细菌纤维素在造纸工业中的应用

细菌纤维素在造纸工业中的应用
细菌纤维素在造纸工业中的应用

细菌纤维素在造纸工业中的应用

自然界中的纤维素有植物纤维素、海藻纤维素和细菌纤维素(Bacterialcellulose)等多种,是地球上最为丰富的生物聚合物.一般认为合成纤维素是植物特有的功能,但也有少数微生物,能在一定条件下合成纤维素.细菌纤维素是某些微生物进行生物合成的纤维素的统称,也称微生物纤维素.现已知道,在各种不同条件下能合成纤维素的微生物有醋酸菌属(Acetobacter)、土壤杆菌属(Agrobacterium)、假单胞杆菌属(Pseudomonas)、无色杆菌属(Achrombacter)、产碱杆菌属(Alcaligenes)、气杆菌属(Aerobacter)、固氮菌属(Azotobacter)、根瘤菌属(Rhizabium)和八叠球菌属(Sarcina)等.目前,真正能够批量工业化生产细菌纤维素且合成能力最强的是醋酸菌属中的木醋杆菌(Acetobacterxylium)[1].自1886年Brown首次报道细菌能合成纤维素,至今已有一百多年的历史.由于实验手段的制约以及纤维素的产量较低,有关研究长期未受到足够的重视.近十几年,随着分子生物学的快速发展和体外无细胞体系的应用,对细菌纤维素的生物合成机制已有了相当深入的研究,同时在细菌纤维素的应用方面也有了较大的进展,在声音振动膜、高强度纸制品、食品、新型伤口包扎材料、人造皮肤等产品的制造上己进入实用化阶段,并在其他许多方面具有广泛的商业化应用潜力,目前正成为国内外生物材料研究的热点之一.

1 细菌纤维素的结构特点及功能特性

细菌纤维素与天然纤维素结构非常相似,都是由葡萄糖以β-1,4-糖苷键连接而成的高分子化合物.与其它形式的纤维所不同的是,细菌纤维素具有很神奇的物理结构——一个错综复杂的键接网络结构,而不是可分开检测长度的单根纤维.图1给出了沉积到造纸网上的植物纤维普通显微镜照片,图2为活化后的细菌纤维分散体的电镜照片[3].细菌纤维素还具有以下独特的功能特性[2~8].

细菌纤维非常纤细——一根典型的细菌纤维线宽仅有0.1μm,而针叶木浆纤维的宽度至少有30μm,即使棉花纤维的宽度也约为15μm;

比表面积越大——具有比针叶木浆大200倍的比表面积,氢键结合的能力强,作为胶粘剂具有广阔应用前景,非常低浓度的细菌纤维,就可以很容易地粘结无机

或有机粒子以及纤维;

高结晶度和高化学纯度——细菌纤维不含半纤维素、木素和其他细胞壁成分,是100%的纤维素;

成膜性能良好——干燥时,细菌纤维结合到纸页表面或成膜,细菌纤维素膜的抗撕能力比聚乙烯膜和聚氯乙烯膜要强5倍;

高抗张强度和弹性模量——经洗涤、干燥后,杨氏模数可达10MP,经热压处理后,其杨氏模数可达30MP,比有机合成纤维的强度高4倍;

极强的水结合性——其内部有很多“孔道”,有良好的透气、透水性能,能吸收60~700倍于其干重的水份,即有非凡的持水性,同时具有高湿强度;

良好的生物适应性和生物可降解性——作为烧伤病人和慢性皮肤溃烂患者的生物敷料,具有良好的生物适应性,而且具有生物合成时性能的可调控性.

2 细菌纤维素在造纸工业中的应用现状

2.1 细菌纤维素作为添料在造纸工业中的广泛应用

细菌纤维和植物纤维虽然化学组成相同,但微观结构存在差异.由于细菌纤维素的结构特点和特性(如:纯度、结晶度和机械强度较高,具有较大表面积的网状结构),细菌纤维素湿膜经打浆分散后受到切断、吸水润胀和细纤维化等作用,制得的细菌纤维能很好地与植物纤维结合,具有良好的抄造特性,可作为进一步开发特种纸或功能纸的造纸原料.从目前已开展的应用工作来看,不必采用特殊的添加方法,就可开发出简单的细菌纤维添料纸制造方法.细菌纤维素比表面积大,氢键结合的能力强,并具有优异的成膜性能,使其可被用作胶粘剂、增稠及悬浮试剂,低浓度的细菌纤维浓度可以产生粘滞的悬浮液,与其它增稠剂相比,只要更低的浓度就可产生相同的粘度,这种溶液可以倾泻、泵送或喷射,作为造纸湿部中的胶粘剂和增粘剂具有广阔的应用前景[1]:

WeyerhaeuserCo.用涂层用量0.5%的细菌纤维素生产一种新等级的印刷纸——其性能介于涂布纸及未涂布纸之间.具有更平滑、更好印刷性能的表面,而同时又保留其原纸的亮度及光泽度.

HiokiShinya使用超声粉碎器分散细菌纤维素,所得的浆液加入到纸浆中增加纸张强度.随着细菌纤维素含量的加入,化学热磨机械浆(CTMP)纸张的杨氏模量、抗张强度、耐折度等明显地增加.强度的增加是因为细菌纤维有很大的表面积,氢键形成较强烈造成.纸张的多孔性也随着细菌纤维素的添加而减少.但细菌纤维素的添加量大于40%时,成纸的不透明度逐渐下降.

TguchiMasatushi将细菌纤维素膜打散后的细菌纤维素和木浆混合,并添加适量风干的苯酚树脂,抄造成纸张,具有很好的抗膨胀性能和良好的弹性. KatsuraToru把经过染色的细菌纤维素添加到植物纤维中,制造一种新型的防伪纸.这种防伪纸具有良好的鉴别性和很高的表层强度.

SatoTatsuya在植物原料中添加细菌纤维素,制造一种新型薄层印刷纸.植物纤维和细菌纤维的加入比例为(99.5/0.5)~(85/15).即使在定量很小时,这种纸张针孔也很少,而且纸张强度及印刷性能也得到提高,印刷时油墨产生的冲击力很难使纸张破裂.这种纸张可应用于大字典和词汇手册.

Ajinomoto与三菱造纸工厂开发出了添加细菌纤维素的特种纸品,可用作纸质流通货币.

此外,利用细菌纤维的粘合作用和高比表面积,在制造吸收有毒气体的碳纤维纸板时,加入细菌纤维可提高碳纤维板的吸附容量,减少纸中填料的泄漏.

2.2 细菌纤维素作为胶粘剂在无纺布中的应用[3]

不仅如此,细菌纤维素的结构特点和功能特性,使之能代替或与各种常用的树脂用于无纺布中作粘合剂.细菌纤维素作为粘合剂能够改善无纺布包括强度、透气、亲水性以及最终产品的手感等在内的许多性能,所适用的纤维包括当前广泛使用于无纺布的各类纤维,如人造纤维、尼龙、聚酯、木材纤维以及其它用于其它无纺布的材料,如玻璃纤维、碳纤维以及凯夫拉尔(Kevlar)等.

美国的J.Miskiel把细菌纤维素分别用于热磨机械浆与硫酸盐浆、人造纤维、凯夫拉尔、木浆与聚酯以及玻璃纤维进行手抄纸试验[4].结果表明,使用细菌纤维素作为粘合剂进行热磨机械新闻纸浆(TNP)与半漂硫酸盐针叶木浆(SBK)抄纸试验,随着细菌纤维素的加入,纸张抗张强度明显增加而不会造成纸张撕裂度损失.当用细菌纤维素作为胶粘剂用于人造丝及凯夫拉尔中进行无纺布抄造时,随着细菌纤维素的增加,纸张的干湿强度都迅速的提高,而且干强度的增加比湿强度要快,效果非常明显,则对人造丝的效果比凯夫拉尔更明显.另外,用细菌纤维素作为胶粘剂用于聚酯和木浆混合抄造无纺布时,随着细菌纤维素的增加,纸张抗张指数及撕裂指数都明显的增加,说明了细菌纤维素作为胶粘剂对聚酯与木浆混抄无纺布也非常有效.而且,研究数据表明,细菌纤维素作为胶粘剂与胶乳相比时,对撕裂指数的效果至少是同等的,但抗张强度的提高明显优于胶乳,这从图3中可明显的看出.

此外,实验中将聚酯与木浆的配比发生了大范围的变化(1∶1到1∶6.7),但随着细菌纤维素的增加,抗张强度基本上都按着图3中的曲线变化;而使用胶乳时,聚酯用量下降后,无纺布的抗张指数就跟着下降.这表明,使用细菌纤维素作为无纺布的胶粘剂可以减少昂贵聚酯的用量.细菌纤维素作为无纺布的粘合剂功能可以通过扫描电镜(SEM)进行较好地解析.图4演示的是由95%的玻璃纤维及5%的细菌纤维抄出的无纺布扫描电镜图片,图5是由90%的聚酯纤维及10%的细菌纤维抄出的无纺布扫描电镜图片[4].虽然两张图片的放大倍数不一样,其中细菌纤维均扮演着粘合纤维并起到为其它纤维提供成型的作用.细菌纤维素的结合机理是由于细菌纤维网状结构分布以及粘附到基材表面的物理缠结造成的,并没有渗透到其他纤维的内部.细菌纤维素的高比表面积及其产生的强有力的氢键结合能力促进了这种缠结作用,从而表现出优异的粘结性能.

细菌纤维素粘合能力的适用尺寸范围从极微细的物质(细胞状的木纤维或细菌)

到几个厘米长(多细胞的木纤维).现有研究已经表明,细菌纤维素可以粘合的物质有:天然的、化学处理的以及物理处理的各种木纤维;其它植物纤维或碎片如甘蔗渣、大麻等;合成纤维或碎片如凯夫拉尔、人造纤维以及聚酯;矿物质如高岭土、二氧化钛等.

另一方面,细菌纤维素作为生物材料,具有良好的可生物降解性和生物合成时性能的可调控性.这使得对环境友好的,可回收或可降解的无纺布产品的技术开发成为可能,如纸尿布、一次性医疗防护服等废弃物处理问题的合理解决.可利用微生物在培养液上层生成细菌纤维素,自行编织成天然的无纺布,并可在细菌纤维素合成过程中,通过添加特定的物质,得到所需特性的改性纤维素[9~10].

3 前景展望

造纸原料问题是全世界造纸产业面临的共同难题.通过在纸料中添加功能性材料,克服天然纤维的不足,以生产高质量的纸张或满足特殊领域的需求是造纸专家共同努力的方向之一.细菌纤维素作为一种新型的生物化学材料具有诱人的商业潜力,在造纸工业中已表现出广阔的应用前景,如在涂布材料、增稠剂、增强剂、胶粘剂、高强度纸张、防伪纸制品、高品质薄层印刷纸、可循环使用的婴儿尿布等方面的商业开发.但目前细菌纤维素的生产成本还较高,价格较贵,使得其应用局限于某些高附加值产品的制造过程中.日本、美国等发达国家正致力于细菌纤维素的开发及应用,通过提高微生物的发酵得率,降低生产成本,进一步扩大其应用范围[10~11].我国在这方面的研究开发仍处于起步阶段,国内迄今尚无一家企业从事细菌纤维素的生产和应用.目前的技术障碍主要是发酵水平较低,还无法真正实现产业化.因此,下一步工作应结合基因工程和高密度培养等手段来提高细菌纤维素的合成效率,同时应加强细菌纤维素合成的动力学研究,设计合理的生物反应器,早日实现细菌纤维素在我国的商品化.

细菌纤维素的研究进展

细菌纤维素的研究进展 摘要:细菌纤维素是一种天然的生物高聚物,具有生物活性、生物适应性,具有独特的物理、化学和机械性能,例如高的结晶度、高的持水性、超精细纳米纤维网络、高抗张强度和弹性模量等,因而成为近年来国际上新型生物医学材料的研究热点。概括细菌纤维素的性质,发酵过程,改性方法以及在生物医学材料上的应用。 关键词:细菌纤维素;改性;生物医学材料;应用 0 前言 细菌合成纤维素是在1886年由Brown首次报道的,是胶膜醋酸菌A.xylium 在静置培养时于培养基表面形成的一层白色纤维状物质。后来在许多革兰氏阴性细菌,如土壤杆菌、致瘤农杆菌和革兰氏阳性菌如八叠球菌中也发现了细菌纤维素的产生。细菌纤维素与天然纤维素结构非常相似,都是由葡萄糖以β一1,4一糖苷键连接而成的高分子化合物,此外,细菌纤维素相对于传统的纤维素资源又有其优势,如加工时不用去木质素,可合成高质量的纸张或者加工成任何形状的无纺织物,还可通过发酵条件的改变控制合成不同结晶度的纤维素,从而可根据需要合成不同结晶度的纤维素。 从纤维素的发现至今已有一百多年的历史,但由于无合适的实验手段以及纤维素的产量较低,因此多年来一直未受到足够重视。近十几年来随着分子生物学的发展和体外无细胞体系的应用,细菌纤维素的生物合成机制已有了很深人的研究,同时在细菌纤维素的应用方面也有了很大进展。 1.细菌纤维素的结构特点和理化特性 1.1化学特性 经过长期的研究发现,BC和植物纤维素在化学组成和结构上没有明显的区别,均可以视为是由很多D-吡喃葡萄糖苷彼此以(1-4)糖苷键连接而成的线型高分子,相邻的吡喃葡萄糖的6个碳原子不在一个平面上,而是呈稳定的椅式立体结构。

6种纤维素的作用及来源要点

6种纤维素的作用及来源 维生素A 维生素A:保护眼睛和全身上皮组织间接抵抗各种疾病的感染。缺乏时会造成夜盲、干眼症、角膜软化甚至穿孔、失明以及免疫力低下。维生素A来源于鱼肝油,胡萝卜,动物的肝、肾、乳类、蛋黄,有色蔬菜(南瓜、鸡毛菜、克莱、芥菜、紫菜等)及黄色水果(杏、柿等)。 维生素D 维生素D:可以促进钙、磷的吸收和骨骼正常的生长。缺乏时会患佝楼病。维生素D来源于鱼肝油、肝和蛋,以及日光照射裸露的皮肤在体内形成。 维生素E 维生素E利用它的抗氧化性质来防止心脏病。并且它增进了循环,有助于防止血凝。维生素E也能抵抗某种癌症,延缓衰老,预防白内障。而且对免疫系统正常发挥它的功能也有帮助作用。不过它也可以帮助伤口愈合。成年人的维生素E缺乏症可以通过下述症状来鉴别:过早衰老,肌肉虚弱,走路困难,容易被传染,伤口愈合能力差,容易疲劳。维生素E缺乏涉及到的疾病主要是红血球被破坏、肌肉的变性、贫血症、生殖机能障碍。尽管维生素E是一种脂肪可溶的维生素,并且储存在人体内,但是维生素E是最安全的维生素,而且毒性很小。维生素E的主要食物来源包括麦芽、大豆、植物油、坚果类、芽甘蓝、绿叶蔬菜、菠菜、有添加营养素的面粉、全麦、未精制的谷类制品、蛋。维生素E的建议每日摄入量是400-800IU,而且最好是通过α-维生素E获取。 维生素B1 维生素B1:可以预防神经炎及脚气病等,调节碳水化合物代谢,帮助消化,促进生长发育。缺乏时会引起食欲不振、健忘、不安、易怒、患脚气病,甚至出现惊厥昏迷,心力衰竭。维生素Bl来源于米糠、麦就豆类、花生等。 维生素B2 维生素B2:功用是促进细胞组织氧化,防止皮肤干燥和口、眼症状。缺乏时会发生口角炎、眼炎、舌炎。维生素B2来源于肝、蛋、乳、绿叶蔬菜。 维生素C 维生素C:调节生理机能,促进铁的吸收,提高对传染病及其他疾病的抵抗力。缺乏时会出现坏血病、骨骼生长及造血机能发生障碍,引起生长迟缓。维生素C来源于新鲜水果(以柚、橙。猕猴桃、山植含量高)和新鲜蔬菜(番茄、青椒含量高)。 水和食物纤维的作用

分解纤维素的微生物的分离习题

《分解纤维素的微生物的分离》 1.下列有关微生物培养与应用的说法正确的是( ) A.天然培养基是指直接取自自然界不需加工的培养基 B.接种前需对培养基、培养皿、接种环、实验操作者的双手等进行严格的灭菌处理 C.大肠杆菌的纯化培养过程包括培养基的配制和纯化大肠杆菌两个阶段 D.分离分解尿素的细菌时,尿素是培养基中唯一的氮源和碳源 2.微生物与人类生产、生活密切相关,下列相关说法不合理的是( ) A.土壤中的微生物能降解多种化合物,是大自然的清洁工 B.生活中许多发酵产品需要微生物,如酿醋需要的关键细菌是酵母菌 C.可利用能分解纤维素的微生物分解秸秆,并将其产物转化为乙醇 D.许多微生物也可导致人类患病 3.微生物(除病毒外)需要从外界吸收营养物质,并通过代谢来维持正常的生长和繁殖。下列有关微生物营养的说法正确的是( ) A.纤维素分解菌与硝化细菌所利用的碳源物质是相同的 B.许多微生物(如细菌、放线菌)为原核生物,不含线粒体,所以只进行无氧呼吸,为厌氧型生物 C.培养基中的营养物质浓度越高对微生物的生长越有利 D.生长因子通常是微生物生长必需的,而微生物本身合成这些物质的能力往往不足 4.苯酚是工业生产排放的有毒污染物质,自然界中存在着降解苯酚的微生物,某工厂产生的废水中含有苯酚,为了降解废水中的苯酚,研究人员从土壤中筛选获得了只能降解利用苯酚的细菌菌株,筛选的主要步骤如下图所示,①为土壤样品。下列相关叙述错误的是( ) A.使用平板划线法可以在⑥上获得单个菌落

B.如果要测定②中的活细菌数量,常采用稀释涂布平板法 C.图中②培养目的菌株的选择培养基中应加入苯酚作为碳源 D.微生物培养前,需对培养基和培养皿进行消毒处理 5.要将从土壤中提取的自生固氮菌与其他细菌分离开来,应将它们接种在( ) A.含五大类营养物质的培养基上B.加入某种指示剂的鉴别培养基上 C.含蛋白胨等营养物质的培养基上D.无氮的选择培养基上 6.下列关于分离纤维素分解菌的实验的叙述,错误的是( ) A.经选择培养后将样品涂布到鉴别纤维素分解菌的培养基上 B.选择培养这一步可省略,但培养纤维素分解菌少 C.经稀释培养后,用刚果红染色 D.对照组可用同样量的培养液涂布到不含纤维素的培养基上 7.鉴别培养基是根据微生物的代谢特点在培养基中加入一些物质配制而成的,这些物质是( ) A.指示剂或化学药品B.青霉素或琼脂C.高浓度食盐D.维生素或指示剂8.在加入刚果红的培养基中会出现透明圈,产生的透明圈是( ) A.刚果红与纤维素形成的复合物B.刚果红与纤维二糖形成的复合物 C.纤维素分解后形成的葡萄糖导致的D.以纤维素分解菌为中心形成的 9.在分离分解纤维素的微生物实验中,下列关于土壤取样的叙述,不正确的是( ) A.可选取深层的土壤作为样品 B.可选取树林中多年落叶的腐殖土作为样品 C.可选取树林中多年积累的枯枝败叶作为样品 D.可把滤纸埋在土壤中经过30 d左右,再选取已腐烂的滤纸作为样品 10.下列有关纤维素分解菌分离实验的说法中,不正确的是( ) A.通常采用刚果红染色法筛选纤维素分解菌

纤维素对人体的作用

纤维素对人体的作用 姓名:陈钊学号:2010210101 班级:信息管理504班一、生理作用 纤维素的主要生理作用是吸附大量水分,增加粪便量,促进肠蠕动,加快粪便的、排泄,使致癌物质在肠道内的停留时间缩短,对肠道的不良刺激减少,从而可以预防肠癌发生。 二、膳食纤维 人类膳食中的纤维素主要含于蔬菜和粗加工的谷类中,虽然不能被消化吸收,但有促进肠道蠕动,利于粪便排出等功能。食纤维可提高胰岛素受体的敏感性,提高胰岛素的利用律;膳食纤维能包裹食物的糖分,使其逐渐被吸收,有平衡餐后血糖的作用,从而达到调节糖尿病患者的血糖水平,治疗糖尿病的作用。 三、预防和治疗冠心病 血清胆固醇含量的升高会导致冠心病。胆固醇和胆酸的排出与膳食纤维有着极为密切的关系。膳食纤维可与胆酸结合,而使胆酸迅速排出体外,同时膳食纤维与胆酸结合的结果,会促使胆固醇向胆酸转化,从而降低了胆固醇水平。 四、降压作用 膳食纤维能够吸附离子,与肠道中的钠离子、钾离子进行交换,从而降低血液中的钠钾比值,从而起到降血压的作用。 五、抗癌作用 自七十年代以来,膳食纤维在抗癌方面的研究报道日益增多,尤其是膳食纤维与消化道癌的关系。肠道中的有益菌能够利用膳食纤维产生丁酸,丁酸能抑制肿瘤细胞的生长增殖,诱导肿瘤细胞向正常细胞转化,并控制致癌基因的表达。 六、减肥治疗肥胖症 膳食纤维取代了食物中一部分营养成份的数量,而使食物总摄取量减少。膳食纤维促增加唾液和消化液的分泌,对胃起到了填充作用,同时吸水膨胀,能产生饱腹感而抑制进食欲望。膳食纤维与部分脂肪酸结合,这种结合使得当脂肪酸通过消化道时,不能被吸收,因此减少了对脂肪的吸收率。 七、治疗便秘 膳食纤维具有很强的持水性,其吸水率高达10倍。它吸水后使肠内容物体积增大,

细菌纤维素

细菌纤维素 摘要:细菌纤维素是一种新型的生物纳米材料材料,具有广泛的发展前景.本文从细菌纤维素的组成和结构入手,列举了细菌纤维素合成研究过程中的方法,并进一步对细菌纤维素在环境中的应用进行阐述,最后对未来细菌纤维素发展趋势作出了展望。 关键词:细菌纤维素,纳米材料,应用 众所周知,纤维素是自然界中最丰富且具有生物可降解性的天然高分子材料,是高分子化学诞生和发展阶段的主要研究对象之一。在当今世界面临人口、资源、环境和粮食四大问题的情况下,大力开发取之不尽用之不竭的天然高分子材料造福于人类,具有重要战略意义。 目前,人类获得纤维素的途径主要通过树木、棉花等职务光合作用合成和微生物合成。为了区别于植物来源的纤维素,称微生物合成的纤维素为微生物纤维素或者是细菌纤维素(简称BC)。细菌纤维素最初在1886年,用英国科学家Brown AJ利用化学分析方法确定。当时他发现在传统酿造液表面生成的类似凝胶半透明膜状物质为纤维素,在光学显微镜下观察到发酵生产的菌膜中存在菌体[1]。自然界中有少数细菌可以产生纤维素,其镇南关木醋菌属中的木醋杆菌(简称Ax)合成纤维素的能力最强,最具有大规模生产的能力。Ax合成细菌纤维素在纯度、抗拉强度、杨氏模量等理化性能方面均优于植物纤维素,且具有较强的生物性,在自然界中可以直接降解,是一种环境友好,性能优异型材料[2]。近年来引起了人们广泛的研究兴趣和关注。 1.细菌纤维素的结构和特性 1.1细菌纤维素的结构 经过长期的研究发现,细菌纤维素和植物纤维素在化学组成和结构上没有明显的区别,都可视为D-吡喃葡萄糖单体以糖苷键连接而成的直链多糖,直链间彼此平行,不呈螺旋结构,无分支结构,又称β-1, 4-葡聚糖。但相邻的吡喃葡萄糖的6个碳原子并不在同一平面上,而是呈稳定的椅状立体结构,数个邻近的β-1, 4-葡聚糖通过分子链内与链间的氢键作用形成稳定的不溶于水的聚合物[3]。 1.2细菌纤维素的性质 1.2.1 细菌纤维素的独特性质 细菌纤维素和植物或海藻产生的天然纤维素具有相同的分子结构单元, 但细菌纤维素纤维却有许多独特的性质。①细菌纤维素与植物纤维素相比无木质素、果胶和半纤维素等伴生产物,具有高结晶度(可达95%,植物纤维素的为65%)和高的聚合度(DP值2 000~8 000); [4]②超精细网状结构。细菌纤维素纤维是由直径3~4 纳米的微纤组合成40~60 纳米粗的

纤维素的分类介绍

主要分为甲基纤维素(MC),羟丙基甲基纤维素(HPMC),羟乙基纤维素(HEC),羧甲基纤维素(CMC) 附:HPMC与MC、HEC、CMC的应用区别 HPMC和MC是两种不同的产品。 1、甲基纤维素(MC)分子式 将精制棉经碱处理后,以氯化甲烷作为醚化剂,经过一系列反应而制成纤维素醚。一般取代度为 1.6~2.0,取代度不同溶解性也有不同。属于非离子型纤维素醚。 (1)甲基纤维素可溶于冷水,热水溶解会遇到困难,其水溶液在pH=3~12范围内非常稳定。与淀粉、胍尔胶等以及许多表面活性剂相容性较好。当温度达到凝胶化温度时,会出现凝胶现象。 (2)甲基纤维素的保水性取决于其添加量、粘度、颗粒细度及溶解速度。一般添加量大,细度小,粘度大,则保水率高。其中添加量对保水率影响最大,粘度的高 低与保水率的高低不成正比关系。溶解速度主要取决于纤维素颗粒表面改性程度和颗粒细度。在以上几种纤维素醚中,甲基纤维素和羟丙基甲基纤维素保水率较高。 (3)温度的变化会严重影响甲基纤维素的保水率。一般温度越高,保水性越差。如果砂浆温度超过40℃,甲基纤维素的保水性会明显变差,严重影响砂浆的施工性。 (4)甲基纤维素对砂浆的施工性和粘着性有明显影响。这里的“粘着性”是指工人涂抹工具与墙体基材之间感到的粘着力,即砂浆的剪切阻力。粘着性大,砂浆的剪切阻力大,工人在使用过程中所需要的力量也大,砂浆的施工性就差。在纤维素醚产品中甲基纤维素粘着力处于中等水平。 2、羟丙基甲基纤维素(HPMC)分子式为 羟丙基甲基纤维素是近年来产量、用量都在迅速增加的纤维素品种。是由精制棉经碱化处理后,用环氧丙烷和氯甲烷作为醚化剂,通过一系列反应而制成的非离子型纤维素混合醚。取代度一般为 1.2~2.0。其性质受甲氧基含量和羟丙基含量的比例不同,而有差别。 (1)羟丙基甲基纤维素易溶于冷水,热水溶解会遇到困难。但它在热水中的凝胶化温度要明显高于甲基纤维素。在冷水中的溶解情况,较甲基纤维素也有大的改善。 (2)羟丙基甲基纤维素的粘度与其分子量的大小有关,分子量大则粘度高。温度同样会影响其粘度,温度升高,粘度下降。但其粘度高温度的影响比甲基纤维素低。其溶液在室温下储存是稳定的。 (3)羟丙基甲基纤维素的保水性取决于其添加量、粘度等,其相同添量下的保水率高于甲基纤维素。 (4)羟丙基甲基纤维素对酸、碱具有稳定性,其水溶液在pH=2~12范围内非常稳定。苛性钠和石灰水,对其性能也没有太大影响,但碱能加快其溶解速度,并对粘度销有提高。羟丙基甲基纤维素对一般盐类具有稳定性,但盐溶液浓度高时,羟丙基甲基纤维素溶液粘度有增高的倾向。

细菌纤维素

改性纤维素在卫生领域的研究及应 用情况 (昆明理工大学化学工程学院轻化工程2010级肖任) 摘要: 纤维素是自然界最丰富的自然资源,在未来对于解决人类面临的能源、资源、和环境污染等问题方面有非常重要的作用,但是纤维素分子中由于高密度的氢键影响作用,使之在医疗卫生领域等方面受到了很大的限制。综述近年来通过对纤维素化学改性合成可以得到纤维素衍生物在医疗卫生方面的应用。其中,细茵纤维素是一种天然的生物高聚物,具有生物活性、生物可降解性、生物适应性,具有独特的物理、化学和机械性能,例如高的结晶度、高的持水性、超细纳米纤维网络、高抗张强度和弹性模量等,因而成为近年来国际上新型生物医学材料的研究热点。概括细茵纤维素的性质、研究历史以及在生物医学材料上的应用,重点阐述细茵纤维素在组织工程支架、人工血管、人工皮肤和治疗皮肤损伤方面的应用以及当前研究现状。 关键词:纤维素、细茵纤维素、组织工程支架、人工血管、人工皮肤、化学改性、 医疗卫生 Modified cellulose in health field research and should use situation Cellulose is the most abundant natural resources of nature, in the future to solve human beings are facing with the energy, resources, and environment pollution and so on has a very important role, but cellulose molecules due to the high density of hydrogen bond effect, make in the medical and health fields was much limited. Recent advances in chemical modification of cellulose by synthesis can get cellulose derivatives in medical applications. Among them, the fine wormwood cellulose is a kind of natural biopolymer, with biological activity, biodegradable property, biological adaptability, has a unique physical, chemical and mechanical properties, such as high degree of crystallinity, high water binding capacity, ultrafine nano fiber network, a high strength and modulus of elasticity, etc., and become in recent years international new biomedical materials research hot spot. The nature of the cellulose in fine wormwood, historical study and the application of biomedical materials, the paper fine wormwood cellulose in tissue engineering scaffolds, artificial blood vessels, artificial skin and the treatment of skin damage and the application of the current research status. Keywords: cellulose, fine wormwood cellulose, tissue engineering scaffolds, artificial blood vessels, artificial skin, chemical modification, medical and health 细菌纤维素( bacterial cellulose,简称 B C) 又称为微生物纤维素( microbial cellulose ) ,不仅是地球上除植物纤维素之外的另一类由细菌合成的天然惰性材料,而且是世界上公认的性能优异的新型生物学材料。能够产生纤维素的细菌【1】主要有A c e t o b a c t e r ,R h i z o b i u m,A g r o b a c t e r i u m和S a r c i n a等,其中研究最多、产量最高的是A c e t o b a c t e r x y l i n u m( A .x y l i n u m,木醋杆菌) 。从纤维素的分子组成看,B c和植物纤维一样都是由B - D- 葡萄糖通过B .1 ,4 精苷键结合成的直链,直链间彼此平行,不呈螺旋构象,无分支结构,又称为 B - 1 ,4.葡聚糖。但从物理、化学、

纤维素的改性及应用研究进展_罗成成

2015年第34卷第3期CHEMICAL INDUSTRY AND ENGINEERING PROGRESS?767? 化工进 展 纤维素的改性及应用研究进展 罗成成,王晖,陈勇 (中南大学化学化工学院,湖南长沙410083) 摘要:植物纤维素是天然的可再生资源,对纤维素的改性利用一直是研究的热点。本文简要介绍了纤维素的结构与性质,综述了纤维素的改性方法,包括物理改性、化学改性和生物改性等,其中化学改性是最主要的方法,包括酯化、磺化、醚化、醚酯化、交联和接枝共聚等,通常涉及其结构中羟基的一系列反应。通过改性,引进了一系列离子型基团,有利于增强纤维素的亲水性。经改性后的纤维素与之前相比,结晶度和聚合度明显降低,可及度明显提高,无论物理性质还是化学性质都表现出更大的优越性。其后回顾了纤维素衍生物在食品、造纸以及建筑行业中的一些研究应用成果,阐述了其在医药及废水处理等方面的研究进展,并展望了纤维素衍生物的发展前景。 关键词:纤维素;纤维素衍生物;化学改性 中图分类号:TQ072文献标志码:A文章编号:1000–6613(2015)03–0767–07 DOI:10.16085/j.issn.1000-6613.2015.03.028 Progress in modification of cellulose and application LUO Chengcheng,WANG Hui,CHEN Yong (School of Chemistry and Chemical Engineering,Central South University,Changsha410083,Hunan,China)Abstract:Plant cellulose is a natural renewable resource,and application of the modified cellulose has been a research focus.The structure and properties of cellulose are described,and cellulose modification methods are reviewed,including physical,chemical and biological methods.The main method is chemical modification,including esterification,sulfonation,etherification,ether esterification,crosslinking and graft copolymerization,which involve the reactions of hydroxyl groups in the cellulose.Hydrophilcity of cellulose could be enhanced by introduction of ionic groups. Compared with non-modified cellulose,crystallinity and degree of polymerization of modified cellulose decrease significantly,whereas accessibility is improved remarkably,with superior physical and chemical properties.Finally,the research achievements of cellulose derivatives in food,paper and construction industries are reviewed.Research progresses in pharmaceuticals,wastewater treatment and other areas are presented.Future applications of cellulose derivatives are prospected. Key words:cellulose;cellulose derivatives;chemical modification 纤维素是植物细胞壁的主要成分,在自然界中分布甚广,是取之不尽、用之不竭的天然高分子化合物。由于纤维素具有无毒无害、可生物降解、相容性好、价格低廉且可再生等优点,人类对纤维素的利用一直在不断推陈致新,广泛用于食品、医药、建筑、造纸、废水处理、印刷、电子、日化等各个方面,纤维素的消耗一直呈递增趋势。随着人类环保意识的不断加深,纤维素及其衍生物的推广应用还将继续成为热点。 1纤维素的结构与性质 纤维素环状结构是由D-吡喃葡萄糖环以β-1,4 收稿日期:2014-08-20;修改稿日期:2014-10-15。 第一作者:罗成成(1990—),女,硕士研究生。联系人:王晖,教授,博士生导师。E-mail huiwang1968@https://www.360docs.net/doc/f39824948.html,。

【人教版】生物选修一:2.3分解纤维素的微生物的分离教案设计

专题2 微生物的培养与应用 课题2.3 分解纤维素的微生物的分离 一、【课题目标】 (一)知识与技能 简述纤维素酶的种类及作用,从土壤中分离出分解纤维素的微生物;掌握从土壤中分离某种特定微生物的操作技术 (二)过程与方法 分析分离分解纤维素的微生物的实验流程,弄懂实验操作的原理 (三)情感、态度与价值观 领悟科学探究的方法,发展科学思维和创新能力 二、【课题重点】 从土壤中分离分解纤维素的微生物 三、【课题难点】 从土壤中分离分解纤维素的微生物 四、【教学方法】 启发式教学 五、【教学工具】 多媒体课件 六、【教学过程】 (一)引入新课 上节课我们探讨学习了土壤中尿素分解菌的分离与计数,这节课我们以纤维素分解菌的分离与纯化为例,巩固加深对这方面技术的理解和掌握。 (二)进行新课 1.基础知识 活动1:阅读“纤维素与纤维素酶”,回答下列问题: 1.1纤维素是一种由葡萄糖首尾相连而成的高分子化合物,是含量最丰富的多糖类物质。纤维素能被土壤中某些微生物分解利用,这是因为它们能够产生纤维素酶。 延伸:草食性动物是怎样消化食物中纤维素的?肠胃中的共生物生物。 1.2棉花是自然界中纤维素含量最高的天然产物。纤维素的分解需要在纤维素酶的催化作用下完成,请完成下列过程: 〖思考1〗实验分析:P27的小实验是如何构成对照的? 在一支试管中添加纤维素酶,另一支试管不添加纤维素酶;尽管醋酸-醋酸钠缓冲液用量不同,但都能维持相同的pH。 〖思考2〗1个酶活力单位是指在温度为 25 ℃,其它反应条件最适宜情况下,在 1 min内转化 1mmol 的底物所需要的酶量。 活动2:阅读“纤维素分解菌的筛选”,回答下列问题: 1.3筛选纤维素分解菌的方法是刚果红染色法。该方法可以通过颜色反应直接筛选。 2.4其原理是:刚果红可以与纤维素形成红色复合物,当纤维素被纤维素酶分解后,红色复合物无法形成,出现以纤维素分解菌为中心的透明圈,我们可以通过是否产生透明圈来筛选纤维素分解菌。 2.实验设计 活动3:完成实验方案流程图,讨论回答问题:

纤维素及其衍生物在食品行业的发展与应用

纤维素衍生物在食品行业的应用 曹国宝 (海南大学材料与化工学院,海南海口570228) 摘要:长期以来,纤维素及其衍生物作为一种丰富的可再生的生物能源广泛地应用于现代工业。而其在食品领域也有重要的发展与应用。本文本文从纤维素的结构、性质谈起,选述纤维素及其衍生物的显著特点和在食品工业目前的研究现状。 关键词:纤维素衍生物,食品,应用 Cellulose derivate’s application in food industry CAO Guo-bao (College of material and chemistry,Hainan university,Haikou 570228) Abstract: As a kind of abundant and reproducible biological resources , celluloses and its derivate are widely used in modern industry for a long time. Especially its application in the food industry. this paper start with cellulose structure and properties, summerise cellulose an its derivate’s properties and ist development in the food industry Key words:cellulose derivate,food,application 一.简介 纤维素(cellulose)在自然界分布很广,是构成植物的主要成分,如棉花中约含90%以上,木材中约含50%。纤维素的纯品无色无味无臭,不溶于水和一般有机溶剂。与淀粉一样,纤维素也具有还原性[1]。纤维素大分子的基环是D-葡萄糖以β-1,4糖苷键组成的大分子多糖,分子量约50000~2500000,相当于300~15000个葡萄糖基脱水葡萄糖,其分子式为:(C6H10O5)n, 其化学组成含碳44.44%、氢6.17%、氧49.39%。纤维素比淀粉难水解一般需要在浓酸中或用稀酸在加压条件下进行,在水解过程中可以得到纤维四糖,纤维三糖和纤维二糖等,但水解的最终产物也是D-(+)-葡萄糖,其结构式可以表示如下[2]: 主要可进行的反应有 1.纤维素中的羟基能与酸生成纤维素酯(cellulose ether) 1.纤维素与碱作用生成纤维素钠盐,然后与卤代烃反应生成纤维素醚(cellulose ester) 本报告中涉及较多的是两种物质:羟丙甲基纤维素(hydroxypropylmethy cellulose,HPMC)和羧甲基纤维素(CMC)。HPMC属于非离子型纤维素混合醚中的一个品种,具有冷水溶性和热水不溶性的特征,但由于含有羟丙基,使它在热水中的凝胶化温度较甲基纤维素大大提高,在有机头溶剂中较甲基纤维素良好,能溶于丙酮、异丙醇和双丙酮等有机溶剂中。它的粘度在温度升高时开始下降,但至一定温度时则粘度突然上升而发生凝胶化。CMC时是最具代表性的离子性纤维素醚,通常使用的是它的钠盐,纯净的CMC系白色或乳白色纤维状粉末或颗粒,无嗅无味,不溶于酸和甲醇、乙醇、乙醚、丙酮、氯仿、及苯等有机溶剂,而溶于水。CMC的粘度通常在25-50Pa.S之间,取代度在0.3左右。CMC 具有吸湿性,其平衡水分随着空气湿度的升高而增加,随温度的升高而减少[2]。 二.在食品业的发展或应用 1.制作可食用膜 纤维素系列食用膜(edible films)有良好的成膜性质,制得的可食性膜能够阻止食品吸水

分解纤维素的微生物的分离教案

专题2课题3:分解纤维素的微生物的分离 【课程标准】 1.简述纤维素酶的种类及作用 2.从土壤中分离出分解纤维素的微生物 3.讨论分解纤维素的微生物的应用价值。 【课题重点】 从土壤中分离分解纤维素的微生物。 【课题难点】 从土壤中分离分解纤维素的微生物。 【基础知识】 1.是纤维素含量最高的天然产物。 2.纤维素酶是一种酶,它至少包括三种组分,即,,。前两种酶使纤维素分解为,第三种酶将纤维素分解为。 3。纤维素分解菌的筛选方法是利用。 4。刚果红染色法的原理是。 5.分解纤维素的微生物的分离的试验流程是、、、、6.鉴别培养基用于菌种的鉴别,其中加入可以鉴别出 出现的现象是。 7.选择培养的操作方法是 。 8.常用的刚果红染色法有两种即 。 9.分解纤维素的微生物的分离实验完成后为确定得到的是纤维素分解菌,还需要进行实验,纤维素酶的发酵方法有两种即、。 10.分解纤维素的微生物的分离实验中要选择样品进行分离纤维素分解菌,该样品的特点是、。作出这种选择的理由是。 11.选择培养能够浓缩所需微生物,原因是。 12.分解纤维素的微生物的分离与土壤中分解尿素的细菌的分离流程有何区别? 13.刚果红染色法有两种,这两种的主要优缺点是什么?

【跟踪练习】 1.下列生物能分解纤维素的是() (1)人(2)兔(3)牛(4)蘑菇(5)纤维杆菌 A(1)(2)(3)(4)(5)B(2)(3)(5) C (2)(3)(4)(5)D(3)(5) 2.纤维素分解菌的培养基中胶木膏能提供的主要营养物质是() (1)碳源(2)氮源(3)生长因子(4)无机盐 A(3)B(1)(2)C(1)(2)(3)D(1)(2)(3)(4) 3.从土壤中筛选蛋白酶产生菌时,所用培养基为() A加富培养基 B 选择培养基 C 基础培养基D鉴别培养基 4.分离土壤中纤维素分解菌用到的方法是() (1)稀释倒平板法(2)涂布平板法(3)单细胞挑取法(4)选择培养分离A(1)(2)B(2)(3)(4)C(2)(3)D(1)(3)(4) 5.鉴别纤维素分解菌的培养基中碳源为() A CMC-Na B 木聚糖 C 纤维素 D 裂解酶 6.在酸性贫瘠的土壤中分解纤维素占优势的菌为() A真菌 B 细菌 C 兼性厌氧细菌和真菌 D 放线菌 7.CX 酶能水解() A纤维素和CMC-Na B纤维素和果胶 C纤维二糖和微晶纤维D麦芽糖和蔗糖 8.在加入刚果红的培养基中出现透明圈的菌落是() A分解尿素的细菌 B 消化细菌 C 分解纤维素的细菌 D 乳酸菌 9.在对纤维素分解菌进行培养时,培养基中酵母膏的主要作用是() A提供碳源 B 提供氮源 C 提供微生素 D 凝固剂 10.要将能分解纤维素的细菌从土壤中分离出来,应将它们接种在( ) A 加入指示剂的鉴别培养基上 B 含有蛋白胨的固体培养基上 C 只含纤维素粉无其他碳源的选择培养基上 D 含四大营养素的培养基上 11.纤维素分解菌选择培养基的选择作用原因在于() A 硝酸钠 B 氯化钾 C 酵母膏 D 纤维素粉 12.选择培养的结果,培养液变() A 清澈 B 浑浊 C 红色 D 产生透明圈 13.在对纤维素分解菌进行选择培养时用液体培养基的目的是() A 可获得大量菌体 B 纤维素分解菌适宜在液体培养基上生长 C 可以充分利用培养基中的营养物质 D 可获得高纯度的纤维素分解菌

简述纤维素的化工利用

纤维素的化工利用 纤维素在自然界中分布很广,是地球上蕴藏十分丰富的可再生资源。几乎所有的植物都含有纤维素和半纤维素,棉花、大麻、木材等植物中均含有较高的纤维素,其中棉花中的含量高达92%-95%。许多农作物的秸秆、皮、壳都含纤维素,如稻麦、棉花、高粱、玉米的秸秆,玉米芯、棉籽壳、花生壳、稻壳等;木材采伐和加工过程的下脚料,如木屑、碎木、枝丫等,制糖厂的甘蔗渣、甜菜渣等也都含纤维素。 纤维素经化学加工可制得羟甲基纤维素、羟乙基纤维素以及援甲基纤维素等,这些纤维素的衍生物可作为增稠剂、黏合剂和污垢悬浮剂;纤维素经乙酰化和部分水解制得的醋酸纤维是感光胶片的基材;纤维素经硝化得到的硝化纤维是早期的炸药、塑料。 木材加工业的下脚料,在隔绝空气的密闭设备中加热分解,所得产品有活性炭、木焦油、甲酵、醋酸和丙酮等,同时获得气体燃料(如一氧化碳和甲烷)。 纤维素和半纤维素是多糖类碳水化合物,水解可以得到葡萄糖和戊糖。葡萄糖用酵母菌发酵可得到乙醇;戊糖在酸性介质中脱水可得到糠醛: 糠醛是一种无色透明的油状液体,其分于结构中含有羰基、双烯和环醚的官能团,化学性质活泼,主要用于生产糠醇树脂、糠醛树脂、顺丁烯二酸酐、医药、农药、合成纤维等。工业上利用玉米芯、棉籽壳、花生壳、甘蔗渣等含植物纤维的物质生产糠醛,其工艺过程如下图所示。

以玉米芯、棉籽壳、花生壳、甘蔗渣等为原料生产糠醛所用的硫酸含量为6%,水解以直接蒸汽加热,温度控制在180℃左右,压力为0 6~1.0 MPa,水解时间为5~8 h。 不同原料制取糠醛的理论产率不同,见下图

木质纤维素由于分子间与分子内氢键的大量存在,纤维素结晶度较高,不溶于水和普通有机溶剂,限制了纤维素的基础研究和工业应用,形成了目前这一地球上最丰富的可再生资源与开发利用程度低的窘境。随着纤维素酶高产菌株、戊糖己糖发酵菌株构建的发酵技术,室温离子液体及中国科大的聚乙二醇碱水溶液等绿色溶剂技术的出现,将解开纤维素难以深度开发的瓶颈。特别是室温离子液体有效地溶解纤维素后,可将纤维素水解高转化率的控制在单糖、5-羟甲基糠醛等反应阶段,遵循了绿色化学中开发环境友好溶剂和利用生物可再生资源为原料这两个基本原则,大大拓展了纤维素的工业应用前景,为纤维素资源的绿色应用提供了一个崭新的平台。纤维素必将成为未来最重要的工业原料之一,其最重要的转化利用方式包括制备再生纤维素材料、纤维素衍生物、糠醛类衍生物、呋喃类衍生物以及纤维素乙醇。在离子液体中制备再生纤维素材料。可以得到不同形态的再生纤维素,如纤维素纤维、纤维素薄膜、纤维素粉末、纤维素珠体等,这些再生纤维素材料在制膜、纺丝、生产无纺布等工业领域具有广阔应用前景。通过在离子液体中的溶解与再生可以在纤维素中加入功能性添加剂、高分子材料制备具有特殊性能的纤维素新材料,这些纤维素新材料的制备大大拓展了纤维素的应用范围。在离子液体中制备纤维素衍生物材料。既可以引入活性相对较低的取代基,也可以设计合成结构新颖的纤维素衍生物,甚至通过一些基团保护技术,制备具有某些指定取代基分布方式的产物,从而能够赋予纤维素材料以崭新的性能,将极大丰富纤维素的应用和研究范围。就目前而言,可方便地在均相溶液中经过酯化、醚化、接枝、共聚等手段,生成比异相反应更加均一、性能更优良的功能性纤维素衍生物作材料,如纤维素乙酸及长链脂肪酸酯、乙基纤维素、羟丙基纤维 素等具有热塑性能,开辟纤维素衍生物熔融注塑、熔融吹塑和熔融纺丝的新阶段,在涂料、制膜、纺织、

纤维素总结

一:纤维素的结构分类及应用: 1)纤维素的结构: 2)纤维素的分类: 根据其在特定条件下的溶解度,可以分级为:α—纤维素,β-纤维素,γ-纤维素,α—纤维素指的是聚合度大于200的纤维素,β-纤维素是指聚合度为10一200的纤维素,γ-纤维素是指聚合度小于10的纤维素。 3)纤维素的应用: 纤维素是一多羟基葡萄糖聚合物,经过特定的物理或化学改性后,具有不同的功能特性,可以粉状,片状,膜,纤维以及溶液等不同形式出现,因此用纤维素开发的功能材料极具灵活性及应用的广泛性。 3.1 高性能纤维材料: 纤维素纤维是现代纺织业的重要原料之一,同时也是纤维素化工和造纸业的重要原料,当前,纸己经成为社会发展的必需品,不仅大量应用于印刷,日用品及包装物,还可以用于绝缘材料,过滤材料以及复合材料等领域,具有广泛而重要的用途。 3.2 可生物降解材料

纤维素能够作为可降解材料的基材使用,因为纤维素具有很多独特的优点:(1)纤维素本身能够被微生物完全降解;(2)维素大分子链上有许多轻基,具有较强的反应性能和相互作用性能,使得材料便于加工,成本低,而且无污染;(3)纤维素具有很强的生物相容性;(4)纤维素本身无毒,可广泛使用,由于纤维素分子间存在很强的氢键,而且取向度和结晶度都很高,使得纤维素不溶于一般溶剂,高温下分解而不融,所以无法直接用来制作生物降解材料,必须对其进行改性,纤维素改性的方法主要有醋化,醚化以及氧化成醛,酮,酸等。纤维素生物降解材料应用广泛,例如园艺品,农,林,水产用品,医药用品,包装材料及光电子化学品等,这里要特别提出的是纤维素在医学,光电子化学,精细化工等高新技术领域应用的更好西川橡胶工业公司研制开发的纤维素,壳聚糖系发泡材料存在很好的应用前景,其特点是重量轻,绝热性好,透气,吸水等,这些特点使其广泛应用于农业,渔业,工业,包装,医疗等各个领域。 3.3 纤维素液晶材料: 天然纤维素及其衍生物液晶是一类新颖的液晶高分子材料,和其它的纤维素衍生物液晶相比,新型的复合型纤维素衍生物液晶在纤维素大分子链中引入了刚性介晶基元,使得控制其液晶性质能够成为现实"这同时就为开发具有特殊性能的液晶高分子提供了新的研究领域,并且其相应的理论基础研究对探索高分子液晶的形成也有十分重要的指导意义,另外,由于天然纤维素是自然界取之不尽,用之不竭的可再生天然高分子,那么在石油及能源日益枯竭的今天,我们就很有必

细菌纤维素

摘要 细菌纤维素是一种天然的生物高聚物,不仅具有生物活性、生物可降解性、生物适应性,而且具有独特的物理、化学和机械性能,简要介绍细菌纤维素的基本性质,系统地介绍了细菌纤维素的生物合成与调节,发酵工艺条件控制以及在生物医学材料上的应用。与细菌纤维素培养方法采用不同的培养方法,如静态培养和动态培养,利用醋酸菌可以得到不同高级结构的纤维素。通过调节培养条件,也可得到化学性质有差异的细菌纤维素。 关键词:细菌纤维素,特征,培养方式,生物医学应用 Abstract Bacterial cellulose is a kind of natural biopolymer, not only has the bioactivity, biodegradability, biocompatibility, and has unique physical, chemical and mechanical properties, the basic properties of bacterial cellulose were briefly introduced, systematically introduced bacterial cellulose biosynthesis and regulation, fermentation process control and in biomedical materials applications. Different methods were used in the culture of bacterial cellulose, such as static and dynamic culture. Bacterial cellulose with different chemical properties can be obtained by adjusting the culture conditions. Keywords:BC, Feature, Training mode, biomedical applications

纤维素及其作用

纤维素及其作用 纤维素(cellulose)是由葡萄糖组成的大分子多糖。不溶于水及一般有机溶剂。是植物细胞壁的主要成分。纤维素是自然界中分布最广、含量最多的一种多糖,占植物界碳含量的50%以上。棉花的纤维素含量接近100%,为天然的最纯纤维素来源。一般木材中,纤维素占40~50%,还有10~30%的半纤维素和20~30%的木质素。 麻、麦秆、稻草、甘蔗渣等,都是纤维素的丰富来源。纤维素是重要的造纸原料。此外,以纤维素为原料的产品也广泛用于塑料、炸药、电工及科研器材等方面。食物中的纤维素(即膳食纤维)对人体的健康也有着重要的作用。 纤维素是地球上最古老、最丰富的天然高分子,是取之不尽用之不竭的,人类最宝贵的天然可再生资源。纤维素化学与工业始于160多年前,是高分子化学诞生及发展时期的主要研究对象,纤维素及其衍生物的研究成果为高分子物理及化学学科的创立、发展和丰富作出了重大贡献。全世界用于纺织造纸的纤维素,每年达800万吨。此外,用分离纯化的纤维素做原料,可以制造人造丝,赛璐玢以及硝酸酯、醋酸酯等酯类衍生物;也可制成甲基纤维素、乙基纤维素、羧甲基纤维素、聚阴离子纤维素等醚类衍生物,用于石油钻井、食品、陶瓷釉料、日化、合成洗涤、石墨制品、铅笔制造、电子、涂料、建筑建材、装饰、蚊香、烟草、造纸、橡胶、农业、胶粘剂、塑料、炸药、电工及科研器材等方面。 生理作用

纤维素的主要生理作用是吸附大量水分,增加粪便量,促进肠蠕动,加快粪便的排泄,使致癌物质在肠道内的停留时间缩短,对肠道的不良刺激减少,从而可以预防肠癌发生。 膳食纤维 人类膳食中的纤维素主要含于蔬菜和粗加工的谷类中,虽然不能被消化吸收,但有促进肠道蠕动,利于粪便排出等功能。草食动物则依赖其消化道中的共生微生物将纤维素分解,从而得以吸收利用。食物纤维素包括粗纤维、半粗纤维和木质素。食物纤维素是一种不被消化吸收的物质,过去认为是“废物”,现在认为它在保障人类健康,延长生命方面有着重要作用。因此,称它为第七种营养素。 ①有助于肠内大肠杆菌合成多种维生素。 ②纤维素比重小,体积大,在胃肠中占据空间较大,使人有饱食感,有利于减肥。 ③纤维素体积大,进食后可刺激胃肠道,使消化液分泌增多和胃肠道蠕动增强,可防治糖尿病的便秘。 ④高纤维饮食可通过胃排空延缓、肠转运时间改变、可溶性纤维在肠内形成凝胶等作用而使糖的吸收减慢。亦可通过减少肠激素如抑胃肽或胰升糖素分泌,减少对胰岛B细胞的刺激,减少胰岛素释放与增高周围胰岛素受体敏感性,使葡萄糖代谢加强。 ⑤近年研究证明高纤维饮食使Ⅰ型糖尿病患者单核细胞上胰岛素受体结合增加,从而节省胰岛素的需要量。由此可见,糖尿病患者进食高纤

相关文档
最新文档