千题百炼第15炼 求函数的单调区间

千题百炼第15炼 求函数的单调区间
千题百炼第15炼 求函数的单调区间

函数的单调区间

单调性是函数的一个重要性质,对函数作图起到决定性的作用,而导数是分析函数单调区间的一个便利工具。求一个已知函数的单调区间是每一个学生的必备本领,在求解的过程中也要学会一些方法和技巧。 一、基础知识:

1、函数的单调性:设()f x 的定义域为D ,区间I D ?,若对于1212,,x x I x x ?∈<,有

()()12f x f x <,则称()f x 在I 上单调递增,I 称为单调递增区间。若对于

1212,,x x I x x ?∈<,有()()12f x f x >,则称()f x 在I 上单调递减,I 称为单调递减区

间。

2、导数与单调区间的联系

(1)函数()f x 在(),a b 可导,那么()f x 在(),a b 上单调递增()'

,()0x a b f x ??∈≥,

此结论可以这样理解:对于递增的函数,其图像有三种类型: ,无论是哪种图形,其上面任意一点的切线斜率均大于零。

等号成立的情况:一是单调区间分界点导数有可能为零,例如:()2

f x x =的单调递增区间

为[)0+∞,,而()'

00f

=,另一种是位于单调区间内但导数值等于零的点,典型的一个例

子为()3

f x x =在0x =处的导数为0,但是()0,0位于单调区间内。

(2)函数()f x 在(),a b 可导,则()f x 在(),a b 上单调递减()'

,()0x a b f x ??∈≤,

(3)前面我们发现了函数的单调性可以决定其导数的符号,那么由()'

,()x a b f x ?∈,的

符号能否推出()f x 在(),a b 的单调性呢?如果()f x 不是常值函数,那么便可由导数的符号对应推出函数的单调性。(这也是求函数单调区间的理论基础) 3、利用导数求函数单调区间的步骤 (1)确定函数的定义域 (2)求出()f x 的导函数'

()f x

(3)令'

()0f x >(或0<),求出x 的解集,即为()f x 的单调增(或减)区间

(4)列出表格

4、求单调区间的一些技巧

(1)强调先求定义域,一方面定义域对单调区间有限制作用(单调区间为定义域的子集)。另一方面通过定义域对x 取值的限制,对解不等式有时会起到简化的作用,方便单调区间的求解

(2)在求单调区间时优先处理恒正恒负的因式,以简化不等式

(3)一般可令'()0f x >,这样解出的解集就是单调增区间(方便记忆),若()f x 不存在常值函数部分,那么求减区间只需要取增区间在定义域上的补集即可(简化求解的步骤) (4)若'()0f x >的解集为定义域,那么说明()f x 是定义域上的增函数,若'()0f x >的解集为?,那么说明没有一个点切线斜率大于零,那么()f x 是定义域上的减函数 (5)导数只是求单调区间的一个有力工具,并不是唯一方法,以前学过的一些单调性判断方法也依然好用,例如:增+增→增,减+减→减,()1-?增→减,复合函数单调性同增异减等。如果能够通过结论直接判断,那么就无需用导数来判定。 5、求单调区间的一些注意事项

(1)单调区间可以用开区间来进行表示,如果用闭区间那么必须保证边界值在定义域内。例如函数1

y x

=的单调减区间为()()0,,,0+∞-∞,若写成[)0,+∞就出错了(0不在定义域内)

(2)如果增(或减)区间有多个,那么在书写时用逗号隔开,一定不要用并集的符号。

有些同学觉得不等式的解集是多个部分时用“

”连接,那么区间也一样,这个观点是错

误的。并集是指将两个集合的元素合并到一起成为一个集合,用在单调区间上会出现问题。依然以1

y x

=

为例,如果写成()()0,,0+∞-∞,那么就意味着从合并在一起的集合中任

取两个变量,满足单调减的条件。由1

y x

=性质可知,如果在()()0,,,0+∞-∞两个区间里各取一个,是不满足单调减的性质的。 6、二阶导函数的作用:

①几何意义:导数的符号决定原函数的单调性,对于()"

f x 而言,决定的是()'f x 的单调

性。当()''

0f

x >时,()'f x 单调递增,意味着()'f x 随x 的增大而增大,由于导数的几何

意义为切线斜率,故切线斜率k 随x 的增大而增大;同理,当()''

0f

x <时,()'f x 单调递

减,则切线斜率k 随x 的增大而减少。那么在图像上起到什么作用呢?

单调增有三种: 其不同之处在于切线斜率随自变量变大的变化不同,所以如果说()'f x 是决定函数单调性的,那么()''f x 在已知单调性的前提下,能够告诉我们是怎样增,怎样减的,进而对作图的精细化提供帮助。

(1)当()"0f x >,其图像特点为: 我们称这样的函数为下凸函数 (2)当()"0f x <,其图像特点为: 我们称这样的函数为上凸函数 ②代数意义:当通过()'f x 无法直接判断符号时,可通过二阶导函数先确定一阶导函数的单调性,再看能否利用条件判断符号。 二、典型例题:

例1:下列函数中,在()0,+∞上为增函数的是( )

A. ()sin2f x x =

B. ()x

f x xe = C. ()3

f x x x =- D. ()ln f x x x =-+

思路:本题只需分析各个函数在()0,+∞上的单调性即可。A 选项()sin2f x x =通过其图像可知显然在()0,+∞不单调;B 选项()()'

1x x x f

x e xe x e =+=+,当()0,x ∈+∞时,

()'

0f x >,所以()f x 在()0,+∞单调递增;C 选项()2

31=3f x x x x ?=-+ ????

可得()f x 在? ??单调递减,在?+∞???

单调递增;D 选项()'

111x f x x x -=-+=

,可得()f x 在()0,1单调递增,在()1,+∞单调递减。综上,B 符合条件 答案:B

例2:函数()()

212

log 4f x x =-的单调递增区间是( )

A. ()0,+∞

B. (),0-∞

C. ()2,+∞

D. (),2-∞- 思路:先分析()f x 的定义域:()

()2

40,22,x x ->?∈-∞-+∞,再观察解析式可得

()f x 可视为函数212

log ,4y t t x ==-的复合函数,根据复合函数单调性同增异减的特点,

可分别分析两个函数的单调性,对于12

log y t =而言,y 对t 是减函数。所以如要求得增区

间,则2

4t x =-中t 对x 也应为减函数。结合定义域可得()f x 的单调增区间为(),2-∞-

答案:D

例3:求函数()()

32333x

f x x x x e -=+--的单调区间(2009宁夏,21题(1))

思路:第一步:先确定定义域,()f x 定义域为R ,

第二步:求导:()()

'232()363333x x f x x x e x x x e --=+--+-- ()

()()3933x x

x x e x x x e --=--=--+,

第三步:令'()0f x >,即()()330x x x x e ---+> 第四步:处理恒正恒负的因式,可得()()330x x x -+< 第五步:求解()

()3,03,x ∈-+∞,列出表格

例4:求函数()()ln ln 2f x x x x =+-+的单调区间 解:定义域()0,2x ∈

()(

)()()(()

2'

22112

1=2222x x x x x x x f x x x x x x x x x +-++--=++==----

()0,2x ∈ 20,0x x ∴-<

令导数()'0f x >

解得:0x x

例5:求函数()2f x =的单调区间

解:(

)()1

22'3

2

112ln ln ln 4ln 122

x x x

x x x f x x x -?-==? 令()'0f x >,即解不等式()ln ln 40x x -<,解得4

0ln 41x x e <

()f x ∴的单调区间为

例6:求函数()1ln f x x x =--的单调区间

思路:函数还有绝对值,从而考虑先通过分类讨论去掉绝对值,在求导进行单调性分析

解:()1ln ,1

1ln ,01x x x f x x x x -->?=?--<

,当()0,1x ∈时,()1ln f x x x =--为减函数

当()1,x ∈+∞时,()'

11

1x f

x x x

-=-

= 1x > ()'0f x ∴>

()f x ∴在()1,+∞单调递增

综上所述:()f x 在()0,1单调递减,在()1,+∞单调递增

小炼有话说:(1)对于含绝对值的函数,可通过对绝对值内表达式的符号进行分类讨论可去掉绝对值,从而将函数转变为一个分段函数。

(2)本题在()0,1x ∈时,利用之前所学知识可直接判断出()f x 单调递减,从而简化步骤。导数只是分析函数单调性的一个工具,若能运用以前所学知识判断单调性,则直接判断更为简便

例7:(1)若函数()()()1ln 10,01x

f x ax x a x

-=++≥>+在区间[)1,+∞单调递增,则a 的取值集合是__________ (2)若函数()()()1ln 10,01x

f x ax x a x

-=++≥>+的递增区间是[)1,+∞,则a 的取值集合是___________

解:(1)思路:()()()()2'

22

22

1111a ax a f x ax x ax x +-=-=

++++,由()f x 在[)1,+∞单调递

增可得:1x ?≥,()()()

()2'

2

2

01211ax a f

x a x ax x +-=

≥?+≥++。2max 211a x ??∴≥= ?+?? 1a ∴≥

(2)思路:()f x 的递增区间为[)1,+∞,即()f x 仅在[)1,+∞单调递增。 令()'

222020a

f

x ax a x a

->?+->?>

,若1a >,则()f x 单调递增区间为()0,+∞不符题意,若01a <≤

,则x >时,()'0f x >

11a =?= 答案:(1)1a ≥,(2)1a =

小炼有话说:注意两问的不同之处,在(1)中,只是说明()f x 在区间[)1,+∞单调递增,那么()f x 也可以在其他区间单调递增,即[)1,+∞是增区间的子集。而(2)明确提出单调增区间为[)1,+∞,意味着()f x 不再含有其他增区间,1x =为单调区间的分界点,从而满足条件的a 只有一个值。要能够区分这两问在叙述上的不同。 例8:()3211232f x x x ax =-++,若()f x 在2,3??

+∞ ???

上存在单调递增区间,则a 的取值范围是_______ 思路:()'

22f

x x x a =-++,有已知条件可得:2,+3x ??

?∈∞

???

,使得()'0f x ≥,即()212a x x ≥-,只需()2min 12a x x ??

≥-????,而()2

211221

22339y x x ????=->-

=-?? ???

??

??,所以1

9

a >-

答案:19

a >-

小炼有话说:(1)已知在某区间的单调性求参数范围问题,其思路为通过导数将问题转化成为不等式恒成立或不等式能成立问题,进而求解,要注意已知函数()f x 单调递增(减)时,其导函数()'

0f

x ≥(0≤)

,勿忘等号。 (2)在转化过程中要注意单调区间与不等式成立问题中也有一些区别,例如:若把例6的条件改为“在

2,3??

+∞????

上存在单调递增区间”,则在求解的过程中,靠不等式能成立问题的

解法解出的a 的范围时19a ≥-

,但当19a =-时,满足不等式的x 的解仅有2

3x =,不能成为单调区间,故19a =-舍去,答案依然为1

9a >-

例9:设函数()2ln p

f x px x x

=--(其中e 是自然对数的底数),若()f x 在其定义域内

为单调函数,求实数p 的取值范围

思路:条件中只是提到()f x 为单调函数,所以要分单调增与单调减两种情况考虑。无非就是()'0f x ≥恒成立或()'0f x ≤恒成立,进而求出p 的范围即可 解: ()'

22p f

x p x x

=+

- 若()f x 在()0,+∞单调递增,则()'

22

0p f x p x x

=+

-≥恒成立 即2222

1222111x x p p x x x x x ?

?+≥?≥?= ?++?

? 2max

21x p x ??

∴≥ ?+?? ,设()221x h x x =+ 则(

)222111x h x x x x =

=≤=++

1p ∴≥

若()f x 在()0,+∞单调递减,则()'

22

0p f x p x x

=+

-≤恒成立 即22

12211x

p p x x x ?

?+

≤?≤ ?

+?

? 2min

21x p x ??

∴≤ ?+?? ,设()221x h x x =+ 则()2

22011x h x x x x

=

=>++,且当0x →或x →+∞时,()0h x → 0p ∴≤

综上所述:1p ≥或0p ≤

例10:若函数()(

)()3

log 0,1a f x x ax

a a =->≠在区间1,02

??- ??

?

内单调递增,则a 取值范围是( )

A .1,14??????

B .3,14??????

C .9,4??+∞????

D .91,4?? ???

思路:先看函数()f x 的定义域,则3

0x ax ->在1,02??

-

???

恒成立,214a x a >?≥

()f x 可看成是由3log ,a y u u x ax ==-的复合函数,故对a 进行分类讨论。当1a >时,

log a y u =单调递增,

所以3

u x ax =-需单调递增,()'22min

3030u x a a x ∴=-≥?≤=,与1a >矛盾;当01a <<时,log a

y u =单调递减,所以3

u x ax =-需单调递减,()

'22min

33034u x a a x ∴=-≤?≥=

3,14a ??

∴∈????

答案:B 小炼有话说:

(1)在本题中要注意参数对定义域的影响。单调区间是定义域的子集,所以在求参数范围时要满足定义域包含所给区间。这可能会对参数的取值有所限制。也是本题的易错点 (2)对于指数结构与对数结构的函数(如本题中的()f x ),可分别分析底数与1的大小(对数的增减性)与真数的单调性,然后判断整个函数的单调性。理论依据为复合函数的单调性特点(同增异减),故本题对底数a 以1为分界点分类讨论,并依此分析真数的情况。

利用导数求函数的单调区间

利用导数求函数的单调区间 一学习目标: 1结合实例,找出函数的单调性与导数的关系; 2会利用导数研究函数的单调性,会求简单函数的单调区间。 二重点、难点: 重点:求函数的单调区间. 难点:求含参数函数的单调区间。. 三教材分析 本节课主要对函数单调性求法的学习; 它是在学习导数的概念的基础上进行学习的,同时又为导数的应用学习奠定了基础,所以他在教材中起着承前启后的重要作用;(可以看看这一课题的前后章节来写) 它是历年高考的热点、难点问题 四教学方法 开放式探究法、启发式引导法、小组合作讨论法、反馈式评价法 五教学过程 预习学案: 1.函数单调性的定义是什么?函数的单调区间怎样求? 2.讨论以下问题 (1)求函数y=x的导数,判断其导数的符号; (2)求函数y=x2的导数,判断其导数的符号. 3.根据上述问题,思考导数的符号与函数的单调性之间的关系,并加以总结: 设函数y=f(x)在区间(a,b)内可导: 如果在(a,b)内,______________,则f(x)在此区间是增函数; 如果在(a,b)内,______________,则f(x)在此区间是减函数. 4.根据上述总结,思考一下,函数在某个区间上是单调递增函数,是不是其导数就一定大于零呢?如果函数在某个区间上是单调递减函数,是不是其导数就一定小于零?能否举个例子说明一下?

小测验: 1.当0>x 时,()x x x f 4+ =的单调减区间 2.函数53 123++-=x x y 的单调增区间为_______________,单调减区间为______________. 利用导数求函数的单调区间(讲授学案)——冯秀转 题型:求函数的单调区间 例1、求下列函数的单调区间; (1)x x y 23+= (2)()221 ln x x x f -= 注意:求函数单调区间时必须先考虑函数的定义域. (小结)求函数单调区间的步骤: 练习:求()x e x x f 2=的单调区间。

函数单调性的判定方法

函数单调性的判定方法 1.判断具体函数单调性的方法 对于给出具体解析式的函数,由函数单调性的定义出发,本文列举的判断函数单调性的方法有如下几种: 1.1 定义法 首先我们给出单调函数的定义。一般地,设f 为定义在D 上的函数。若对任何1x 、 D x ∈2,当21x x <时,总有 (1))()(21x f x f ≤,则称f 为D 上的增函数,特别当成立严格不等)()(21x f x f <时,称f 为D 上的严格增函数; (2))()(21x f x f ≥,则称f 为D 上的减函数,特别当成立严格不等式)()(21x f x f > 时,称f 为D 上的严格减函数。 给出函数单调性的定义,我们就可以利用函数单调性的定义来判定及证明函数的单调性。用单调性的定义判断函数单调性的方法叫定义法。利用定义来证明函数 )(x f y =在给定区间D 上的单调性的一般步骤: (1)设元,任取1x ,D x ∈2且21x x <; (2)作差)()(21x f x f -; (3)变形(普遍是因式分解和配方); (4)断号(即判断)()(21x f x f -差与0的大小); (5)定论(即指出函数 )(x f 在给定的区间D 上的单调性)。 例1.用定义证明)()(3R a a x x f ∈+-=在),(+∞-∞上是减函数。 证明:设1x ,),(2+∞-∞∈x ,且21x x <,则

).)(()()()(212 221123132323121x x x x x x x x a x a x x f x f ++-=-=+--+-=- 由于04 3)2(2 2221212221>++ =++x x x x x x x ,012>-x x 则0))(()()(212 2211221>++-=-x x x x x x x f x f ,即)()(21x f x f >,所以)(x f 在() +∞∞-,上是减函数。 例2.用定义证明函数x k x x f + =)()0(>k 在),0(+∞上的单调性。 证明:设1x 、),0(2+∞∈x ,且21x x <,则 )()()()(221121x k x x k x x f x f +-+ =-)()(2 121x k x k x x -+-= )( )(211221x x x x k x x -+-=)()(212121x x x x k x x ---=))((2 12121x x k x x x x --=, 又210x x <<所以021<-x x ,021>x x , 当1x 、],0(2k x ∈时021≤-k x x ?0)()(21≥-x f x f ,此时函数)(x f 为减函数; 当1x 、),(2+∞∈k x 时021>-k x x ?0)()(21<-x f x f ,此时函数)(x f 为增函数。 综上函数x k x x f + =)()0(>k 在区间],0(k 内为减函数;在区间),(+∞k 内为增函数。 此题函数)(x f 是一种特殊函数(对号函数),用定义法证明时通常需要进行因式分解,由于k x x -21与0的大小关系)0(>k 不是明确的,因此要分段讨论。 用定义法判定函数单调性比较适用于那种对于定义域内任意两个数21,x x 当 21x x <时,容易得出)(1x f 与)(2x f 大小关系的函数。在解决问题时,定义法是最直 接的方法,也是我们首先考虑的方法,虽说这种方法思路比较清晰,但通常过程比较繁琐。 1.2 函数性质法 函数性质法是用单调函数的性质来判断函数单调性的方法。函数性质法通常与我

函数的单调性·典型例题精析

2.3.1 函数的单调性·例题解析【例1】求下列函数的增区间与减区间 (1)y=|x2+2x-3| (2)y (3)y = = x x x x x 2 2 2 11 23 - -- --+ || 解(1)令f(x)=x2+2x-3=(x+1)2-4. 先作出f(x)的图像,保留其在x轴及x轴上方部分,把它在x轴下方的图像翻到x轴就得到y=|x2+2x-3|的图像,如图2.3-1所示. 由图像易得: 递增区间是[-3,-1],[1,+∞) 递减区间是(-∞,-3],[-1,1] (2)分析:先去掉绝对值号,把函数式化简后再考虑求单调区间. 解当x-1≥0且x-1≠1时,得x≥1且x≠2,则函数y=-x. 当x-1<0且x-1≠-1时,得x<1且x≠0时,则函数y=x-2. ∴增区间是(-∞,0)和(0,1) 减区间是[1,2)和(2,+∞) (3)解:由-x2-2x+3≥0,得-3≤x≤1. 令u==g(x)=-x2-2x+3=-(x+1)2+4.在x∈[-3,-1] 上是在x∈[-1,1] 上是. 而=在≥上是增函数. y u0 u ∴函数y的增区间是[-3,-1],减区间是[-1,1]. 【例2】函数f(x)=ax2-(3a-1)x+a2在[-1,+∞]上是增函数,求实数a的取值范

围. 解 当a =0时,f(x)=x 在区间[1,+∞)上是增函数. 当≠时,对称轴= , 若>时,由>≤,得<≤. a 0x a 0a 0 3a 10a 131212a a a --??? ?? 若a <0时,无解. ∴a 的取值范围是0≤a ≤1. 【例3】已知二次函数y =f(x)(x ∈R )的图像是一条开口向下且对称轴为x =3的抛物线,试比较大小: (1)f(6)与f(4) (2)f(2)f(15)与 解 (1)∵y =f(x)的图像开口向下,且对称轴是x =3,∴x ≥3时,f(x)为减函数,又6>4>3,∴f(6)<f(4) (2)x 3f(2)f(4)34f(x)x 3∵对称轴=,∴=,而< <,函数在≥15 时为减函数. ∴>,即>.f(15)f(4)f(15)f(2) 【例4】判断函数= ≠在区间-,上的单调性.f(x)(a 0)(11)ax x 2 1 - 解 任取两个值x 1、x 2∈(-1,1),且x 1<x 2. ∵-= ∵-<<<,+>,->,-<,-<.∴ >f(x )f(x )1x x 1x x 10x x 0x 10x 100 12121221a x x x x x x x x x x x x ()()()() ()()()() 122112 22 12 12 122112 22 111111+---+--- 当a >0时,f(x)在(-1,1)上是减函数. 当a <0时,f(x)在(-1,1)上是增函数. 【例5】利用函数单调性定义证明函数f(x)=-x 3+1在(-∞,+∞)上是减函数. 证 取任意两个值x 1,x 2∈(-∞,+∞)且x 1<x 2. ∵-=-++这里有三种证法:当<时,++=+->当≥时,++>f(x )f(x )(x x )(x x x x )()x x 0x x x x (x x )x x 0x x 0x x x x 0 2112221212 1212 1222 122 121212 1222证法一

高中数学函数单调性的判断方法

高中数学函数单调性的判断方法 单调性是函数的重要性质,它在数学中有许多应用,如我们常用求函数单调性的方法求函数的值域。那么,有哪些求函数单调性的方法呢? 方法一:定义法 对于函数f(x)的定义域I 内某个区间A 上的任意两个值12,x x (1)当12x x <时,都有12()()f x f x <,则说f(x)在这个区间上是增函数; (2)若当12x x <时,都有12()()f x f x >,则说f(x) 在这个区间上是减函数。 例如:根据函数单调性的定义,证明:函数 在 上是减函数。 要证明函数f (x )在定义域内是减函数,设任意1212,x x R x x ∈<且,则33221221212121()()()()f x f x x x x x x x x x -=-=-++,12x x <因为 210x x ->所以,且在1x 与2x 中至少有一个不为 0,不妨设20x ≠,那么222222121123()24 x x x x x x x ++=++0>,12()()f x f x >所以,故 ()f x 在 (,)-∞+∞上为减函数。 方法二:性质法 除了用基本初等函数的单调性之外,利用单调性的有关性质也能简化解题. 若函数f(x)、g(x)在区间B 上具有单调性,则在区间B 上有: 1. f(x)与c?f(x)当c >0具有相同的单调性,当c <0具有相反的单调性; 2.当f(x)、g(x)都是增(减)函数,则f(x)+g(x)都是增(减)函数; 3.当f(x)、g(x)都是增(减)函数,则f(x)?g(x)当两者都恒大于0时也是增(减)函数,当两者都恒小于0时也是减(增)函数; 例如,已知f (x )在R 上是减函数,那么-5f (x )为____函数。 这道题很简单,我们根据单调性的性质,很容易就能判断它是增函数。 方法三:同增异减法(处理复合函数的单调性问题) 对于复合函数y =f [g(x)]满足“同增异减”法(应注意内层函数的值域), 可令 t =g(x),则三个函数 y =f(t)、t =g(x)、y =f [g(x)]中, 若有两个函数单调性相同,则第三个函数为增函数;

《函数的单调性和奇偶性》经典例题

经典例题透析 类型一、函数的单调性的证明 1.证明函数上的单调性. 证明:在(0,+∞)上任取x1、x2(x1≠x2),令△x=x2-x1>0 则 ∵x1>0,x2>0,∴∴上式<0,∴△y=f(x2)-f(x1)<0 ∴上递减. 总结升华: [1]证明函数单调性要求使用定义; [2]如何比较两个量的大小?(作差) [3]如何判断一个式子的符号?(对差适当变形) 举一反三: 【变式1】用定义证明函数上是减函数. 思路点拨:本题考查对单调性定义的理解,在现阶段,定义是证明单调性的唯一途径. 证明:设x1,x2是区间上的任意实数,且x10 ∴x1f(x2) 上是减函数. 总结升华:可以用同样的方法证明此函数在上是增函数;在今后的学习中经常会碰到这个函数,在此可以尝试利用函数的单调性大致给出函数的图象.

类型二、求函数的单调区间 2. 判断下列函数的单调区间; (1)y=x2-3|x|+2;(2) 解:(1)由图象对称性,画出草图 ∴f(x)在上递减,在上递减,在上递增. (2) ∴图象为 ∴f(x)在上递增. 举一反三: 【变式1】求下列函数的单调区间: (1)y=|x+1|;(2)(3). 解:(1)画出函数图象, ∴函数的减区间为,函数的增区间为(-1,+∞); (2)定义域为,其中u=2x-1为增函数,

在(-∞,0)与(0,+∞)为减函数,则上为减函数; (3)定义域为(-∞,0)∪(0,+∞),单调增区间为:(-∞,0),单调减区间为(0,+∞). 总结升华: [1]数形结合利用图象判断函数单调区间; [2]关于二次函数单调区间问题,单调性变化的点与对称轴相关. [3]复合函数的单调性分析:先求函数的定义域;再将复合函数分解为内、外层函数;利用已知函数的单调性解决.关注:内外层函数同向变化→复合函数为增函数;内外层函数反向变化→复合函数为减函数. 类型三、单调性的应用(比较函数值的大小,求函数值域,求函数的最大值或最小值) 3. 已知函数f(x)在(0,+∞)上是减函数,比较f(a2-a+1)与的大小. 解:又f(x)在(0,+∞)上是减函数,则. 4. 求下列函数值域: (1);1)x∈[5,10];2)x∈(-3,-2)∪(-2,1); (2)y=x2-2x+3;1)x∈[-1,1];2)x∈[-2,2]. 思路点拨:(1)可应用函数的单调性;(2)数形结合. 解:(1)2个单位,再上移2个单位得到,如图 1)f(x)在[5,10]上单增,;

判断函数单调性的常见方法

判断函数单调性的常见方法 一、函数单调性的定义: 一般的,设函数y=f(X)的定义域为A,I?A,如对于区间内任意两个值X1、X2, 1)、当X1X2时,都有f(X1)>f(X2),那么就说y=f(x)在区间I上是单调减函数,I称为函数的单调减区间。 二、常见方法: Ⅰ、定义法:定义域判断函数单调性的步骤 ①取值: 在函数定义域的某一子区间I内任取两个不等变量X1、X2,可设X1

=(x1-x2)(x12+x22+x1x2+1) =(x1-x2)[﹙x1+1/2x2﹚2+1+3/4x22] ∵x1、x2?(-∞,+∞),x10 故f(x1)-f(x2)<0,即f(x1)

函数的单调性知识点总结与经典题型归纳

函数的单调性 知识梳理 1. 单调性概念 一般地,设函数()f x 的定义域为I : (1)如果对于定义域I 内的某个区间D 上的任意两个自变量的值12,x x ,当12x x <时,都有12()()f x f x <,那么就说函数()f x 在区间D 上是增函数; (2)如果对于定义域I 内的某个区间D 上的任意两个自变量的值12,x x ,当12x x <时,都有12()()f x f x >,那么就说函数()f x 在区间D 上是减函数. 2. 单调性的判定方法 (1)图像法:从左往右,图像上升即为增函数,从左往右,图像下降即为减函数。 (2)定义法步骤; ①取值:设12,x x 是给定区间内的两个任意值,且12x x < (或12x x >); ②作差:作差12()()f x f x -,并将此差式变形(注意变形到能判断整个差式符号为止); ③定号:判断12()()f x f x -的正负(要注意说理的充分性),必要时要讨论; ④下结论:根据定义得出其单调性. (3)复合函数的单调性: 当内外层函数的单调性相同时则复合函数为增函数;当内外层函数的单调性相反时则复合函数为减函数。也就是说:同增异减(类似于“负负得正”) 3. 单调区间的定义 如果函数()y f x =,在区间D 上是增函数或减函数,那么就说函数在这个区间上具有单调性,区间D 叫做()y f x =的单调区间. 例题精讲 【例1】下图为某地区24小时内的气温变化图. (1)从左向右看,图形是如何变化的? (2)在哪些区间上升?哪些区间下降?

解:(1)从左向右看,图形先下降,后上升,再下降; (2)在区间[0,4]和[14,24]下降,在区间[4,14]下降。 【例2】画出下列函数的图象,观察其变化规律: (1)f (x )=x ; ①从左至右图象上升还是下降? ②在区间(-∞,+∞)上,随着x 的增大,f (x )的值随着怎么变化? (2)f (x )=x 2. ①在区间(-∞,0)上,随着x 的增大,f (x )的值随着怎么变化? ②在区间[0 ,+∞)上,随着x 的增大,f (x )的值随着怎么变化? 解:(1)①从左至右图象是上升的; ②在区间(-∞,+∞)上,随着x 的增大,f (x )的值随着增大. (2)①在区间(-∞,0)上,随着x 的增大,f (x )的值随着减小; ②在区间[0 ,+∞)上,随着x 的增大,f (x )的值随着增大. 【例3】函数()y f x =在定义域的某区间D 上存在12,x x ,满足12x x <且12()()f x f x <,那么函 数()y f x =在该区间上一定是增函数吗? 解:不一定,例如下图: 【例4】下图是定义在闭区间[5,5]-上的函数()y f x =的图象,根据图象说出函数的单调区间,以及在每一单调区间上,它是增函数还是减函数. 解:函数()y f x =的单调区间有[5,2),[2,1),[1,3),[3,5)---; 其中在区间[5,2),[1,3)--上是减函数,在区间[2,1),[3,5)-上是增函数. 【例5】证明函数()32f x x =+在R 上是增函数.

求函数的单调区间

函数的单调区间 单调性是函数的一个重要性质,对函数作图起到决定性的作用,而导数是分析函数单调区间的一个便利工具。求一个已知函数的单调区间是每一个学生的必备本领,在求解的过程中也要学会一些方法和技巧。 一、基础知识: 1、函数的单调性:设()f x 的定义域为D ,区间I D ?,若对于1212,,x x I x x ?∈<,有()()12f x f x <,则称()f x 在I 上单调递增,I 称为单调递增区间。若对于1212,,x x I x x ?∈<,有()()12f x f x >,则称()f x 在I 上单调递减,I 称为单调递减区间。 2、导数与单调区间的联系 (1)函数()f x 在(),a b 可导,那么()f x 在(),a b 上单调递增()',()0x a b f x ??∈≥, 此结论可以这样理解:对于递增的函数,其图像有三种类 型: ,无论是哪种图形,其上面任意一点的切线斜率均大于零。 等号成立的情况:一是单调区间分界点导数有可能为零,例如:()2f x x =的单调递增区间为[)0+∞,,而()'00f =,另一种是位于单调区间内但导数值等于零的点,典型的一个例子为()3f x x =在0x =处的导数为0,但是()0,0位于单调区间内。 (2)函数()f x 在(),a b 可导,则()f x 在(),a b 上单调递减 ()',()0x a b f x ??∈≤,

(3)前面我们发现了函数的单调性可以决定其导数的符号,那么由()' f x在(),a b的单调性呢?如果() f x不 x a b f x ?∈,的符号能否推出() ,() 是常值函数,那么便可由导数的符号对应推出函数的单调性。(这也是求函数单调区间的理论基础) 3、利用导数求函数单调区间的步骤 (1)确定函数的定义域 (2)求出() f x的导函数'() f x (3)令'()0 f x的单调增(或减) f x>(或0 <),求出x的解集,即为() 区间 (4)列出表格 4、求单调区间的一些技巧 (1)强调先求定义域,一方面定义域对单调区间有限制作用(单调区间为定义域的子集)。另一方面通过定义域对x取值的限制,对解不等式有时会起到简化的作用,方便单调区间的求解 (2)在求单调区间时优先处理恒正恒负的因式,以简化不等式 (3)一般可令'()0 f x>,这样解出的解集就是单调增区间(方便记忆),若() f x不存在常值函数部分,那么求减区间只需要取增区间在定义域上的补集即可(简化求解的步骤) (4)若'()0 f x是定义域上的增函数, f x>的解集为定义域,那么说明() 若'()0 f x>的解集为?,那么说明没有一个点切线斜率大于零,那么() f x是定义域上的减函数 (5)导数只是求单调区间的一个有力工具,并不是唯一方法,以前学

函数单调性方法和各种题型

(一)判断函数单调性的基本方法 Ⅰ、定义法: 定义域判断函数单调性的步骤:取值、作差(或商)变形、定号、判断。例1:已知函数f(x)=x3+x,判断f(x)在(-∞,+∞)上的单调性并证明 Ⅱ、直接法(一次函数、二次函数、反比例函数的单调可直接说出): 在公共区间内,增函数+增函数=增函数,减函数+减函数=减函数 例2:判断函数y=-x+1+1/x在(0,+∞)内的单调性 Ⅲ、图像法: 说明:⑴单调区间是定义域的子集 ⑵定义x 1、x 2 的任意性 ⑶代数:自变量与函数值同大或同小→单调增函数 自变量与函数相对→单调减函数 例3:y=|x2+2x-3| 练习:

(二) 函数单调性的应用 Ⅰ、利用函数单调性求连续函数的值域(最值) 根据增函数减函数的定义我们可得到如下结论: (1)若 f(x)在某定义域[a,b]上是增函数,则当x=a 时, f(x) 有最小值f(a),当 x=b 时, f(x)有最大值 f(b)。 (2)若 f(x)在某定义域[a,b]上是减函数,则当x=a 时, f(x) 有最大值f(a),当 x=b 时, f(x)有最小值 f(b)。 例1:求下列函数的值域 (1)y=x 2-6x+3, x ∈[-1,2] (2)y=-x 2+2x+2, x ∈[-1,4] 练习题: 1.已知函数f(x)在区间[a,c]上单调减小,在区间[c,b]上单调增加,则f(x)在 [a,b]上的最小值是 ( ) 2.数f(x)=4x 2-mx+5在区间[-2,+∞)上是增函数,则f(1)的取值范围是 ( ) 3、( )有函数13+--=x x y 存在、最大值、最小值都不,最小值、最大值,最小值、最大值,最小值、最大值D C B A 4 -44 -00 4 4、](()()的值域为 时,函数当1435,02+-=∈x x x f x ()()][()()]()][5,5,323205,0f c D f f C f f B f f A 、、、、、????? ? ??????????? ?? 5、求函数y=-x-6+ 的值域 x -1

(完整版)函数单调性奇偶性经典例题

函数的性质的运用 1.若函数y f x x R =∈()()是奇函数,则下列坐标表示的点一定在函数 y f x =()图象上的是( ) A.(())a f a ,- B.(())--a f a , C.(())---a f a , D.(())a f a ,- 2. 已知函数)(1 22 2)(R x a a x f x x ∈+-+?= 是奇函数,则a 的值为( ) A .1- B .2- C .1 D .2 3.已知f (x )是偶函数,g (x )是奇函数,若1 1)()(-= +x x g x f ,则f (x ) 的解析式为_______. 4.已知函数f (x )为偶函数,且其图象与x 轴有四个交点,则方程f (x )=0的所有 实根之和为________. 5.定义在R 上的单调函数f (x )满足f (3)=log 23且对任意x ,y ∈R 都有f (x+y )=f (x )+f (y ). (1)求证f (x )为奇函数; (2)若f (k ·3x )+f (3x -9x -2)<0对任意x ∈R 恒成立, 求实数k 的取值范围. 6.已知定义在区间(0,+∞)上的函数f(x)满足f()2 1 x x =f(x 1)-f(x 2),且当x >1时,f(x)<0. (1)求f(1)的值; (2)判断f(x )的单调性; (3)若f(3)=-1,解不等式f(|x|)<-2.

7.函数f(x)对任意的a 、b ∈R,都有f(a+b)=f(a)+f(b)-1,并且当x >0时,f(x)>1. (1)求证:f(x)是R 上的增函数; (2)若f(4)=5,解不等式f(3m 2 -m-2)<3. 8.设f (x )的定义域为(0,+∞),且在(0,+∞)是递增的,)()()(y f x f y x f -= (1)求证:f (1)=0,f (xy )=f (x )+f (y ); (2)设f (2)=1,解不等式2)3 1 ( )(≤--x f x f 。 9.设函数()f x 对x R ∈都满足(3)(3)f x f x +=-,且方程()0f x =恰有6个不同 的实数根,则这6个实根的和为( ) A . 0 B .9 C .12 D .18 10.关于x 的方程 22(28)160x m x m --+-=的两个实根 1x 、2x 满足 123 2 x x <<, 则实数m 的取值范围 11.已知函数()()y f x x R =∈满足(3)(1)f x f x +=+,且x ∈[-1,1]时,()||f x x =, 则()y f x =与5log y x =的图象交点的个数是( ) A .3 B .4 C .5 D .6 12.已知函数()f x 满足:4x ≥,则()f x =1()2 x ;当4x <时()f x =(1)f x +,则 2(2log 3)f += A 124 B 112 C 18 D 38 13.已知函数f (x )在(-1,1)上有定义,f ( 2 1 )=-1,当且仅当0

高一数学中函数的单调性4种求法

高一数学中函数的单调性非常重要,分析函数的单调性方法有:定义法,图像法,性质法,复合法.下边结合例题加以说明: 1.定义法 例题已知函数y=x^3-x在(0,a]上是减函数,在[a,+)上是增函数,求a的值。 解分析函数在R+上的单调性 任取x1>x2>0 Y1-Y2=(X1^3-X2^3)-(X1-X2)=(X1-X2)(X1^2+X1X2+X2^2)-(X1-X2) =(X1-X2)(X1^2+X1X2+X2^2-1) 令y1-y2>0 所以 X1^2+X1X2+X2^2-1>0 因为X1^2+X1X2+X2^2-1>X2^2+X2X2+X2^2-1=3X2^2-1 当3X2^2-1>=0时即X2^2>=1/3 X2>=根号3/3时 y1-y2>0 函数是递增的 同理当3X1^2-1<=0时即X1<=根号3/3时 y1-y2<0 函数是递减的 故函数在R+上的增区间为[根号3/3,+)减区间为(0,根号3/3) 因此 a=根号3/3 一般情况下,用定义求函数的单调区间就是求出使y1-y2>0(<0)的x1,x2的取值范围,要变换不等式,求出x1和x2的范围,就可求出函数的单调区间。 2.图像法 例题求y=x+3/x-1的单调区间 解函数定义域为(-,1)并(1,+) Y=X+3/X-1=X-1+4/X-1=1+4/X-1 由图像可知函数在(-,1)和(1,+0)上递减。 函数的图像是解决这类问题的关键。 3.性质法 性质:增+增=增减+减=减

y=f(x)与y=kf(x) 当k>0 有相同的单调性当k<0有相反的单调性 y=f(x)(y>0)与y=k/f(x) 当k>0 有相反的单调性,当k<0 有相同的单调性 例题求y=x^3+x的单调区间。 解因为y=x是增函数,当x>=0时,y=x^3是递增的,当x<0时,y=x^3是递增的,所以y=x^3是R上的增函数。 由性质可知,函数y=x^3+x的单调区间为R. 4.复合法 u=p(x) y=f(u)复合后的函数为:y=f(p(x))它们的单调性为:同增异减。 例题求y=根号(x-1)(x+1)的单调区间。 解令u=(x-1)(x+1) 则y=根号u 当x>=1时 u=(x-1)(x+1)递增 当x<=-1时 u=(x-1)(x+1)递减 Y=根号u递增 所以原函数的单调增区间为[1,+) 减区间为(-,-1]

(完整word版)函数的单调性典型例题.docx

函数的单调性及典型习题 一、函数的单调性 1、定义: (1)设函数y f (x) 的定义域为A,区间 M A ,如果取区间 M 中的任意两个值x1, x2 ,当改变量x 2 x1 时,都有f ( x 2) f ( x1 ) 0,那么就称函数y f ( x) 在区间M上是增函数,如图(1)当改变量x2x10 时,都有 f ( x2 ) f (x1) 0,那么就称函数y f (x) 在区间M上是减函数,如图(2) 注意:函数单调性定义中的x1,x2有三个特征,一是任意性,二是有大小,三是同属于一个单调区间.2、巩固概念: 1、定义的另一种表示方法 如果对于定义域I内某个区间 D 上的任意两个自变量x1,x2,若f ( x 1 ) f (x2 )0 即 x1x2 y ,则函数 y=f(x)是增函数,若f ( x1 ) f ( x2 ) 0 即y0 ,则函数y=f(x)为减函数。 x1x2 x x 判断题: ①已知 f (x)1 1) f(2) ,所以函数 f ( x) 是增函数. 因为 f ( x ②若函数 f ( x) 满足 f (2) f (3)则函数 f ( x) 在区间2,3 上为增函数. ③若函数 f ( x) 在区间 (1,2] 和 (2,3) 上均为增函数,则函数 f ( x) 在区间 (1,3) 上为增函数. ④ 因为函数 1 在区间,0),(0,) 上都是减函数,所以 f ( x) 1 f ( x)在 x x ( ,0)(0, ) 上是减函数. 通过判断题,强调几点: ①单调性是对定义域内某个区间而言的,离开了定义域和相应区间就谈不上单调性.

②对于某个具体函数的单调区间,可以是整个定义域 ( 如一次函数 ) ,可以是定义域内某个 区间 ( 如二次函数 ) ,也可以根本不单调 ( 如常函数 ) . ③单调性是对定义域的某个区间上的整体性质,不能用特殊值说明问题。 ④函数在定义域内的两个区间A,B 上都是增(或减)函数,一般不能认为函数在 A B 上 是增(或减)函数. 熟记以下结论,可迅速判断函数的单调性. 1.函数 y =- f ( x )与函数 y = f ( x )的单调性相反. 1 2.当 f ( x )恒为正或恒为负时,函数 y = f ( x) 与 y = f ( x )的单调性相反. 3.在公共区间内,增函数+增函数=增函数,增函数-减函数=增函数等 3.判断函数单调性的方法 ( 1)定义法. ( 2)直接法.运用已知的结论,直接得到函数的单调性,如一次函数,二次函数的单 调性均可直接说出. ( 3)图象法. 例 1、证明函数 f ( x) 1 )是减函数. 在( 0, + x 练习 1:证明函数 f ( x) x 在 0, 上是增函数. 1 1 x 例 2、设函数 f (x )= x 2 + lg 1 x ,试判断 f ( x )的单调性,并给出证明. 例 3、求下列函数的增区间与减区间 (1)y = |x 2 + 2x - 3| x 2 2x (2)y = 1| 1 |x (3)y = x 2 2x 3

(完整版)复合函数单调性的判定方法

复合函数单调性的判定方法 定理设y=f(u),u∈(m,n),u=g(x),x∈(a,b).(1)若y=f(u)是(m,n)上的减函数,则y=f[g(x)]的增减性与g(x)的增减性相反;(2)若y=f(u)是(m,n)上的增函数,则y=f[g(x)]的增减性与g(x)的增减性相同. 证明:(1)若g(x)在(a,b)上是增函数,任取a<x 1<x 2 <b, 则有m<g(x 1)<g(x 2 )<n,由f(u)在(m,n)上是减函数得f[g(x 1 )] >f[g(x 2 )],故f[g(x)]在(a,b)上是减函数.若g(x)在(a,b)上是减函数,同理可证f[g(x)]在(a,b)上是增函数. (2)若g(x)在(a,b)上是增函数,任取a<x 1<x 2 <b,则有m <g(x 1)<g(x 2 )<n,由f(u)在(m,n)上是增函数,得f[g(x 1 )]< f[g(x 2 )],所以f[g(x)]在(a,b)上是增函数.若g(x)在(a,b)上是减函数,同理可证f[g(x)]在(a,b)上是减函数. 由此定理可知,复合函数单调性的判定是以简单函数的单调性为基础,而中学数学中的简单函数均是初等函数,因此熟悉各种初等函数的单调性是判定复合函数单调性的基础.若能对各种初等函数的图象了如指掌,则对复合函数的单调性的判定将大有裨益.我们就可借助初等函数的图象确定它的单调性,判定它的单调区间和函数值域,再利用上述定理就很容易判定复合函数的单调性. 例1讨论函数f(x)=log 0.5 (x2+4x+4)的单调性.解 f(x)的定义域为(-∞,-2)∪(-2,+∞).f(x)可视为 y=log 0.5 u与u=x2+4x+4复合而成.u的图象是以x=-2为对称轴,开口向上的抛物线,在(-∞,-2)上为减函数,在(-2,+ ∞)上为增函数.又y=log 0.5 u在其定义域上是减函数,故f(x)在(-∞,-2)上是增函数,在(-2,+∞)上是减函数.例2试求函数f(x)=2x2的单调区间. 解函数f(x)=2x2可视为f(u)=2u与u=x2复合而成.函数u =x2在(-∞,0]上为减函数,在[0,+∞)上为增函数,且u≥0.函数f(u)=2u在u≥0时为增函数.所以,f(x)在(-∞,0]上为减函数.在[0,+∞)上为增函数. 推论由有限个简单函数复合而成的多重复合函数,若在所讨论的区间内每个简单函数均有意义,且均为严格单调函数.当其中减函数的个数是偶数时,则复合函数是增函数;当减函数的个数是奇数时,则复合函数是减函数.

必修一函数的单调性专题讲解(经典)

(2)第一章函数的基本性质之单调性 一、基本知识 1 .定义:对于函数y f (x),对于定义域内的自变量的任意两个值x「X2,当捲x2时,都有f(x i) f (X2)(或f (x i) f(X2)),那么就说函数y f (x)在这个区间上是增(或减)函数。 重点2 .证明方法和步骤: (1) 取值: 设X i,X2是给定区间上任意两个值,且X i X2 ; (2) 作差: f(xj f(X2); (3) 变形: (如因式分解、配方等); (4) 宀口 定 号: 即f (x i) f(x2) 0或f (x i) f(x2) 0 ; (5) 根据定义下结论。 3?常见函数的单调性 ⑴ 心) 也+乩k o|时,回在R上是增函数;k

5.函数的单调性的应用: 判断函数y f(x)的单调性;比较大小;解不等式;求最值(值域) 例题分析 T 2 例1 :证明函数f(x)=区_1在(0, + 上是减函数。 例2 :证明F@) = / + 3|在定义域上是增函数。 例3 :证明函数f(x)=x 3的单调性。 例4 :讨论函数y =一; 1 — x2在[—1,1]上的单调性. 3 例5 :讨论函数f(x) =W 的单调性.

函数单调性地判断或证明方法

函数单调性的判断或证明方法. ( 1)定义法。用定义法证明函数的单调性的一般步骤是①取值,设,且;②作差,求;③变形(合并同类项、通分、分解因式、 配方等)向有利于判断差值符号的方向变形;④定号,判断的正负符号,当符号不确定时,应分类讨论;⑤下结论,根据函数单调性的定义下结论。 例 1. 判断函数在(-1,+∞ )上的单调性,并证明. 解:设- 10, x2+ 1>0. ∴当 a>0 时, f(x 1) - f(x 2)<0 ,即 f(x 1)0 ,即 f(x 1)>f(x ∴函数 y= f(x) 在 ( - 1,+∞ ) 上单调递减. 2),2), 例 2.证明函数在区间和上是增函数;在上为减函数。(增两端,减中间) 证明:设,则 因为,所以, 所以,

所以 所以 设 则, 因为, 所以 所以 所以 , 同理,可得 (2)运算性质法 . ①在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数, 增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.(增 +增=增;减 +减 =减;增 -减=增,减 -增=减) ②若. ③当函数 ④ 函数 . 二者有相 反的单调性。 ⑤运用已知结论,直接判断函数的单调性,如一次函数、反比例函数等。( 3)图像法 . 根据函数图像的上升或下降判断函数的单调性。 例 3. 求函数的单调区间。 解:

证明函数单调性的方法总结

证明函数单调性的方法总结 导读:1、定义法: 利用定义证明函数单调性的一般步骤是: ①任取x1、x2∈D,且x1 ②作差f(x1)-f(x2),并适当变形(“分解因式”、配方成同号项的和等); ③依据差式的符号确定其增减性. 2、导数法: 设函数y=f(x)在某区间D内可导.如果f′(x)>0,则f(x)在区间D内为增函数;如果f′(x) 注意:(补充) (1)若使得f′(x)=0的x的值只有有限个, 则如果f ′(x)≥0,则f(x)在区间D内为增函数; 如果f′(x) ≤0,则f(x)在区间D内为减函数. (2)单调性的判断方法: 定义法及导数法、图象法、 复合函数的单调性(同增异减)、 用已知函数的单调性等 (补充)单调性的有关结论 1.若f(x),g(x)均为增(减)函数, 则f(x)+g(x)仍为增(减)函数. 2.若f(x)为增(减)函数, 则-f(x)为减(增)函数,如果同时有f(x)>0,

则 为减(增)函数, 为增(减)函数 3.互为反函数的两个函数有相同的单调性. 4.y=f[g(x)]是定义在M上的函数, 若f(x)与g(x)的'单调性相同, 则其复合函数f[g(x)]为增函数; 若f(x)、g(x)的单调性相反, 则其复合函数f[g(x)]为减函数.简称”同增异减” 5. 奇函数在关于原点对称的两个区间上的单调性相同; 偶函数在关于原点对称的两个区间上的单调性相反. 函数单调性的应用 (1)求某些函数的值域或最值. (2)比较函数值或自变量值的大小. (3)解、证不等式. (4)求参数的取值范围或值. (5)作函数图象. 【证明函数单调性的方法总结】 1.函数单调性的说课稿 2.高中数学函数的单调性的教学设计 3.导数与函数的单调性的教学反思

已知函数单调性求参数范围公开课教案

已知函数单调性求参数范围 教学目标 1.知识与技能:学会利用导数来解决已知单调性求参数范围问题; 2.过程与方法:通过实例讲解,归纳,解决问题的方法; 3.情感与态度:通过问题的解决,体会转化思想的应用. 教学重点 已知单调性,利用导数求参数范围. 教学难点 不同问题的处理方法. 教学过程 (一)知识梳理 函数y =f (x )的导数为)('x f y =,对于区间(a ,b ). 1.若y =f (x )的单调区间为(a ,b ),则? ??==0)('0)('b f a f 2.若y =f (x )在区间(a ,b )上单调递增(递减),则)0)('(0)('≤≥x f x f 在(a ,b )上恒成立. (二)典例分析 例1 函数)(ln )(22R a ax x a x x f ∈+-=的单调递减区间是),1(+∞,求a 的值. 例2 函数)(ln )(22R a ax x a x x f ∈+-=在),1(+∞上是减函数, 求a 的取值范围. 例3 函数)0(22 1ln )(2<--=a x ax x x f 在定义域内单调递增,求a 的取值范围. 例4 函数1331)(223+-+=x m mx x x f 在区间)3,2(-上是减函数,求m 的取值范围. 例5已知R a ∈,函数3)1()(223+-+-=x a ax x x f 在)0,(-∞和),1(+∞上都是增函数, 求a 的取值范围.

(三)课时小结 本节课主要介绍了已知函数单调性来利用导数求参数范围. (四)备用练习 1.函数)0(3)(223>+-+=a x a ax x x f 在[-1,1]上没有极值点, 求a 的值. 2.函数)0(1)(2>+=a ax e x f x 在R 上为单调函数, 求a 的取值范围. 3.函数1)5()1()(23-++-+=x k x k x x g 在区间) (3,0上有极值点,求参数k 的取值范围。 (五)作业布置 <<状元之路>>第48页 11,12

相关文档
最新文档