心音采集的实现

心音采集的实现
心音采集的实现

龙源期刊网 https://www.360docs.net/doc/f710437633.html,

心音采集的实现

作者:庞智明卢思源侯启家汤建明

来源:《科技视界》2016年第15期

【摘要】基于现有的单片机原理与应用技术、数据处理技术,本作品设计了一种袖珍型

的心音监听仪。本作品通过心音传感器采集心音数据,使用PC处理数据,再上传至网站数据库。使用者可以实时监测自身的健康状况。在发生问题的时候,也可以立刻将检查结果发送给医生,使得医生的工作效率加快,亦减少了病人的等待时间。

【关键词】心音;健康;大数据

0 引言

根据心音来诊断心脏的历史可以追溯到很久以前。但是听心音的仪器的产生却仅仅二百多年的历史。1816年,第一个发明了听诊器是法国医生Laennec,而正式用于临床判断的却是在1817年。其实,起初听诊器的发明,是用来诊断胸腔疾病。在1840年,英国医生Jacalyn Duffin改良了听诊器之后,就可以听到身体内部更多的声音,如静脉血管、动脉血管、心脏跳动、肺部呼吸、肠子蠕动的声音。1937年,凯尔将卡门的听诊器再次改良,使之能够能产生

立体音响。近年来,市场上陆陆续续出现了一些电子听诊器,可放大心脏声音,还可以记录心脏杂音,与正常心音比较。听诊通过使用一个简单且有效率的工具——听诊器,获得了结构性和功能性心脏缺陷的很多信息。而电子听诊器正在逐步取代传统听诊器。

电子听诊器的出现,大概是在20世纪70年代左右。美国一家医疗器械的公司推出了电子听诊器,该听诊器可以捕捉到身体内部器官发出的一些微弱却非常重要的声音,使得医生不会错过任何有价值的声音,更容易判断心肺等器官可能发生的病变。

在我国,电子听诊器出现的比较晚,虽然听诊器可以听到心音,但是并非针对心音。而从1975开始,就有人提出了自制心音脉搏监听仪。虽然仅仅是个开始,但是从近年来的论文发

表来看,针对心音脉搏的研制越来越多了,并且增加了许多技术,如蓝牙、无线、APP等等。

目前,我国心音监听仪的研发和应用还处于一个急速发展的阶段。和国外的心音监听仪的区别,在技术上不是很大,最大的区别在于针对杂音的处理的算法。

1 系统方案设计

1.1 系统方案确定

在此方案中,把系统分为传感器模块、采集模块、数据处理存储模块和PC处理模块四个部分。在传感器部分,因为脉搏的信号可以从心音信号中提取,所以只设置了心音的传感器。脉搏信号将在PC机中通过算法提取出来。首先在心音传感器采集,经过放大、滤波电路,经

语音信号采集与处理系统的设计

音频信号采样及处理系统方案设计 姓名:杨宁 学号: 专业:电子信息工程 学院:电子工程学院 指导老师:那彦

目录 第1章理论依据2 1.1音频信号的介绍2 1.2采样频率2 1.1 TMS320VC5402介绍2 1.2 TLC320AD50介绍 6 第2章系统方案设计8 2.1 DSP核心模块的设计8 2.2 A/D转换模块9 第3章硬件设计10 3.1 DSP芯片10 3.2 电源设计10 3.3复位电路设计11 3.4 时钟电路设计12 3.5 程序存储器扩展设计12 3.6数据存储器扩展设计13 3.7 JTAG接口设计13 3.8 A/D接口电路设计14 第4章软件设计15 第5章总结17 参考文献18 致谢19 附录20

摘要 在研究数字信号处理的基础上,提出了一个基于DSP TMS320VC5402和A/D转换芯片TLC320AD50的音频信号采集系统的设计。给出了该系统的总体设计方案,具体硬件电路,包括系统电源设计、复位电路设计、时钟电路设计、存储器设计、A/D接口电路设计、JTAG接口设计、DSP及A/D芯片的连接等,以及软件流程图。 关键词:音频信号数据采集DSP TLC320AD50 ABSTRACT On the basis of studying digital signal processing, The design of A audio signal acquisition system based on DSP TMS320VC5402 and A/D conversion chip TLC320AD50 is proposed. Overall design scheme of the system is given, and the specific hardware circuit, including the system power supply design, design of reset circuit, clock circuit design, design of memory, A/D interface circuit, JTAG interface, DSP and the connection of A/D chip, and software flow chart. Key words: audio signal data collection DSP TLC320AD50

语音信号采集与回放系统设计

语音采集与回放系统设计
l 竞赛真题 l 总体方案选择 l 具体方案设计 l 设计阶段划分
一、竞赛真题
1999 年第四届 E 题 数字化语音存储与回放系统 一、题目:数字化语音存储与回放系统 二、任务 设计并制作一个数字化语音存储与回放系统,其示意图如下:
三、要求 1.基本要求 (1)放大器 1 的增益为 46dB,放大器 2 的增益为 40dB,增益均可调; (2)带通滤波器:通带为 300Hz~3.4kHz ; (3)ADC:采样频率 fs= 8kHz,字长= 8 位; (4)语音存储时间≥10 秒; (5)DAC:变换频率 fc= 8kHz,字长= 8 位; (6)回放语音质量良好。 2.发挥部分 在保证语音质量的前提下: (1)减少系统噪声电平,增加自动音量控制功能; (2)语音存储时间增加至 20 秒以上; (3)提高存储器的利用率(在原有存储容量不变的前提下,提高语音存储时间) ;

(4)其它(例如: 四、评分意见
校正等) 。


满 分 50 50 15 5 15 15
基 设计与总结报告: 方案设计与论证, 理论分析与计算, 电路图, 本 测试方法与数据,对测试结果的分析 要 实际制作完成情况 求 完成第一项 发 挥 完成第二项 部 完成第三项 分 完成第四项 五、说明 不能使用单片语音专用芯片实现本系统。
训练侧重点 l 题目中给出一些提示性设计参数,设计中应予以重点理解
1. 放大器 1 的增益,放大器 1 的增益为 46dB 2. 带通滤波器的频率范围通带为 300Hz~3.4kHz(方便测试) 3. AD 采样的字长和采样频率(保证公平竞争)
l
题目中部分非技术性指标在培训中可以适当简化
1. 语音存储与回放时间≥10 秒 2. 语音存储时间增加至 20 秒以上;
二、总体方案选择
1. 控制平台选择 2. 前级放大模块 3. 带通滤波器 4. 模数、数模转换部分 5. 存储器 6. 编码方案
1. 控制平台选择
供选平台: A. B. 单片机平台 FPGA 开发平台

心音信号的去噪

心音信号去噪方法比较研究 2016 年 01 月 06 日

摘要 (1) 关键词 (1) 第一章绪论 (2) 1.1研究背景 (2) 1.1.1心音信号基础知识 (2) 1.1.1.1心音的形成机制 (2) 1.2心音信号的特性 (3) 1.2.1心音的时域特性 (3) 1.2.2心音的频率特性 (3) 第二章去噪方法分析 (4) 2.1 巴特沃斯滤波器 (4) 2.2 切比雪夫低通滤波器 (5) 2.3 小波变换 (6) 第三章心音信号的获取及预处理 (12) 3.1 心音信号的采集 (13) 3.2 心音信号的预处理 (14) 第四章心音信号去噪的实验过程 (14) 4.1 常规方法 (14) 4.2 小波去噪 (17) 第五章滤波方法比较 (21) 第六章实验总结 (21) 参考文献 (22) 附录 (24)

摘要 心音是最重要的信号之一。然而,许多外界因素会影响心音信号的采集。心音是弱电气信号以至很弱的外部噪声就能导致信号中的病理和生理信息的错误判断,从而导致疾病的错诊。因此对心音信号去噪的研究非常重要。 本文研究并比较了几种基于matlab的心音去噪的方法。首先我们采用经典的butterworth低通滤波器和切比雪夫低通滤波器对心音信号进行去噪,结果表明这两种滤波器对高频噪声的消除效果明显,但不能滤除低频噪声。其次,我们采用了小波变换对含噪心音信号进行处理。一种方法中丢弃分解信号的高频部分和 部分细节,将分解后的信号近似和第四层细节相加作为样本信号的代替。这种方法简单且能有效的消除高频噪声,但由于丢失了部分细节,易使信号失真。然后,我们采用haar小波阈值法对信号去噪,取得的较好的去噪效果,但高频噪声残留较多。最后,我们db6小波进行去噪,得到了很好的信号波形,而且高频噪声残留较少。通过实验,我们得出结论,无论哪种去噪方式都有其自身的局限性,单独的使用一种去噪方法很难将噪声完全滤除。应该采用综合滤波方法,结合各个方法的优势联合滤波。首先使用巴特沃斯低通滤波器或切比雪夫滤波器低通滤波器滤除高频噪声,再用db小波阈值或haar小波阈值法去噪法进行去噪。这样既能完全滤除高频噪声,又能较好的抑制低频噪声,使滤波效果达到最优化。 关键词:心音、去噪、巴特沃斯滤波器、切比雪夫滤波器、小波分解与重构、d b6小波、haar小波

心音信号的处理与分析软件设计

生物医学工程软件技术心音信号的处理与分析软件设计 2012年6月7日

摘要 心音是人体最重要的生理信号之一,是评估心脏功能状态的一种基本方法,蕴含着心脏各个部分本身及相互之间作用的生理和病理等重要的诊断信息。先前人们广泛采用听诊器进行心音主观的分析诊断,但存在较大的局限性和主观性。而心电图机由于其采用低频响应的热笔结构,不能完整地记录全频心音,完全没有量化分析功能,在心音的存储、处理上存在着较大的局限性,故临床应用较少。因此,开发基于虚拟仪器的心音多功能处理分析仪器是一项十分有意义的工作。 本实验旨在设计一款对已的采集心音信号进行显示,处理分析,并获取相关特征参数,对信号采集者的心音正常与否进行简单判断。首先显示原始波形找到其特征进行简单时域处理,和频域滤波,提取包络并计算相关重要心音参数并简单判断是否在正常范围内来实现对于采集到的心音信号进行分析比较。除文件的读取外整个程序设计在一个大的while循环之下,程序运行过程中可根据具体的心音情况实时修改程序中的参数,满足个体差异性。 程序运行稳定,未发生异常事件且测量的健康被试者相关参数均在正常范围附近,可以推断该软件具有较高可靠性符合设计要求。 关键词:labview, 心音,处理分析,软件,设计。 1

目录 摘要 (1) 1 前言(或“绪论”) (2) 1.1 心音信号介绍 (2) 1.2国内外研究现状 (4) 2.设计任务 (6) 需求分析: (6) 3.设计内容 (8) 3.1波形显示、截取与去直流处理 (8) 3.1.1文件的读入 (9) 3.1.2波形的截取与去直流 (9) 3.2信号滤波去噪 (10) 3.3提取包络及曲线拟合、波形保存 (11) 3.31希尔伯特提取包络 (12) 3.32高斯曲线拟合 (12) 3.33外包络线保存 (13) 3.4心率及峰值等计算 (14) 3.5其他参数计算以及心音分裂的简单判断 (15) 3.5.1 S1、S2时长确定与收缩及舒张期确定 (16) 3.5.2心音分裂判断 (16) 4、程序结构分析 (17) 4.1原始波形界面 (17) 4.2截取后波形界面 (18) 5、流程图 (21) 7、调试及运行结果 (22) 8、课程体会 (26) 9 参考文献 (26) 附录:源程序 (27)

基于MATLAB的语音信号处理系统设计(程序+仿真图)--毕业设计

语音信号处理系统设计 摘要:语音信号处理是研究用数字信号处理技术对语音信号进行处理的一门学科。语音信号处理的目的是得到某些参数以便高效传输或存储,或者是用于某种应用,如人工合成出语音、辨识出讲话者、识别出讲话内容、进行语音增强等。本文简要介绍了语音信号采集与分析以及语音信号的特征、采集与分析方法,并在采集语音信号后,在MATLAB 软件平台上进行频谱分析,并对所采集的语音信号加入干扰噪声,对加入噪声的信号进行频谱分析,设计合适的滤波器滤除噪声,恢复原信号。利用MATLAB来读入(采集)语音信号,将它赋值给某一向量,再将该向量看作一个普通的信号,对其进行FFT变换实现频谱分析,再依据实际情况对它进行滤波,然后我们还可以通过sound命令来对语音信号进行回放,以便在听觉上来感受声音的变化。 关键词:Matlab,语音信号,傅里叶变换,滤波器 1课程设计的目的和意义 本设计课题主要研究语音信号初步分析的软件实现方法、滤波器的设计及应用。通过完成本课题的设计,拟主要达到以下几个目的: 1.1.了解Matlab软件的特点和使用方法。 1.2.掌握利用Matlab分析信号和系统的时域、频域特性的方法; 1.3.掌握数字滤波器的设计方法及应用。 1.4.了解语音信号的特性及分析方法。 1.5.通过本课题的设计,培养学生运用所学知识分析和解决实际问题的能力。 2 设计任务及技术指标 设计一个简单的语音信号分析系统,实现对语音信号时域波形显示、进行频谱分析,

利用滤波器滤除噪声、对语音信号的参数进行提取分析等功能。采用Matlab设计语言信号分析相关程序,并且利用GUI设计图形用户界面。具体任务是: 2.1.采集语音信号。 2.2.对原始语音信号加入干扰噪声,对原始语音信号及带噪语音信号进行时频域分析。 2.3.针对语音信号频谱及噪声频率,设计合适的数字滤波器滤除噪声。 2.4.对噪声滤除前后的语音进行时频域分析。 2.5.对语音信号进行重采样,回放并与原始信号进行比较。 2.6.对语音信号部分时域参数进行提取。 2.7.设计图形用户界面(包含以上功能)。 3 设计方案论证 3.1语音信号的采集 使用电脑的声卡设备采集一段语音信号,并将其保存在电脑中。 3.2语音信号的处理 语音信号的处理主要包括信号的提取播放、信号的重采样、信号加入噪声、信号的傅里叶变换和滤波等,以及GUI图形用户界面设计。 Ⅰ.语音信号的时域分析 语音信号是一种非平稳的时变信号,它携带着各种信息。在语音编码、语音合成、语音识别和语音增强等语音处理中无一例外需要提取语音中包含的各种信息。语音信号分析的目的就在与方便有效的提取并表示语音信号所携带的信息。语音信号分析可以分为时域和变换域等处理方法,其中时域分析是最简单的方法。 Ⅱ.语音信号的频域分析 信号的傅立叶表示在信号的分析与处理中起着重要的作用。因为对于线性系统来说,可以很方便地确定其对正弦或复指数和的响应,所以傅立叶分析方法能完善地解决许多信号分析和处理问题。另外,傅立叶表示使信号的某些特性变得更明显,因此,它能更

语音信号采集与回放系统

电子与信息工程学院 综合实验课程报告 课题名称 语音采集及回放系统设计 专 业 电子信息工程 班 级 07电子2班 学生姓名 Y Y Y 学 号 07002 指导教师 X X X 2010年 7月 5日

1 总体设计方案介绍: 1.1语音编码方案: 人耳能听到的声音是一种频率范围为20 Hz~20000 Hz ,而一般语音频率最高为3400 Hz。语音的采集是指语音声波信号经麦克风和高频放大器转换成有一定幅度的模拟量电信号,然后再转换成数字量的全过程。根据“奈奎斯特采样定理”, 采样频率必须大于模拟信号最高频率的两倍,由于语音信号频率为300~3 400 Hz ,所以把语音采集的采样频率定为8 kHz。从语音的存储与压缩率来考虑,模型参数表示法明显优于信号波形表示法[4]。但要将之运用于单片机,显然信号波形表示法相对简单易实现。基于这种思路的算法,除了传统的一些脉冲编码调制外,目前已使用的有VQ技术及一些变换编码和神经网络技术,但是算法复杂,目前的单片机速度底,难以实现。结合实际情况,提出以下几种可实现的方案。 (1)短时平均跨零记数法该方案通过确定信号跨零数,将语音信号编码为数字信号,常用于语音识别中。但对于单片机,由于处理数据能力底,该方法不易实现。 (2)实时副值采样法采样过程如图2.1所示。 图2.1 采样过程 具体实现包括直存取法、欠抽样采样法、自相似增量调制法等三种基本方法。其中第三种实现方法最具特色,该方法可使数据压1:4.5,既有M ?调制的优点,又同时兼有PCM编码误差较小的优点,编码误差不向后扩散。 1.2 A/D、D/A及存储芯片的选择 单片机语音生成过程,可以看成是语音采集过程的逆过程,但又不是原封不动地恢复原来的语音,而是对原来语音的可控制、可重组的实时恢复。在放音时,只要依原先的采样直经D/ A 接口处理,便可使原音重现。 (1)A/D转换芯片的选择根据题目要求采样频率f s=8K H Z,字长=8位, 可选择转换时间不超过125s的八位A/D转换芯片。目前常用的A/D转换实现的

基于MATLAB的语音信号采集与处理

工程设计论文 题目:基于MATLAB的语音信号采集与处理 姓名: 班级: 学号: 指导老师:

一.选题背景 1、实践意义: 语音信号是一种非平稳的时变信号,它携带着各种信息。在语音编码、语音合成、语音识别和语音增强等语音处理中无一例外需要提取语音中包含的各种信息。语音信号分析的目的就在于方便有效地提取并表示语音信号所携带的信息。所以理解并掌握语音信号的时域和频域特性是非常重要的。 通过语音相互传递信息是人类最重要的基本功能之一.语言是人类特有的功能.声音是人类常用工具,是相互传递信息的最重要的手段.虽然,人可以通过多种手段获得外界信息,但最重要,最精细的信息源只有语言,图像和文字三种.与用声音传递信息相比,显然用视觉和文字相互传递信息,其效果要差得多.这是因为语音中除包含实际发音容的话言信息外,还包括发音者是谁及喜怒哀乐等各种信息.所以,语音是人类最重要,最有效,最常用和最方便的交换信息的形式.另一方面,语言和语音与人的智力活动密切相关,与文化和社会的进步紧密相连,它具有最大的信息容量和最高的智能水平。 语音信号处理是研究用数字信号处理技术对语音信号进行处理的一门学科,处理的目的是用于得到某些参数以便高效传输或存储;或者是用于某种应用,如人工合成出语音,辨识出讲话者,识别出讲话容,进行语音增强等. 语音信号处理是一门新兴的学科,同时又是综合性的多学科领域,

是一门涉及面很广的交叉学科.虽然从事达一领域研究的人员主要来自信息处理及计算机等学科.但是它与语音学,语言学,声学,认知科学,生理学,心理学及数理统计等许多学科也有非常密切的联系. 语音信号处理是许多信息领域应用的核心技术之一,是目前发展最为迅速的信息科学研究领域中的一个.语音处理是目前极为活跃和热门的研究领域,其研究涉及一系列前沿科研课题,巳处于迅速发展之中;其研究成果具有重要的学术及应用价值. 数字信号处理是利用计算机或专用处理设备,以数值计算的方法对信号进行采集、抽样、变换、综合、估值与识别等加工处理,借以达到提取信息和便于应用的目的。它在语音、雷达、图像、系统控制、通信、航空航天、生物医学等众多领域都获得了极其广泛的应用。具有灵活、精确、抗干扰强、度快等优点。 数字滤波器, 是数字信号处理中及其重要的一部分。随着信息时代和数字技术的发展,受到人们越来越多的重视。数字滤波器可以通过数值运算实现滤波,所以数字滤波器处理精度高、稳定、体积小、重量轻、灵活不存在阻抗匹配问题,可以实现模拟滤波器无法实现的特殊功能。数字滤波器种类很多,根据其实现的网络结构或者其冲激响应函数的时域特性,可分为两种,即有限冲激响应( FIR,Finite Impulse Response)滤波器和无限冲激响应( IIR,Infinite Impulse Response)滤波器。 FIR滤波器结构上主要是非递归结构,没有输出到输入的反馈,系统函数H (z)在处收敛,极点全部在z = 0处(因果系统),因而只能

基于MATLAB的心音信号处理概要

目录 1.概述 (1) 1.1 心音信号及MA TLAB简介 (1) 1.2 设计目的 (4) 1.3 设计任务 (4) 2.设计流程 (4) 2.1 设计方案选择 (4) 2.1.1预处理方法的选择 (4) 2.1.2时域分析 (6) 2.1.3频域分析 (6) 2.2 MA TLAB仿真结果及分析 (7) 2.2.1预处理的结果及分析 (8) 2.2.2时域分析的结果及分析 (11) 2.2.3频域分析的结果及分析 (12) 3.总结 (15) 4.设计心得与体会 (16)

1.概述 1.1 心音信号及MATLAB简介 心音信号是指在心动周期中,心肌收缩、心脏瓣膜启闭,心室壁、大动脉瓣等被血流冲撞,引起机械振动发出的声音。产生的声音信号通过周围组织传导到胸壁,可以通过听诊器来听诊,也可以利用传感器将心音信号转换为电信号,进行心音信号的显示和存储。心音作为人体的一种重要的心脏、心血管生理信号,体现着和心脏等生理情况相关的信息,能够反映心脏等的生理和病理信息。心音对于有关心脏疾病和心血管疾病的诊断具有重要的诊断价值,是评估一个人心脏功能情况的重要依据[6]。 心音的频率一般在5-600HZ左右,杂音频率可达1500HZ左右,但是人的听觉系统能够接受的声音频率为16HZ-20KHZ,而且仅对频率在1000~5000HZ频率的声音最为敏感。心脏听诊的不足可以用心音图弥补。心音图可以直观的显示正常和异常心音的各段持续的时间,进一步提高心脏疾病诊断的准确性。

图1.正常的心音信号的时域图 正常心音按出现时间先后可以分为四个部分。第一心音(S1)、第二心音(S2)是最常见的,此外,还有第三心音(S3)、第四心音(S4)。临床上一般听到的是第一心音和第二心音,一些儿童、青少年以听到第三心音,有些老年人也可以听到第四心音。第一心音(S1)产生的原因是房室瓣关闭、血流急速冲击房室瓣,主动脉壁和肺动脉壁被心室喷射出的血液撞击,引起振动。一般在心尖搏动处最强,持续时间一般为0.1-0.12s。在音调方面,比较低沉。第二心音(S2)在T波的末端出现。主要产生原因是主动脉瓣关闭和肺动脉瓣关闭。持续时间一般为0.08s,相对较短[4]。第三心音(S3)主要是血流流向心室时,血流速度过急,在心室内又突然减速引起室壁的振动而产生。一般在第二心音后的0.1-0.2s后产生。在儿童、青少年的心脏上可以听到生理性的第三心音。第四心音是由于心房收缩后,血流流进心室的速度很快,心室壁振动而引起。心脏听诊是诊断心脏和心血管疾病不可或缺的方法,该方法简便、有效。

心音采集与显示课程设计报告讲解

电子课程设计报告 题目《基于51单片机的心音采集系统》 学院生物医学工程学院 专业生物医学工程(仪器) 年级 11级 姓名班福香 学号 11161057 指导老师谢勤岚

目录 一、设计背景 (1) 二、设计目的 (2) 三、设计思路 (2) 四、系统框图 (3) 五、系统主控模块原理 (4) 六、软件设计 (7) 七、结果仿真 (12) 八、报告总结 (13) 九、参考文献 (14)

一、设计背景 随着社会的发展,生活水平提高了,同时生活压力也不断地加重。然而各种心血管疾病发病率也越来越高,收入水平的提高也使得人们对保健的需求和质量的需求和要求也越来越高。近几年来越来越多的医疗仪器被研发。 心音能反应出心脏的生理情况,因此可以通过心音来诊断一个人的心脏十分健康,心音是由心脏搏动工程中各瓣膜的开闭以及心肌和血液运动所产生的震动形成的。它含有关于心脏各个部分如心房、心室、大血管、心血管及各个瓣膜功能状态的大量病理信息,是临床评估心脏功能状态的最基本方法,是心脏及大血管机械运动状况的反映。它是人体最重要的生理信号之一,是临床评估心血管系统功能状态的一种基本方法,是心脏及大血管机械运动状况的反映。在一些心血管疾病尚未发展到足以产生病理形态学改变及临床症状以前,心音中出现的杂音和畸变是重要的诊断信息,可以通过对这些病理特征进行分析而提前对疾病进行预防。 现如今,对于心音信号的采集和处理的相关研究,很多都以在理论上做的很好,甚至已经接近完美,可是由于心音信号微弱,噪声大,所以在实际中对于心音的检测带来较多困难,实际的设计与检测技术还是远不及理论上那么好。因此需要跟多的学员对其进行学习与研究,使得医疗仪器更加的完善和精确。

基于LabVIEW的心音信号分析系统设计

基于LabVIEW的心音信号分析系统设计 班级学号:0708112 27 学生姓名:沈鑫 学院:生命科学技术学院

摘要:研究了基于LabVIEW开发平台的心音信号分析系统。该系统首先使用 HKY06A型心音传感器采集和记录心音信号,然后计算归一化平均香农能(NASE) 来提取心音信号的时域特征和利用短时傅立叶变换(STFT),Wigner-Ville分布(WVD)与小波变换(WT)三种时频分析方法来提取心音信号的时频特征。这些特征为心血管疾病的诊断提供了一些重要信息, 帮助初学医师更准确可靠的诊断。通过对44 例心音信号进行测试, 证明该系统在各种心血管疾病的诊断中相当有 效和稳健。 关键词:音信号、LabVIEW、归一化平均香农能、短时傅立叶变换、Wigner-Ville 分布、小波变换。 Abstract: A system of heart sound analysis based on platform of LabVIEW is designed. The heart sounds arc first acquired and recorded using FIKY06A-type heart sound sensor in this system. Then, the signals time-domain features are extracted by calculating the normalized average Shannon energy, and time-frequency features are extracted separately utilizing three kinds of time-frequency analysis method-STFT, WVD and WT. These features can provide some important information for diagnosis of cardiovascular diseases and assist general physicians to come up with more accurate and reliable diagnosis at early stages. Tested with 44 cases of heart sounds, the system have been proved to be quite efficient and robust while diagnosing of a variety of cardiovascular diseases. Key words:heart sounds、LabVIEW normalized average Shannon energy、 short-time Fourier transform 、Wigner-Ville distribution、wavelet transform. 1 引言 心脏的听诊是心脏病诊断以及治疗中不可缺少的一部分, 而且对于初学者或经验不多的人来说, 也是较难掌握的一种技术。目前我国医院部门对心脏疾病的诊断和疗效的评价很大程度上仍依赖于听诊器, 听诊噪声干扰比较严重, 对过于微弱或过于复杂的声音响应不佳, 它一般只被用于初步的、粗略的诊断, 仅凭自己的感觉和经验来判断是远远不够的, 即使是很有经验的医生, 也受主观因素的影响, 可能会发生误诊。 心音是在体表获取声频范围内源于心脏的一种机械性振动。有规律的、时限较短的振动为心音;较长的、不规律的振动为杂音。心音能够反映心脏活动及血液流动的状况, 它含有关于心脏各个部分如心房、心室、大血管、心血管及各个瓣膜功能状态的大量病理信息, 是临床评估心脏功能状态的最基本参数, 是心脏及大血管机械运动的反映。 心音图具有心脏听诊所没有的特点, 从而心音图检查提高了心音和心脏杂音的识别能力, 丰富了听诊, 对心血管疾病的诊断、鉴别、治疗、功能研究、机理探讨、血液动力学改变等多方面提供了相当有价值的资料。心音图的时频分布展示了其在某一特定时间的谱成分, 它通常被看作信号能量在时域和频域中的

心音听诊步骤和注意事项

心音听诊的步骤和注意事项 以前我们有本书叫《诊断学》现在应该叫《健康评估》了。大家进学校第一天都发听诊器,有没互相听心音呢? 人体心脏在收缩与舒张过程中,由于各瓣膜关闭、心肌纤维收缩、大动脉根部活动、 以及血流等因素产生了振动,这些振动波可传导到心前区的胸壁上,用听诊器在胸 壁上可直接听取到,即为心音。根据各心音的特点以及结合触摸颈动脉搏动可以辨 别第一和第二心音。通过心音听诊可计数心率、了解心跳的节律和强弱等情况。 【心音听诊步骤和方法】 1.确定正常心音的听诊部位 (1)受试者解开上衣,暴露心前区胸壁。端坐于检查者对面。 (2)观察(或用手触摸)受试者的心尖搏动的大体位置与范围。

(3)确认正常各瓣膜听诊区的部位。 ①二尖瓣听诊区:在第五肋间与左锁中线交点的稍内侧(心尖搏动处) ②三尖瓣听诊区:胸骨右缘第四肋间或胸骨剑突下。 ③主动脉瓣听诊区:胸骨右缘第二肋间。 ④主动脉瓣第二听诊区:胸骨左缘第三肋间。 ⑤肺动脉瓣听诊区:胸骨左缘第二肋间。 2.心音听诊 (1)检查者戴好听诊器后,可按上述顺序依次听诊。 (2)辨别第一、二心音:在心前区任何部位均可听到两个心音,但如何区别第一心音和第二心音,可结合瓣膜听诊区的位置并依据下列特征: ①第一心音音调低,持续时间长;而第二心音则音调高,持续时间较短。第一心音与第二心音之间的间隔小于第二心音与第一心音之间的间隔。

②第一心音几乎与颈主动脉搏动同步。 (3)辨别心律是否整齐,比较心尖部与心底部两心音的声音强弱。【心音听诊的注意事项】 1.保持室内安静;必要时可嘱受检者暂停呼吸。 2.听诊器的耳器方向要与检查者外耳道的方向一致。 3.尽量避免听诊器胸件或胶管与其它物体摩擦。

语音信号采集与处理系统的设计

音频信号采样与处理系统方案设计 目录 第1章理论依据2 1.1音频信号的介绍2 1.2采样频率2 1.1 TMS320VC5402介绍2 1.2 TLC320AD50介绍 6 第2章系统方案设计8 2.1 DSP核心模块的设计8 2.2 A/D转换模块9 第3章硬件设计10 3.1 DSP芯片10 3.2 电源设计10 3.3复位电路设计11 3.4 时钟电路设计12 3.5 程序存储器扩展设计12 3.6数据存储器扩展设计13

3.7 JTAG接口设计13 3.8 A/D接口电路设计14 第4章软件设计15 第5章总结17 参考文献18 致谢19 附录20 摘要 在研究数字信号处理的基础上,提出了一个基于DSP TMS320VC5402和A/D转换芯片TLC320AD50的音频信号采集系统的设计。给出了该系统的总体设计方案,具体硬件电路,包括系统电源设计、复位电路设计、时钟电路设计、存储器设计、A/D接口电路设计、JTAG接口设计、DSP与A/D芯片的连接等,以及软件流程图。 关键词:音频信号数据采集DSP TLC320AD50 ABSTRACT On the basis of studying digital signal processing, The design of A audio signal acquisition system based on DSP TMS320VC5402 and A/D conversion chip TLC320AD50 is proposed. Overall design scheme of the system is given, and the specific hardware circuit, including the system power supply design, design of reset circuit, clock circuit design, design of memory, A/D interface circuit, JTAG interface, DSP and the connection of A/D chip, and software flow chart. Key words: audio signal data collection DSP TLC320AD50

信号采集与回放系统

信号采集与回放系统 技术报告 电信082班084775240 周霞 (合作者:电信082班084775228 吴迪) 指导教师:倪海燕 2010-5-27

摘要:本设计通过A/D转换和D/A转换实现输入信号与输出信号的变化。通过实验箱上的模式3的ADC输入正弦波信号,设计按键选择,有3种模式分别是直接回放,单次回放,循环回放和定点回放。 关键字:信号回放模式选择 一、实验要求 1. 实现输入,存储,回放信号 2. 回放模式选择(直接回放,单次波形回放,循环回放,分段存储定点回放等) 二、总原理图 三、系统总体方案设计 根据实验要求,TLC5510A 是采样率最高为20MHz的8位并行高速ADC ,FPGA的PIO48输出信号控制ADC1的输出使能信号OE(低电平有效);PIO15为转换时钟信号CLK;AD转换结果送至PIO16~PIO23,并且同时显示在数码管1和数码管2上。ADC的模拟信号输入端在实验箱的左侧,允许输入0~5V的信号。 转换关系:DATA=255×Ain/5

数据从采集到转换结束需要两个半时钟周期 四、软件电路的设计 4.1控制器的设计 用VHDL语言编写控制器的程序,要有读写使能和模式选择。用choose[2]的四个状态分别表示直接回放,单次回放,循环回放和定点回放。 程序如下: library ieee; use ieee.std_logic_1164.all; use ieee.std_logic_unsigned.all; entity control is port ( clk:in std_logic; --时钟 writ:in std_logic; --读写使能 en:in std_logic; --使能 choose:in std_logic_vector(1 downto 0); --模式选择 ch:in std_logic_vector(1 downto 0); --阶段选择 enout:out std_logic; --读写使能输出 adr:out std_logic_vector(9 downto 0) ); --地址 end entity control; architecture behave of control is signal count1:std_logic_vector(9 downto 0); signal count11:std_logic_vector(9 downto 0); signal count2:std_logic_vector(9 downto 0); signal count22:std_logic_vector(9 downto 0); begin process(writ,en,ch,choose) begin if(en='1')then count1<="0000000000";count11<="0000000000"; count2<="0000000000";count22<="0000000000"; elsif (clk'event and clk='1')then if(choose="01")then ---- 单次回放

STM32 波形采集、存储与回放

波形采集、存储与回放系统设计 摘要 本设计是基于数字示波器的原理,以STM32-cortex-m3作为控制芯片,把波形采集分为A、B两个通道,对A通道的输入信号进行衰减,对B通道的输入信号进行放大,然后采用内部集成的高速AD对信号进行实时采样,方式为上升沿内触发,可以实现波形的单次和多次触发存储和回放显示,以及频率、周期、峰-峰值的测量和显示,并具有掉电存储功能。由信号采集、数据处理、波形显示,控制面板等功能模块组成,整个系统分成A/D转换部分、D/A转换部分、波形存储部分、键盘输入控制四大部分,系统操作简便,输出波形可以在示波器输出显示,此存储示波器即具有一般示波器实时采样实时显示的功能,又可以对某段波形进行即时存储和连续回放显示,且界面友好,达到了较好的性能指标。具体设计原理以及过程在下面章节中详细说明。 关键字:STM32、波形采集、波形存储、波形回放

Abstract The design is based on the principle of digital oscilloscope, with STM32-cortex-m3 as the control chip, the waveform acquisition is divided into A, B two channel, the A channel input signal attenuation on B channel, the input signal is amplified, then using the internal integration of high-speed AD on real time data sampling, as rising edge trigger, can achieve waveform of single and multiple triggers the storage and playback and display, frequency, cycle, peak to peak value measurement and display, and power failure memory function. The signal acquisition, data processing, waveform display, the control panel and other functional modules, the system is divided into A/D transformation, D/A converting part, waveform storage, keyboard input control system four parts, simple operation, the output waveform can be output in the oscilloscope display, this storage oscilloscope namely has the common oscilloscope real-time sampling real time display function, can be a real-time storage and continuous playback waveform display, and friendly interface, has achieved good performance. The design principle and process are described in detail in the following sections. Keywords: STM32, waveform acquisition, storage, waveform waveform playback

心音听诊实验

南昌大学医学院讲稿 心音听诊 按照实验教案安排和实验指导内容进行本次实验。 观看本次实验内容录相,示范听诊器的使用方法、心音听诊区的位置。介绍正常心音特点,识别第一心音和第二心音方法。 实验目的学习心音听诊方法,了解心音产生的原理、意义、正常心音特点,识别第一心音和第二心音,为临床心音听诊奠定基础。 实验原理心音是心脏瓣膜关闭和心肌收缩引起振动所产生的声音。用听诊器在胸壁前听诊,在每个心动周期内一般可听到两个心音。健康儿童和青年有时可听到第三心音,40岁以上的人也有可能出现第四心音。第一心音标志着心室收缩开始,主要是由房室瓣关闭和心室肌收缩振动所产生。特点是:声音较响,音调低(音频为40-60Hz),持续时间较长(0.12S),其响度和性质变化可反映心室肌收缩强弱和房室瓣机能状态。第二心音标志心室舒张开始,在成份上分主动脉音和肺动脉音,分别在主动脉和肺动脉听诊区听得最清楚,是由主动脉瓣和肺动脉瓣迅速关闭,血流冲击使主动脉和肺动脉壁根部以及心室内壁振动而发生。特点是:音调高(音频60-100Hz),声音较清脆,持续时间较短〈0.08S〉,其响度可反映大动脉血压高低。 实验对象人。 实验器材听诊器。 实验步骤 1.受试者安静端坐,胸部裸露。 2.观察心尖搏动部位、范围。 3.确定各听诊部位:二尖瓣听诊区:左第五肋间锁骨中线内侧(心尖部)。 三尖瓣听诊区:胸骨右缘第四肋间或胸骨剑突下。 主动脉瓣听诊区:胸骨右缘第二肋间为主动脉瓣第一听诊区,胸骨左缘第三肋间为主动 脉瓣第二听诊区。 肺动脉瓣听诊区:胸骨左缘第二肋间。 4. 听心音:检查者戴好听诊器,注意听诊器的耳具应与外耳道开口方向一致(向前),以 右手拇指、食指轻持听诊器探头紧贴于受试者胸部皮肤上,按上述听诊部位依次听取心音,根据两个心音特点注意区分第一心音和第二心音。如难以区分时,可同时用手指触诊心尖搏动或颈动脉脉搏,此时出现的心音即为第一心音。 注意事项 1.室内必须保持安静以利听诊。 2.听诊器胶管不得交叉、扭结,勿与它物磨擦,以免发生磨擦音影响听诊。 3.如呼吸音影响听诊,可嘱受试者暂停呼吸片刻。 在巡视中发现问题和解答学生提的问题,启发和指导学生解决问题。 实验结果记录和分析:将听诊到的心音、心率、心律记录下来,比较是否在正常范围内。 总结本次实验结果并作提问和解释,对各实验小组的实验态度、技巧进行评价,表扬创新性的提问和思路,指出实验过程中存在的问题和解决方法。

(完整版)语音信号分析与处理系统设计

语音信号分析与处理系统设计

语音信号分析与处理系统设计 摘要 语音信号处理是研究用数字信号处理技术和语音学知识对语音信号进行处理的新兴的学科,是目前发展最为迅速的信息科学研究领域的核心技术之一。通过语音传递信息是人类最重要、最有效、最常用和最方便的交换信息形式。 Matlab语言是一种数据分析和处理功能十分强大的计算机应用软件,它可以将声音文件变换为离散的数据文件,然后利用其强大的矩阵运算能力处理数据,如数字滤波、傅里叶变换、时域和频域分析、声音回放以及各种图的呈现等,它的信号处理与分析工具箱为语音信号分析提供了十分丰富的功能函数,利用这些功能函数可以快捷而又方便地完成语音信号的处理和分析以及信号的可视化,使人机交互更加便捷。信号处理是Matlab重要应用的领域之一。 本设计针对现在大部分语音处理软件内容繁多、操作不便等问题,采用MATLAB7.0综合运用GUI界面设计、各种函数调用等来实现语音信号的变频、变幅、傅里叶变换及滤波,程序界面简练,操作简便,具有一定的实际应用意义。 最后,本文对语音信号处理的进一步发展方向提出了自己的看法。 关键字:Matlab;语音信号;傅里叶变换;信号处理;

目录 1 绪论 (1) 1.1课题背景及意义 (1) 1.2国内外研究现状 (1) 1. 3本课题的研究内容和方法 (2) 1.3.1 研究内容 (2) 1.3.2 运行环境 (2) 1.3.3 开发环境 (2) 2 语音信号处理的总体方案 (3) 2.1 系统基本概述 (3) 2.2 系统基本要求 (3) 2.3 系统框架及实现 (3) 2.4系统初步流程图 (4) 3 语音信号处理基本知识 (6) 3.1语音的录入与打开 (6) 3.2采样位数和采样频率 (6) 3.3时域信号的FFT分析 (6) 3.4数字滤波器设计原理 (7) 3.5倒谱的概念 (7) 4 语音信号处理实例分析 (8) 4.1图形用户界面设计 (8) 4.2信号的采集 (8) 4.3语音信号的处理设计 (8) 4.3.1 语音信号的提取 (8) 4.3.2 语音信号的调整 (10)

语音信号采集与回放

目录 1、前言 (1) 1.1 背景 (1) 1.2语音信号实时采集与处理 (1) 1.3 FIR滤波器 (2) 1.4 FIR滤波器的DSP实现 (2) 2、总体方案设计 (3) 2.1 目的与要求 (3) 2.2方案设计 (3) 3、单元模块设计 (6) 3.1各单元模块功能介绍及电路设计 (6) 3.2器件介绍 (9) 3.3 器件参数介绍 (11) 3.4 软件设计结构图 (14) 4、系统调试 (15) 5、总结与致谢 (16) 6、参考文献 (17) 附:基于TMS30Cs42的电路设计图 (18)

1、前言 1.1 背景 20世纪50年代以来,随着数字信号处理各项技术的发展,语音信号处理技术得到不断提高,语音合成、语音识别、语音记录与语音控制等技术已开始逐步成熟并得到应用。在语音信号处理过程中,要实现语音信号处理技术的精确性、实时性目的,语音信号采集和无误差存储成为语音信号处理中的前提。自1982年美国德州仪器(TI)公司推出第一个定点数字信号处理(DSP)芯片以来,数字信号处理技术得到了快速发展。DSP是一种适合于实时数字信号处理的微处理器,主要用于实时、快速实现各种数字信号的处理算法,被广泛应用于语音信号处理、数字图像处理、通信等领域。 语音是语言的声学表现,是人类交流信息最自然、最有效、最方便的手段。随着社会文化的进步和科学技术的发展,人类开始进入了信息化时代,用现代手段研究语音处理技术,使人们能更加有效地产生、传输、存储、和获取语音信息,这对于促进社会的发展具有十分重要的意义,因此,语音信号处理正越来越受到人们的关注和广泛的研究。语音信号处理是一门比较实用的电子工程的专业课程,语音是人类获取信息的重要来源和利用信息的重要手段。通过语言相互传递信息是人类最重要的基本功能之一。语言是人类特有的功能,它是创造和记载几千年人类文明史的根本手段,没有语言就没有今天的人类文明。语音是语言的声学表现,是相互传递信息的最重要的手段,是人类最重要、最有效、最常用和最方便的交换信息的形式。语音信号处理是研究用数字信号处理技术对语音信号进行处理的一门学科,它是一门新兴的学科,同时又是综合性的多学科领域和涉及面很广的交叉学科。 1.2语音信号实时采集与处理 语音处理是数字信号处理最活跃的研究方向之一,在IP电话和多媒体通信中得到广泛应用.一个完备的语音信号处理系统不但要具有语音信号的采集和回放功能,还要能够进行复杂的语音信号分析和处理.通常这些信号处理算法的运算量很大,而且又要满足实时的快速高效处理要求,随着DSP技术的发展,以DSP为内核的设备越来越多,为语音信号的处理提供了优质可靠的平台.软件编程的灵活性给很多设备增加不同的功能提供了方便,利用软件在已有的硬件平台上实现不同的功能已成为一种趋势.本文设计了一个语音处理系统,采用定点DSP芯片TM$320Cs402作为CPU,完成对语音信号的采集和滤波处理.

相关文档
最新文档