高等数学第19章第3节欧拉积分

高等数学第19章第3节欧拉积分
高等数学第19章第3节欧拉积分

第十九章 含参量积分

§3 欧拉积分

注.

:1) 欧拉积分均为含参量积分,其中Γ函数为含参量s 的反常积分①, B 函数为含参量(p 和q )的积分.

☆ 下面我们分别讨论这两个函数的性质。 一、Γ函数

1. Γ函数的定义域及其连续性、可导性

结论..0.:.Γ函数..(1) ...在.0>s 时收敛,即.....Γ函数的定义域为.......0>s . 事实上:Γ函数(1)可写成如下两个积分之和:

),()()(1

11

1x J x I dx e x dx e x s x s x

s +=+=Γ??+∞

----

对于)(s I ①当1≥s 时是正常积分.

②当0

没有讨论这种情况,所以不能拿出充分的理由);

对于)(s J ①当0>s 时是收敛的无穷限反常积分(上册P273例2), 所以含参量积分(1)在0>s 时收敛,即Γ函数的定义域为 0>s ▌.

结论..1.:.Γ函数..)(s Γ在定义域....0>s 内连续且可导......,.并且..)(s Γ在.0>s 上存在任意阶导.......数:..?+∞

--=Γ

1)

()(ln )(dx x e x s n x s n ,. (..0>s ).

事实上:在任何闭区间[]()0,>a b a 上,

①对于函数)(s I ,当10≤≤x 时有x

a x

s e x

e x

----≤11,由于?--1

1dx e x x a 收敛(上

册P273例2),从而)(s I 在上[]b a ,一致收敛(魏尔斯特拉斯M 判别法);

②对于函数)(s J ,当+∞<≤x 1,有,11x

b x s e x e x ----≤由于

?

+∞

--1

1dx e x x b 收敛,

从而)(s J 在[]b a ,上也一致收敛.于是由[]()0,>a b a 的任意性可知)(s Γ在0>s 上连续。

用上述相同的方法考察积分

.ln )(010

1??

+∞--+∞

--=??xdx e x dx e x s

x s x

s 它在任何闭去

间[]()0,>a b a 上一致收敛。于是由定理10.19得到)(s Γ在[]b a ,上可导,由b a ,的任意性,

)(s Γ在0>s 上可导,且

?+∞

--=Γ0

1ln )('xdx e x s x s , (.0>s )

于是可推得)(s Γ在0>s 上存在任意阶导数:

?+∞

--=Γ

1)

()(ln )(dx x e x s n x s n , (.0>s ) ▌.

2. Γ函数的递推公式

结论..2.:.对于..)(s Γ函数..,.有递推公式.....)()1(s s s Γ=+Γ. .(3) 事实上:对下述积分应用分部积分法,有

??

----+-=A x s x

s A

x s dx e x s A

e x dx e x 010

?---+-=A x s A s dx e x s e A 01.

(只需令x s x s e v dx sx du dx e dv x u ----==?==,,1即可)

令+∞→A 就得到Γ函数的递推公式:)()1(s s s Γ=+Γ ; ▌.

结论..3.:.对于..)(s Γ函数有...

)()1(s s s Γ=+Γ).()()1()1()1(n s n s s s s s s -Γ--==-Γ-= (4)

事实上:对任 s>0,总存在正整数n,使得1+≤

(3)式n 次可得到(4)式. ▌.

注.

:1) 公式(4)表明,如果已知)(s Γ在10≤

2)若s 为正整数1+n ,则(4)式可写成

!.!)1(12)1()1(0

n dx e n n n n x ==Γ?-=+Γ?

+∞

- (5)

3.Γ函数图象的讨论

⑴ 对一切s>0,)(s Γ和)(''s Γ恒大于0,因此)(s Γ的图形位于x 轴上方,且是向下凸的.

⑵ 因为1)2()1(=Γ=Γ,)(s Γ在定义域0>s 内连续,所以)(s Γ在0>s 上存在唯一的极小点0x 且)2,1(0∈x .又)(s Γ在),0(0x 内严格减;在),(0+∞x 内严格增,

⑶ 由于)0()

1()()(>+Γ=Γ=

Γs

s

s s s s s 及1)1()1(lim 0=Γ=+Γ+

→s s ,故有

.)

1(lim )(lim 0

+∞=+Γ=Γ+

+→→s

s s s s ⑷ 由(5)式及)(s Γ在),(0+∞x 上严格增可推得

.)(lim +∞=Γ+∞

→s s

综上所述,Γ函数的图象如图219-中s>0部分所示. 4.延拓)(s Γ

改写递推公式(3)为 .)

1()(s

s s +Γ=

Γ (6) 当01<<-s 时,(6)式右端有意义,于是可应用(6)式来定义左端函数)(s Γ在)0,1(-内的值,并且可推得这时)(s Γ.0<

用同样的方法,利用)(s Γ已在)0,1(-内有定义这一事实,由(6)式又可定义)(s Γ在

)1,2(--内的值,而且这时)(s Γ>0.

依此下去可把)(s Γ延拓到整个数轴(除了 ,2,1,0--=s 以外),其图象如图

219-(P192)所示.

5.)(s Γ的其他形式

在应用上, )(s Γ也常以如下形式出现.如令2

y x =,则有

).0(2)(0

120

12

>==Γ?

?+∞

--+∞--s dy e y dx e x s y s x s (6)

令py x =,就有

).0,0()(0

10

1>>==Γ?

?+∞

--+∞

--p s dy e y p dx e x s py s s x s (7)

二、B 函数

1.B 函数的定义域及连续性

结论..0.:.B 函数..(2) ...当0,0>>q p 时这个无界函数反常积分收敛,所以函数),(q p B 的定义域为.0,0>>q p

事实上:①B 函数(2)当1

②当1

应用柯西判别法可证得当0,0>>q p 时这两个无界函数反常积分都收敛,所以函数

),(q p B 的定义域为.0,0>>q p ▌

结论..1.:.),(q p B 在0,0>>q p 内连续. 事实上:由于对任何0,000>>q p 成立不等式

111100)1()1(-----≤-q p q p x x x x (0,0q q p p ≥≥注意:110,10<-<<

?

---1

1100)1(dx x x q p 收敛,故由魏尔斯特拉斯M 判别法知),(q p B 在

+∞<≤+∞<≤q q p p 00,上一致收敛。因而推得),(q p B 在0,0>>q p 内连续.

2.B 函数对称性

结论..1.:.B 函数具有对称性,即),(q p B =),(p q B 事实上:作变换y x -=1,得

dx x x

q p B q p 1

1

1

)

1(),(--?-=).,()1(1

11p q B dy y y q p =-=?--

3.B 函数的递推公式

)1,(1

1

),(--+-=

q p B q p q q p B ),1,0(>>q p (8)

),1(1

1

),(q p B q p p q p B --+-=

),0,1(>>q p (9)

)1,1()

2)(1()

1)(1(),(---+-+--=

q p B q p q p q p q p B ).1,1(>>q p

事实上:(仅证公式(8),公式(9)可由对称性及公式(8)推得,而最后一个公式则可由公式(8),(9)推得.)

当1,0>>q p 时,有

?---=1

1

1

)

1(),(dx x x

q p B q p ?----+-=102

1)1(101)1(dx x x p

q p x x q p q p []

?-------=

102

11)1()1(1dx x x x x p

q q p p ??---------=

10111021)1(1)1(1dx x x p

q dx x x p q q p q p

),,(1

)1,(1q p B p

q q p B p q ----=

移项并整理就得(8). ▌ 4.),(q p B 的其他形式

在应用中B 函数也常以如下形式出现. 1) 令?2cos =x ,则有

?--=20

1212.cos sin 2),(π

???d q p B p q (10)

2) 令,)

1(,111,12

y dy dx y x y y x +=+=-+=

则有 .)

1(),(0

1

?

++-+=dy y y q p B q

p p 考察

.)

1(1

1

?

++-+dy y y q

p p 令 t y 1= ,则有 ??

+-∞

++-+-=+011

1

1.)

1()1(dt t t dy y y q p q q p p 所以

.)

1(),(1

1

1?

+--++=dy y y y q p B q

p q p 三 Γ函数与B 函数之间的关系

当n m ,为正整数时,反复应用B 函数的递推公式可得

)1,(11),(--+-=

n m B n m n n m B ).1,(1

1

2211m B m n m n n m n +-+--+-=

又由于,1)1,(101

m dx x m B m ==?-所以

)!

1()!1(1112211),(--?+-+--+-=

m m m m n m n n m n n m B ,)!1()!

1()!1(-+--=n m m n

即 ,)

()

()(),(m n m n n m B +ΓΓΓ=

(11)

对于任何正实数q p ,也有相同的关系: )

()

()(),(q p q p q p B +ΓΓΓ=).0,0>>q p (12)

这个关系式我们将在第二十一章§8中加以证明.

高数积分公式大全

常 用 积 分 公 式 (一)含有ax b +的积分(0a ≠) 1. d x ax b +?=1 ln ax b C a ++ 2.()d ax b x μ +? = 11 ()(1) ax b C a μμ++++(1μ≠-) 3. d x x ax b +?=21 (ln )ax b b ax b C a +-++ 4.2d x x ax b +? =22311()2()ln 2ax b b ax b b ax b C a ?? +-++++???? 5. d ()x x ax b +?=1ln ax b C b x +-+ 6. 2d () x x ax b +? = 21ln a ax b C bx b x +-++ 7. 2 d ()x x ax b +?=21(ln )b ax b C a ax b ++++ 8.22d ()x x ax b +? =2 31(2ln )b ax b b ax b C a ax b +-+-++ 9. 2 d () x x ax b +? =211ln ()ax b C b ax b b x +-++ 的积分 10. x C + 11.x ?=2 2 (3215ax b C a - 12.x x ?=2223 2(15128105a x abx b C a -+ 13. x ? =22 (23ax b C a -

14 . 2x ? =222 3 2(34815a x abx b C a -+ 15 .? (0) (0) C b C b ?+>< 16 . ? 2a b - 17. d x x ? =b ?18 . x ? =2a x -+ (三)含有2 2 x a ±的积分 19. 22d x x a +?=1arctan x C a a + 20. 22d ()n x x a +?=2221222123d 2(1)()2(1)()n n x n x n a x a n a x a ---+-+-+? 21. 22d x x a -?=1ln 2x a C a x a -++ (四)含有2 (0)ax b a +>的积分 22.2d x ax b +? =(0) (0) C b C b ?+>+< 23. 2d x x ax b +?=2 1ln 2ax b C a ++

二重积分学习总结

高等数学论文 《二重积分学习总结》 姓名:徐琛豪 班级:安全工程02班 学号:1201050221 完成时间:2013年6月2日

二重积分 【本章学习目标】 ⒈理解二重积分的概念与性质,了解二重积分的几何意义以及二重积分与定积分之间的联系,会用性质比较二重积分的大小,估计二重积分的取值范围。 ⒉领会将二重积分化为二次积分时如何确定积分次序和积分限,如何改换二次积分的积分次序,并且如何根据被积函数和积分区域的特征选择坐标系。熟练掌握直角坐标系和极坐标系下重积分的计算方法。 ⒊掌握曲顶柱体体积的求法,会求由曲面围成的空间区域的体积。 1 二重积分的概念与性质 1.二重积分定义 为了更好地理解二重积分的定义,必须首先引入二重积分的两个“原型”,一个是几何的“原型”-曲顶柱体的体积如何计算,另一个是物理的“原型”—平面薄片的质量如何求。从这两个“原型”出发,对所抽象出来的二重积分的定义就易于理解了。 在二重积分的定义中,必须要特别注意其中的两个“任意”,一是将区域D 成n 个小区域12,,,n σσσ??? 的分法要任意,二是在每个小区域i σ?上的点(,)i i i ξησ∈?的取法也要任意。有了这两个“任意”,如果所对应的积分和当各小区域的直径中的最大值0λ→时总有同一个极限,才能称二元函数(,)f x y 在区域D 上的二重积分存在。 2.明确二重积分的几何意义。 (1) 若在D 上(,)f x y ≥0,则(,)d D f x y σ??表示以区域D 为底,以 (,)f x y 为曲顶的曲顶柱体的体积。特别地,当(,)f x y =1时,(,)d D f x y σ ??表示平面区域D 的面积。

高等数学常用导数和积分公式

高等数学常用导数和积分公式 导数公式:基本积分表:三角函数的有理式积分: (一)含有的积分() 1.= 2.=() 3.= 4.= 5.= 6.= 7.= 8.= 9.= (二)含有的积分10.=11.=12.=13.=14.=15.=16.=17.=18.= (三)含有的积分19.=20.=21.= (四)含有的积分22.=23.=24.=25.=26.=27.=28.= (五)含有的积分29.=30.= (六)含有的积分31.==32.=33.=34.=35.=36.=37.=38.=39.=40.=41.=42.=43.=44.= (七)含有的积分45.==46.=47.=48.=49.=50.=51.=52.=53.=54.=55.=56.=57.=58.=

(八)含有的积分59.=60.=61.=62.=63.=64.=65.=66.=67.=68.=69.=70.=71.=72.=(九)含有的积分73.=74.=75.=76.=77.=78.=()含有或的积分79.=80.=81.=82.=(一)含有三角函数的积分83.=84.=85.=86.=87.==88.==89.=90.=91.=92.=93.=94.=95.=96.=97.=98.=99.==100.=101.=102.=103.=104.=105.=106.=107.=108.=109.=110.=111.=112.=(二)含有反三角函数的积分(其中)113.=114.=115.=116.=117.=118.=119.=120.=121. =(三)含有指数函数的积分122.=123.=124.=125.=126.=127.=128.=129.=130.=131.=(四)含有对数函数的积分132.=133.=134.=135.=136.=(五)含有双曲函数的积分137.=138.=139.=140.=141.=(六)定积分142.==0143.=0144.=145.=146.==147. ===(为大于1的正奇 数),=1 (为正偶数),=

高等数学二重积分总结

第九章二重积分 【本章逻辑框架】 【本章学习目标】 ⒈理解二重积分的概念与性质,了解二重积分的几何意义以及二重积分与定积分之间的联系,会用性质比较二重积分的大小,估计二重积分的取值范围。 ⒉领会将二重积分化为二次积分时如何确定积分次序和积分限,如何改换二次积分的积分次序,并且如何根据被积函数和积分区域的特征选择坐标系。熟练掌握直角坐标系和极坐标系下重积分的计算方法。 ⒊掌握曲顶柱体体积的求法,会求由曲面围成的空间区域的体积。 9.1 二重积分的概念与性质 【学习方法导引】 1.二重积分定义 为了更好地理解二重积分的定义,必须首先引入二重积分的两个“原型”,一个是几何的“原型”-曲顶柱体的体积如何计算,另一个是物理的“原型”—平面薄片的质量如何求。从这两个“原型”出发,对所抽象出来的二重积分的定义就易于理解了。

在二重积分的定义中,必须要特别注意其中的两个“任意”,一是将区域D 成n 个小区域12,,,n σσσ??? 的分法要任意,二是在每个小区域i σ?上的点(,)i i i ξησ∈?的取法也要任意。有了这两个“任意”,如果所对应的积分和当各小区域的直径中的最大值0λ→时总有同一个极限,才能称二元函数(,)f x y 在区域D 上的二重积分存在。 2.明确二重积分的几何意义。 (1) 若在D 上(,)f x y ≥0,则(,)d D f x y σ??表示以区域D 为底,以 (,)f x y 为曲顶的曲顶柱体的体积。特别地,当(,)f x y =1时,(,)d D f x y σ ??表示平面区域D 的面积。 (2) 若在D 上(,)f x y ≤0,则上述曲顶柱体在Oxy 面的下方,二重积分(,)d D f x y σ??的值是负的,其绝对值为该曲顶柱体的体积 (3)若(,)f x y 在D 的某些子区域上为正的,在D 的另一些子区域上为负的,则(,)d D f x y σ??表示在这些子区域上曲顶柱体体积的代数和 (即在Oxy 平面之上的曲顶柱体体积减去Oxy 平面之下的曲顶柱体的体积). 3.二重积分的性质,即线性、区域可加性、有序性、估值不等式、二重积分中值定理都与一元定积分类似。有序性常用于比较两个二重积分的大小,估值不等式常用于估计一个二重积分的取值范围,在用估值不等式对一个二重积分估值的时候,一般情形须按求函数 (,)f x y 在闭区域D 上的最大值、最小值的方法求出其最大值与最小 值,再应用估值不等式得到取值范围。

高等数学习题详解-第8章二重积分

习题8-1 1. 设有一平面薄片,在xOy 平面上形成闭区域D ,它在点(x ,y )处的面密度为μ(x ,y ),且μ(x ,y )在D 连续,试用二重积分表示该薄片的质量. 解:(,)D m x y d μσ=??. 2. 试比较下列二重积分的大小: (1) 2()D x y d σ+??与3()D x y d σ+??,其中D 由x 轴、y 轴及直线x +y =1 围成; (2) ln()D x y d σ+??与2 ln()D x y d σ+??????,其中D 是以A (1,0),B (1,1), C (2,0)为顶点的三角形闭区域. 解:(1)在D 内,()()2301x y x y x y ≤+≤+≥+,故,23()()D D x y d x y d σσ+≥+????. (2) 在D 内,212ln()1,ln()ln ()x y x y x y x y ≤+≤≤+≤+≥+,故0从而, 2 ln()[ln()]D D x y d x y d σσ+≥+???? 习题8-2 1. 画出积分区域,并计算下列二重积分: (1) ()D x y d σ+??,其中D 为矩形闭区域:1,1x y ≤≤; (2) (32)D x y d σ+??,其中D 是由两坐标轴及直线x +y =2所围成的闭

区域; (3) 22()D x y x d σ+-??,其中D 是由直线y =2,y =x ,y =2x 所围成的闭区 域; (4) 2 D x y d σ??,其中D 是半圆形闭区域:x 2+y 2≤4,x ≥0; (5) ln D x y d σ??,其中D 为:0≤x ≤4,1≤y ≤e ; (6) 22D x d σy ??其中D 是由曲线11,,2 xy x y x ===所围成的闭区域. 解:(1) 111 111()()20.D x y d dx x y dy xdx σ---+=+==????? (2) 222 200 (32)(32)[3(2)(2)]x D x y d dx x y dy x x x dx σ-+=+=-+-????? 2232022 20[224]4.33 0x x dx x x x =-++=-++=? (3) 32 2 2 2 2 2 2 002193()()()248y y D y x y x d dy x y x dx y dy σ+-=+-=-????? 43219113 .9686 0y y -= (4) 因为被积函数是关于y 的奇函数,且D 关于x 轴对称, 所以20.D x yd σ=?? (5) 44 201041ln ln (ln ln )2(1)2110 e D e e e x yd dx x ydy x y y y dx x e σ-==-==-?????.

高数微积分公式大全 ()

高等数学微积分公式大全 一、基本导数公式 ⑴()0c '=⑵1x x μμμ-=⑶()sin cos x x '= ⑷()cos sin x x '=-⑸()2tan sec x x '=⑹()2cot csc x x '=- ⑺()sec sec tan x x x '=?⑻()csc csc cot x x x '=-? ⑼()x x e e '=⑽()ln x x a a a '=⑾()1ln x x '= ⑿()1 log ln x a x a '= ⒀( )arcsin x '=⒁( )arccos x '= ⒂()21arctan 1x x '= +⒃()2 1arccot 1x x '=-+⒄()1x '= ⒅ '=二、导数的四则运算法则 三、高阶导数的运算法则 (1)()()()()()()()n n n u x v x u x v x ±=±????(2)()() () ()n n cu x cu x =???? (3)()() () ()n n n u ax b a u ax b +=+???? (4)()()() ()()()() n n n k k k n k u x v x c u x v x -=?=????∑ 四、基本初等函数的n 阶导数公式 (1)()()!n n x n =(2)()()n ax b n ax b e a e ++=?(3)()() ln n x x n a a a = (4)()()sin sin 2n n ax b a ax b n π??+=++??? ?????(5)()()cos cos 2n n ax b a ax b n π??+=++??? ???? ? (6)() () () 1 1! 1n n n n a n ax b ax b +???=- ? +?? +(7)()() () ()() 1 1! ln 1n n n n a n ax b ax b -?-+=-????+ 五、微分公式与微分运算法则 ⑴()0d c =⑵()1d x x dx μμμ-=⑶()sin cos d x xdx = ⑷()cos sin d x xdx =-⑸()2tan sec d x xdx =⑹()2cot csc d x xdx =- ⑺()sec sec tan d x x xdx =?⑻()csc csc cot d x x xdx =-?

高等数学积分公式大全

常 用 高 数 积 分 公 式 (一)含有ax b +的积分(0a ≠) 1.d x ax b +? = 1ln ax b C a ++ 2.()d ax b x μ +?=1 1() (1) ax b C a μμ++++(1μ≠-) 3.d x x ax b +?= 2 1(ln )ax b b ax b C a +-++ 4.2 d x x ax b +? = 22 311()2()ln 2ax b b ax b b ax b C a ??+-++++???? 5.d () x x ax b +? =1ln ax b C b x +-+ 6.2 d () x x ax b +? =2 1ln a ax b C bx b x +- ++ 7.2 d () x x ax b +? =2 1(ln )b ax b C a ax b ++ ++ 8.2 2 d () x x ax b +? = 2 3 1(2ln )b ax b b ax b C a ax b +-+- ++ 9.2 d () x x ax b +? = 2 11ln () ax b C b ax b b x +- ++ 的积分 10.x ? C 11.x ?=2 2 (3215ax b C a -+ 12.x x ?= 2 2 2 3 2(15128105a x abx b C a -+ 13.x ? = 2 2(23ax b C a -+

14 .2 x ? = 222 3 2(34815a x abx b C a -++ 15 .? (0) (0) C b C b ?+>?的积分 22.2d x ax b +? =(0) (0) C b C b ? +>? ? ? +< 23.2 d x x ax b +? = 2 1ln 2ax b C a ++

微积分公式大全

导数公式: 基本积分表: 三角函数的有理式积分: 2222 212sin cos 1121u u x du x x u tg dx u u u -==== +++, , ,  22(tan )sec (cot )csc (sec )sec tan (csc )csc cot ()ln ()(ln 1)1(log )ln x x x x a x x x x x x x x x x a a a x x x x x a '='=-'=?'=-?'='=+' = 2 2 2 (arcsin )(arccos )1 (arctan )11 (arc cot )11 ()x x x x x x thx ch '= '='= +'=- +' = 2 22 2sec tan cos csc cot sin sec tan sec csc cot csc ln ln(x x dx xdx x C x dx xdx x C x x xdx x C x xdx x C a a dx C a shxdx chx C chxdx shx C x C ==+==-+?=+?=-+=+=+=+=+????????? 222222tan ln cos cot ln sin sec ln sec tan csc ln csc cot 1arctan 1ln 21ln 2arcsin xdx x C xdx x C xdx x x C xdx x x C dx x C a x a a dx x a C x a a x a dx a x C a x a a x x C a =-+=+=++=-+=++-=+-++=+--=+???????? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 π π

高等数学积分公式大全

创作编号: GB8878185555334563BT9125XW 创作者: 凤呜大王* 常 用 积 分 公 式 (一)含有ax b +的积分(0a ≠) 1. d x ax b +?=1 ln ax b C a ++ 2.()d ax b x μ +? = 11 ()(1) ax b C a μμ++++(1μ≠-) 3. d x x ax b +?=21 (ln )ax b b ax b C a +-++ 4.2d x x ax b +? =22311()2()ln 2ax b b ax b b ax b C a ?? +-++++???? 5. d ()x x ax b +?=1ln ax b C b x +-+ 6. 2 d () x x ax b +? =21ln a ax b C bx b x +-++ 7. 2 d ()x x ax b +?=21(ln )b ax b C a ax b ++++ 8.22 d ()x x ax b +?=2 31(2ln )b ax b b ax b C a ax b +-+-++

9. 2 d () x x ax b +? =211ln ()ax b C b ax b b x +-++ 的积分 10 . x ? C + 11 .x ? =2 2 (3215ax b C a - 12 .x x ? =2223 2(15128105a x abx b C a -++ 13 . x ? =22 (23ax b C a - 14 . 2x ? =222 3 2(34815a x abx b C a -++ 15 .? (0) (0) C b C b ?+>< 16 . ? =2a bx b -- 17 . x ? =b ?18. 2d x x ? =2a + (三)含有2 2 x a ±的积分 19. 22d x x a +?=1arctan x C a a +

高数 常用积分公式

常 用 积 分 公 式 (一)含有ax b +的积分(0a ≠) 1.d x ax b +?=1 ln ax b C a ++ 2.()d ax b x μ +?=1 1()(1)ax b C a μμ++++(1μ≠-) 3.d x x ax b +?=21 (ln )ax b b ax b C a +-++ 4.2d x x ax b +?=22 311()2()ln 2ax b b ax b b ax b C a ??+-++++???? 5.d ()x x ax b +?=1ln ax b C b x +-+ 6.2d ()x x ax b +?=2 1ln a ax b C bx b x +-++ 7.2d ()x x ax b +?=21(ln )b ax b C a ax b ++++ 8.22d ()x x ax b +?=231(2ln )b ax b b ax b C a ax b +-+-++ 9.2d ()x x ax b +?=2 11ln ()ax b C b ax b b x +-++ 的积分 10 .x ? C 11 .x ? =2 2 (3215ax b C a -+

12 .x x ? =2223 2 (15128105a x abx b C a -+ 13 . x =2 2(23ax b C a - 14 . 2x =22232(34815a x abx b C a -++ 15 . =(0) (0) C b C b ?+>< 16 .? 2a bx b -- 17 . x =b 18 . x = 2a + (三)含有22 x a ±的积分 19.22d x x a +?=1arctan x C a a + 20.22d ()n x x a +?=2221222123d 2(1)()2(1)()n n x n x n a x a n a x a ---+-+-+? 21.22d x x a -?=1ln 2x a C a x a -++ (四)含有 2 (0)ax b a +>的积分 22.2 d x ax b +? =(0) (0) x C b C b ?+>+<

常用微积分公式大全

常用微积分公式大全 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

常用微积分公式 基本积分公式均直接由基本导数公式表得到,因此,导数运算的基础好坏直接影响积分的能力,应熟记一些常用的积分公式. 因为求不定积分是求导数的逆运算,所以由基本导数公式对应可以得到基本积分公式.。 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

对这些公式应正确熟记.可根据它们的特点分类来记. 公式(1)为常量函数0的积分,等于积分常数. 公式(2)、(3)为幂函数的积分,应分为与. 当时,, 积分后的函数仍是幂函数,而且幂次升高一次. 特别当时,有. 当时, 公式(4)、(5)为指数函数的积分,积分后仍是指数函数,因为 ,故(,)式右边的是在分母,不在分子,应记清. 当时,有. 是一个较特殊的函数,其导数与积分均不变. 应注意区分幂函数与指数函数的形式,幂函数是底为变量,幂为常数;指数函数是底为常数,幂为变量.要加以区别,不要混淆.它们的不定积分所采用的公式不同. 公式(6)、(7)、(8)、(9)为关于三角函数的积分,通过后面的学习还会增加其他三角函数公式.

公式(10)是一个关于无理函数的积分 公式(11)是一个关于有理函数的积分 下面结合恒等变化及不定积分线性运算性质,举例说明如何利用基本积分公式求不定积分. 例1 求不定积分. 分析:该不定积分应利用幂函数的积分公式. 解: (为任意常数) 例2 求不定积分. 分析:先利用恒等变换“加一减一”,将被积函数化为可利用基本积分公式求积分的形式. 解:由于,所以 (为任意常数) 例3 求不定积分.

高等数学重积分总结

第九章 二重积分 【本章逻辑框架】 ⒈理解二重积分的概念与性质,了解二重积分的几何意义以及二重积分与定积分之间的联系,会用性质比较二重积分的大小,估计二重积分的取值范围。 ⒉领会将二重积分化为二次积分时如何确定积分次序和积分限,如何改换二次积分的积分次序,并且如何根据被积函数和积分区域的特征选择坐标系。熟练掌握直角坐标系和极坐标系下重积分的计算方法。 ⒊掌握曲顶柱体体积的求法,会求由曲面围成的空间区域的体积。 9.1 二重积分的概念与性质 【学习方法导引】 1.二重积分定义 为了更好地理解二重积分的定义,必须首先引入二重积分的两个“原型”,一个是几何的“原型”-曲顶柱体的体积如何计算,另一个是物理的“原型”—平面薄片的质量如何求。从这两个“原型”出发,对所抽象出来的二重积分的定义就易于理解了。 在二重积分的定义中,必须要特别注意其中的两个“任意”,一是将区域D 成n 个小区域12,,,n σσσ???的分法要任意,二是在每个小区域i σ?上的点 (,)i i i ξησ∈?的取法也要任意。有了这两个“任意”,如果所对应的积分和当各 小区域的直径中的最大值0λ→时总有同一个极限,才能称二元函数(,)f x y 在区域D 上的二重积分存在。 2.明确二重积分的几何意义。

(1) 若在D 上(,)f x y ≥0,则(,)d D f x y σ??表示以区域D 为底,以(,)f x y 为曲 顶的曲顶柱体的体积。特别地,当(,)f x y =1时,(,)d D f x y σ??表示平面区域D 的面积。 (2) 若在D 上(,)f x y ≤0,则上述曲顶柱体在Oxy 面的下方,二重积分 (,)d D f x y σ??的值是负的,其绝对值为该曲顶柱体的体积 (3)若(,)f x y 在D 的某些子区域上为正的,在D 的另一些子区域上为负的,则(,)d D f x y σ??表示在这些子区域上曲顶柱体体积的代数和(即在Oxy 平面之上 的曲顶柱体体积减去Oxy 平面之下的曲顶柱体的体积). 3.二重积分的性质,即线性、区域可加性、有序性、估值不等式、二重积分中值定理都与一元定积分类似。有序性常用于比较两个二重积分的大小,估值不等式常用于估计一个二重积分的取值范围,在用估值不等式对一个二重积分估值的时候,一般情形须按求函数(,)f x y 在闭区域D 上的最大值、最小值的方法求出其最大值与最小值,再应用估值不等式得到取值范围。 【主要概念梳理】 1.二重积分的定义 设二元函数f(x,y)在闭区域D 上有定义且有界. 分割 用任意两组曲线分割D 成n 个小区域12,,,n σσσ???,同时用i σ?表示它们的面积,1,2,,.i n =其中任意两小块i σ?和()j i j σ?≠除边界外无公共点。 i σ?既表示第i 小块,又表示第i 小块的面积. 近似、求和 对任意点(,)i i i ξησ∈? ,作和式1 (,).n i i i i f ξησ=?∑ 取极限 若i λ为i σ?的直径,记12max{,,,}n λλλλ=,若极限0 1 lim (,)n i i i i f λξησ→=?∑ 存在,且它不依赖于区域D 的分法,也不依赖于点(,)i i ξη的取法,称此极限为f (x,y )在D 上的二重积分. 记为

高等数学二重积分总结.讲解学习

高等数学二重积分总 结.

第九章二重积分 【本章逻辑框架】 【本章学习目标】 ⒈理解二重积分的概念与性质,了解二重积分的几何意义以及二重积分与定积分之间的联系,会用性质比较二重积分的大小,估计二重积分的取值范围。 ⒉领会将二重积分化为二次积分时如何确定积分次序和积分限,如何改换二次积分的积分次序,并且如何根据被积函数和积分区域的特征选择坐标系。熟练掌握直角坐标系和极坐标系下重积分的计算方法。 ⒊掌握曲顶柱体体积的求法,会求由曲面围成的空间区域的体积。 9.1 二重积分的概念与性质 【学习方法导引】 1.二重积分定义 为了更好地理解二重积分的定义,必须首先引入二重积分的两个“原型”,一个是几何的“原型”-曲顶柱体的体积如何计算,另一个是物理的“原型”—平面薄片的

质量如何求。从这两个“原型”出发,对所抽象出来的二重积分的定义就易于理解了。 在二重积分的定义中,必须要特别注意其中的两个“任意”,一是将区域D 成n 个小区域12, , , n σσσ??? 的分法要任意,二是在每个 小区域i σ?上的点(, i i i ξησ∈?的取法也要任意。有了这两个“任意”, 如果所对应的积分和当各小区域的直径中的最大值0λ→时总有同一个极限,才能称二元函数(, f x y 在区域D 上的二重积分存在。 2.明确二重积分的几何意义。 (1 若在D 上(, f x y ≥0,则(, d D f x y σ??表示以区域D 为底,以 (, f x y 为曲顶的曲顶柱体的体积。特别地,当(, f x y =1时,(, d D f x y σ ??表示平面区域D 的面积。 (2 若在D 上(, f x y ≤0,则上述曲顶柱体在Oxy 面的下方,二重积分(, d D f x y σ??的值是负的,其绝对值为该曲顶柱体的体积 (3若(, f x y 在D 的某些子区域上为正的,在D 的另一些子区域上为负的,则(, d D f x y σ??表示在这些子区域上曲顶柱体体积的代数和 (即在Oxy 平面之上的曲顶柱体体积减去Oxy 平面之下的曲顶柱体的体积.

高等数学常用导数积分公式查询表好

(1) 0)(='C (2) 1 )(-='μμμx x (3) x x cos )(sin =' (4) x x sin )(cos -=' (5) x x 2 sec )(tan =' (6) x x 2csc )(cot -=' (7) x x x tan sec )(sec =' (8) x x x cot csc )(csc -=' (9) a a a x x ln )(=' (10) (e )e x x '= (11) a x x a ln 1 )(log = ' (12) x x 1)(ln = ', (13) 211)(arcsin x x -= ' (14) 211)(arccos x x -- =' (15) 21(arctan )1x x '= + (16) 21(arccot )1x x '=- +

三角函数的有理式积分: 2 22212211cos 12sin u du dx x tg u u u x u u x +==+-=+=, , , (一)含有ax b +的积分(0a ≠) 1. d x ax b +?=1 ln ax b C a ++ 2. ()d ax b x μ +?= 11 ()(1) ax b C a μμ++++(1μ≠-) ? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 π π

工程力学公式微积分公式高等数学公式汇总

公式: 1、轴向拉压杆件截面正应力N F A σ=,强度校核max []σσ≤ 2、轴向拉压杆件变形Ni i i F l l EA ?=∑ 3、伸长率:1100%l l l δ-= ?断面收缩率:1 100%A A A ψ-=? 4、胡克定律:E σε=,泊松比:'ευε=-,剪切胡克定律:G τγ= 5、扭转切应力表达式:T I ρ ρ τρ=,最大切应力:max P P T T R I W τ= =, 4 4 (1)32 P d I πα= -,3 4(1)16 P d W πα= -,强度校核:max max []P T W ττ= ≤ 6、单位扭转角:P d T dx GI ?θ= =,刚度校核:max max []P T GI θθ= ≤,长度为l 的 一段轴两截面之间的相对扭转角P Tl GI ?= ,扭转外力偶的计算公式: ()(/min) 9549 KW r p Me n = 7、薄壁圆管的扭转切应力:202T R τπδ = 8、平面应力状态下斜截面应力的一般公式: cos 2sin 22 2 x y x y x ασσσσσατα+-= + -,sin 2cos 22 x y x ασστατα-= + 9、平面应力状态三个主应力: '2 x y σσσ+= ,''2 x y σσσ+= '''0σ= 最大切应 力max ''' 2 σστ-=± =,最大正应力方位 02tan 2x x y τασσ=- -

10、 第三和第四强度理论:3r σ= 4r σ=11、平面弯曲杆件正应力:Z My I σ =,截面上下对称时,Z M W σ = 矩形的惯性矩表达式:3 12Z bh I = 圆形的惯性矩表达式: 4 4(1)64Z d I πα= - 矩形的抗扭截面系数:2 6 Z bh W = ,圆形的抗扭截面系数:3 4(1)32 Z d W πα= - 13、平面弯曲杆件横截面上的最大切应力:max max *S z S Z F S F K bI A τ= = 14、平面弯曲杆件的强度校核:(1)弯曲正应力max []t t σσ≤,max []c c σσ≤ (2)弯曲切应力max []ττ≤(3)第三类危险点:第三和第四强度理论 15、平面弯曲杆件刚度校核:叠加法 max []w w l l ≤,max []θθ≤ 16、(1)轴向载荷与横向载荷联合作用强度: max max min ()N Z F M A W σσ=± (2)偏心拉伸(偏心压缩):max min ()N Z F F A W δ σσ=± (3)弯扭变形杆件的强度计算: 有关高等数学计算过程中所涉及到的数学公式(集锦) 一、0 101101 lim 0n n n m m x m a n m b a x a x a n m b x b x b n m --→∞?=??+++? =?? ? (系数不为0的情况) 二、重要公式(1)0sin lim 1x x x →= (2)()1 0lim 1x x x e →+= (3))1n a o >= (4)1n = (5)limarctan 2 x x π →∞ = (6)lim tan 2 x arc x π →-∞ =- (7)limarccot 0x x →∞ = (8)lim arccot x x π→-∞ = (9)lim 0x x e →-∞ = (10)lim x x e →+∞ =∞ (11)0lim 1x x x + →=

高数积分公式大全

12. (一)含有ax b 的积分(a 1 . dx 1 ax b a =-In ax b 2. 3. 4. 5. 6. 7. 9. 10. 11. 13. 常用积分公式 0) 1 (ax b) dx = a( 1) x 1 dx = -^(ax b ax b a 丄dx =丄 ax b a 3 (ax bln b)2 b) ax b) C 2b(ax b) b 2ln ax b dx x( ax b) dx x 2(ax b) x 2dx (ax b) 2 (^dx 1ln b 1 bx ax ax b 1 = -r(ln a ax b ax b ) 2bln ax b b 2 ax b ) C dx 2 x(ax b) b(ax b) 含有.ax b 的积分 1 2 In b 2 ax b Tax~ dx = — T(ax~b)3 3a x 、、ax bdx = -^(3ax 2b 15a x 2 . ax bdx = ^^(15a 2x 2 12abx 8b 2) ., (ax b)3 C 105a ).(ax b)3 C x 2 - d x = -- 2 (ax 2b)、ax b C ,ax b 3a 2

2 15a 3 dx x ¥ ax b dx x 21 ax b ax b. dx = (3a 2x 2 4abx 8b 2)、、ax b ■, ax b 、. ; b .ax b .b A C (b (b 0) 0) bx 2b x 丫 ax b 2 ax b dx x, ax b ax b , 2 dx = x a dx 2 x 、ax b 14. 15. 16. 17. 18. (三) 19. 20. 21 . (四) 22. 23.

(新)高数二重积分习题解答

第9章 重积分及其应用 1.用二重积分表示下列立体的体积: (1) 上半球体:2222{(,,)|;0}x y z x y z R z ++≤≥; (2) 由抛物面222z x y =--,柱面x 2+y 2=1及xOy 平面所围成的空间立体 解答:(1) 222d ,{(,)|}D V x y D x y x y R ==+≤; (2) 2222(2)d d ,{(,)|1}D V x y x y D x y x y =--=+≤?? 所属章节:第九章第一节 难度:一级 2.根据二重积分的几何意义,确定下列积分的值: (1) D σ,其中D 为222x y a +≤; (2) (D b σ?? ,其中D 为222,0x y a b a +≤>> 解答:(1) 32 π3 D a σ=; (2) 2 32(ππ3D b a b a σ=-?? 所属章节:第九章第一节 难度:一级 3.一带电薄板位于xOy 平面上,占有闭区域D ,薄板上电荷分布的面密度为(,)x y μμ=,且 (,)x y μ在D 上连续,试用二重积分表示该板上的全部电荷Q . 解答:(,)d D Q x y μσ=?? 所属章节:第九章第一节 难度:一级 4.将一平面薄板铅直浸没于水中,取x 轴铅直向下,y 轴位于水平面上,并设薄板占有xOy 平面上的闭区域D ,试用二重积分表示薄板的一侧所受到的水压力 解答:d D p g x ρσ=?? 所属章节:第九章第一节 难度:一级

5.利用二重积分性质,比较下列各组二重积分的大小 (1) 21()d D I x y σ=+??与32()d D I x y σ=+??,其中D 是由x 轴,y 轴及直线x +y =1所围成的区域; (2) 1ln(1)d D I x y σ=++??与222ln(1)d D I x y σ=++??,其中D 是矩形区域:0≤x ≤1,0≤y ≤1; (3) 21sin ()d D I x y σ=+??与22()d D I x y σ=+??,其中D 是任一平面有界闭区域; (4) 1e d xy D I σ=??与22e d xy D I σ=??,其中D 是矩形区域:–1≤x ≤0,0≤y ≤1; 解答:(1) 在区域D 内部,1x y +<,所以I 1>I 2; (2) 在区域D 内部,22,x x y y <<,故22ln(1)ln(1)x y x y ++<++,所以 I 1>I 2;? (3) 由于22sin ()()x y x y +<+,所以I 1,所以I 1>I 2 所属章节:第九章第一节 难度:一级 6.利用二重积分性质,估计下列二重积分的值 (1) d ,{(,)|04,08}ln(4) D I D x y x y x y σ ==≤≤≤≤++?? ; (2) 2222π3πsin()d ,(,)44D I x y D x y x y σ? ?=+=≤+≤??????; (3) 221 d ,{(,)|||||1}100cos cos D I D x y x y x y σ==+≤++?? ; (4) 2 2 221e d ,(,)4x y D I D x y x y σ+? ?==+≤??? ??? 解答:(1) 由于{(,)|04,08}D x y x y =≤≤≤≤的面积为32,在其中111 ln16ln(4)ln 4 x y ≤≤++,而等号不恒成立,故 816ln 2ln 2 I <<; (2) 由于22π3π(,)44D x y x y ? ?=≤+≤????的面积为212π,在其中22sin()12x y ≤+≤,而等号不 恒成立,故22 π42 I <<;

高等数学常用积分公式查询表

导数公式: 基本积分表: 1.d x ax b +?=1ln ax b C a ++ 2.()d ax b x μ+?=11()(1) ax b C a μμ++++(1μ≠-) 3.d x x ax b +?=21(ln )ax b b ax b C a +-++ 5.d ()x x ax b +?=1ln ax b C b x +-+ 6.2d ()x x ax b +?=21ln a ax b C bx b x +-++ 10 .x C 19.22d x x a +?=1arctan x C a a + 21.22d x x a -?=1ln 2x a C a x a -++ 23.2d x x ax b +?=21ln 2ax b C a ++ 24.2 2d x x ax b +?=2d x b x a a ax b -+? a x x a a a x x x x x x x x x x a x x ln 1)(log ln )(cot csc )(csc tan sec )(sec csc )(cot sec )(tan 22='='?-='?='-='='222211)cot (11)(arctan 11)(arccos 11)(arcsin x x arc x x x x x x +-='+='--='-='

31. 1arsh x C a +=ln(x C + 32. =C + 33. x =C 34. x =C + 35.2 x =2ln(2a x C -++ 39. x 2 ln(2a x C +++ 43.x a C + 44.2d x x ?=ln(x C +++ 47. x =C 53.x 2 ln 2 a x C 57.x =arccos a a C x + 59. arcsin x C a + 61. x =C