机进行控制,使其能够顺时针或逆时针旋转。 1)电动机运行平稳,正反转控制自如; 2)根据要求改变运行圈数和运行速度; 3)写出详细的电路工作原理、参数计算; 4)画出仿真电路图; 5)仿真测试并记录结果。 2.项目设计方案 2.1设计思路 步进电动机驱动原理如下:单片机发出脉冲信号,控制步进电动机定子的各相绕组以适当的时序通、断电,使其作步进式旋转。四相步进电动机各相绕组的通电顺勋可以单四拍(A→B→C→D)、双四拍(AB→BC→CD→DA)和单双八拍(A→AB→B→BC →C→CD→D→DA)的方式进行。按上述顺序切换,步进电动机转子按顺时针方向旋转。若通电顺序相反,则电动机转子按逆时针方向旋转。 2.2器件选择方案 2.2.1 单片机的选择 本设计采用AT80C51单片机,80C51单片机算术运算功能强,软件编程灵活、自由度大,可用软件编程实现各种算法和逻辑控制,并且其功耗低、体积小、价格便宜、耗电低、技术成熟和成本低等优点。许多功能部件集成在芯片内部,其信号通道受外接影响小,可靠性高,控制能力强,运行速度快等特点。 2.2.2 AT80C51的主要性能 1.与STC89C52 单片机产品系列兼容; 2.片内有4KB可在线重复编程的快闪擦写存储器; 3.存储数据保存时间为10年; 4.宽工作电压范围:VCC可为2.7V到6V; 5.全静态工作:可从0Hz至16MHz ; 6.程序存储器具有3级加密保护; 7.128*8位内部RAM; 8.32条可编程I/O线; 9.两个16位定时器/计数器; 10.中断结构具有5个中断源和2个优先级; 11.可编程全双工串行通道;

相关文档
最新文档